

REDUCING COMPLEXITY IN DEVELOPING WIRELESS

SENSOR NETWORK SYSTEMS USING MODEL-DRIVEN

DEVELOPMENT

Aymen J. Salman

School of Computing, Science and Engineering

College of Science and Technology

University of Salford, Salford, UK

Submitted in Partial Fulfilment of the Requirements of the

Degree of Doctor of Philosophy

Augest, 2017

II

Table of Contents

TABLE OF CONTENTS .. II

LIST OF FIGURES .. VI

LIST OF TABLES ...VIII

LIST OF CODE SNIPPETS ... X

LIST OF EQUATIONS .. XI

LIST OF ABBREVIATION .. XII

ACKNOWLEDGMENTS ... XIV

DECLARATION .. XV

ABSTRACT ... XVI

KEYWORDS .. XVIII

CHAPTER 1: THESIS INTRODUCTION AND RESEARCH METHODOLOGY 1

1.1 INTRODUCTION ... 1

1.2 MOTIVATION ... 1

1.2.1 Research Motivation ... 1

1.2.2 Motivations for a Proposed Solution .. 2

1.3 ANALYSIS OF CHALLENGES IN WSN DEVELOPMENT .. 3

1.3.1 Challenging Dimensions of WSN Application Development ... 4

1.3.2 Potential Developers of WSN Application ... 6

1.3.3 Demonstration Case Study (Scenario) .. 8

1.4 RESEARCH PROBLEM .. 9

1.5 RESEARCH AIM AND OBJECTIVES ... 9

1.6 RESEARCH SCOPE ... 10

1.7 CONTRIBUTIONS TO KNOWLEDGE ... 10

1.8 RESEARCH METHODOLOGY .. 12

1.9 PUBLICATIONS .. 15

1.10 THESIS OUTLINE... 15

CHAPTER 2: BACKGROUND AND OVERVIEW ... 17

2.1 INTRODUCTION ... 17

2.2 WIRELESS SENSOR NETWORK ... 17

2.2.1 Most Popular WSN Hardware .. 18

2.2.2 TinyOS .. 19

2.3 HOW CAN COMPLEXITY BE SOLVED? ... 20

2.3.1 Model-Driven Development (MDD) .. 21

III

2.3.2 Domain-Specific Language (DSL) ... 22

2.4 APPROACHES TO DEFINING WSN DEVELOPMENT ABSTRACTION - RELATED WORK 23

2.4.1 Embedded Operating Systems .. 23

2.4.2 Customised Platform... 24

2.4.3 Model-Driven Development ... 27

2.4.4 Principal Findings ... 32

2.5 FORMULATED DESIGN REQUIREMENTS ... 37

2.6 CHAPTER SUMMARY ... 38

CHAPTER 3: SENNET META-MODEL .. 39

3.1 INTRODUCTION ... 39

3.2 MODELLING AND META-MODELLING ... 39

3.3 SENNET META-MODEL ... 41

3.3.1 Application Configuration in SenNet Mata-Model ... 43

3.3.2 Network Configuration in SenNet Mata-Model ... 45

3.4 ISO/IEC 29182 – SENSOR NETWORK REFERENCE ARCHITECTURE ... 45

3.5 APPLICATION TYPES SUPPORTED BY THE SENNET META-MODEL .. 47

3.6 CHAPTER SUMMARY ... 49

CHAPTER 4: SENNET LANGUAGE - INTERNAL VIEW ... 50

4.1 INTRODUCTION ... 50

4.2 SENNET INTERNAL VIEW .. 50

4.3 CODE PARSING COMPONENT (CPC) .. 52

4.3.1 Lexical and Syntactical Analysis Stage .. 53

4.3.2 Semantic Analysis Stage ... 55

4.4 CODE GENERATION COMPONENT (CGC) .. 55

4.4.1 Why Use TinyOS as a Foundation for SenNet?.. 56

4.4.2 Code Generation Process .. 59

4.5 SENNET EXTENSIBILITY AND UPDATE PROCESS ... 65

4.6 CHAPTER SUMMARY ... 66

CHAPTER 5: SENNET LANGUAGE - PROGRAMMING VIEW .. 67

5.1 INTRODUCTION ... 67

5.2 SENNET LANGUAGE .. 67

5.3 SENNET COMPONENTS .. 69

5.3.1 Code Parsing Component (CPC) .. 69

5.3.2 Code Generation Component (CGC) .. 70

5.4 SENNET APPLICATION GENERAL SYNTAX AND DEVELOPMENT STEPS ... 72

5.4.1 Job Types .. 74

5.4.2 Network Elements .. 78

5.4.3 Job Start/Ending Trigger ... 80

IV

5.4.4 Job Action ... 80

5.5 CHAPTER SUMMARY ... 82

CHAPTER 6: SENNET EVALUATION .. 83

6.1 INTRODUCTION ... 83

6.2 PROOF OF CONCEPT CASE STUDY ... 83

6.3 SENNET EVALUATION PLAN ... 89

6.3.1 Languages under Test ... 90

6.4 SCOPE OF APPLICATION FUNCTIONALITY.. 91

6.5 APPLICATION SOURCE CODE ANALYSIS ... 92

6.5.1 Node-Level Applications .. 94

6.5.2 Network-Level Applications ... 96

6.5.3 Results Summary .. 98

6.6 BUSINESS CASE STUDY APPLICABILITY .. 101

6.6.1 Scenario 1 - Light Monitoring in Tunnels .. 101

6.6.2 Scenario 2 - Temperature Monitoring for Smart Homes .. 105

6.7 USER STUDY EXPERIMENT .. 108

6.7.1 Goals/Questions/Metrics ... 108

6.7.2 Question Rating Scales and Metrics Benchmarking ... 113

6.7.3 Experiment Tasks ... 116

6.7.4 Experiment Participants .. 117

6.7.5 Experiment Materials, Tools and Equipments .. 120

6.7.6 Experiment Protocol ... 120

6.7.7 Experiment Results Discussion... 121

6.8 EVALUATION SUMMARY ... 126

CHAPTER 7: DISCUSSION, CONCLUSION AND FUTURE WORK ... 129

7.1 INTRODUCTION ... 129

7.2 DISCUSSION (RESEARCH OUTCOMES) ... 129

7.3 CONCLUSION ... 132

7.4 LIMITATIONS ... 133

7.5 FUTURE WORK .. 134

REFERENCES ... 135

APPENDIX A: CONFERENCES AND TRAINING COURSES .. 155

APPENDIX B: SURVEYS .. 156

B.1 SAMPLE OF RESEARCH ARTICLES REFERRED TO WSN PROGRAMMING COMPLEXITY 156

B.2 SAMPLE OF RESEARCH ARTICLES REFERRED TO WSN NOVICE DEVELOPERS 157

B.3 SAMPLE OF RESEARCH DOCUMENTS REFERRED TO DOMAIN EXPERTS .. 157

APPENDIX C: DEMONSTRATION CASE STUDY ... 160

V

APPENDIX D: SENNET GRAMMAR .. 163

APPENDIX E: SENNET CGC IMPLEMENTATION .. 168

E.1 APPCGENERATOR.XTEND .. 168

E.2 CGENERATOR.XTEND ... 169

E.3 HEADERGENERATOR.XTEND .. 172

E.4 MAKEFILEGENERATOR.XTEND ... 172

APPENDIX F: APPLICATION SOURCE CODE ANALYSIS SCENARIOS IMPLEMENTATION

 173

F.1 SINGLE NODE SENSEFORWARD SCENARIO ... 173

F.1.1 SenNet Version ... 173

F.1.2 nesC Version ... 173

F.1.3 HCM Operands and Operators Statistics .. 175

F.2 NETWORK-LEVEL SENSEFORWARD SCENARIO .. 176

F.2.1 SenNet .. 176

F.2.2 nesC .. 176

F.2.3 HCM Operands and Operators Statistics .. 178

F.3 NETWORK-LEVEL EVENT-BASED SCENARIO .. 179

F.3.1 SenNet .. 179

F.3.2 nesC .. 179

F.3.3 HCM Operands and Operators Statistics .. 181

APPENDIX G: BUSINESS CASE STUDY APPLICABILITY SCENARIOS - NESC

IMPLEMENTATION .. 182

G.1 SCENARIO-1 ... 182

G.2 SCNEARIO-2 ... 183

APPENDIX H: USER STUDY EXPERIMENT .. 185

H.1 ETHICAL APPROVAL LETTER .. 185

H.2 PRE-EXPERIMENT QUESTIONS .. 186

H.3 POST-EXPERIMENT QUESTIONS .. 186

H.4 TASK-3 ... 188

VI

List of Figures

FIGURE 1-1: WSN APPLICATION DEVELOPERS TECHNOLOGY BACKGROUND AND PROGRAMMING SKILLS 7

FIGURE 1-2: RESEARCH PARADIGM ... 12

FIGURE 1-3: RESEARCH MAIN STAGES .. 14

FIGURE 2-1: WSN DEVELOPMENT APPLICATIONS APPROACHES .. 23

FIGURE 3-1: WSN META-MODEL ... 42

FIGURE 3-2: THE DIFFERENCE BETWEEN SYNCHRONOUS / ASYNCHRONOUS PROGRAMMING MODELS (“GETTING

STARTED WITH TINYOS,” N.D.) ... 44

FIGURE 3-3: PHYSICAL OPERATIONAL ACTIVITY MODEL ... 47

FIGURE 3-4: GENERAL SENSOR NETWORK SYSTEM FUNCTIONALITY DIAGRAM ... 47

FIGURE 4-1: SENNET IMPLEMENTATION ARCHITECTURE .. 51

FIGURE 4-2: HIGH-LEVEL SENNET FUNCTIONALITY MODEL .. 52

FIGURE 4-3: GENERAL NESC MODULE PROGRAM STRUCTURE ... 56

FIGURE 4-4: SENSOR NODE PROGRAMMING CONVENTIONAL PROCESS... 58

FIGURE 4-5: CODE GENERATORS TRIGGERING PROCESS ... 60

FIGURE 4-6: THE CGENERATOR ALGORITHM TO IMPLEMENT SENSEJOB JOB TYPE .. 61

FIGURE 4-7: THE CGENERATOR ALGORITHM TO IMPLEMENT NETWORKDATAPROCESSING JOB 62

FIGURE 4-8: SENNET UPDATING AND EXPANDING PROCESS ... 65

FIGURE 5-1: GENERAL WSN APPLICATION DEVELOPMENT STEPS USING SENNET ... 67

FIGURE 5-2: SENNET WORKING MECHANISM ... 68

FIGURE 5-3: SENNET’S MAIN FEATURES ... 69

FIGURE 5-4: SENNET EDITOR VIEWS ... 70

FIGURE 5-5: SENNET IDE FEATURES (A) IDE LANGUAGE HELPER, (B) IDE ERROR MESSAGE EXAMPLE 70

FIGURE 5-6: NESC GENERATED FILES FOR SENNET APPLICATION .. 71

FIGURE 5-7: GENERAL SENNET APPLICATION AND JOB STRUCTURE .. 73

FIGURE 5-8: SENNET JOB DEVELOPMENT STEPS ... 74

FIGURE 5-9: JOB TYPES SENNET META-MODEL ... 75

FIGURE 5-10: NETWORK ELEMENTS SENNET META-MODEL .. 78

FIGURE 5-11: STARTENDJOB SENNET META-MODEL ... 80

FIGURE 5-12: JOBACTION SENNET META-MODEL .. 81

FIGURE 6-1: CASE STUDY DEVELOPMENT USING TEXT-BASED EDITOR VIEW.. 85

FIGURE 6-2: CASE STUDY DEVELOPMENT USING TREE-BASED EDITOR VIEW .. 86

FIGURE 6-3: TINYOS COMPONENT GRAPH FOR A SAMPLE OF THE GENERATED NESC FILES 86

FIGURE 6-4: THE THREE IRIS-XM2110 USED TO VALIDATE THE GENERATED FILES CODE 87

FIGURE 6-5: SENNET EVALUATION PLAN ... 90

FIGURE 6-6: SCREEN SNAPSHOT FOR SF SCENARIO USING SENNET ... 96

FIGURE 6-7: SCREEN SNAPSHOT FOR NETWORK-LEVEL SENSEFORWARD SCENARIO USING SENNET 97

FIGURE 6-8: SCREEN SNAPSHOT FOR NETWORK-LEVEL EVENTBASED SCENARIO USING SENNET 98

VII

FIGURE 6-9: NESC AND SENNET LOC STATISTICS .. 99

FIGURE 6-10: SENNET SAVING IN LOC ... 99

FIGURE 6-11: SENNET SAVING PERCENTAGES ACCORDING TO HCM FORMULAS .. 100

FIGURE 6-12: SAMPLE SCREENSHOT FOR THE SENNET EDITOR FOR SCENARIO-1 ... 104

FIGURE 6-13: SAMPLE SCREENSHOT FOR THE TINYOS COMPONENT GRAPH FOR SCENARIO-1 105

FIGURE 6-14: SAMPLE SCREENSHOT FOR THE SENNET EDITOR FOR SCENARIO-2 ... 107

FIGURE 6-15: SAMPLE SCREENSHOT FOR THE TINYOS COMPONENT GRAPH FOR SCENARIO-2 108

FIGURE 6-16: GOALS/QUESTIONS/METRICS MAPPING FOR THE USER STUDY ... 113

FIGURE 6-17: PARTICIPANTS’ STUDY BACKGROUND .. 118

FIGURE 6-18: PARTICIPANTS’ CURRENT TECHNOLOGY FIELD OF INTEREST .. 118

FIGURE 6-19: PARTICIPANTS’ PROGRAMMING EXPERIENCE .. 119

FIGURE 6-20: PARTICIPANTS USING GPL VS. DSL .. 119

FIGURE 6-21: USER STUDY EXPERIMENT GOALS FINAL RESULTS... 126

FIGURE 6-22: SENNET VS. NESC USABILITY ... 126

FIGURE 7-1: THE OUTLINE OF THE THESIS STRUCTURE .. 131

VIII

List of Tables

TABLE 1-1: SUMMARY OF WSN APPLICATION CHALLENGES .. 4

TABLE 1-2: POTENTIAL WSN DEVELOPER GROUPS .. 6

TABLE 1-3: MAPPING RESEARCH CHALLENGES TO RESEARCH OBJECTIVES AND CONTRIBUTIONS 11

TABLE 2-1: SAMPLE OF THE MOST USED WSN PLATFORMS 2002-2012 (THANG, 2015) 19

TABLE 2-2: COMMUNICATION TYPES SUPPORTED BY TINYOS.. 19

TABLE 2-3: THE SEVEN ARCHETYPE IDENTIFIED BY BAI, DICK, & DINDA (2009) ... 25

TABLE 2-4: THE DRAWBACKS OF THE AVAILABLE STRATEGIES TO DEFINE DEVELOPMENT ABSTRACTION 33

TABLE 2-5: APPLICATION DEVELOPMENT APPROACHES SUMMARY ... 35

TABLE 2-6: SUMMARY OF THE CONCLUDED DESIGN REQUIREMENTS ... 38

TABLE 3-1: ISO/IEC29182-4 MAIN FUNCTIONAL ENTITIES (ISO/IEC, 2013) .. 46

TABLE 3-2: SENNET META-MODEL MAPPING TO ISO/IEC29182 FUNCTIONAL ENTITIES 46

TABLE 3-3: MAPPING SENNET META-MODEL TO TAXONOMY CRITERIA (OPPERMANN, BOANO, ET AL., 2014) 49

TABLE 4-1: SAMPLE OF SENNET TO NESC CODE MAPPING ... 63

TABLE 6-1: GENERAL SENNET EVALUATION PLAN .. 90

TABLE 6-2: SENNET ASSESSMENT ACCORDING TO BAI CLASSIFICATION ... 92

TABLE 6-3: EMPTY APPLICATION LOC & HCM STATISTICS... 95

TABLE 6-4: SENSEFORWARD APPLICATION SCENARIO STATISTICS ... 96

TABLE 6-5: NETWORK-LEVEL SENSEFORWARD APPLICATION SCENARIO STATISTICS.. 97

TABLE 6-6: NETWORK-LEVEL EVENTBASED APPLICATION SCENARIO STATISTICS .. 98

TABLE 6-7: LOC FINAL STATISTICS .. 99

TABLE 6-8: HCM STATISTICS ... 100

TABLE 6-9: SENNET SAVING IN TERMS OF HCM FORMULAS .. 100

TABLE 6-10: GOAL/QUESTION/METRIC MAPPING FOR THE USER STUDY.. 113

TABLE 6-11: TYPE-1 QUESTIONS SAMPLE ... 114

TABLE 6-12: TYPE-2 QUESTIONS SAMPLE ... 114

TABLE 6-13: USER SURVEY QUESTION TYPES .. 115

TABLE 6-14: METRICS MEASUREMENT METHODS AND POSSIBLE VALUES ... 116

TABLE 6-15: THE CORRELATION BETWEEN GOALS, QUESTIONS, METRICS AND TASKS 117

TABLE 6-16: PARTICIPANTS’ CATEGORISED GROUPS ACCORDING TO TECHNOLOGY INTEREST.......................... 119

TABLE 6-17: PARTICIPANTS’ KNOWLEDGE OF WSN TECHNOLOGY .. 120

TABLE 6-18: THE EXPERIMENT TIME TABLE ... 121

TABLE 6-19: THE CRONBACH’S ALPHA INDEX FOR THE WHOLE DATA SET (23 QUESTION FEEDBACK) 122

TABLE 6-20: INTRODUCTORY QUESTIONS RESULTS .. 122

TABLE 6-21: SENNET AND NESC TASK COMPLETION TIMES (M122 AND M123) .. 124

TABLE 6-22: USER STUDY EXPERIMENT METRICS RESULTS ... 125

TABLE 6-23: FINAL USER STUDY EXPERIMENT GOALS RESULTS .. 126

TABLE 6-24: SENNET VS. NESC USABILITY ... 126

IX

TABLE 6-25: QUESTION-1 METRICS RESULT ... 127

TABLE 6-26: QUESTION-2 METRICS RESULT ... 128

TABLE 6-27: QUESTION-3 METRICS RESULT ... 128

X

List of Code Snippets

LISTING 4-1: SENNET TREE-BASED EDITOR VIEW INITIALISATION... 53

LISTING 4-2: EBNF SAMPLE RULE .. 53

LISTING 4-3: SAMPLE OF SENNET GRAMMAR SHOWING TERMINAL RULES .. 54

LISTING 4-4: SAMPLE OF SENNET GRAMMAR SHOWING PARSER RULES .. 54

LISTING 4-5: SAMPLE OF SENNET GRAMMAR SHOWING SEMANTIC RULES .. 55

LISTING 4-6: PSEUDOCODE OF GENERATED NODES-NAMING PROCESS ... 59

LISTING 4-7: PSEUDOCODE OF THE GENERATED NESC CODE FOR THE NODEDATAPROCESSING 61

LISTING 5-1: GENERAL SENNET APPLICATION SYNTAX ... 72

LISTING 5-2: SENSEJOB COMMAND GENERAL SYNTAX .. 76

LISTING 5-3: SENSENOWJOB COMMAND GENERAL SYNTAX .. 76

LISTING 5-4: NODEDATAPROCESSING COMMAND GENERAL SYNTAX .. 77

LISTING 5-5: NETWORKDATAPROCESSING COMMAND GENERAL SYNTAX ... 77

LISTING 5-6: JOBTARGETNODE COMMAND GENERAL SYNTAX .. 79

LISTING 5-7: JOBTARGERNETWORK COMMAND GENERAL SYNTAX ... 79

LISTING 5-8: START/ENDTRIGGER COMMAND GENERAL SYNTAX .. 80

LISTING 5-9: JOBACTION COMMAND GENERAL SYNTAX .. 81

LISTING 5-10: CONDITIONAL ACTION COMMAND SYNTAX ... 81

LISTING 6-1: SENNET APPLICATION FOR CASE STUDY SCENARIO .. 85

LISTING 6-2: SAMPLE OF THE NESC CONFIGURATION FILES .. 87

LISTING 6-3: SAMPLE OF THE NESC MODULE FILES .. 87

LISTING 6-4: AMSG.H HEADER FILE ... 88

LISTING 6-5: SAMPLE OF THE NESC MAKEFILE ... 89

LISTING 6-6: EMPTY APPLICATION - SENNET VERSION... 94

LISTING 6-7: EMPTY APPLICATION - NESC VERSION ... 95

LISTING 6-8: SENNET APPLICATION FOR SCENARIO-1 .. 102

LISTING 6-9: SENNET APPLICATION FOR SCENARIO-2 .. 106

XI

List of Equations

EQUATION 6-1: PERCENTAGE OF SENNET TIME SAVING FOR EACH TASK .. 111

EQUATION 6-2: PERCENTAGE OF SENNET TIME SAVING FOR ALL TASKS ... 111

XII

List of Abbreviation

3SUF 3-Scale User Feedback

5SUF 5-Scale User Feedback

ADC Analog-to-Digital Convertor

AM Active Message

AN Analysis

ANTLR ANother Tool for Language Recognition

ArchWiSeN Architecture for Wireless Sensor and Actuator Networks

AST Abstract Syntax Tree

ATL Atlas Transformation Language

BPML Business Process Modelling Language

CFG Context-Free Grammar

CG Code Generation

CGC Code Generation Component

CIM Computation-Independent Model

CPC Code Parsing Component

CTP Collection Tree Protocol

DA Data Aggregation

DARPA Defence Advanced Research Projects Agency

DE Domain Experts

DF Data Fusion

DI Dependency Injection

DSL Domain-Specific Language

DSML Domain-Specific Modelling Language

DSN Distributed Sensor Network

EMF Eclipse Modelling Framework

ENBNF Extended Backus-Naur Form

ENVML Environment Modelling Language

Eobject Eclipse Object

EOS Embedded Operating Systems

EU End Users

FQAD Framework for Qualitative Assessment of DSLs

G Group of Nodes-Level

GCC GNU Compiler Collection

GPL General Programming Language

GQM Goal/Question/Metric

HAA Hardware Abstraction Architecture

HAL Hardware Adaptation Layer

HCM Halstead Code Complexity Measurement

HIL Hardware Interface Layer

HPL Hardware Presentation Layer

IDE Integrated Development Environment

XIII

IoT Internet of Things

IQ Introductory Questions

JVM Java Virtual Machine

LOC Lines of Code

LWiSSy Domain Language for Wireless Sensor and Actuators Networks Systems

M2T Model-to-Text

MCL M-Core Control Language

MCU Microcontroller Unit

MDA Model-Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

Moppet-FM Moppet-Feature Modelling

Moppet-PE Moppet-Performance Estimation

N Node-Level

ND Novice Developers

Net Network-Level

NODEML Node Modelling Language

OMG Object Management Group

OTAP Over the Air Programming

PIM Platform-Independent Model

PSM Platform-Specific Model

PTIR Participant’s Tasks Implementation Results

SAML Software Architecture Modelling Language

SenNet Sensor Network

SMS Systematic Mapping Study

SNRA ISO/IEC 29182 – Sensor Network Reference Architecture

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SUS System Usability Scale

T2M Text-to-Model

ULP Ultra-Low Power

UML Unified Modelling Language

UX User Experience

VM Virtual Machine

WSAN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

XML Extensible Markup Language

XIV

ACKNOWLEDGMENTS

First of all, over the past three years, I have received valuable support and encouragement from

my supervisor at the University of Salford. Therefore, I need to state my unwavering gratitude

to Dr Adil Al-Yasiri, who has provided me with perpetual support, expert advice, and for

showing unlimited patience and trust in myself.

I would like to thank my father (Dr Jaber Aziz) and my mother for their love, care and support

in making me the person that I have become, and to give my endless thanks for their persistent

encouragement throughout the duration of my education, both past and present, although my

appreciation cannot compare with their sacrifices and the unconditional motivation that they

have instilled.

Without the unwavering support, patience and understanding of my loving family (Maisa &

Mustafa), this PhD would not have been possible. You will get me back soon!

I gratefully acknowledge the generous financial support of The Iraqi Ministry of Higher

Education and Al-Nahrain University in sponsoring me through my research.

Above all, I would like to thank Almighty Allah for giving me the strength and wisdom to

complete this research.

XV

DECLARATION

I unequivocally declare that the contents of the present research are of original quality, apart

from any specific references that are made regarding other researchers. This thesis has not been

previously submitted for consideration to my current university or any other one. The entire

content of the research is my own personal work and nothing has been formulated in

collaboration with any other person, unless this is clearly specified.

Signature: Date: / /

Aymen J. Salman

XVI

ABSTRACT

Wireless Sensor Network (WSN) is a collection of small and low-powered gadgets called

sensor nodes (motes), which are capable of sensing the environment, collecting and processing

the sensed data, and communicating with each other to accomplish a specific task. Moreover,

all sensed and processed data are finally handed over to a central gathering point called a base

station (sink), where all collected data are stored and can be reviewed by the user.

Most of the current methods concerning WSN development are application or platform-

dependent; hence it is not a trivial task to reuse developed applications in another environment.

Therefore, WSN application development is a challenging and complex task because of the

low-level technical details and programming complexity. Furthermore, most WSN

development projects are managed by software engineers, not application field experts or WSN

end users. Consequently, WSN solutions are considered expensive, due to the amount of effort

that has to be put into these projects.

This research project aims to reduce the complexity in developing WSN applications, by

abstracting the low-level technical and programming details for average developers and domain

experts. In this research, we argue that reducing complexity can be achieved by defining a new

Domain-Specific Language (DSL) as a new application development and programming

abstraction, which supports multi-levels modelling (i.e. network, group, and node-level). The

outcome of this work is the definition of a new language called SenNet, which is an open source

DSL programming abstraction that enables application developers to concentrate on the high-

level application logic rather than the low-level complex details. SenNet was developed using

the principles of Model-Driven Development (MDD) and macro-programming. Developers

can use SenNet as a high-level programming abstraction to auto-generate a ready-to-deploy

single node nesC code for all sensor nodes that comprise the SenNet application. SenNet gives

developers the flexibility they need by offering them a broad range of predefined monitoring

tasks and activities, enabling developers to develop different application types such as Sense-

Forward (SF), and Event-Triggered (ET); besides providing a set of node-level and in-network

data processing tasks. The current SenNet version is configured to generate nesC code, yet

SenNet can be set up to produce and generate any programming language such as Java, or C++,

by reconfiguring the code generator to produce the new language format, without changing the

language design and produced semantics.

XVII

Various tests and user study have been used to evaluate SenNet’s usability and functional

suitability. Evaluation results found that SenNet could save 88.45% of the LOC required to be

programmed by a developer, and 87.14% of the required vocabularies. Furthermore, results

showed that SenNet could save 92.86% and 96.47% of the program length and volume

respectively. Most of the user study participants (96%) found SenNet to be usable and helps to

achieve the required WSN application with reduced development effort. Moreover, 82% of the

participants believe that SenNet is functionally suitable for WSN application development.

Two real-world business case studies developed were used to assess SenNet’s appropriateness

to develop WSN real applications, and how it can be used to develop applications related to

data processing tasks.

Based on the final evaluation results, it can be concluded that our research has been successful

in introducing SenNet as a new abstraction to reduce complexity in the WSN application

development process.

XVIII

KEYWORDS

Wireless Sensor Networks, Application Development; Wireless Sensor Networks Application

Development; WSN Application; Domain-Specific Language; Model-Driven Development;

WSN Programming; WSN Application Development; Multi-Level Abstraction; Macro-

Programming; Node-Level Programming; Network-Level Programming; Code Generator;

Node-Level Application Development; Network-Level Application Development; Group of

Nodes-Level Application Development; Domain Experts; Sensor Network; SenNet Meta-

Model; Code Parsing Component; Code Generation Component.

1

Chapter 1: Thesis Introduction and Research

Methodology

1.1 Introduction

In recent years, WSNs have received considerable attention in the research community and this

is one of the most researched technology areas in the last decade (Rawat, Singh, Chaouchi, &

Bonnin, 2014). In terms of business opportunities, it is expected that the WSN market will

grow from $0.45 billion in 2011 to $2 billion in 2021 (Harrop, 2012; Harrop & Das, 2012).

A Wireless Sensor Network (WSN) can be defined as a group of sensor nodes (motes); each

node consists of one or more sensors, memory to store the sensed data, a radio for sending and

receiving data and a processor. The essential capabilities of the sensor node are to sense,

compute and communicate data from the environment in which the motes are working. The

aim of a WSN is to combine all these functions into one single small chip. Generally, WSNs

have limitations in terms of resources, such as power and memory. These limitations and the

uncontrolled nature of this type of network have hampered efforts to develop the technology

and, due to its compact nature, one of the complex tasks in a WSN is its programming and

application development (De-Farias, Brito, et al., 2016; De-Farias, Li, et al., 2016; Lopes &

Martins, 2016).

The general practice of Application development in WSNs is far removed from Software

Engineering practices and standards, which are built monolithically, becoming very complex

to understand and managed through the development phase (Intana, Poppleton, & Merrett,

2014). Therefore, a clear separation of concerns is required.

1.2 Motivation

1.2.1 Research Motivation

According to an MIT Technology Review article (Culler, 2003), WSN was considered to be

“one of 10 emerging technologies that will change the world”. Afterwards, community interest

and involvement in WSN increased and became similar to the Internet revolution (Riva &

Borcea, 2007). Many research foundations around the globe have concentrated their

2

endeavours on different aspects related to WSN technology. Today WSNs have been produced

for an extensive variety of applications for environment monitoring, industries, health,

building, structural monitoring, military and security surveillance (Bellifemine et al., 2011;

Yaacoub et al., 2013; Zhang et al., 2011; Zouinkhi et al., 2014).

WSN is becoming more and more integrated into larger computing infrastructures (Julien &

Wehrle, 2013). Despite the challenges that WSN developers experience at every step in their

application development, the research community is continuously working to introduce new

solutions for WSN challenges. It has been noted that many programming approaches have been

proposed, and many operating systems have been introduced as an abstraction level, such as

TinyOS, Contiki and LiteOS, to be used by application developers.

In the face of all the efforts spent in this field, up to now designing and implementing software

for WSN has been considered a complicated and challenging task (Antonopoulos et al., 2016;

Cecchinel et al., 2016; Delamo et al., 2015; Essaadi et al., 2017; Lopes & Martins, 2016;

Ouadjaout et al., 2016).

De-Farias et al. (2016) argue that the challenges in WSN application development are due to

the lack of appropriate abstraction layers used to reduce complexity in application

development. Accordingly, more research should be focused on this area. The motivation of

this research is to make further contribution to this field and present an approach to WSN

application development in order to reduce the complexity found in this area.

1.2.2 Motivations for a Proposed Solution

Many technologies, techniques and methods can be integrated and formed in a way to produce

solutions for our research problem. But, some factors have encouraged us to build and

introduce the proposed solution in this research:

• Finding a method to hide and personalise specific knowledge such as WSN low-level

technology background and the required programming expertise, for people who do not

have this required knowledge, is the particular contribution of this research. The Model-

Driven Development (MDD) approach offers a solution to the problems mentioned. It

offers advantages such as a separation of concerns, hiding low-level details and raising the

level of abstraction (Hailpern & Tarr, 2006; Tei et al., 2015). So, using the MDD approach

to developing Domain-Specific Language (DSL) is one of the best solutions to reach this

3

proposal (Essaadi et al., 2017). A DSL may allow users with minimum knowledge to

program and develop the required application or configure the system appropriately

(Meana-Llorián et al., 2016).

• Many researchers focused on using TinyOS (Levis et al., 2005) embedded operating system

and nesC (Gay et al., 2003) programming language as foundation for their research projects

by defining an abstraction development or programming (Essaadi et al., 2017), such as the

work in Ravichandran et al. (2016) and Tei et al. (2015). Using TinyOS and nesC as a basis

to build an application development abstraction is very useful (Salman & Al-Yasiri, 2016a,

2016b) because:

1. Utilising TinyOS components and services. TinyOS is one of the most frequently

used operating systems in WSN applications because of its maturity and continuous

technical support. So, there is no need to re-build new components similar to

TinyOS components.

2. TinyOS presents a Hardware Abstraction Architecture (HAA) (Handziski et al.,

2004) that includes a Hardware Presentation Layer (HPL), a Hardware Adaptation

Layer (HAL) and a Hardware Interface Layer (HIL). This HAA enables TinyOS to

support a broad range of sensor node hardware types. The updated list of supported

hardware can be found on the TinyOS website1; more detailed discussion regarding

HAA can be found in section 4.4.1.

1.3 Analysis of Challenges in WSN Development

The research community has investigated in depth the different challenges of developing WSN

applications, such as the work presented by Mottola & Picco (2011b), Randhawa (2014),

Malavolta & Muccini (2014), Kumar et al. (2014), Mahmood et al. (2015), and Essaadi et al.

(2017).

In this thesis two problems are identified, the first is the complexity in application development

caused by the nature of the WSN technology and the limitations of the existing application

development environments and processes. The second problem is related to the type of

developers, and their knowledge gap in WSN programming skills and technology background,

1 http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware

http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware

4

which needs to be filled to enable those developers to build WSN applications successfully. In

the following sections these two problems are explained and analysed in depth.

1.3.1 Challenging Dimensions of WSN Application Development

The main WSN application development challenges can be presented in two dimensions:

accidental complexity and inherent complexity; the main difficulties incorporated within these

dimensions are shown in Table 1-1.

Table 1-1: Summary of WSN Application Challenges

Dimension Challenging Aspects

Accidental Complexity

AC1 The lack of adequate development methodologies

AC2 Restricted Software Architectures

AC3 WSN programming complexity

WSN Inherent

Complexity

IC1 In-network processing or distributed computing

IC 2 Sensor node mobility

IC 3 Network Robustness

IC 4 Location awareness

IC 5 Multiple Gateway setups

1.3.1.1 Accidental Complexity Dimension

This dimension represents the limitation in programming tools and techniques because of the

overall complexity of WSN development (Cecchinel et al., 2016; Essaadi et al., 2017). This

has led to a gap between application developers on the one side, and application users or

application domain experts on the other. Despite the importance and value of WSNs, software

application development is nevertheless viewed as one of the primary challenges that faces

WSN deployment (Ferro, Silva, & Lopes, 2015; Lopes & Martins, 2016), and many of the

proposed software architectures for WSN have fallen short when it came to deployment,

because of:

AC1. The lack of adequate development methodologies. Many of the developed software

applications for WSNs have failed in field deployment (Antonopoulos et al., 2016;

Geihs, Mottola, Picco, & Römer, 2011; Intana, Poppleton, & Merrett, 2015). This is

due to the lack of development methodologies (De-Farias, Brito, et al., 2016; Lopes &

Martins, 2016), which threatens confidence in the correctness, dependability and

performance of the produced software (Julien & Wehrle, 2013). Losilla et al. (2007)

explained that most of the current proposed architectures for WSNs concern a specific

domain and were built from scratch following an experience-based method. Besides,

5

they are focused on the implementation steps, and they do not use any software

methodology through their development. Moreover, to date, there is no de facto

standard for application development in the WSN domain (Delicato, Pires, & Zomaya,

2014).

AC2. The existing restricted software architectures. WSN applications’ software

architectures can adopt many architectural styles according to the required application

nature, such as service-oriented architecture (SOA), distributed database, or mobile

agent architecture. The ISO/IEC 29182 standard (ISO/IEC, 2014a) has defined a

reference architecture for WSN, which highlights middleware as the most common

architectural style for WSN applications. Each one of these architectural styles needs a

special type of requirement in addition to a specific programming characteristic. Many

researchers have proposed various types of fixed software architectures and their

suitable programming approaches. Most proposed architectures are restricted to a

specific architectural form or template that may not fit with all WSN applications, such

as in WASP (Bai et al., 2011). Where fixed seven-standard architectural templates have

been defined, and each one supports a set of WSN activities, the developer has to start

the application developing process by choosing the most appropriate architecture

template, where the developer will be restricted to the WSN activities that are given by

this architecture template.

AC3. WSN programming complexity. Developers have to deal with the status of the sensor

node in terms of memory addresses and registers, because of the limited resources in

this technology (Cecchinel et al., 2016; Essaadi et al., 2017; Mottola & Picco, 2011),

which leads to the fact that the programming details are too complex, difficult to learn

and maintain. Most of the current proposed programming solutions and development

processes do not have the required abstraction level that satisfies domain application

experts and average developers. A sample of academic articles that recognise this type

of difficulty shown in APPENDIX B.1.

1.3.1.2 Inherent Complexity Dimension

This dimension represents the challenges in programming some WSN features, due to their

complex nature. Adding or changing program variables and hardware registers may be easier

to handle than mobility, which is considered very difficult to program (Essaadi et al., 2017;

Ouadjaout et al., 2016). There are many criteria that have not been considered in most of the

programming solutions and development processes:

6

IC1. In-network processing or distributed computing (Chandra & Dwivedi, 2015; Malavolta

& Muccini, 2014; Tei et al., 2015).

IC2. Sensor node mobility: Most of the current proposed solutions consider static nodes only

(Beal, Dulman, Usbeck, Viroli, & Correll, 2012; Gu, Ren, Ji, & Li, 2016; Malavolta &

Muccini, 2014).

IC3. Show robustness in the network when hardware fails or message loss (Afanasov,

Mottola, & Ghezzi, 2014; Chandra & Dwivedi, 2015; Mottola & Picco, 2011).

IC4. Location awareness, where Malavolta & Muccini (2014) surveyed 16 different MDD

and DSML projects and found that 13 out of 16 did not support location awareness.

IC5. Multiple Gateway (Sink) setup in shared sensor network, and how the network will

decide the data to which Sink node should be forwarded (Beal et al., 2012; De-Farias,

Li, et al., 2016).

1.3.2 Potential Developers of WSN Application

The main factors needed to develop a successful WSN application can be broken down into:

• WSN technology background: which represents information related to low-level details,

such as sensor node hardware types, sensors hardware types, available routing protocol,

how to convert sensor readings into an acceptable informative data form, sensor nodes

communication details, memory details included in the sensor nodes, besides the reading

and writing mechanisms.

• WSN programming skills: which represents the ability to use a low-level programming

language to program all the above details.

According to the literature, potential WSN application developers can be categorised as below

and shown in Table 1-2 and Figure 1-1:

Table 1-2: Potential WSN Developer Groups

Potential Developer Groups

PD1 WSN Experts & Scientists

PD2 General Application Developers & Programmers

PD3 Novice Developers (ND)

7

Figure 1-1: WSN Application Developers Technology Background and Programming skills

PD1. WSN Experts & Scientists: This group includes the researchers and scientists

responsible for developing this technology, who therefore have all the required

information for WSN technology low-level details and programming.

PD2. General Application Developers & Programmers: This group of developers includes

general developers and programmers who have experience in general programming

languages such as C, C++ and Java (Elsts, 2013). This group may have some skills in

low-level programming, or they may acquire these skills quickly, but they do not have

a WSN technology background.

PD3. Novice Developers (ND): This group of users includes Domain Experts (DE) and End

Users (EU). Many researchers agree and use this term for specific WSN users with no

or limited WSN technology and programming skills. Therefore, they target their

research effort to support this type of users. A sample of the work focused on Novice

developers can be found in APPENDIX B.2. This type of developers include Domain

Experts (DE), who are people experts and scientists in fields other than WSN, such as

civil engineers, biologists and environmental scientists not involved in networking

(Ammari, 2014; De-Farias, Li, et al., 2016). Those people are willing to develop WSN

applications to invest the WSN functionality in their domain projects. Therefore, a DE

always needs to be involved (Kabac, Consel, & Volanschi, 2016). Accordingly, there

8

is a gap between the WSN application high-level requirements (the application-level

knowledge) and the complexity of operations in the underlying network infrastructure

(the network-level knowledge). Many researchers concentrate their research efforts on

facilitating the WSN application development process for DE, such as the work

presented in APPENDIX B.3.

Members of PD2 and PD3 are lacking in WSN technology background and programming

experience. Therefore, members of these groups should acquire technical background and learn

new programming languages to program sensor network applications. According to Robins,

Rountree, & Rountree (2003), beginner programmers take about ten years of practice to write

an application efficiently, which means that there is a big difference between a programmer

that can write an application and another that can program the application in an efficient way.

Therefore, the gap between beginners and experts is huge in WSN application development,

because WSN developers not only need to improve their programming skills, but also to

acquire technology background.

According to the aforementioned facts, this research is targeting PD2 and PD3 among potential

WSN developers.

1.3.3 Demonstration Case Study (Scenario)

Considering these application development challenges in the WSN technology, it is clear that

PD2 and PD3 of the potential developers in WSN will have difficulty in developing a

successful application without hiring a highly expensive WSN developer expert. That will lead

to many small projects ending before they start. As an example, take the extracted piece of

code (Buonadonna, Tolle, & Gay, 2010) shown in APPENDIX C. This source code is part of

the program that has to be implemented to develop a Base station application (Sink). From a

beginner developer’s2 point of view, this piece of code will be a spaghetti code, which will not

be an easy task to be developed or maintained by a beginner developer such as Domain-Expert

or a general application developer.

2 Beginner Developer: this term will be used through the course of this thesis to denote PD2 and PD3

developers from the Potential Developers for WSN Application

9

1.4 Research Problem

The function of a WSN is to observe the surrounding environment (Marques, da Silva Teofilo,

& Rosa, 2013), whereas the original vision of WSN consisted of a large number of randomly

distributing small devices over a large area to enable ad hoc measurements (Oppermann,

Boano, & Römer, 2014). WSNs have had a high impact on our daily life activities, and as a

result, the research community has tried to invest most of their knowledge and their research

efforts to leverage and abstract the development and the programming of WSN applications.

However, according to the WSN application development challenges presented in sections

1.3.1 and 1.3.2 it has been noticed that these efforts have not solved the complexity of the

application development for WSNs and could not make it affordable for all types of developers.

Taking all the factors mentioned above into account, the following research problem has been

identified:

“How can developers who have no or limited knowledge of WSN technology background and

programming skills be empowered to efficiently develop a WSN application using a

development abstraction that provides the required expert knowledge for the WSN technical

low-level details and programming experience”.

1.5 Research Aim and Objectives

In accordance with the field of WSN programming and the application development challenges

and limitations that were discussed in the previous sections, our research aim is to:

“Investigate the possibility to reduce the complexity in WSN application development by

introducing a new application development abstraction using model-driven development.”

According to the research problem statement and research aim, three of the research objectives

have been addressed:

O1. Introduce a new model that logically links the application scenarios and tasks with the

sensor network elements and the available resources. This model will be the basis to

implement the second objective.

10

O2. Define syntax and semantics for a new Domain-Specific Language (DSL) that can be used

to facilitate the development process for WSN applications, especially for developers with

limited or no WSN programming experience and technology background. The new DSL

required characteristics can be summarised as:

A. Provide a high-level abstraction for complex tasks and operations.

B. Embed data processing tasks and activities.

O3. Ensure the new model and language is usable and fit for purpose to develop WSN

applications.

1.6 Research Scope

Our research focus to help beginner developers to develop their required projects (small to

medium size projects) as they are facing difficulty in developing a successful application

without hiring a highly expensive WSN developer expert. That will lead to many small projects

ending before they start. Besides, focusing on the environmental monitoring applications,

because they are considered the essential application types that related to WSN technology.

1.7 Contributions to Knowledge

Our most significant research contribution can be summarised as defining a new development

abstraction that helps developers who do not have the required knowledge and skills to develop

their required WSN applications. Introducing a high-level and flexible development

environment will encourage and give developers the necessary confidence to develop different

WSN applications, which will lead to a high impact on WSN technology uses. Therefore, our

research contribution can be divided into three sub-contributions:

CK1. SenNet Meta-Model. This meta-model represents a high-level semantic model that can

help beginner developers to successfully develop a WSN application, besides

introducing the logical relationship between the application scenarios and the existing

domain objects. SenNet Meta-Model can be divided into Application Configuration,

and Network Configuration, which reflects how the logical thinking in specific

application scenarios will be reflected on the real network components; more details

regarding this sub-contribution can be found in Chapter 3. This step contributes to O1.

11

CK2. SenNet Language. Use Model-Driven Development (MDD) to embed the SenNet

Meta-Model and produce a SenNet language that can be used to facilitate the

development process for WSN applications, especially for developers with limited or

no WSN programming experience and technology background. The main SenNet

characteristics are summarised below; more details regarding this sub-contribution can

be found in Chapter 4 and Chapter 5, and this step contributes to O2.

A. Using the macro-programming mechanism to abstract complex tasks and operations

for the purpose of capturing the required application logic and the flow of data.

B. Enable developers to develop a node and network level applications, providing them

with different modelling scopes (node, group of nodes, and network).

C. Generate ready-to-deploy single node nesC source code for all sensor nodes that

comprise the SenNet application.

D. Define network and node-level data processing functions and present them as ready-

to-use tasks.

CK3. Usability and Functional Suitability Evaluation. Investigate and prove the new

language’s usability by beginner developers (i.e., developers with no or limited

knowledge of WSN technology background and programming experience). In addition,

evaluate the new language capability to reflect WSN domain concepts and scenarios.

The proposed model (SenNet Meta-Model) is evaluated inherently, as it is deep-rooted

in SenNet language. More details regarding this sub-contribution can be found in

Chapter 6. This step contributes to O3.

Table 1-3 shows the main WSN challenges that are targeted and how they are mapped into

research objectives, as well as to the contribution of this thesis.

Table 1-3: Mapping Research Challenges to Research Objectives and Contributions

Research Challenges

Accidental Complexity

Dimension

Inherent Complexity

Dimension

Potential

Developers

AC1 AC2 AC3 IC1 IC2 IC3 IC4 IC5 PD1 PD2 PD3

Research Objectives O1 - O2 (A) O2 (B) - - - - - O2 O2 O3

Contribution CK1 - CK2 (A, B, C) CK2 (D) - - - - - CK2 CK2 CK3

12

1.8 Research Methodology

The aim of this research is to investigate the research problem identified in section 1.3 and

propose a development and programming abstraction that will enable beginner developers to

develop their required applications for the WSN domain. Scientific experimental research

strategy has been adopted for our research as shown in Figure 1-2. Our research uses the

qualitative/quantitative method, as the research problem formalisation uses historical data

(documents analysis), while the final results were produced quantitatively using analytical

methods, experiments and quantitative user study. The research strategy followed is scientific

experimental. According to Novikov & Novikov (2013), scientific research includes three main

phases:

• Design Phase: This phase includes deciding the problem domain, formalising the research

problem and identifying research aim and objectives.

• Technological Phase: This phase includes preparing the required theory, developing the

proposed system and finally applying the evaluation methods.

• Reflexive Phase: This phase is related to finalising the results and preparing the final

guidelines, then presenting them to the research community.

StrategyMethodological

Research

Data Collection

Final ResultsHistorical (Literature Review)

Reviewing Existing
Solutions

ISO/IEC 29182

Reviewing new
Technologies

Controlled
Experiments

Scientific ExperimentalQualitative Quantitative

Figure 1-2: Research Paradigm

Each phase has been divided into a number of stages; a brief description of each stage can be

found below, and Figure 1-3 shows the research stages as a flowchart.

1. Design Phase

A. WSN Application Development: This was the first stage in our research: identifying

WSN application development as the main research domain.

13

B. Reviewing Literature: Investigate earlier researchers’ work about WSN application

development and programming to get a good understanding and to know the state of

the art of WSN; furthermore, to highlight the drawbacks of this technology.

C. Formalising the Research Problem: This stage identified the needs of WSN for new

techniques to develop WSN applications, recognising the urgent need to enable

beginner developers to play a bigger role in the process of developing WSN

applications and maintenance. In accordance with these findings, the research aim has

been addressed as defining a new semantic model and a new DSL for the WSN domain,

as well as a set of intentions such as enabling in-network processing in the suggested

language.

2. Technological Phase

A. Investigate the Existing Application Development and Programming Approaches:

This stage was the investigation and analysing work that was applied to current

application development techniques related to WSN, and highlighting their limitations.

B. Develop SenNet Meta-Model: This stage was identifying a semantic model that

reflects the main WSN application activities, tasks and their logical relationships to

network elements, by analysis of the ISO/IEC29182: Sensor Network Reference

Architecture (SNRA) standard, as well as the application development methods and

techniques proposed by the research community.

C. Define SenNet Language: This stage was defining the required SenNet language

syntax and semantics. This was done using MDD and macro-programming techniques

to increase the level of abstraction that would be offered to the developers.

D. Evaluating the Proposed Language: The assessment and verification of SenNet

language are crucial to this research, where its usability and functional suitability should

be ensured. Many assessments and testing methods were applied to examine SenNet

language according to a predefined evaluation plan.

E. SenNet Meta-Model and Language Revision: According to the findings and outputs

of the evaluation plan, amendments and modifications were applied to the proposed

SenNet meta-model and language. This stage helps to enhance the results that are

produced by this research.

3. Reflexive Phase

A. The final conclusions and recommendations: The last phase of this research is to

record the final findings and recommendations.

14

Research Stages

Technological Phase

Reviewing Literature

Application Development in WSN

Domain

Formalising The Research

Problem

Investigate the Existing

Application Development and

Programming Approaches

Develop SenNet Meta-Model

Define SenNet Language

SenNet Meta-Model and

Language Revision

Putting the final conclusions and

recommendations

Is SenNet usable and appropriate to

reflect WSN domain concepts?

Yes

No

SenNet Evaluation

Design Phase

Reflexive Phase

Figure 1-3: Research Main Stages

15

1.9 Publications

• Salman, A. J., & Al-Yasiri, A. (2016). SenNet: A Programming Toolkit to Develop

Wireless Sensor Network Applications. In 2016 8th IFIP International Conference on New

Technologies, Mobility and Security (NTMS) (pp. 1–7). Larnaca-Cyprus: IEEE.

http://doi.org/10.1109/NTMS.2016.7792476.

• Salman, A. J., & Al-Yasiri, A. (2016). Developing Domain-Specific Language for Wireless

Sensor Network application development. In 2016 11th International Conference for

Internet Technology and Secured Transactions (ICITST) (pp. 301–308). Barcelona, Spain:

IEEE. http://doi.org/10.1109/ICITST.2016.7856718.

1.10 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2

This chapter presents a general background for Wireless Sensor Network (WSN) and lists the

most popular platforms and Embedded Operating Systems (EOS) used in the WSN domain. It

then outlines how the complexity problem can be solved using Software Engineering and

explains the main approaches used to resolve this issue. Next, it discusses the main strategies

and approaches used to define application development solutions in the WSN domain, before

summarising the considered solutions in terms of a set of feature criteria. Finally, it outlines

the final design requirement, which is set up as the main design requirement for our proposed

solution.

Chapter 3

This chapter outlines the proposed SenNet meta-model that builds on the basis of the

ISO/IEC29182: Sensor Network Reference Architecture (SNRA). This meta-model links the

application with the network domains. The main application types supported by this meta-

model are then shown, before finally describing how this meta-model is implemented.

http://doi.org/10.1109/NTMS.2016.7792476
http://doi.org/10.1109/ICITST.2016.7856718

16

Chapter 4

This chapter discusses how SenNet works (internal view), by considering first the Text-to-

Model (T2M) transformation rules, which include the lexical and syntactical analysis stage and

the semantic analysis stage. This is followed by explaining the Model-to-Text (M2T)

transformation rules and process, which constitute the source code generation process. Finally,

it discusses how SenNet can be updated and expanded.

Chapter 5

This chapter presents our proposed application development (SenNet) from a user’s (beginner

developer) point of view. SenNet’s main components are illustrated: CPC and CGC

components; then SenNet editor, general application syntax, and the main tasks offered are

discussed.

Chapter 6

This chapter outlines first the evaluation plan adopted to evaluate SenNet and prove its usability

and functional suitability. Many methods have been included in this assessment plan, which

are discussed in detail later in this chapter, such as user study and the source code complexity

analysis that is measured by calculating the LOC and HCM metrics to evaluate SenNet source

code using four different scenarios. Finally, we summarise all the results according to a set of

defined metrics at the beginning of this chapter, which shows that SenNet is usable and suitable

to develop WSN applications.

Chapter 7

This chapter concludes this thesis; it discusses the research outcome, the final conclusions and

finally outlines the possible future work.

17

Chapter 2: Background and Overview

2.1 Introduction

This chapter gives a general WSN background including the most popular WSN platform and

TinyOS as one of the successful embedded operating systems in the WSN domain. This is

followed by discussing how the complexity problems could be solved using Software

Engineering principles, giving a brief description of the main approaches used to address this

problem (MDD and DSL). Finally, we have outlined the general strategies used by the research

community to define a development abstraction.

2.2 Wireless Sensor Network

The beginnings of WSNs date back to the 1980s, when the first trend in WSNs was the

Distributed Sensor Network (DSN) project prepared by the Defence Advanced Research

Projects Agency (DARPA) (Wang & Balasingham, 2010). Later, with the engineering

revolution in semiconductors and communications, the new WSN began in a couple of projects

targeting environment monitoring, such as the WSN deployment at Great Duck Island in 2002

(Mainwaring, Culler, Polastre, Szewczyk & Anderson, 2002).

Since 2004, reported evidence for WSNs has increased significantly; many researchers such as

(Oppermann, Boano, et al., 2014) arguing that, because of the commercialization of the first

WSN sensor node (mote) Mica2, it has become a de facto standard for WSN research purposes,

alongside the maturing of WSN system infrastructures such as TinyOS (Levis et al., 2005).

Currently, WSN have a broad range of applications, such as volcano monitoring (Werner-Allen

et al., 2006), flood detection (Hughes et al., 2008), hazardous chemical detection (Bulusu,

Heidemann & Estrin, 2000), and the Lofar Agro project (Baggio, 2005) for agricultural

purposes; it is used for human body health in these projects (Hu, Jiang, Celentano & Xiao,

2008; Malan, Fulford-Jones, Welsh & Moulton, 2004; Kirbaş & Bayilmiş, 2012; Yuce, 2010;

Chung, Lee & Jung, 2008) and in WiSA (Frey, 2008) for monitoring and controlling production

cycles. According to ISO/IEC29182 SNRA standard (ISO/IEC, 2014b), WSN applications

have been categorised as:

18

• Logistics and supply chain management

• Automation, monitoring, and control of industrial production processes

• Health care and medical applications at home and in hospitals

• Critical infrastructure protection and public safety

• Automation and control of commercial buildings and smart homes

• Automation and control of agricultural processes

• Intelligent transportation and traffic

• Environmental monitoring, forecasting, and protection

• Facility management

• Asset management

• Defence and military applications

• Homeland security

2.2.1 Most Popular WSN Hardware

A sensor node performs the required functionality by integrating several components: a low-

power microcontroller unit (MCU) including RAM (for data saving) and ROM (for code

saving) small memory chip, Analog-to-Digital Convertor (ADC) and a radio transceiver for

data communication. Different sensors can be attached to the sensor node using an expansion

connector. The most used power sources for this type of devices or nodes are batteries or solar

sources. The main MCUs used in this technology are ATmega128 (Atmel, 2006) and MSP430

(Texas Instruments, 2008), manufactured by Atmel and Texas Instruments respectively. These

two MCUs became the source for producing many WSN platforms, and this is due to several

factors: Ultra-Low Power (ULP) energy consumption, scientific and research community

support, open source compilers based on the GNU Compiler Compiler (GCC) compiler type,

and the support of the TinyOS operating system (Kouche, 2013).

IRIS3, Mica24, and MicaZ5 are WSN platforms that use an 8-bit ATmega MCU from Atmel,

with a slight difference for each one, such as in the internal memory or the frequency speed of

the radio transceiver. TelosB (Polastre, Szewczyk, & Culler, 2005) is another WSN platform

3 http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
4 https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
5 http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf

http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf

19

that uses 16 bit MSP430 MCU from Texas Instruments. This platform is one of the more

popular platforms in the research community.

SunSPOT (Simon, Cifuentes, Cleal, Daniels, & White, 2006) and IMote2 (Nachman, Huang,

Shahabdeen, Adler, & Kling, 2008) are popular platforms too. SunSpot was developed by Sun

Microsystems and uses a Squawk Java Virtual Machine (JVM) that runs directly on the

ATMEL920T MCU. IMote2 is a WSN platform developed by Intel using an XScale processor

PXA271. This platform is different from the usual WSN platforms that focus on low power

and resources, it focusses on high computation activities, such as audio and video processing.

This platform is one of the successful examples that ported to work with TinyOS.

Table 2-1: Sample of the Most Used WSN Platforms 2002-2012 (Thang, 2015)

Platform Year MCU OS & Programming

Mica2 2002 ATMega 128L 8bit TinyOS, nesC, SOS, MantisOS

BTnode 2003 ATMega 128L 8bit TinyOS, nesC, C, NutOS

MicaZ 2004 ATMega 128L 8bit TinyOS, nesC

TelosB 2005 T1 MSP430 16 bit C, nesC, Contiki, TinyOS, SOS, MantisOS

Eyes 2006 T1 MSP430 16 bit C, PEEROS

IMote2 2007 Intel PXA271 16 bit C, nesC, Linux, TinyOS

SHIMMER 2008 MSP430 16 bit TinyOS, nesC

Zolertia Z1 2011 MSP 430 16 bit C, nesC, TinyOS, Contiki

WaspMote 2012 ATMega1281 8 bit C, WASPMote ISE, WASP firmware

2.2.2 TinyOS

Many embedded operating systems have developed to support embedded systems generally

and WSN particularly. TinyOS (Levis et al., 2005) is one of the open-source operating systems

designed particularly for WSN, which are built from a set of reusable components. It supports

an event-driven concurrency model due to the use of split-phase technique (this technique is

explained in section 3.4.1) and a new scheduler design. Moreover, many other facilities such

as Hardware Abstraction Architecture (HAA) (this architecture is described in more details in

section 4.4.1) lead to TinyOS supporting multiple microcontroller families. Levis & Gay

(2009), summarised the main TinyOS communication types as shown in Table 2-2.

Table 2-2: Communication Types Supported by TinyOS

Communication type Single/Multi-hop

Serial Over serial

Active message (AM) Single-Hop

Collection Tree Protocol (CTP) Multi-Hop

Dissemination Multi-Hop

20

TinyOS is considered the de facto operating system for WSN (Akyildiz & Vuran, 2010;

Ouadjaout et al., 2016). Delamo et al. (2015) have surveyed IEEE Xplore, ACM Digital Library

and Google Scholar systematically, finding that TinyOS returns 85% of the references

concerning WSN, and argued the high popularity of using TinyOS was because it was

maintained by relevant research groups and companies. Accordingly, most of the proposed new

abstractions developed to reduce complexity in WSN application development used TinyOS

and nesC as a foundation to build their abstracted solutions (Essaadi et al., 2017).

TinyOS is implemented in the nesC (Gay et al., 2003) language that supports the TinyOS

components and concurrency model. The nesC language manipulates TinyOS components in

a way similar to objects that encapsulate the state and couple the state with functionality. nesC

is an extension version of C language, but it differs from C language in how components are

linked to each other (Mozumdar, Gregoretti, Lavagno, Vanzago, & Olivieri, 2008). This

language is considered challenging and complex (Luo, Abdelzaher, He, & Stankovic, 2006),

since the developer should program more than one program file to develop an application

(minimum three files) (Ravichandran et al., 2016), and the difficulty appears when a developer

is trying to link new codes with existing ones (Levis, 2006).

2.3 How Can Complexity be Solved?

In the context of software systems, there is an opinion that “Software entities are more complex

for their size than perhaps any other human construct” (Brooks, 1987, p.11). At this stage, the

role of software engineering is to reduce complexity, which can be achieved through

developing different tools, processes and methodologies.

Generally, in software engineering there are two directions to reduce complexity for a

particular domain application, the first direction is to raise the level of abstraction, while the

second direction is to increase the level of concreteness. Raising the level of concreteness will

solve the problem partially, as it will address the complexity problem towards a particular type

of applications, but not all domain applications. Therefore, raising the level of abstraction can

represent the right solution to solve or reduce complexity in software projects (Kunii & Hisada,

2000).

Abstraction can be defined as “A cognitive process of the human brain that enables us to focus

on the core aspects of a subject, ignoring the unnecessary details.” (Ghosh, 2011a, p. 10).

21

Abstraction is a powerful and traditional way to shield the users of software systems against

complexity, such as when an operating system hides the complexity of the underlying hardware

(Jörges, 2013). Moreover, it allows developers and programmers to express their problems in

a simple form by hiding complex and irrelevant implementation details (Áemília, Ľubomír,

Sergej, & Ján, 2011; Damaševičius, 2006; Kollár, Pietriková, & Chodarev, 2012).

2.3.1 Model-Driven Development (MDD)

In day-to-day work, users and developers face a huge and constantly changing variety of

platforms, tools, platforms and languages that need to be mastered (Jörges, 2013). As an

additional level of abstraction, models allow the specification of a software system apart from

the actual concrete implementation.

Models, modelling and model transformation have become the basis of the MDD approach

(Geihs, Reichle, Wagner, & Khan, 2009; S.J. Mellor, Clark, & Futagami, 2003; Skubch,

Wagner, Reichle, & Geihs, 2011; Weise, Zapf, Khan, & Geihs, 2009), where a developer

should develop a model for the required developed system, then transform this model into a

real system (executable software entity). This is applicable due to the revolution of generating

code; code generation can fill the gap between the system abstraction (model) and the concrete

implementation (Jörges, 2013). This is considered a specific form of model-to-text (Czarnecki

& Helsen, 2006; Oldevik, Neple, Grønmo, Aagedal, & Berre, 2005) or model-to-source

transformation (Hemel, Kats, Groenewegen, & Visser, 2010; Selic, 2003). The code generator

is one of the specifications of Model-Driven Development (MDD) (Bézivin, 2005; Seidewitz,

2002). Currently, models are not only used for documentation and visualisation purposes

(Jörges, 2013), but are also promoted as development artefacts.

Therefore, MDD can be used to develop special languages that focus on specific domains using

one of these approaches:

• Using Model-Driven Architecture (MDA) approach.

• Using model transformation and code generators to develop a language by having

(Marques, Balegas, Barroca, Barisic, & Amaral, 2012): (1) The language syntax in the form

of meta-models; (2) The language semantics represented by model-to-text or source

transformation.

22

2.3.2 Domain-Specific Language (DSL)

A domain-specific language (DSL) is a language tailored to a specific domain (Mernik,

Heering, & Sloane, 2005). Using DSL is considered one of the most frequent techniques used

to raise the level of abstraction (Mernik et al., 2005; Sun, Demirezen, Mernik, Gray, & Bryant,

2008). Mernik et al. (2005, p. 321) argued that DSL was “enabling of software development

by users with less domain and programming expertise, or even by end-users with some domain,

but virtually no programming expertise”. In addition, it is bridging the gap between business

users and developers by encouraging collaboration through using shared vocabulary, because

the main reason for software projects failing is the lack of communication between users (who

know the problem domain) and developers (who develop the software system) (Ghosh, 2011b).

Fowler (2009) classified DSL’s according to the implementation approach:

• Internal DSL (also known as embedded DSL) is a DSL implemented as an extension to

an existing GPL, such as Ruby (Carlson & Richardson, n.d.) and Haskell (Hudak et al.,

1992). This type of DSL can access all host language constructs and infrastructure such as

tools and libraries. Therefore, it is not necessary to build a new compiler or interpreter.

• External DSL is a DSL represented in a separate language to the main programming

language it is working with. The advantage of external DSLs is that the developer of the

DSL may define any possible syntax independently from the general syntax of the host

language.

Using DSL offers many advantages, such as easier collaboration with business users, easier in

maintaining and updating the DSL code, users focus on a tiny surface area of the application

code, and it increases users’ and developers’ productivity (Ghosh, 2011b).

This type of language can be represented to the end user in the form of a textual notation, or

using a model or graphical notations; this is called Domain-Specific Modelling Language

(DSML). Many researchers prefer to develop DSLs with a textual notation because it would

require more effort to build usable editors for the graphical or visual languages (Volter, 2011).

23

2.4 Approaches to Defining WSN Development Abstraction -

Related Work

WSN application development and deployment are typically performed very close to the

hardware level, and this leads to developers needing to focus on low-level system details

(Mottola & Picco, 2011). Researchers have proposed different development abstractions to

overcome WSN application development difficulties, with the ultimate goal of making

application development easy (Sugihara & Gupta, 2008). These various development

techniques facilitate the applications’ development process, as some of them deal with how to

access the sensed data in the sensor node, and another group are concerned with how to give

orders and pass these along to the sensor nodes. Many surveys in the literature have focused

on these techniques, such as Chandra & Dwivedi (2015), Essaadi et al. (2017), Farias et al.

(2016), Laukkarinen, Suhonen, & Hännikäinen (2012), Malavolta & Muccini (2014),

Mohamed & Al-Jaroodi (2011a), and Mottola & Picco (2011b). Figure 2-1 illustrates the

current approaches used by the research community to define a development abstraction that

concludes with setting a customised development and programming language that would help

developers and users to develop WSN applications.

Model-Driven
Development

(MDD)

Embedded OS
Customised

Platform

Approaches to Define
Development Abstraction

Figure 2-1: WSN Development Applications Approaches

2.4.1 Embedded Operating Systems

There is a special type of customised operating systems that supplies a set of services that can

be utilised by the developer to develop their node-level applications. There are many examples

of these operating systems, such as TinyOS (Hill et al., 2000), which is considered an event-

driven operating system, which offers nesC programming language as one of the dominant

24

programming languages in the WSN domain based on C language, while Mantis (Bhatti et al.,

2005), TinyOS 2.x (The TinyOS 2.x Working Group, 2005), Nano-RK (Eswaran, Rowe &

Rajkumar, 2005) and RETOS (Cha et al., 2007) are considered thread-driven operating

systems. Furthermore, some operating systems are designed to support both of these strategies,

such as Contiki (Dunkels, Grönvall & Voigt, 2004) and LiteOS (Cao, Abdelzaher, Stankovic

& He, 2008). The generated application using this type of abstraction is a node-specific

application (Laukkarinen et al., 2012).

2.4.2 Customised Platform

Programming the sensor nodes is more complicated than programming conventional computer

systems due to their constrained resources, high dynamics and inaccessible deployment

environments (Leelavathi, Shaila, Venugopal, & Patnaik, 2013). Some researchers develop a

customised software architecture, hardware, or both of them to enable users to use these

specialised designs to develop their required applications. To allow users to use these

customised architectures, researchers define a set of tailored instructions (DSL) that enable

users to interact with these architectures to develop their applications.

The galsC (Cheong & Liu, 2005) is a node-level programming language developed for event-

driven applications, which is a hybrid language that uses synchronous event-driven model and

an asynchronous message passing model using TinyGALS middleware (Cheong, Liebman,

Liu, & Zhao, 2003). This middleware and the defined language is based on the TinyOS

operating system and nesC language. Using this language is considered very complex since it

takes the sensor node as basic computation, communication, and actuation unit (Luo et al.,

2006).

BASIC (Miller, Dinda & Dick, 2009) is a node-level imperative loop oriented programming

language that was developed for simple WSN applications targeting domain experts and novice

programmers. BASIC is implemented using uBASIC6 interpreter developed using C language

for embedded devices. One of BASIC’s limitations is that it suffers a large interpreter overhead

and the application source code should include the sleep command because it is not put the

system in low-power by default (Elsts, Judvaitis, & Selavo, 2013).

6 http://dunkels.com/adam/ubasic/

http://dunkels.com/adam/ubasic/

25

In 2009 Bai, Dick, & Dinda surveyed the existing WSN applications and identified eight

characteristics for WSN applications: mobility, sampling, transmission, actuation, interactivity,

data interpretation, data aggregation, and heterogeneity. Accordingly, they designed a fixed

seven archetypes template as illustrated in Table 2-3, and presented a simple language called

WASP that is targeted to one of these seven archetype templates. These seven templates and

the simple WASP commands are designed for domain experts. The user has to start by choosing

the most appropriate template according to the required application nature, after the user has

started configuring the choosing template using WASP language. WASP compiler is written

in Python and translates the language into the nesC program for TinyOS. The authors of WASP

language have performed a user study to evaluate their language using 28 novice programmers.

This language has many limitations, for example, to develop an application, the developer

would be limited to the available functionalities offered by the selected archetype template. In

addition, to program a network, WASP offers the developer a facility to define a job that will

be assigned to all sensor nodes in the network.

Table 2-3: The Seven Archetype identified by Bai, Dick, & Dinda (2009)

Dinam (Gordon, Beigl, & Neumann, 2010) is a platform solution that consists of two parts,

uPart (Beigl et al., 2006) and D-Bridge (Gordon & Beigl, 2009). uPart is a special sensor node

that is built based on the Arduino platform. It uses a Java-based web server already installed

on top of the sensor node that can be accessed via any PC and starts programming each node

using the Over the air programming (OTAP) concept, which is called D-Bridge (Gordon &

Beigl, 2009). This uses Basic language (Kurtz, 1978) as the main programming primitives

offered to developers. Dinam offers easy jobs for gathering sensed data, focused on

configuration more than programming. Dinam was evaluated using a user study with five

students with limited knowledge and programming skills. This solution lacks an integrated

development environment (Gordon et al., 2010). Besides, installing the development

environment inside sensor node will waste sensor node resources. The Dinam is limited to a

particular sensor node hardware, and the reconfiguring process has to be done for each node

26

separately. Finally, the configuration interface does not allow the programmer to fine-tune low-

level parameters for the sensor node (Kovatsch, Mayer, & Ostermaier, 2012).

PROVIZ (Chandrasekar, Uluagac, & Beyah, 2013; Ravichandran et al., 2016) is a suggested

framework for graphical programming WSN applications, besides WSN network analysis

(Chandra & Dwivedi, 2015). This framework uses a special service-oriented middleware called

M-core (Valero, Uluagac, Venkatachalam, Ramalingam, & Beyah, 2012) installed on top of

the TinyOS, which offers M-Core Control Language (MCL). MCL is a security domain-

specific language that was developed using Python, where the final graphical presentation of

the WSN will be translated into nesC program code using MCL. The network visualisation

interface was implemented using QI GUI C++7. This framework focused on the network

analysis and simulation rather than application development, as regarding application tasks and

activities, this framework is offering limited capabilities.

SEAL (Elsts, Bijarbooneh, Jacobsson, & Sagonas, 2015; Elsts et al., 2013) is a node-level high

abstract DSL that was proposed to be part of a new environment which included MantsOS

middleware and ProFuNTG tools implemented for novice programmers and domain experts to

help them develop WSN applications without help from WSN experts. The SEAL language

includes two executable statements: read and use; three types of components can also be

defined (sensors, actuators, and output). Python is used to write the SEAL language compiler,

which generates the required code in C language that will be run by MantsOS middleware. The

SEAL editor used Google Blockly to offer visual programming.

CrimeSPOT (De Roover, Scholliers, Amerijckx, D’Hondt, & De Meuter, 2013) is a

declarative rule-based DSL for programming WSN applications on top of LooCI (Hughes et

al., 2012), event-driven and component-based middleware that works with SunSPOT sensor

nodes. CrimeSPOT enables the programming both of node and network level facilities. It also

provides temporal facilities for working with data.

makeSense Framework (Daniel et al., 2013; Oppermann, Romer, Mottola, Picco, & Gaglione,

2014) is a unified programming framework and a compilation chain, offering high-level

abstraction development that generates code ready for deployment on WSN nodes. This

framework was built using Java targeting domain experts who have knowledge in Business

Process Modelling Language (BPML). The authors define three layers: the first layer is a visual

7 https://www.qt.io/developers/

https://www.qt.io/developers/

27

modelling language based on BPML; the second layer is a Java-based macro-programming

language; the final layer is a platform-specific (Contiki) executable code. This framework has

many limitations, including the code generated consuming node memory, the network or

application behaviour not being taken into account, and the current version can only be applied

to a limited number of node types and simple application tasks.

Virtual Machine (VM) is a commonly used technique for platform independence and

isolation. Some researchers used VM to develop new customised languages to program WSN

platforms, but the most significant role of the virtual machine is in WSN re-programmability,

which is the capability to inject new code dynamically into each node on site (Sugihara &

Gupta, 2008). There are two approaches in this abstraction method, both using Java-based

virtual machines to facilitate the development process for the developers; the first edition of

this concept uses a virtual machine that is installed on top of the operating system, such as Mate

(Levis & Culler, 2002). Mate is a virtual machine that runs on top of the TinyOS operating

system, which provides a simple programming interface to sensor nodes. Impala (Liu &

Martonosi, 2003) is another example using the same principle that focuses on re-programming,

that was designed for ZebraNet project at Princeton University. This solution did not support

large updates or complete software change and it was suitable for rich resources sensor nodes

(Wang, Cao, Li, & Dasi, 2008). Alternatively, there is specialised hardware that runs a Java-

based virtual machine such as a SunSPOT (Simon et al., 2006) platform, originated by Sun

Microsystems, which uses Squawk virtual machine (Akyildiz & Vuran, 2010; Smith, 2007).

SunSPOT has not gained high acceptance (Elsts et al., 2013), because it is heavyweight, and

needs professional programming skills. In general, using a VM approach to building an

abstraction development has many advantages, but also it has many disadvantages, for example

the execution of instructions can introduce high overhead on nodes, and the application

programming is not easy, which leads to poor usability (Delicato et al., 2014).

2.4.3 Model-Driven Development

While considering the WSN application development process as a complex task, many

researchers try to ease this by suggesting and implementing particular abstraction layers and

software processes that are capable of making the application development process easier

(Taherkordi, Eliassen & Johnsen, 2013). According to Hailpern & Tarr (2006), model-driven

development (MDD) is a software engineering approach consisting of model technologies to

raise the level of abstraction. In the MDD process, developers describe applications with an

28

abstract model that is subsequently refined into concrete models. In the end, the concrete model

is used to generate executable code (Shimizu, Tei, Fukazawa & Honiden, 2012). Most of the

MDD developed for the WSN domain is divided into three layers, the first dealing with

activities related to network scope, followed by the second layer that is used to configure a

group or sub-network with certain operations and activities, finally the last layer is related to

the sensor node scope of operations, such as the work presented by Dantas et al. (2013),

Shimizu, Tei, Fukazawa, & Shinichi (2011), and Tei et al. (2015).

Many researchers use the MDD approach to tackle the complexity in developing WSN through

using models and automatic transformation to generate code or for WSN analysis in terms of

their requirements (Essaadi et al., 2017). One of the MDD initiatives is Model-Driven

Architecture (MDA) defined by Object Management Group (OMG), which is based on three

models: computation- independent model (CIM), platform-independent model (PIM) and

platform-specific model (PSM). MDA transforms a CIM to a PIM and a PIM to a multiple

PSMs using model transformations. Therefore, to enable users and developers to customise

these models, a specific modelling language should be developed to help them manipulate each

model and tailor it according to their application requirements.

The first example of an MDA initiative is the work presented by Doddapaneni et al. (2012);

Doddapaneni and his team proposed a modelling framework that uses three different levels of

modelling languages. The first layer is Software Architecture Modelling Language for WSN

(SAML), which allows developers to define the software architecture of the WSN application.

This layer is set structurally but not functionally. The second layer is the Node Modelling

Language (NODEML) used for describing the low-level details of each type of node that can

be used within a WSN, such as the implemented MAC protocols and routing protocols. The

current version of this layer defined T-MAC as a MAC protocol and CC2420 radio by the

Texas instruments. The final language is the Environment Modelling Language (ENVML),

which allows designers to specify the physical environment in which the WSN nodes are

deployed. By using these three modelling languages, a code generator (Acceleo) generates a

software code that is designed to be run in a Castalia simulation to simulate the final application

and extract the required analysis information. This framework is focusing on the network

simulation and analysis using UML and Simulink for representing the network activities, rather

than code generation, as they propose code generation as possible future work. The generated

code for simulation cannot guarantee that design errors can be discovered. Moreover, they do

29

not define or present a particular WSN platform that could be appropriate to work with (Intana,

2015; Kumar & Simonsen, 2014; Malavolta & Muccini, 2014; Rodrigues, Batista, Delicato,

Pires, & Zomaya, 2013), and the SAML language functionality has not been developed.

Architecture for Wireless Sensor and Actuator Networks (ArchWiSeN) (Rodrigues, Batista,

Delicato, & Pires, 2015; Rodrigues et al., 2013; Rodrigues, Delicato, Batista, Pires, & Pirmez,

2015) is another MDA instance that was developed in the Federal University of Rio de Janeiro.

ArchWiSeN is an architecture framework for Wireless Sensor and Actuator Network (WSAN),

used to develop WSN applications by domain and network experts. The authors have defined

and developed two modelling layers, PIM and PSM, arguing that CIM layer can be done using

any existing requirements analysis technique to collect and analyse the application

requirements. Therefore, within the context of ArchWiSeN, they defined PIM to enable

application developers to model the application logic, while PSM is defined to model the

network configuration with the aid of a TOSSIM simulator. The ArchWiSeN authors assume

that to develop WSN applications, the developer's team should include domain experts and

WSN experts. Accordingly, the PIM layer will be modelled by the domain experts, who will

model the application by assigning a specific task for each node in the network, while a WSN

expert will model the PSM layer. All PIM and PSM modelling profiles are developed using

UML and Eclipse’s Papyrus, and to control the Model-to-Model (M2M) transformation

between PIM and PSM layers they used Atlas Transformation Language (ATL). The final

transformation process within ArchWiSeN is Model-to-Text (M2T) that translates the final

PSM model into an executable code in nesC format, as the current version is targeting TinyOS

platform. This process is done using Accelelo code generator and BNF transformation rules.

To assess the framework’s usability, they conducted a user study using 10 participants (Master

Students of the Computer Science Course in the same university), and also developed some

real business scenarios. The authors had not presented and shown that the generated code had

been tested using real WSN sensor nodes, and all resulting code was assessed and analysed

logically.

Domain Language for Wireless Sensor and Actuators Networks Systems (LWiSSy) (Dantas

et al., 2013) is the second project in the Federal University of Rio de Janeiro to use an MDA

approach to define a new abstraction development for a Wireless Sensor and Actuation

Network (WSAN), targeting domain experts. LWiSSy has taken the same MDA infrastructure

that proposed in ArchWiSeN with some modifications. LWiSSy includes three different

30

graphic models: the first modelling language deals with the WSAN structure functionalities

that should be used by domain experts, and it includes network and node groups programming.

The second model deals with the network behaviour, and it should be set by the domain experts,

where it deals with the programming of node groups and single nodes, and it is responsible for

designing the WSAN application behaviour. The third modelling language is targeting the

network optimisation that should be set by network experts. After complete modelling of the

three modelling layers, the application source code is generated using the same transformation

rules employed in the ArchWiSeN. LWiSSy was evaluated using a simple case study, as well

as a user study that included some undergraduate students in the Computer Science department

of the same university.

To expand the ArchWiSeN framework, the Federal University of Rio de Janeiro research group

developed COMFIT (De-Farias, Brito, et al., 2016) which is a cloud-based development

environment focused on building WSN applications for IoT, using client–server and web-based

architecture. ArchWiSeN is installed in a web server, that can be accessed remotely, to do all

the modelling and analysis tasks. In COMFIT, the ArchWiSeN framework is updated in terms

of supported simulations to include TOSSIM and Cooja to support IoT applications, and the

PSM was also updated to include the Contiki platform beside the TinyOS. As possible future

work, the authors intended to design new network-level tasks and activities using macro-

programming.

An MDA approach was used by a research group at Waseda University (Shimizu et al., 2012;

Shimizu, Tei, Fukazawa, & Honiden, 2014; Shimizu et al., 2011) to define a development

abstraction for WSN application. The authors defined three PIMs architecture modelling

languages (dataflow, group, and node-level) in a textual form. The user should define the first

PIM layer, which in turn will generate the basic textual form of the other two PIMs.

Consequently, the user should configure and customise the two generated PIMs using their

defined customised languages. PIM to PIM translation is done according to a specific M2M

transformation rules developed for this purpose. The authors have defined and customised a

PSM layer that includes a set of a predefined TinyOS application templates updated by the

Model-to-Text (M2T) transformation rules. This approach has many limitations, for example

the proposed DSMLs can only describe a very simple sensing application with simple data

processing activities, but not complex ones, such as adaptive behaviour. Moreover, the authors

did not consider the participation of developers with different expertise areas and excluded

31

several important features of lower abstraction level specification, such as the communication

protocol, the network topology, and the device types (Antonopoulos et al., 2016; Dantas et al.,

2013; Rodrigues, Delicato, et al., 2015; Tunc et al., 2016). Furthermore, three different

modelling languages are used to create applications, which presents a steep learning curve for

new users (Shimizu et al., 2014).

After considering the previous work done by Shimizu et al. (2014), and to present a new

solution, the same research team in Waseda University then proposed a stepwise software

development process for average developers (Tei et al., 2015) targeting average developers

to ease the development process of a simple monitoring WSN applications. They identify two

types of concerns: network-related concerns and data-processing concerns, and providing

support to reuse network related solutions designed by sensor network experts. The authors

defined two modelling languages to be used by average developers and one modelling language

to be used by network experts to include and embed the best practice solutions within the

framework. So, to develop a simple monitoring application, an average developer should first

use the one concerned with data processing activities that is a network independent language,

then the resulting model will be translated internally into a group of nodes model that is network

dependent, and presented again to the average developer to manipulate and configure the

network related parameters such as the routing protocol. Finally, the resulting final model will

be transformed using M2T transformation to generate the required code for this application,

where their code generator (Acceleo) outputs programs written in nesC for TinyOS according

to the best practice solutions embedded previously by the network experts. They evaluate their

framework by implementing some case studies and a user study with four average developers.

This proposed solution is designed according to the concept of the previous proposal with some

modification to decrease the number of modelling languages that average developers are

dealing with. However, according to their paper results, this new solution supports only simple

monitoring applications, which are the most common and simplest type of WSN application.

The data processing modelling language cannot express the application logic of event-driven

WSN applications. The framework is only supporting the software development, but not real

WSN developments. Moreover, their framework has a consistency problem between its

models. Finally, this framework has a learning cost problem, because it uses three modelling

languages.

32

Moppet Framework (Boonma & Suzuki, 2010; Pruet Boonma, Somchit, & Natwichai, 2013;

Pruet Boonma & Suzuki, 2011) is one of the solutions defined according to Model-Driven

Development (MDD) for rapid WSN application developments. Moppet defined two layers of

modelling; the first modelling layer is Moppet-Feature Modelling (FM) that concerns the

general application tasks and activities, which configured by the developer. The second layer

is Moppet-Performance Estimation (PE), which uses event calculus and network calculus to

estimate a WSN application’s performance. Moppet deals with WSN management using a

graphical and configuration interface, which helps developers to change the configuration of

the application easily, then the framework generates the required nesC code that can be

deployed with TinyOS. Moppet builds on top of the TinyDDS (Boonma & Suzuki, 2010b)

middleware, which works with TinyOS operating system. Moppet focuses on estimating the

network performance using calculus network calculations and not a simulation.

2.4.4 Principal Findings

Through the last decade, developing WSN applications has been a hot topic. Therefore, the

research community has focused on presenting new methods employing the principles of

Software Engineering. Many solutions have been presented, and Essaadi et al. (2017) have

made a systematic mapping study (SMS) to survey the existing MDD-based languages in WSN

domain, examining 1852 papers. Malavolta & Muccini (2014) also reviewed around 780

academic papers, to produce their final survey results. Therefore, we concentrate on discussing

the latest, most cited, and inspired solutions that have a significant impact on this topic, as well

as showing the limitations they may include.

Most of the researchers have used one of three strategies to define a new development method

or a programming language; Table 2-4 summarises these strategies and their limitations. The

first strategy is building a new embedded operating system that can help in abstracting the

complexity of the hardware-level in developing node-level applications. However, the

operating system needs continuous support. Moreover, the more WSN platforms are supported

by this new OS, the more effective and useful it will become, which constitutes a big challenge.

The second strategy is customising a platform to construct a new architecture accompanied

with a simple and abstracted set of commands that can be used smoothly and easily. However,

this type of strategy is restricted to a specific type of platforms (Hardware or Software), and

the customisation process is done according to a set of predefined application requirements, so

33

changing or updating these platforms due to a change in these requirements may cost more than

building new platforms.

The final strategy, which is the MDD approach, is considered the best strategy because it raises

the level of abstraction. This enables developers to develop less error-prone solutions, as it

allows analysis in the early stages. Finally, the MDD approach introduces the concept of model

transformation, which offers the code generation in simple and abstracted level and is much

easier than building code generator in conventional programming languages. However, there

is a trade-off between the number of modelling language layers and the user usability and

learning.

Table 2-4: The Drawbacks of the Available Strategies to Define Development Abstraction

Solution Strategy Limitations

Embedded OS

• Embedded OS used to develop node-level application

• To develop a new Operating System, we have to consider the following

points:

1. Technical Support

2. Hardware compatibility

Customised Platform

This solution strategy is restricted to a limited number of WSN platforms or

application type as they customised according to a predefined set of application

requirements. In some cases, changing or updating these requirements is more

costly than developing new ones.

MDD Using many modelling languages increases the complexity in language learning.

For deep analysis of the discussed solutions, we have adopted a set of feature criteria suggested

by Essaadi et al. (2017) and Malavolta & Muccini (2014) in their surveys and as shown in

Table 2-5. The selected criteria are listed below:

• Strategy: What is the strategy used to define the selected solution?

• Language Type: What is the type of language produced?

• Modelling Scope: What is the modelling capacity of the selected language? Possible values

are node level (N) or group of nodes level (G) or network level (Net).

• Goal: What are the main purposes of the selected language? Possible values are code

generation (CG) or analysis (AN).

• Data Processing: Is the selected language able to model the data processing? Possible

values are Data Aggregation (DA), Data Fusion (DF) or both.

• Concrete Syntax: Does the language model WSNs graphically (Visual) or textually

(TEXT) or using both of them (MIX)?

34

• Target Platform: If the goal of the selected language is code generation, on which target

platform is the generated code supported?

• Evaluation Method: What is the method used to evaluate the language?

• Developer Types: For which developer types are the languages designed? Possible values

are domain experts (including average developers and novice developers) and network

experts.

35

Table 2-5: Application Development Approaches Summary

Solution Strategy Used Language Type
Modelling

Scope
Goals

Data

Processing

Concrete

Syntax

Target

Platform

Evaluation

Method

Developer

Types
Comments

galsC Customised Platform Embedded DSL N CG DA Text TinyOS Case Study network experts No Event-triggered Events

SensorBASIC Customised Platform Embedded DSL N CG No Text MicaZ User Study Domain experts
• Large interpreter overhead

• Sleep command problem

Dinam Customised Platform Embedded DSL N CG No Text uPart User Study Domain experts Waste sensor node resources

PROVIZ Customised Platform Embedded DSL N AN No Visual
M-Core

(TinyOS)
Case Study Domain experts Limited Capabilities

WASP Customised Platform Embedded DSL (Python) N, G, Net CG DA Text TinyOS User Study Domain experts The language is limited to 7 architecture templates.

SEAL Customised Platform Embedded DSL N CG DA Visual MantsOS
Case Study

User Study
Domain experts Limited Capabilities

CrimeSPOT Customised Platform Embedded DSL N, Net CG DA Text LooCI Case Study network experts Programming Complexity

makeSense Customised Platform Embedded DSL N CG DA Text Contiki Case Study Domain experts

• Limited number of node types

• Generated code consuming node memory

• Simple application tasks

• Network or application behaviour not taken into
account

Doddapaneni

et al. (2012)8
MDD (3 Layers Modelling) External DSML N AN No Mix N/A Case Study network experts

• SAML language not defined

• No defined Platform

ArchWiSeN MDD (2 Layers Modelling) Embedded DSL (UML) G AN, CG DA Visual TinyOS
Case Study

User Study

domain and

network experts

Generated code not tested using a real WSN sensor

nodes

LWiSSy MDD (3 Layers Modelling) Embedded DSL N, G, Net AN, CG DA Visual TinyOS
Case Study

User Study

domain and

network experts

generated code not tested using a real WSN sensor

nodes

COMFIT MDD (2 Layers Modelling) Embedded DSL (UML) G AN DA Visual
TinyOS,

Contiki
Case Study

domain and

network experts
No Code Generation

Shimizu et al.

(2014)
MDD (3 Layers Modelling) External DSML N, G, Net AN, CG DA Text TinyOS Case Study

domain and

network experts

• Supporting the software development, but not real

WSN developments

• No event-triggered jobs

• High learning cost

Tei et al. (2015) MDD (3 Layers Modelling) External DSML N, G, Net CG DA, DF Mix TinyOS
Case Study

User Study

domain and

network experts

• No event-triggered jobs

• High learning cost

• Consistency problem

Moppet MDD (2 Modelling Layers) Embedded DSML N CG DA Text
TinyDDS
(TinyOS)

Case Study
Simulation

Domain experts Limited Capabilities

8 By convention for unnamed languages, the authors are referenced instead

36

According to the results in Table 2-5, regarding modelling scope, 66% (10 out of 15) of the

proposed languages or solutions support node or group-level modelling, which seems a rational

percentage considering Essaadi et al.'s (2017) results, that found 67% of the proposed solutions

were defined to produce node-level applications. There are two examples of using customised

platforms that offered solutions supporting network-level modelling (WASP and CrimeSPOT);

these two examples are restricted and limited solutions, as WASP is limited to seven archetype

models or templates, and CrimeSPOT is restricted to LooCI middleware. On the other hand,

some MDD examples, such as LWiSSY, Shimizu et al. (2014), and Tei et al. (2015) present

solutions offering network-level modelling with fewer implementation restrictions, as these

solutions target TinyOS supported platforms, but these three solutions use three modelling

layers, which presents a usability problem.

Regarding Languages or solutions Goal, some solutions aim to produce application code ready

for deployment to a real network, while other solutions are designed to help users to simulate

the modelled network application and provide some statistics regarding network performance,

which is one of the network expert’s duties, rather than the domain experts.

Regarding data processing, there are two techniques, data aggregation and data fusion; data

aggregation is the process of collecting the sensed data and running simple processing activities

to eliminate redundancy. Data fusion is the process of collecting sensed data to expose

environmental events. Till now, no rigid and comprehensive framework can unify the available

different techniques and algorithms proposed by the research community (Essaadi et al., 2017).

Furthermore, there is terminology confusion and no standard definition that explains the scope

of data fusion (Nakamura, Loureiro, & Frery, 2007); for example, Akyildiz & Vuran (2010, p.

201) state that in some situations data aggregation is referred to as data fusion. Therefore, we

notice in our Table 2-5 that 27% of the discussed solutions do not support any data processing

activities, 67% of the solutions support simple data aggregation tasks, and only 7% of the

solutions support both data aggregation and fusion, which correlates with the work presented

by Tei et al. (2015). Tei et al. (2015) try to offer simple data processing activities such as max,

min and present them as data fusion tasks.

Concerning target platforms, it is evident that 60% of the proposed solutions and defined

languages target TinyOS, due to its importance in the WSN domain. Our percentage appears

comparable to the results found by Essaadi et al. (2017). Finally, most of the proposed solutions

and modelling languages are evaluated using either case study, user study or both.

37

2.5 Formulated Design Requirements

According to the principal findings already discussed, we have developed a set of design

requirements to design and build our proposed solution.

DR1. Goal: considering that our research focuses on reducing complexity for beginner

developers, network analysis and optimisation are outside that scope, and code

generation is the primary goal of our proposed solution.

DR2. Developer Types: beginner developers are the main target to define a new

development abstraction according to thesis objectives (O2)

DR3. Strategy: According to the discussed facts, using the MDD strategy to define and build

a new application development is a reasonable choice. Regarding the number of

required layers, most discussed solutions and proposed languages divide their offered

activities into multiple layers. The first layer enables the user to model the required

application logic functionality, while the other layers are related to network

functionalities and performance analysis. However, expanding the number of modelling

layers leads to usability problems. Therefore, defining one modelling layer that enables

users both to model the application logic and network functionalities will be the right

solution.

DR4. Language Type: Using embedded or external DSL are offered, and possible choices,

but using external DSL seems the more suitable solution, because by choosing internal

DSL, defining new high-level vocabularies for the necessary commands and tasks will

be limited to the host languages compiler rules and reserved words.

DR5. Modelling Scope: Provide a solution that offers node, group, and network modelling.

DR6. Data Processing: According to the mentioned limitations concerning data fusion, data

aggregation tasks can be offered.

DR7. Concrete Syntax: offering text and visual modelling facilities appear an attractive

factor for beginner developers to use the proposed solution.

DR8. Target Platform: to build a promising solution, it should be based on an affordable and

usable platform; TinyOS seems the perfect platform.

38

DR9. Evaluation Method: using case study and user study to evaluate the proposed solution.

Table 2-6: Summary of the Concluded Design Requirements

 Category Required Features

DR1 Goal Code Generation

DR2 Developer Types Beginner Developers

DR3 Development Strategy Model-Driven Development (MDD)

DR4 Language Type External DSL

DR5 Modelling Scope Node, Group, Network

DR6 Data Processing Data Aggregation

DR7 DSL Concrete Syntax Text and Visual

DR8 Target Platform TinyOS

DR9 Evaluation Method User Study & Case Study

2.6 Chapter Summary

In this chapter, we have provided a background review related to WSN technology, by

explaining its history, discussing the most popular hardware sensor nodes, and introducing

TinyOS, one of the most frequently used operating systems in WSN. This was followed by

explaining how the complexity problem can be solved using Software Engineering practices,

represented by MDD and DSL. Next, the three main approaches used to define WSN

development abstractions were outlined: Embedded Operating System, Customised Platform

and MDD, as well as surveying the most influential WSN software development initiatives

proposed by the research community for each approach. These initiatives were then analysed

in terms of a set of criteria to find their pros and cons. Finally, a set of requirements based on

the analysis findings were identified as design requirements for our proposed solution.

39

Chapter 3: SenNet Meta-Model

3.1 Introduction

To introduce an abstraction development to facilitate the development process for WSN

domain, first we have to map the main tasks and activities in the application-level with the

required network elements in the network-level, by defining the basic components and concepts

for these two domains and identifying the relationship between them. If the developer needs to

send a message, they need to define the message text (the data that will be included in the

message), the message structure (message properties such as message size), and finally, the

communication means that will be used to send this message. So, from a developer’s point of

view, they need to send a message (application-level), which in turn reflects the necessity of

defining the message text, structure and the communication means from the network-level; in

other words, finding the right methodology they should follow to implement the necessary

application.

This chapter explains how a SenNet meta-model is used to link and mapped the application-

level that represents the developer’s point of view with the network-level activities. This meta-

model was developed according to the general principles of ISO/IEC29182-SNRA. Many

researchers’ findings have been considered throughout the course of developing this meta-

model, including Tei et al. (2015); Shimizu et al. (2014); Dantas et al. (2013); Rodrigues et al.

(2011); and Akbal-Delibas, Boonma, & Suzuki (2009). This was followed by discussing the

type of applications supported by this meta-model.

3.2 Modelling and Meta-Modelling

Modelling is a representation of a system or domain according to specific criteria or

perspective. The system can be represented using a set of different models, each one capturing

a specific aspect. Because the model is the representation of a system in reality, it cannot

represent all aspects of reality, which allows developers to deal with the systems in a simplified,

safer and cheaper manner (Rothenberg, 1989).

Meta-modelling represents the deep “structures” of models (Goeken & Alter, 2009), and is

defined as “the structure, semantics and constraints for a family of models” (Mellor, Scott,

40

Uhl, & Weise, 2004, p. 14). Meta-Modelling also defines the relationship between different

components of a system. Rothenberg (1989) states that meta-modelling is the analysis,

construction and development of the frames, rules, constraints, models and theories applicable

and useful for modelling a predefined class of problems. Accordingly, meta-modelling can be

used as a method to link more than one aspect of a system logically.

To solve a specific reality problem, or present a specific object in the universe, then we start

with modelling this problem or object as the first step to abstract them. For deep analysis and

modelling of any part of the world (that might be a model), we need three main aspects: (1)

The way of modelling, which stands for the language/notations used to model and represent

this model; (2) The way of working, which represents the procedures that apply to model this

model; and (3) The way of thinking, which represent the guidelines, rules, directions and

principles that used in the modelling process (Goeken & Alter, 2009).

Many modelling languages and techniques have been developed to enable developers to model

their systems and domains, such as Unified Modelling Language (UML), which is used as a

universal technique for object-oriented systems. In the last decade, researchers have started to

focus on how to transfer domain knowledge into models, given that using UML to model

diverse domains is not an adequate method. Accordingly, many researchers propose using

meta-modelling as a modelling technique to model wide spectrum objects and domains in a

stepwise method (Kurpjuweit & Winter, 2007). Some other researchers believe that the first

step in any research activity should start with describing a meta-model in an epistemological

way (Moody, 2005; Schuette & Rotthowe, 1998).

After reviewing the difference between modelling and meta-modelling, and showing the

advantages of using meta-modelling, one more important question should be answered: Can a

meta-model express a development methodology or process?

Curtis, Kellner, & Over (1992) expressed their concerns about the inadequacy of most

techniques used to represent and model software development lifecycles. Later, Henderson-

Sellers & Bulthuis (1998) proposed using meta-modelling to create more rigorous

methodology/process models, and they called meta-modelling “methodology modelling”, after

which many researchers advocated this proposal and believed in using meta-modelling as a

method to model development methodology (Gonzalez-Perez, McBride, & Henderson-Sellers,

2005).

41

Finally, by considering our research first objective O1: to define a new model that logically

links the application thinking scenarios with the real network elements and domain constraints,

considerate is necessary to determine the method that will be followed to develop the required

application, as this will help the developer to develop the required components related to

network elements to achieve the required application. According to the literature, the best

method to represent this methodology is using meta-modelling.

3.3 SenNet Meta-Model

In SenNet, the meta-model represents the rules that the WSN applications should follow. Figure

3-1 shows the meta-model that reflects the logical linking between the application level

(developer’s point of view) and the network elements. The SenNet meta-model is divided into

Application Configuration and Network Configuration.

42

Figure 3-1: WSN Meta-Model

Application Configuration Network Configuration

43

3.3.1 Application Configuration in SenNet Mata-Model

The Application Configuration includes high-level application settings, such as the number of

jobs an application performs and the job type (event-driven or periodic). A job can be sense-

forward, event-trigger, or data processing (node or network-level data aggregation). Node-

Level data aggregation is designed for data-processing operations and activities that each node

can apply to its local data. Network-Level data aggregation is designed for special node roles,

where data processing algorithms are applied to other nodes’ data.

• AbstractJob: is the general template that includes all job types that developers could use;

these jobs can be summarised as below:

1. SenseJob: this job type is the most frequently used job by the developers as it stands

for the sensing and monitoring application job. This job is a continuous job; the

developer should set the sampling frequency to configure the time to initiate the job

periodically. The job type enables the developers to build periodic sensing and

sense-forward application types.

2. SenseNowJob: this job is a single sensing job that will do the sensing operation

once, where data will be ready for user manipulation. The difference between

SenseJob and SenseNowjob is that SenseJob uses Split-Phase operations (Gay et

al., 2003; Levis, 2006). SenseNowJob uses blocking / synchronous, where the CPU

will start a loop, waiting until the reading process is complete. In contrast, the split-

phase operation is non-blocking / asynchronous, then the CPU will fire the read

sensor value command, and will not wait until the operation is complete, but will

start processing another command. When the reading process is complete in the

split-phase operation, then the hardware will initiate an interrupt, which is called

call-back, where the CPU will process the reading value; Figure 3-2 shows the

difference between synchronous/asynchronous. Usually, split-phase operations are

used with:

A. Hardware that takes a long time to complete its task.

B. Reading samples that need to be sensed periodically.

C. In Split-Phase operations that enable the node to start more than one

operation at the same time, and they execute in parallel.

44

Figure 3-2: The Difference Between Synchronous / Asynchronous Programming Models

(“Getting Started with TinyOS,” n.d.)

3. NodeDataProcessing: is the job type that is used to apply all data processing on

the node-level, which means it enables the sensor node to aggregate its data that

getting from its sensors. This sub-job type is equipped with a set of predefined

algorithms related to data processing, which can be found in Aggregation

enumeration, such as finding the minimum, largest, average and count values.

4. NetworkDataProcessing: this kind of job uses specific predefined algorithms to

apply them on sensed data obtained from other nodes, such as finding the minimum,

largest, average and count values; and these algorithms can be found under

aggregation enumeration. According to (Essaadi et al., 2017), this type of functions

is more attracted to developers than usual fusion algorithms, as they are easy to

model and program.

5. NetworkLevelSpecialAlgorithm: this type of job is used to apply a particular type

of algorithms such as object identification, tracking, decision making or any other

special algorithms. The current version of SenNet meta-model is developed to be a

generic meta-model. Accordingly, it is not practical to include specific domain

algorithms in SenNet, and it will be the role of other developers to customise this

job towards a particular domain, such as human health or identification purposes

and including special algorithms belonging to the required domains.

• Trigger: this is a trigger that can be used by developers to add some intelligence to the

network to start or end a specific job according to a specific trigger. These triggers can be

summarised either by receiving a message or pressing the push button.

• Action: this represents the actions that the developers could configure their applications to

use after finishing the sensing job or any other job type. There are many action types such

as sending a message, writing the sensed data to the node memory or blinking a led. In

45

addition, the SenNet meta-model offers ConditionalAction, which means that the action

will be done according to a specific condition.

3.3.2 Network Configuration in SenNet Mata-Model

The Network Configuration includes the configuration parameters for the network, cluster (a

group of nodes) and the sensor node. It also organises the relationship between a single node

on one side and a cluster (group of nodes) or network from the other side. Furthermore, it is

used to configure the type of communication technology and routing protocols, the position of

the sensor node if it is static, or mobile sensor node. It can be divided into three main parts or

entities Network, Sensor Node and Sensors. One of the advantages of the SenNet meta-model

is managing the relationships between the network elements (network, sensor node and sensor).

• Network: SenNet meta-model divides the network into two types, FlatNetwork and

ClusterNetwork, where each network type has its sensor node types.

• Node: SenNet meta-model provides many node roles to choose according to the network

type. For FlatNetwork, there are SinkNode, ComputationNode and SensorNode, where

ComputationNode is a special role node devised to implement complex network-level data

processing algorithms, so its role in the network is to collect data from its neighbouring

nodes and implement the required data processing algorithms; moreover, the developer can

assign any sensing job to this node role, so ComputationNode can be considered as a cluster

head node in the cluster network. On the other side, ClusterNetwork node types are

SinkNode, SensorNode and the ClusterHeadNode.

• Sensors: The available types of sensors that could be used within the network, cluster (a

group of nodes) and sensor nodes, such as humidity, temperature and pressure sensors.

3.4 ISO/IEC 29182 – Sensor Network Reference Architecture

The ISO/IEC29182-SNRA reference architecture standard is one of the main resources for

WSN Knowledge. This reference architecture defines three domains that WSN systems will

interact with: sensing, network and service domain. Sensing domain deals with the real

environment and how the sensor nodes will extract the needed information from the

environment, while the network domain is related to the wireless sensor network and how the

network elements are related to and communicate with each other. Finally, the service domain

is related to the defined tasks and jobs available for developer’s use as needed. In terms of these

46

three domains, ISO/IEC29182-SNRA standard defined many entities that play a significant

role in the WSN application. Table 3-1 shows the main functional entities listed in

ISO/IEC29182-4: 2013, Sensor Network Reference Architecture (SNRA) - Entity Model

(ISO/IEC, 2013). Table 3-2 shows the main explained entities that defined in ISO/IEC29182-

SNRA and how they modelled within the SenNet meta-model.

Table 3-1: ISO/IEC29182-4 Main Functional Entities (ISO/IEC, 2013)

FUNCTIONAL ENTITIES DESCRIPTIONS

DATA ACQUISITION Sense and capture data from the environment for applications.

DATA STORAGE Store sensor data, control instructions, and management data.

DATA PROCESSING

Use data/signal processing algorithms to extract requested or useful information

from sensor data and metadata. The information extraction algorithms include

collaborative information processing (e.g. data fusion, feature extraction, data

aggregation and data presentation).

DATA

COMMUNICATION

Transmit and receive data among sensor nodes and sensor network gateway

through a communication protocol stack and communication support functions.

Examples of data transmitted and received are temperature, humidity, time

synchronisation and location data.

NETWORK

MANAGEMENT

Manage the network topology, routing table, configuration information,

performance and reconfigure network information.

FEEDBACK &

CONTROL

Trigger control instruction on actuators according to user’s feedback depending

on the application requirement. Whether feedback control is needed or not

depends on the application requirement.

DATA AGGREGATION

Data aggregation assembles the similar data from multiple sources (e.g. sensors,

processors, databases). It also may assemble the data chronologically when

needed.

DATA

COMMUNICATION

Transmit and receive data among devices using existing or emerging data

transmission technologies.

BUSINESS

MANAGEMENT

Manage the business procedure, business rules, business operations and

statistical analysis of business data. Whether business management is necessary

depends on application requirement

Table 3-2: SenNet Meta-Model Mapping to ISO/IEC29182 Functional Entities

ISO/IEC 29182 Functional Entities SenNet Meta-Model

Data acquisition AbstractJob

Data storage
• ReadNodeMemoryAction

• WriteNodeMemoryAction

Data processing

• NodeDataProcessing

• NetworkDataProcessing

• NetworkLevelSpecialAlgorithm

Data communication
• SendMessageAction

• ReceiveMessageTrigger

Network management AbstractNetwork

Feedback & control
• Action

• Trigger

Data Aggregation (Node-Level) NodeDataProcessing

Data Aggregation (Network-Level) NetworkDataProcessing

Data communication

AbstractNetwork

• interNodeComm (parameter)

• routingProtocol (parameter)

47

Business Management

• AbstractJob

• Action

• Trigger

The ISO/IEC29182-3:2014, Sensor Network Reference Architecture (SNRA) - Reference

architecture views (ISO/IEC, 2014a) illustrates the general sequence of a sensor network’s

operations and activities required to accomplish a specific task, as shown below in Figure 3-3

which summarises the sequence of operations. It also describes the general sensor network

system functionality and the flow of data inside the system. Figure 3-4, which shows the data

produced and consumed by each entity, summarises the general system functionality.

Figure 3-3: Physical Operational Activity Model

Figure 3-4: General Sensor Network System Functionality Diagram

3.5 Application Types Supported by the SenNet Meta-Model

To find the application types that are supported by the SenNet meta-model, Oppermann,

Boano, et al. (2014) propose an interesting WSN application taxonomy: the main criteria used

to categorise application types are application Goal and Sampling. Table 3-3 shows the

different application types that are supported by the SenNet meta-model according to

Oppermann’s taxonomy criteria goal and sampling.

Monitoring

Detect

Decide

Respond

Request
Information

Manage
Resources

Request
Collection

Sensor
Assets

Sensing the
Environment

Sensor
Raw Data

Process
Information

Develop
Information

Data

Request
Parameters

Requested
Information

User

48

• Goal: General WSN function is to sense the environment and forward the sensed data to a

central location, where the application logic will be applied and useful information

extracted, and this job is called sense-forward or sense-and-forward. In some other cases,

it is useful to put some logic inside the network and enable the network to become an

intelligent network, according to specific logic rules. This case of application is very useful

as it will reduce the amount of transferred raw sensed data to the sink node, which implies

that the amount of communication will be reduced. Finally, according to these logic rules

and the getting sensed data, the network will react, this job type is called sense-react.

Regarding SenNet meta-model, then our meta-model supports a sense-forward application

using SenseJob type, besides using SendMessageAction which is one of the action types

offered by the SenNet meta-model. On the other side, regarding sense-and-react, due to the

fact that this research scope is limited to WSN monitoring application, our SenNet meta-

model does not support actuation activities; however, simple react activities are supported

by our SenNet meta-model, such as LED blinking or sending a message to a specific node.

Thus, the SenNet meta-model supports simple sense-react application scenarios.

• Sampling: many application scenarios can apply to WSN, but in terms of sampling these

applications can categorise using either periodic or event-trigger sampling. Regarding

periodic sampling, the SenNet meta-model supports periodic sampling or sensing using

SenseJob which supports periodic sampling after the sampling frequency has been set by

the developer. SenNet meta-model also supports event-trigger applications. SenNet meta-

model offers two event-trigger types:

1. Developer Event-Trigger: some researchers call this type software event-trigger,

which means that the developer performs some actions to trigger the start or ending

of a specific job or a set of activities. This trigger can be sending a message, or

pressing a push button. This type of job can be done through SenNet meta-model

using any AbstractJob type, as well as Trigger.

2. Environmental Event-Trigger: this means some events have occurred in the

environment that could be utilised to trigger the WSN to do some actions. SenNet

meta-model enables this type of event-trigger using AbstractJob and

AbstractAction with the aid of ConditionalAction. That enables the developer to set

any job type to do either one action or a set of actions according to specific

environmental conditions, such as while the network is running a periodic

temperature sensing operation, then if the sensed temperature reaches 40 C°, then

49

the node or the set of nodes will send a message to the Sink, blink a led, or save the

reading to the node memory.

Table 3-3: Mapping SenNet meta-model to Taxonomy Criteria (Oppermann, Boano, et al.,

2014)

Criteria
SenNet Meta-Model

Supported or Not How

Goal
Sense-Forward ✓ SenseJob + SendMessageAction

Sense-React ✓ SenseJob + AbstractAction

Sampling

Periodic ✓ SenseJob

Event-triggered ✓

AbstractJob + Trigger

AbstractJob + AbstractAction +

ConditionalAction

3.6 Chapter Summary

In this chapter, we have described the SenNet meta-model, which forms a base for SenNet

language. One of the definitive sources for WSN technology is the ISO/IEC 29182 standard;

therefore, the SenNet meta-model was defined in accordance with this standard. The SenNet

meta-model was defined to map the application-level to the required network-level. Therefore,

this meta-model can be divided logically into two parts: Application configuration and

Network Configuration. The first part represents the main tasks and activities that can be used

by developers to build their required applications, while the Network Configuration represents

the network components and operations that need to be applied to implement the required

application-level tasks and activities.

WSN applications can be divided into in many categories, such as Sense-Forward, Sense-

React, Periodic, and Event-Triggered applications. SenNet meta-model supports developing all

these application types, as presented in section 3.5, which discussed how these applications

could be developed using our meta-model.

The SenNet meta-model was developed using Eclipse Modelling Framework (EMF)

(Steinberg, Budinsky, Paternostro, & Merks, 2008). EMF is one of the core technologies of the

Eclipse universe, which is a Meta Object Facility (MOF) that is used to define meta-models

(Stephan & Cordy, 2012). Ecore is the model name used to represent any model in EMF

(Steinberg et al., 2008).

50

Chapter 4: SenNet Language - Internal View

4.1 Introduction

This chapter focuses on how the SenNet meta-model language has been developed, as well as

its internal architecture and functionality, including the technologies and development

techniques utilised to develop SenNet’s components, such as Eclipse, Eclipse Modelling

Framework (EMF), Xtext, Xtend, and Guice. Accordingly, this chapter first discusses the

SenNet internal view, then explaining CPC and CGC components. Finally, a simple and basic

plan is outlined for updating and adding new algorithms and activities to SenNet’s

functionality.

4.2 SenNet Internal View

SenNet is a DSL that translates its source code into source code of another existing language

(nesC), this type of language is called source-to-source transformation DSL type (Kosar et al.,

2008). Implementing a source-to-source transformation DSL is not a trivial task. Accordingly,

SenNet was implemented using two transformation stages, the first stage is text-to-model

transformation, and the second stage is model-to-text transformation.

SenNet includes CPC and CGC components; the CPC component is responsible for providing

the necessary commands library and IDE functionalities. In addition, it implements all the

required source code analysis to produce the AST model. So, this component represents the

text-to-model (T2M) transformation stage. The CGC component is responsible for generating

the necessary nesC source code for each sensor node defined in the SenNet application, which

represents the model-to-text (M2T) transformation stage.

SenNet was developed using the Eclipse development environment, which is becoming a

widely used platform to build DSLs and modelling tools (Kolovos, García-Domínguez, Rose,

& Paige, 2017). All SenNet components and their internal processes are controlled and wired

to each other via a runtime module using Guice9, which is a lightweight Dependency Injection

(DI) framework from Google. Dependency Injection (DI) is one of the inversion control

techniques that transfer the responsibility for the creation and linking of SenNet components

9 Google Guice: https://github.com/google/guice

https://github.com/google/guice

51

and sub-components to an externally configurable framework that would reduce the coupling

in the SenNet environment, which offers great flexibility to control the interaction and linking

between SenNet components and their internal processes. Figure 4-1 shows the general

implementation architecture for SenNet. In the same way, Figure 4-2 illustrates an abstracted

high-level SenNet functionality model diagram.

<<Package>>
org.wsn.sennet.formatting

SenNetFormatter *

<<Package>>
org.wsn.sennet

SenNetStandaloneSetupGenerated AbstractSenNetRuntimeModule

<<Package>>
org.wsn.sennet.serializer

AbstractSenNetSemanticSequencer

AbstractSenNetSyntacticSequencer

SenNetSemanticSequencer

SenNetSyntacticSequencer

*

*

<<Package>>
org.wsn.sennet.services

SenNetGrammarAccess

0..1

0..1

0..1

0..1

0..1

<<Package>>
org.wsn.sennet.generator

SenNetGenerator

MakefileGenerator CGeneratorHeaderGenerator AppCGenerator

AbstractSeNetGenerator

0..1

*

<<Package>>
org.wsn.sennet.parser.antlr.internal

InternalSenNetParser

InternalSenNetLexer

*

<<Package>>
org.wsn.sennet.parser.antlr

SenNetParser

SenNetAntlrTokenFileProvider

*

*

Figure 4-1: SenNet Implementation Architecture

52

Code Parsing Component (Text-to-Model Transformation)

Lexical and Syntactical Analysis Stage

Lexer Parser

SenNet
Grammar

Semantic Analysis Stage

Semantic
Analyser

Terminal
Rules

Parser
Rules

Semantic
Rules

Set of
Tokens

Elementary
AST Model

AST
Model

Code Generation Component (Model-to-Text Transformation)

SenNet Application
(Text)

Node-Level nesC
application Files

(Text)

Network-Level
to

Node-Level Tasks
Transformation

nesC Configuration
Generator

nesC Module
Generator

nesC Header
Generator

nesC Makefile
Generator

Figure 4-2: High-Level SenNet Functionality Model

4.3 Code Parsing Component (CPC)

The CPC component’s role is not limited to providing developers with IDE functionalities,

where all the compilation and code analysis activities are done by this component. The code

analysis is done in two stages; the first stage is lexical and syntactical analysis, while the second

stage is semantic analysis.

The CPC component was developed using Xtext (Eysholdt & Behrens, 2010), which supports

Text-to-Model (T2M) transformation. The CPC component was integrated via Xtext with the

Eclipse Modelling Framework (EMF) (Steinberg et al., 2008) to generate the tree-based editor

view. Listing 4-1 shows how the SenNet tree-based editor is initialised using the extension to

contribute the functionality provided by Eclipse. An extension to the working mechanism is a

particular Eclipse plug-in (EMF) feature that offers an extension point, which allows other

plug-ins (Xtext) to use or customise part of its functionality. An extension point is a contract

that includes a combination of XML and Java interfaces that all extensions made by other plug-

ins should conform to.

53

Listing 4-1: SenNet Tree-Based Editor View Initialisation

The source code analysis run by the CPC is done through using a context-free grammar (CFG),

which is used in most of the modern languages used to specify the grammatical structure of

programming languages (Aho, Lam, Sethi, & Ullman, 2007; Fowler, 2010). CFG is called

context-free because it is hard to restrict rules to a certain context, due to the lack of the context-

sensitive recognition algorithms (Parr, 2007; Voelter et al., 2013). Instead, syntactic and

semantic rules are used to achieve this purpose. Extended Backus-Naur Form (EBNF)

(ISO/IEC, 1996) is a textual representation used to build this type of grammar. EBNF is a DSL

that was developed for the purpose of creating rules (Schmitt, Kuckuk, Kostler, Hannig, &

Teich, 2014): each rule had a name and a list of alternative meanings. Listing 4-2 shows a

simple representation of EBNF rules. CFG rules are parsed using ANother Tool for Language

Recognition (ANTLR) parser, that is offered by Xtext as a back-end parser. Using ANTLR and

EBNF techniques enables programmers and developers to define their programming languages

grammar in one grammar file (Bettini, 2013). SenNet grammar rules can be found in

APPENDIX D.

Listing 4-2: EBNF Sample Rule

4.3.1 Lexical and Syntactical Analysis Stage

To run and execute a program written in a specific programming language, we have to make

sure that the program respects the syntax of that language. To this end, the Lexical analysis

 <extension point="org.eclipse.ui.editors">
 <editor
 id="org.wsn.sennet.presentation.SennetEditorID"
 name="%_UI_SennetEditor_label"
 icon="icons/full/obj16/SennetModelFile.gif"
 extensions="sennettree"
 class="org.wsn.sennet.presentation.SennetEditor"

contributorClass="org.wsn.sennet.presentation.SennetActionBarContri
butor">

 </editor>
 </extension>

expression
: INT
| expression '*' expression
| expression '+' expression
;

54

stage is related to analysing the source code and producing the AST model, and this process is

done using lexical and syntactical analysis steps.

• Lexing Step: this step involves breaking the program into small chunks called tokens.

Lexer divides the SenNet application into small tokens. Tokens are created according to

specific rules called lexical or terminal rules; Listing 4-3 shows an extracted sample of

SenNet terminal rules.

Listing 4-3: Sample of SenNet Grammar Showing Terminal Rules

• Parsing Step: The second analysis step is syntactical analysis. After generating the

sequence of tokens from the input program, we have to confirm that the sequence of tokens

forms a valid statement in the language and respects its syntactical structure, in addition to

formulating a tree that is called the Node Model or Abstract Syntax Tree (AST). Tokens

are processed and analysed according to the parser or EObject (Eclipse Object) rules,

because they work as a kind of building plan for the creation of the EObject that will form

the AST in memory with the aid of EMF resources. AST represents the abstract syntactic

structure of the SenNet application. After finishing the parsing step, a representation of the

parsed program is already built and stored in memory, where further semantic analysis can

be applied without parsing the same SenNet application text over and over again. Listing

4-4 shows an extracted sample of SenNet parser rules.

Listing 4-4: Sample of SenNet Grammar Showing Parser Rules

terminal ID : '^'?('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;
terminal INT returns ecore::EInt: ('0'..'9')+;
terminal STRING : '"' ('\\' . /* 'b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\' */ |
!('\\'|'"'))* '"' | "'" ('\\' . /* 'b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\' */ |
!('\\'|"'"))* "'";
terminal ML_COMMENT : '/*' -> '*/';
terminal SL_COMMENT : '//' !('\n'|'\r')* ('\r'? '\n')?;
terminal WS : (' '|'\t'|'\r'|'\n')+;

AbstractNode: SensorNode | ClusterHeadNode | SinkNode | ComputationNode;

AbstractNetwork: FlatNetwork | ClusteredNetwork;

AbstractStartEndingJobTrigger: ReceiveMessageTrigger | ReceiveSerialMsgTrigger
| StartJobTrigger_Impl | StopJobTrigger_Impl | PushButtonTrigger;

AbstractAction: ReadNodeMemoryAction | WriteNodeMemoryAction |
SendMessageAction | BlinkAction | SendSerialPortMsgAction;

55

4.3.2 Semantic Analysis Stage

This stage is related to all logical analysis that is done on the AST model. Many researchers

advise language developers to distribute the required code analysis on different levels, this

technique provides much better error messages and more precisely detected problems (Bettini,

2013), and would be better than processing the same program text over and over again. Thus,

all logical conditions and constraints that cannot be processed in the lexical and syntactical

analysis can be handled at this stage to ensure the AST model complies logically with the

semantic rules. For instance, Listing 4-5 shows an extraction sample of SenNet grammar that

includes semantic rules related to SenseJob job type, that highlight whether SenseJob is

initiated, then define the internal parameters, such as id, jobaction, and start/EndTrigger are

optional, except that the sensingSamplingRate parameter should be defined.

Listing 4-5: Sample of SenNet Grammar Showing Semantic Rules

4.4 Code Generation Component (CGC)

The CGC component’s main function is to generate the necessary nesC code. This component

was developed according to the fact that each nesC program is divided into static and dynamic

code. The static code represents the program structure and components to be used, while the

dynamic code represents the developer’s preferences in building the program. Consequently,

Figure 4-3 shows how a sample nesC program can be divided into the static and dynamic code,

where the configuration and declaration parts can be considered as the static part while the

implementation part can be considered as the dynamic part.

'SenseJob'
 '{'
 ('id' id=EInt)?

('sensingSamplingRate' sensingSamplingRate=ELong)

('JobTargetNode' JobTargetNode=AbstractNode)?

('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?

('start/EndTrigger' '{'
start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?

('jobaction' '{' jobaction+=AbstractAction (","

jobaction+=AbstractAction)* '}')?

 '}';

56

Figure 4-3: General nesC Module Program Structure

The CGC component analyses the application AST that is generated by the CPC and translates

all the general network activities into a single-node nesC format. The final nesC code for each

sensor node is produced by injecting the generated application code into pre-defined templates.

The pre-defined templates plus the injected application code represent the final sensor node

program in nesC format. More over to the advantages of using TinyOS as a foundation for

SenNet that will be described in below section, the nesC pre-processor has no dynamic linking,

so it omits all un-accessed variables, librarries and unused code (Levis & Gay, 2009) to reduce

the program size in memory and decrease the C compilation time.

The CGC component was developed using Xtend (Klatt, 2007) which supports Model-to-Text

(M2T) transformation (Birken, 2014). To generate code the CGC component should be capable

of accessing the AST model that was formed by the CPC, besides having the ability to create

new textual files that include a specific format. The CGC component uses an IGenerator class

that belongs to the runtime module, which helps CGC achieve these functionalities through the

doGenerate method, and transfer these capabilities to other generators included in this

component.

4.4.1 Why Use TinyOS as a Foundation for SenNet?

It has been noticed that the most used operating systems in the WSN applications domain are

TinyOS (Hill et al., 2000) and Contiki (Dunkels et al., 2004) because of their technical support

and maturity. According to Delamo et al. (2015), 85% of the WSN projects were using TinyOS.

TinyOS is used in many commercial products such as Zolertia10, Cisco’s smart grid systems11

(formerly Arch Rock), and People Power12, and it has approximately 25,000 downloads per

10 http://zolertia.io/
11 http://www.cisco.com/c/en/us/solutions/industries/energy/external-utilities-smart-grid.html
12 http://www.peoplepowerco.com/

Static Code

Dynamic Code

http://zolertia.io/
http://www.cisco.com/c/en/us/solutions/industries/energy/external-utilities-smart-grid.html
http://www.peoplepowerco.com/

57

year. The last TinyOS core version reached more than 80,000 Lines of Code with

approximately 39 contributors, which reflects the maturity and continuous support, which are

a highly important factor for any software success story (Levis, 2012).

The second version of TinyOS that was released in November 2006 presents some

improvements over the earlier version. The most important improvement in this version is a

Hardware Abstraction Architecture (HAA) (Handziski et al., 2005), which is a three-layer

architecture:

• Hardware Independent Layer (HIL), which is the top layer that provides access to the

underlying hardware, such as radio, storage, and timer, in a platform-independent way,

enabling the developer to access the hardware using independent interfaces. Accordingly,

the HIL layer presents a general interface for operations that are available on multiple

platforms.

• Hardware Adaptation Layer (HAL), which provides a high-level abstraction of the

underlying hardware to simplify the use of the complex hardware. So, HAL is platform-

specific, but developers should use hardware-independent interfaces when possible (Levis

& Gay, 2009).

• Hardware Presentation Layer (HPL), which is the lowest level of the architecture that sits

directly above the hardware. This layer’s purpose is to abstract the irrelevant differences

between similar hardware and present the hardware components as a friendly nesC

interface.

The advantages of this architecture can be shown in a simple application called AntiTheft13

which is an application that uses a light sensor component (PhotoC) and an accelerometer

component (AccelXStreamC) that belongs to a particular sensor board (MTS310) for a

particular platform family (MicaZ). However, this application uses independent hardware

interfaces to access these two components; these interfaces are Read and ReadStream.

Consequently, this application can be ported to work with any other sensor nodes that include

equivalent sensors.

In summary, applications that use HIL interfaces, or HAL hardware-independent interfaces are

easy to port to different sensor nodes that meet the application’s hardware requirements. In

13 AntiTheft Example Application is one of the application examples that offered by TinyOS team:

https://github.com/tinyos/tinyos-main/tree/master/apps/AntiTheft

https://github.com/tinyos/tinyos-main/tree/master/apps/AntiTheft

58

contrast, applications that use HAL or HPL via hardware-dependent interfaces will be complex

to port to different sensor nodes. Currently, TinyOS supports a wide range of sensor node

platforms, such as Mica, Telos, Imote2, and IntelMote2; the updated list of supported platforms

can be found on the official TinyOS website14.

The current programming language used to program a sensor node is nesC (Gay et al., 2003),

which is a component-based programming language that is included with the TinyOS operating

system. The developer should develop the required files using nesC language commands,

where these files are compiled using TinyOS operating system to produce the necessary files

in C language format, and then these files will be converted into a binary format, as depicted

in Figure 4-4. Finally, the required application binary code is ready for deployment to the actual

sensor node hardware. The developer should define and program more than one file, for

example configuration and module files, to implement any application scenario; those files

include the main component definitions that will be used in the application and the code logic

respectively, in addition to the makefile, which is used for headless software.

Using TinyOS as the foundation of the SenNet means that SenNet can be used with a wide

range of sensor node types and platforms. Moreover, it will utilise the existing components and

functions that are included with TinyOS, so there is no need to build them from scratch.

Figure 4-4: Sensor Node Programming Conventional Process

14 Official TinyOS webpage that list the updated supported hardware platform families:

http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware

http://tinyos.stanford.edu/tinyos-wiki/index.php/Platform_Hardware

59

4.4.2 Code Generation Process

The CGC implements the code generation functionality in two steps, the first step is the

network to node activity transformation, and the second step is triggering the single node

generators to start to generate code.

• Network to Node-Level Tasks Transformation Step: this step involves accessing the

generated AST model, which considers the final output of the CPC component and makes

the necessary analysis to find the number of jobs, and the type of network elements that

these jobs are assigned to, before deciding the final number of sensor nodes, and naming

the files using appropriate naming convention; Listing 4-6 illustrates how names identified

for each node defined in SenNet application. For example, the SenNet application defines

a certain job that is assigned to a sensor node, and the developer specifies the node-id. Then

all generated files are named according to this rule (nodeName = app.name +

jobTargetNode.id), where app.name is the application name specified by the developer

at the beginning of SenNet application. Likewise, if the SenNet application includes a job

assigned to a network, then the generated files are named according to this rule (nodeName

= app.name + i), where i is a counter that starts from 2, as 1 is reserved for the sink

node.

Listing 4-6: Pseudocode of Generated Nodes-Naming Process

NetworkStartingNodeID = 2

if (jobTargetNode != null) then

 nodeName = Application_Name + Node_ID

else

if (jobTargetNetwork != null) then

if (node defined within the network as Sink type) then

nodeName = Application_Name + 1

else

 maximumNodeId = NetworkStartingNodeID + Network.nbOfNodes

 for (i = NetworkStartingNodeID; i < maximumNodeId; i++) do

 nodeName = Application_Name + i

 end-for

 end-if

end-if

end-if

60

• Generating the Final nesC Step: this step is started after finishing the previous one, where

the number of sensor nodes has been identified, and their file names also specified. More

than one generator may be triggered in this step, according to the application logic

embedded in the SenNet application, as shown in Figure 4-5; for example, if the SenNet

application includes a message sending facility, then HeaderGenerator.xtend should be

triggered to generate AMsg.h that will hold the message structure that the sensor node

should follow. Figure 4-6 shows a sample algorithm to implement SenseJob job type using

the CGenerator generator. Listing 4-7 and Figure 4-7 shows how SenNet generated code

for node and network-level data processing job type. APPENDIX E includes four

generators implemented in Xtend language:

1. AppCGenerator.xtend that generates the nesC configuration files

2. CGenerator.xtend that generates the nesC module files

3. MakefileGenerator.xtend that generates the nesC Makefile

4. HeaderGenerator.xtend that generates the AMsg.h files

Table 4-1 illustrates how SenNet sample commands and attributes are mapped into nesC

code format for the configuration and module files.

nesC Code Generators
Triggering

SendMessageAction = null

AppCGenerator

CGenerator

MakefileGenerator

HeaderGenerator

Yes

No

End

Figure 4-5: Code Generators Triggering Process

61

SenseJob Initiation

Count(sensingSamplingRate)

Perform Sensors Reading

Yes

No

jobAction != null

EndTrigget != null

No

JobAction

Yes

Job End

Figure 4-6: The CGenerator Algorithm to Implement SenseJob Job Type

Listing 4-7: Pseudocode of the Generated nesC code for the NodeDataProcessing

*********************************** NodeDataProcessing*********************************

dataProcessingRate

sensingSamplingRate

Aggregation = {Avg, Min, Max, Count}

Action = {ReadNodeMemoryAction, WriteNodeMemoryAction, SendMessageAction, BlinkAction}

for (i = dataProcessingRate; i < dataProcessingRate; i++) do

for (j = sensingSamplingRate; j < sensingSamplingRate; j++) do

Perform sensor reading

end-for

perform Aggregation

if (jobAction != null) then

 perform Action

end-if

end-for

62

Computation Node

NetworkDataProcessing Job

Sensor Node

Job Initiation

Count(dataProcessingRate)

Perform Aggregation function

Yes

No

jobAction != null

EndTrigget != null
No

JobAction

Yes

Job End

Receive sensor readings from
other sensor nodes

Job Initiation

Count(sensingSamplingRate)

No
EndTrigget != null

Yes

Job End

Perform Sensors Reading

Send sensor readings to
Computation Node

Figure 4-7: The CGenerator Algorithm to Implement NetworkDataProcessing Job

63

Table 4-1: Sample of SenNet to nesC Code Mapping

SenNet Class Related nesC code

Abstract Class Sub-Class Attribute
User

input
XXXAppC.nc XXXC.nc

SenNetAPP name XXX

configuration XXXAppC

{
}

implementation {

components XXXC;
components MainC;

XXXC.Boot -> MainC;

}

module XXXC

{

uses {

interface Boot;

interface SplitControl;
}

}

Implementation {
event void Boot.booted() {

}

}

AbstractJob SenseJob SensingSamplingRate Z
components new TimerMilliC();

XXXC.Timer -> TimerMilliC;

#include "Timer.h"

interface Read<uint16_t>;

interface Timer<TMilli>;

call Timer.startPeriodic(Z);

call SplitControl.start();

Boot.booted ()
event void Timer.fired()

{

}
event void Read.readDone(error_t result, uint16_t data)

{
}

event void SplitControl.startDone(error_t error){

if (error != SUCCESS)
 {

 call SplitControl.start();

 }
event void SplitControl.stopDone(error_t error){

 }

AbstractAction SendMessageAction SenMessageTo Y

components ActiveMessageC;
components new AMSenderC(AM_RADIO);

components new AMReceiverC(AM_RADIO);

XXXC.Packet -> AMSenderC;
XXXC.AMPacket -> AMSenderC;

XXXC.AMSend -> AMSenderC;

XXXC.SplitControl -> ActiveMessageC;
XXXC.Receive -> AMReceiverC;

#include "AMsg.h"

interface Read<uint16_t>;
interface Packet;

interface AMPacket;

interface AMSend;
interface Receive;

bool radioBusy;

 message_t messagePacket;
event void AMSend.sendDone(message_t *msg, error_t error) {

if (msg == & messagePacket) {

64

radioBusy = FALSE;

}
}

event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len){

return msg;
 }

if (radioBusy == FALSE) {
ActiveMessage_t* msg = call

Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));

 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = data;

if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t))) {

 radioBusy = TRUE;
 }

 }

BlinkAction

components LedsC;

XXXC.Leds -> LedsC;
interface Leds;

Led Led1

call Leds.led0Toggle();

call Leds.led1Toggle();

callLeds.led2Toggle();
call Leds.led0On();

call Leds.led1On();

callLeds.led2On();
call Leds.led0Off();

call Leds.led1Off();

callLeds.led2Off();

ConditionalAction
logicalSymbol Equal

if (data = 400){
} value 40

AbstractNode SensorNode We have to generate only one file for 1 node We have to generate only one file for 1 node

AbstractNetwork AbstractNetwork nbOfNodes M

We have to generate M number of files, in case the

user assign M = 3, then we have to generate 3 files of
XXXAppC.nc

We have to generate M number of files, in case the user put M = 3, then we have to

generate 3 files of XXXC.nc

Abstract Sensor

TemperatureSensor
components new SensirionSht11C() as TempHumS;

XXXC.Read -> TempHumS.Temperature;

Humidity
components new SensirionSht11C() as TempHumS;
XXXC.Read -> TempHumS.Humidity;

Light
components new Taos2550C() as lightS;

XXXC.Read -> lightS.VisibleLight;

Pressure
components new Intersema5534C() as PressureS;
XXXC.Read -> PressureS.Intersema;

Voltage
components new VoltageC() as VoltageS;

XXXC.Read -> VoltageS.Read;

65

4.5 SenNet Extensibility and Update Process

One of the objectives of the SenNet is that it should have the ability to be extended and updated

in a simple manner. Figure 4-8 shows how the extension and updating process is done. Experts

are needed to update the grammar, and update the CGC component generators, if they need to

add new tasks and algorithms. While, for updating the existing tasks and commands, the experts

should update the CGC component generators only.

Code Parsing Component

SenNet Grammar

Terminal Rules

Parsing Rules

Semantic Rules

Code Generation Component

Network to
Node-Level

Transformation

nesC Configuration
Generator

nesC Module
Generator

nesC Header
Generator

nesC Makefile
Generator

ExpertExpert

Adding New Commands and
Algorithms

Updating Existing
Commands and Algorithms

Figure 4-8: SenNet Updating and Expanding Process

66

4.6 Chapter Summary

In this chapter, we have described the internal view – SenNet’s internal working mechanism –

by explaining how the CPC component parses and analyses the SenNet application code to

produce the Abstract Syntax Tree (AST), which helps the CGC component to generate the

required nesC code for the required application. The CGC component should first process the

AST by converting the network-level tasks and activities to node-level tasks and activities,

before triggering four different generators to generate the required nesC code files. Finally, the

SenNet extensibility and updating process was explained.

67

Chapter 5: SenNet Language - Programming

View

5.1 Introduction

A DSL is a programming language that is developed to offer a notation for a specific domain

based on the concepts and features of that domain without the need for detailed knowledge of

that domain (Kosar, Martinez López, Barrientos, & Mernik, 2008). The objective of proposing

the SenNet language is to offer a new abstracted programming language that hides the

complexity of low-level programming that is related to the WSN domain from the developer’s

point of view. This chapter will firstly deal with a general overview of the SenNet language,

followed by describing its main components. Next, it will identify the steps that should be

followed to develop SenNet applications successfully, and explain the general SenNet

application structure and commands.

5.2 SenNet Language

SenNet15 (Sensor Network) is an open-source domain-specific language (DSL) that is designed

for Wireless Sensor Network (WSN) application development; it helps developers to focus on

the application logic rather than programming complexity or technology low-level details.

SenNet has been designed to work with the TinyOS embedded operating system. Figure 5-1

shows SenNet’s general working mechanism and how it interrelates to TinyOS.

Figure 5-1: General WSN Application Development Steps Using SenNet

15 SenNet Official Website: http://lzd987.edu.csesalford.com/index.html

http://lzd987.edu.csesalford.com/index.html

68

Figure 5-2 and 5-3 explain the general application development stages and code generation

using SenNet. The developer should use SenNet abstracted commands to express the necessary

application requirements. These commands are first parsed and converted into an intermediate

representation that encompasses the application logic model, and is called Abstract Syntax Tree

(AST). Then the code generation stage produces the right nesC code for each of the sensor

nodes that comprise the application. SenNet gives developers the ability to program the

required application using a node-level and network-level programming approach.

Code Generation

SenNet code
Application

Artefacts and
semantic

1st sensor node code
file (nesC format)

SenNet
Language Parsing

Nth sensor node
code file (nesC

format)

Developer

Figure 5-2: SenNet Working Mechanism

SenNet provides developers with many features that are depicted in Figure 5-3.

• Open Source: which means that SenNet is free to use, distribute and modify, besides being

multi-platform and easy to deploy.

• Macro-Programming technique: where a sequence of programming instructions is

offered to the developers as a single instruction, as many of the SenNet commands are built

according to macro-programming techniques.

• Multi Editor Views: SenNet offers two types of editor view, the first editor view is a text-

based editor which is used in most programming language editors, while the second editor

view is tree-based, which is similar to visual programming.

• Multi-Programming Abstraction-Level: Multi-Abstraction level is provided by SenNet,

as it enables the developer to develop node or network-level application, in the network-

level application, SenNet gives developers the ability to model their application logic in

terms of a sensor node, group of nodes, or network-level.

69

Figure 5-3: SenNet’s Main Features

5.3 SenNet Components

SenNet includes two main components, Code Parsing Component (CPC), and Code Generation

Component (CGC). Detailed descriptions of these two components are listed below.

5.3.1 Code Parsing Component (CPC)

From a developer’s point of view, the CPC component provides two different editor views, as

shown in Figure 5-4. The first editor view is text-based, while the second view is a tree-based

editor view. Additionally, SenNet editor views offer a number of Integrated Development

Environment (IDE) functionalities to be used by a developer to facilitate the developing

process, such as immediate feedback, incremental syntax check auto-completion and suggested

corrections, as shown in Figure 5-5, which shows how the IDE helps the developer in

identifying errors and highlighting solutions. These IDE functions simplify the application

programming task and shorten the SenNet learning process

Open Source

Macro-Programming

Multi Editor Views

Multi Programming
Abstraction-Level

70

Figure 5-4: SenNet Editor Views

Figure 5-5: SenNet IDE Features (A) IDE Language Helper, (B) IDE Error Message Example

5.3.2 Code Generation Component (CGC)

The CGC component’s main function is to generate the necessary nesC code as the final output

of the SenNet application, a complete set of nesC code files is generated for each sensor node

configured in the SenNet application, as shown in Figure 5-6, which includes a simple SenNet

application for a small network that includes three nodes, and how the nesC files related to

these three nodes are generated.

71

Figure 5-6: nesC Generated Files for SenNet Application

72

5.4 SenNet Application General Syntax and Development Steps

The general SenNet application structure can be shown in Listing 5-1, which starts with the

SenNetApp command that is considered the starting point of the SenNet application, and then

the Application_Name which is the application name that should be set by the developer. This

is followed by the Jobs command that represents the main container that will include all

different job types that the developer could define in the SenNet application; id is an optional

parameter that can be set by the developer to assign an application id. After that, the developer

would start defining the required jobs, as SenNet applications can include one job or more

according to the application requirements.

Listing 5-1: General SenNet Application Syntax

SenNet language is built and initialised according to the SenNet meta-model (Salman & Al-

Yasiri, 2016a), which represents the rules that the developer should follow when using SenNet.

The SenNet meta-model has been developed in accordance with ISO/IEC29182: SNRA

(ISO/IEC, 2014a), which is considered to be a definitive source of WSN knowledge.

Accordingly, SenNet job programming steps are designed to conform to the activity model

defined by ISO/IEC29182: SNRA, which is illustrated in Figure 3-1 in the previous chapter;

Figure 5-7 below explains each job structure within the SenNet application.

SenNetApp Application_Name

{

[id app_id]

Jobs

{

Job1 [, Job2, Job3, ….]

}

}

73

Figure 5-7: General SenNet Application and Job Structure

To program a specific job using SenNet, developers should follow the following steps shown

in Figure 5-8:

• Define the required jobs to be performed by the network elements, which could be one job

or more.

• Configure the network elements that jobs will apply to; network elements could be a sensor

node or a network, and network elements configuration may include network name, the

number of sensor nodes, declaring the group of nodes and assigning nodes to these groups.

• Assign the resources, where ‘resources’ represents the sensors that will be utilised

throughout the job, such as sensor type.

• Define the type of triggers that could be used to start or finish the job; this operation is

optional for the developers to use.

• Define the job action, which represents the action that will be performed by the network

elements after finishing the job, such as sending a message to the sink, or blinking a led;

this operation is optional for the developers to use.

74

Figure 5-8: SenNet Job Development Steps

5.4.1 Job Types

Developers can configure many types of tasks such as sense-forward, event-triggered, or data

processing. Developers can develop these tasks by selecting the right StartEndingJobTrigger

and Action commands. The current version of SenNet includes a set of job types such as

SenseJob, SenseNowJob, NodeDataProcessing and NetworkDataprocessing. Some of these

tasks relate to a direct sensing job, while the others are related to data processing. Figure 5-9

represents the SenNet meta-model part that is related to job types.

75

Figure 5-9: Job Types SenNet Meta-Model

• SenseJob is a job type that is offered for regular periodic sensing jobs described in Listing

5-2; id parameter is optional for the developer to set. The sensingSamplingRate parameter

is the sampling frequency that is set by the developer according to the application

requirements; this parameter should be set in millisecond format, for example 1 second =

1000 milliseconds. Furthermore, the developer should define the network element that will

do the job. Developers have two options to choose either node-level by selecting

JobTargetNode or network-level by selecting JobTargetNetwork. The start/EndTrigger is

optional for the developers to configure if they need the job to be started or ended by a

specific trigger, for example, initiating the job if the push button is pressed or by receiving

a message from the Sink. The jobAction is optional for the developer to use, so it enables

the developer to configure an action after the sensing job is finished, such as blinking a

LED or forwarding the results to the Sink.

76

Listing 5-2: SenseJob Command General Syntax

• SenseNowJob command, which is described in Listing 5-3, is the command that is used

by the developer for a one-off sensing job; the differences in internal structure and working

mechanism between SenseJob and SenseNowJob have been described in section 3.4.1. The

id is an optional parameter to be set by the developer. Moreover, the developer should set

it, as this job will be done through node or network-level, start/EndTrigger and jobAction

are optional to the developer to set according to the application preferences.

Listing 5-3: SenseNowJob Command General Syntax

• NodeDataProcessing is a node-level data processing job command that any sensor node

can apply to its local sensed data. All sensor nodes defined within this job will run a specific

aggregation function to process their sensed data, which is described in Listing 5-4. Firstly,

the developer should choose the necessary aggregation function from a set of offered

functions through the nodeDataProcessing parameter. An illustration of the current

functions that are available are maximum, minimum, and average. Then the developer

should set up two parameters:

1. dataProcessingRate: this parameter represents the time that the sensor node runs

the aggregation function each time. For example, a developer could configure a

sensor node to sense the environment temperature every one second, and run max

aggregation function every 30 seconds to find the maximum temperature data.

Job SenseJob

{

[id Job_id]

sensingSamplingRate Frequesncy_in_Millisecond_Format

NetworkElements JobTargetNode | JobTargetNetwork

[start/EndTrigger]

[jobAction]

}

Job SenseNowJob

{

[id Job_id]

NetworkElements JobTargetNode | JobTargetNetwork

[start/EndTrigger]

[jobAction]

}

77

2. sensingSamplingRate: this parameter represents the time-frequency that sensor

node should run to initiate the sensing operation. For example, a developer can

configure a sensor node to sense the environment temperature every one second.

After setting the above two parameters, the developer should set the network elements that

will run this job. In addition, the developer can set the jobAction and start/EndTrigger if

needed, according to the application requirements.

Listing 5-4: NodeDataProcessing Command General Syntax

• NetworkDataProcessing job type command is expressed in Listing 5-5. This command is

used for network-level data aggregation, which means configuring a special network

element to process other nodes’ data. This type of job should be assigned to a special

network element such as Sink, ClusterHead or ComputationNode. The developer should

firstly set the aggregation function required, such as maximum, minimum, average, and

count, before setting the sensingSamplingRate and dataProcessingRate, followed by

assigning the network elements that will do the job. Finally, the start/EndTrigger and

jobAction are set according to the application requirements.

Listing 5-5: NetworkDataProcessing Command General Syntax

Job NodeLevelJob

{

[id Job_id]

nodeDataProcessing max | min | avg | count …

sensingSamplingRate Frequency_in_Millisecond_Format

dataProcessingRate Frequency_in_Millisecond_Format

NetworkElements: JobTargetNode

[start/EndTrigger]

[jobAction]

}

Job NetworkDataProcessing

{

[id Job_id]

networkDataProcessing max | min | avg | count …

sensingSamplingRate Frequency_in_Millisecond_Format

dataProcessingRate Frequency_in_Millisecond_Format

[nodeIDList]

JobTargetNode ComputationNode | Sink | ClusterHead

[start/EndTrigger]

[jobAction]

}

78

5.4.2 Network Elements

Figure 5-10 represents the network elements of the SenNet meta-model, which is the part that

gives developers the flexibility to configure the required network elements (node or network-

level) that will do the job, whether at node-level or network-level.

Figure 5-10: Network Elements SenNet Meta-Model

• JobTargetNode is the command that can be used by the developer to define a node-level

network element; the general command syntax is illustrated in Listing 5-6. SenNet offers

some node roles to be used by the developer, such as SinkNode, ComputationNode,

SensorNode, and ClusterHeadNode.

1. SesnorNode is a regular sensor node with regular sensor node capabilities. This

node type can be used within a flat network and clustered network as a cluster node.

79

2. SinkNode is the central node, where all sensor nodes in the network send their

sensed data.

3. ClusterHeadNode this type of node is used within clustered networks only.

4. ComputationNode is a node configuration role that can be assigned to any node in

the FlatNetwork to do more activities related to data processing; this role can be

considered as a ClusterHeadNode in FlatNetwork.

After choosing the required node role, the developer can optionally set the node id, and set

the necessary resources that will be utilised through the sense or processing job, which

means deciding which sensor to use, or the developer can choose more than one sensor.

Listing 5-6: JobTargetNode Command General Syntax

• JobTargetNetwork is the command that developers can use to define the network-level

elements; the general command syntax is expressed in Listing 5-7. Developers should first

set the nbOfNodes parameter with the number of nodes that require to be configured. The

developer can optionally set the RoutingProtocol, the current SenNet version support

Collection Tree Protocol (CTP), Dissemination Protocol, and Active Message Protocol, as

these are the official communication protocols that are currently adopted and supported by

TinyOS. If the developer does not set the RoutingProtocol, then SenNet will use Active

Message Protocol by default. Finally, developers should assign the necessary resources,

meaning the sensor type that is necessary to achieve the job successfully.

Listing 5-7: JobTargerNetwork Command General Syntax

JobTargetNode [SensorNode | ComputationNode | SinkNode | ClusterHeadNode] {

[id Node_ID]

[nodeResources { AccelerometerSensor | LightSensor | LocationSensor | MicrophoneSensor |

TemperatureSensor | PressureSensor | HumiditySensor | VoltageSensor }]

}

JobTargetNetwork [FlatNetwork | ClusterNetwork] {

[id Node_ID]

nbOfNodes Number-of-Nodes

[routingProtocol RoutingProtocol]

[Resources { AccelerometerSensor | LightSensor | LocationSensor | MicrophoneSensor |

TemperatureSensor | PressureSensor | HumiditySensor | VoltageSensor }]

}

80

5.4.3 Job Start/Ending Trigger

Figure 5-11 shows the SenNet meta-model that is related to start/end trigger, and the

start/EndTrigger command syntax is described in Listing 5-8. This command is used by

developers to configure the trigger that will start the job or end it. Firstly, the developer should

set this command either for starting a job or ending it, then choose the trigger type; SenNet

offers the developers three trigger types for this case, PushButtonTrigger,

ReceiveSerialMsgTrigger, and ReceiveMessageTrigger. A simple case study to use this

command, such as pressing the push button of the sensor node, will be the trigger to initiate

(start) the sensing job for a node.

Figure 5-11: StartEndJob SenNet Meta-Model

Listing 5-8: start/EndTrigger Command General Syntax

5.4.4 Job Action

The jobAction is a command option available to the developer to configure the network

elements’ behaviour after completing the job. Figure 5-12 represents the SenNet job action

meta-model, and Listing 5-9 describes the general jobAction command syntax. The developer

has many options to choose as job action, such as send message action, and blink action. In

addition, the developer can configure the action to be done according to a specific condition,

Start/EndTrigget {

[StartJobTrigger: {ReceiveMessageTrigger | ReceiveSerialMsgTrigger | PushButtonTrigger}]

[StopJobTrigger: {ReceiveMessageTrigger | ReceiveSerialMsgTrigger | PushButtonTrigger}]

}

81

for example, sending a message to the sink (node_id = 1) if the temperature is greater than or

equal to 20 C°. The general conditional action command syntax is illustrated in Listing 5-10.

Figure 5-12: JobAction SenNet Meta-Model

Listing 5-9: jobAction Command General Syntax

Listing 5-10: Conditional Action Command Syntax

jobAction {

[ReadNodeMemoryAction | WriteNodeMemoryAction | SendMessageAction | BlinkAction |

SendSerialPortMsgAction] {

[sendMessageTo Node_ID]

[led led0 | led1 | led2]

[status on | off | toggle]

[condition conditionalAction]

}

}

ConditionalAction

{

LogicalSymbol Equal | greaterThan | greaterThanOrEqual | lessThan | lessThanOrEqual |

notEqual

Value Node_ID

}

82

5.5 Chapter Summary

In this chapter, we have described the SenNet language from the developer's point of view,

starting by explaining the importance of using TinyOS as a foundation for SenNet, because

TinyOS enables SenNet to be used by developers to develop WSN applications for a broad

range of sensor node types.

SenNet includes two main components: Code Parsing Component (CPC) and Code Generation

Component (CGC). CPC is responsible for providing developers with the required IDE

functionalities, such as error messages and language helper; while CGC is responsible for

generating the required TinyOS application. SenNet application general syntax and

development steps are discussed in section 5.4.

83

Chapter 6: SenNet Evaluation

6.1 Introduction

This chapter will discuss the validation and evaluation phase to assess SenNet language

functionality. Firstly, to prove SenNet usability and code functionality, it will describe a

SenNet application developed for a simple and representative case study and validate the final

generated nesC code. Next, an evaluation plan is outlined using Goal/Question/Metric (GQM)

approach (Basili, 1992), which is considered one of the popular measurement approaches to

ensure the validity and integrity of the measurement results. GQM consider a de facto

measurement framework. Where many companies and organisations have employed, such as

Philips and NASA (Hussain & Ferneley, 2008).

Therefore, a set of questions are identified based on the evaluation goals that represented by

usability and functional suitability. These questions should be answered through the evaluation

phase. A set of possible metrics is outlined that can be useful to answer the mentioned

questions. These metrics were calculated using multiple methods such as conducting a user

survey, implementing a real business case studies, and others. Finally, we outline a summary

of the final metric results, that lead to the final answers for the proposed questions.

6.2 Proof of Concept Case Study

WSN supports a vast range of real-world applications, such as habitat monitoring (Mainwaring

et al., 2002), active volcano monitoring (Werner-Allen et al., 2006) and beaches monitoring

(Alkandari, Alnasheet, Alabduljader, & Moein, 2012). For case study purposes, using a small

but representative scenario can be enough to demonstrate the power and functionality of SenNet.

So as a representative case study, a simple home temperature monitoring scenario has been

chosen (Salman & Al-Yasiri, 2016a). This simple scenario can be described as follows:

• Temperature monitoring for three home locations

• The monitoring process should be every 1 minute.

• If the sensed temperature in any of these three places is greater than 40 C°, then a message

should be sent to the base station.

84

Developing this scenario using SenNet is a simple task. Monitoring three different locations

means three sensor nodes are needed to do the same monitoring job. Accordingly, Listing 6-1

represents the SenNet application developed for this simple scenario, which first defines a

sensing job with a sampling rate at 1 minute = 60000 milliseconds. This sensing job is assigned

to a network that includes three sensor nodes (network-level programming concept). Next,

conditional job action is defined, which instructs that if the sensing temperature becomes

greater than 40 C°, then each node in the network will send a message to the sink node (sink

node ID = 1) using ActiveMessage Protocol (AM). Figure 6-1 and 6-2, show the development

of this application using SenNet editor views.

After completing the programming process, the required nesC single-node files are generated

for three sensor nodes, as shown in Figure 6-1. The generated files are titles with the same

application name that was configured at the beginning of the SenNet application

“ProofofStudyCaseStudy”, and numbered automatically with 2, 3, and 4 that represent the

node-id (number 1 is reserved for the sink node). The last file is called AMsg.h, which includes

the message structure that should be followed by all sensor nodes when sending a message.

Listing 6-2, 6-3, 6-4, 6-5 shows sample of the generated nesC code. Below is a list of the

generated files:

• ProofofStudyCaseStudy2AppC.nc

• ProofofStudyCaseStudy2C.nc

• Makefile2

• ProofofStudyCaseStudy3AppC.nc

• ProofofStudyCaseStudy3C.nc

• Makefile3

• ProofofStudyCaseStudy4AppC.nc

• ProofofStudyCaseStudy4C.nc

• Makefile4

• AMsg.h

85

Listing 6-1: SenNet Application for Case Study Scenario

**
SeNetApp ProofofStudyCaseStudy {
 jobs {
 SenseJob {
 sensingSamplingRate 60000
 JobTargetNetwork FlatNetwork {
 nbOfNodes 3
 resources {
 TemperatureSensor
 }
 }
 jobaction {
 SendMessageAction {
 sendMessageTo 1
 condition ConditionalAction {
 sensorTerm Temp
 logicalSymbol greaterOrEqualThan
 value 40
 unit C
 }
 }
 }
 }
 }
}

**

Figure 6-1: Case Study Development Using Text-Based Editor View

86

Figure 6-2: Case Study Development Using Tree-Based Editor View

To prove the generated code functionality, two steps were implemented. The first step was to

compile the generated files using TinyOS to find if there were any errors or warnings. Figure

6-3 illustrates the TinyOS component graph, which shows that all required components are

linked correctly and without any errors.

Figure 6-3: TinyOS Component Graph for A Sample of The Generated nesC Files

The second step was to deploy these files into three real sensor nodes. Three IRIS XM2110

sensor nodes (motes) were equipped with an MTS-400 Sensor board. The MIB520

programming board was used to deploy these files to the mentioned sensor nodes using make

command; the deployment process was done successfully, and each sensor node worked

according to the deployed application.

87

Figure 6-4: The Three IRIS-XM2110 Used to Validate the Generated Files Code

Listing 6-2: Sample of the nesC Configuration Files

**
configuration ProofofStudyCaseStudy2AppC
{
}
implementation {
 components ProofofStudyCaseStudy2C;
 components MainC;
 ProofofStudyCaseStudy2C.Boot -> MainC;
 components new TimerMilliC();
 ProofofStudyCaseStudy2C.Timer -> TimerMilliC;
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 ProofofStudyCaseStudy2C.Packet -> AMSenderC;
 ProofofStudyCaseStudy2C.AMPacket -> AMSenderC;
 ProofofStudyCaseStudy2C.AMSend -> AMSenderC;
 ProofofStudyCaseStudy2C.SplitControl -> ActiveMessageC;
 ProofofStudyCaseStudy2C.Receive -> AMReceiverC;
 components new SensirionSht11C() as Sensor;
 ProofofStudyCaseStudy2C.Read -> Sensor.Temperature;
}

**

Listing 6-3: Sample of the nesC Module Files

**
#include "Timer.h"
#include "AMsg.h"
module ProofofStudyCaseStudy2C
{
 uses {
 interface Boot;
 interface SplitControl;
 interface Read<uint16_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 }
}

88

implementation {
 bool radioBusy;
 message_t messagePacket;
 event void Boot.booted()
 {
 call Timer.startPeriodic(60000);
 call SplitControl.start();
 }
 event void Timer.fired()
 {
 call Read.read() ;
 }
 event void Read.readDone(error_t result, uint16_t data)
 {
 if (data >= 40)
 {
 if (radioBusy == FALSE)
 {
 ActiveMessage_t* msg = call

Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = data;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t)))
 {
 radioBusy = TRUE;
 }
 }
 }
 }
 event void SplitControl.startDone(error_t error)
 {
 if (error != SUCCESS)
 {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error)
 {
 }
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }

}

**

Listing 6-4: AMsg.h Header File

**
 #ifndef AMSG_H

#define AMSG_H
typedef nx_struct ActiveMessage
{
nx_uint16_t NodeID;

89

nx_uint16_t Data;
} ActiveMessage_t;
enum
{
AM_RADIO = 6
};

#endif /* AMSG_H */

**

Listing 6-5: Sample of the nesC Makefile

**
COMPONENT=ProofofStudyCaseStudy2AppC
Include $(MAKERULES)

**

6.3 SenNet Evaluation Plan

Every programming language has its strengths and weak points. However, the reason for

choosing a particular programming language may be based on factors that are not related to

technical features and characteristics of this language (Naiditch, 1999).

Accordingly, we have tried to evaluate SenNet in terms of functionality that is related to the

aim that is designed for, and in terms of language usability that focuses on user perception.

Therefore, GQM approach has been used to prepare an evaluation plan for that purpose. The

goals of the evaluation plan can be summarised as follows:

• Usability: this goal factor is focused on the language usability from a developer’s

viewpoint, especially the following two aspects:

1. Can SenNet help developers to develop WSN applications and minimise

development efforts?

2. Can Developers learn and use SenNet?

• Functional Suitability: this goal is focused on the WSN domain, and whether SenNet can

be used to express WSN domain scenarios and concepts.

According to the above-defined goals, three questions are identified; Questions 1 and 2 are

assessing the Usability goal, while Question 3 is trying to determine whether SenNet is

functionally suitable to develop WSN applications.

Q1. Can SenNet hide programming complexity and facilitate the development process?

Q2. Can developers learn and use SenNet language easily and rapidly?

Q3. Is SenNet suitable to explain WSN concepts and cover most domain scenarios?

90

Figure 6-5 and Table 6-1 outline the evaluation plan used to assess SenNet language.

SenNet
Evaluation

Functional
Suitability
Evaluation

Usability Evaluation

User Study Experiment

Application Source Code
Analysis

Business Case Study
Applicability

Scope of Application
Functionality

LOC

Halstead Complexity
Measurement

(HCM)

Figure 6-5: SenNet Evaluation Plan

Table 6-1: General SenNet Evaluation Plan

Evaluation

Goals

Evaluation

Questions
Evaluation Method Metric

Usability

Q1: Can SenNet

hide programming

complexity and

facilitate the

development

process?

Application Source

Code Analysis

• LOC

• HCM

a. Code Complexity

b. Programming effort and time

c. No. of vocabulary items used

d. Program Length & Volume

User Study

Experiment

• Effectiveness

• Efficiency

• Programming Technique

Q2: Can developers

learn and use

SenNet language

easily and rapidly?

User Study

Experiment

• Likeability

• Learnability

• Maintaining Existing Applications

• Mind to program mapping

Functional

Suitability

Q3: Is SenNet

suitable to explain

WSN concepts and

cover most domain

scenarios?

Scope of Application

Functionality

The scope of Application Functionality (L. Bai

et al., 2009).

Business Case Study

Applicability

• Light Monitoring in Tunnels (Ceriotti et

al., 2011)

• Temperature Monitoring for Smart

Homes (Rodrigues, Delicato, et al., 2015)

User Study

Experiment
• Appropriateness

6.3.1 Languages under Test

SenNet is evaluated against other languages in terms of specific factors and metrics. The

languages that will be used in the evaluation will be chosen according to the criteria that

suggested by (Bai, Dick, Dinda, et al., 2011):

91

• Focus on languages that are designed to develop WSN applications.

• It was designed to support applications that carry out periodic data sampling and

transmission, whereas some proposed languages offer continuous sensing activities only,

or do not support data transmission.

• Compilers, toolchain, and language documentations are publicly available.

6.4 Scope of Application Functionality

Wireless sensor network technology can be used with a broad range of real-world applications,

and many classifications have been used to classify and categorise WSN applications in terms

of application field, such as environmental monitoring and human health monitoring. In

contrast, some other classifications are made in terms of the functionalities required from the

sensor platform, such as the ability to initiate data transmission and data aggregation. Bai et

al. (2009) identified eight properties that represent the main application tasks and proposed a

new classification for Wireless Sensor and Actuation Network (WSAN) according to these

tasks. The classification properties are mobility, data transmission, actuation support,

interactivity support, data interpretation, data aggregation, heterogeneity, and sampling.

To assess SenNet capability to cover the domain functionalities and application tasks, then we

used Bai classification:

• Sampling: SenNet language provides both periodic and event driven jobs where the user

can configure the sampling rate. In addition, SenNet enables the target sensor to take one

read sample.

• Data transmission: All SenNet job types have the ability to transmit data using Active

Message (AM), Call Tree Protocol (CTP) or Dissemination Protocol, which are the main

TinyOS routing protocols.

• Actuation support: The current version of SenNet targets sensing and monitoring jobs and

data transmission within the network. The actuation behaviour that is available in this

version is LED blinking.

• Interactivity support: SenNet empowers developers to design jobs that can be triggered

by the users such as receiving a message from the Sink node, or bottom triggering, whether

these triggers are used to start or end a job.

92

• Data interpretation support: The current version of SenNet supports data interpretations,

where jobs or specific responses can be designed according to a specific data interpretation.

• Data aggregation support: SenNet supports node-level and network-level data

processing. The current SenNet data processing jobs are limited to simple processing

algorithms, but more algorithms can be added.

• Heterogeneity: SenNet applications are TinyOS dependent and Hardware Abstraction

Architecture (HAA) is one of the TinyOS advantages. Most SenNet tasks and activities are

developed using Hardware Independent Layer (HIL). Of course, not all special components

can be presented using HIL so further customisation may be needed by the developer.

• Mobility support: SenNet language structure and produced semantics support mobile

nodes, but not functionality; therefore, localisation and mobile supported routing

algorithms should be developed.

In conclusion, SenNet supports 6 out of 8 of WSN application tasks, which means that SenNet

can be used to design applications that cover 75% of the Wireless Sensor and Actuation

Network (WSAN) application functionalities. This in turn answers Q3 in the evaluation plan,

that SenNet is appropriate to develop WSN monitoring applications.

Table 6-2: SenNet Assessment According to Bai Classification

Application Task SenNet

Sampling ✓

Data transmission ✓

Actuation support х

Interactivity support ✓

Data interpretation support ✓

Data aggregation support ✓

Heterogeneity ✓

Mobility support х

6.5 Application Source Code Analysis

The source code analysis provides a way to analyse code without having to run the code. The

Line of Codes (LOC) and Halstead Complexity Measurement (HCM) are basic and

fundamental methods to measure code complexity (Yu & Zhou, 2010). The LOC metric is the

count of physical source code without considering the language type; one of the main

advantages of the LOC metric is that it can give some suggestions on how easily the code can

93

be written and estimate the efforts needed by developers to program a specific scenario using

two different languages. In the same way, HCM is used to analyse the structure and the

characteristics of the program. It calculates code complexity from data stream perspective

(operator and operand) and ignores the complexity of the control flow (branch and jumps),

which is considered a perfect method to assess WSN applications because they do not usually

include many control flow commands. Moreover, both LOC and HCM share some advantages,

such as that both methods are easy to calculate, and they are programming language

independent (Keshavarz, 2011; Yu & Zhou, 2010).

Many metrics can be extracted using HCM, these metrics and their calculation formulas are

(Yu & Zhou, 2010):

• n1 = the number of distinct operators

• n2 = the number of distinct operands

• N1 = the total number of operators

• N2 = the total number of operands from these numbers

• Software length: N = N1+ N2

• Software vocabulary: n = n1 + n2

• Volume: V = N * log2(n)

• Difficulty: D = (n1/ 2) * (N2/n2)

• Programming Effort: E = V * D

• Programming Time: T = E/18

All HCM calculation formula depends on two parameters (operator and operands). The

operator is a symbol, character or a set of characters that help users to command the computer

to do a specific job, while operands participate in the job.

Four application scenarios have been chosen for this evaluation method. The four applications

categorised into single-node based applications and network-based applications are listed

below:

• Node-Level Applications

1. Empty application (Elsts et al., 2013).

2. Simple Sense-Forward application (Elsts et al., 2013).

• Network-Level Application

94

1. Sense-Forward.

2. Event Based job.

Within the context of SenNet, the generated nesC code can be considered as an optimal and

efficient code to program the required functionalities because of the below reasons:

1. SenNet was designed to produce nesC code based on the best practices that gained from

the learning materials and application examples that provided by the nesC official website.

2. The nesC language is an imperative and procedural programming language, for instance,

to send a message to the base station, then the developer should first define the message

structure and include the required data. Next, checking the radio communication if busy or

not, followed by sending the message, the final step is to check if the sending process has

been sent properly and without errors. So, the complexity in using nesC is because of the

detailed programming steps that required to program the low-level hardware components.

Thus, it can be noticed that different developers produce semi-identical solutions to develop

a specific functionality.

Therefore, we will compare the SenNet source code results with the results that gained from

the generated nesC code.

6.5.1 Node-Level Applications

6.5.1.1 Empty Application

This application sample is an empty application with no user logic, to show the difference

between SenNet and nesC structurally. Listing 6-7 and 6-8 shows the necessary implementation

code for this scenario using SenNet and nesC respectively, while Table 6-3 shows this scenario

LOC and HCM statistics.

Listing 6-6: Empty Application - SenNet Version

SeNetApp Empty {

}

95

Listing 6-7: Empty Application - nesC Version

Table 6-3: Empty Application LOC & HCM Statistics

Empty Application

LOC and Files Statistics HCM Statistics
Files Name LOC no. of application files n1 N1 n2 N2

nesC

EmptyC.nc 2

3 10 14 3 3
EmptyAppC.nc 2

Makefile 2

nesC Total 6

SenNet Empty.sennet 1 1 2 2 1 1

The detailed HCM operators and operands for this scenario are follows:

• SenNet

1. Operators (n1 = 2, N1 = 2): SenNetApp, {}.

2. Operands (n2 = 1, N2 = 1): Empty.

• nesC

1. Operators (n1= 10, N1=14): Configuration, {}, {}, {}, {}, Implementation,

implementation, Module, =, (), Component, $, MAKERULES, include.

2. Operands (n2=3, N2=3): SenseAppc, EmptyC, EmptyAppC.

6.5.1.2 Sense-Forward Application

This is a simple SF scenario, where a sensor node senses the environment temperature

periodically, then sends the sensed data over the network to the Sink node, with a sampling rate

of 1 minute (Elsts et al., 2013). Figure 6-6 shows this scenario’s implementation using SenNet;

the complete SenNet application and the generated nesC code for this scenario can be found in

APPENDIX F.1. Table 6-4 shows the basic scenario implementation statistics for nesC and

SenNet.

********** EmptyAppC.nc ************

configuration SenseAppC {
}
implementation {
}
************ EmptyC.nc *************

module EmptyC {
}
implementation {
}
************ Makefile *************

COMPONENT=EmptyAppC
Include $(MAKERULES)

Configuration File

Module File

96

Figure 6-6: Screen Snapshot for SF Scenario Using SenNet

Table 6-4: SenseForward Application Scenario Statistics

SenseForward Application Scenario

LOC and Files Statistics HCM Statistics
File Names LOC no. of application files n1 N1 n2 N2

nesC

SenseForward0AppC.nc 17

4 50 218 42 111

SenseForward0C.nc 29

Makefile 2

AMsg.h 9

nesC Total 57

SenNet SingleNodeSenseForwardApp.sennet 10 1 12 18 3 3

6.5.2 Network-Level Applications

6.5.2.1 Sense-Forward Application

In this small network, which includes three sensor nodes, a sensing temperature job is assigned

to each node which sends the results to the sink with a sampling rate of 1 minute. Figure 6-7

shows this scenario’s implementation using SenNet. Moreover, the complete SenNet

application and the generated nesC code for this scenario can be found in APPENDIX F.2.

Table 6-5 shows the basic scenario implementation statistics for nesC and SenNet.

97

Figure 6-7: Screen Snapshot for Network-Level SenseForward Scenario Using SenNet

Table 6-5: Network-Level SenseForward Application Scenario Statistics

Net SenseForward Application Statistics

LOC and Files Statistics HCM Statistics
 File Names LOC no. of application files n1 N1 n2 N2

nesC

NetSenseForwardApp2AppC.nc 17

10 140 645 133 311

NetSenseForwardApp3AppC.nc 17

NetSenseForwardApp4AppC.nc 17

NetSenseForwardApp2C.nc 35

NetSenseForwardApp3C.nc 35

NetSenseForwardApp4C.nc 35

Makefile2 2

Makefile3 2

Makefile4 2

AMsg.h 9

nesC Total 171

SenNet NetSenseForwardApp.sennet 11 1 13 19 4 4

6.5.2.2 Event-Based Application

In a group of 5 sensor nodes, those sensing temperature and sending a notification message to

the sink if Temp > 40 C°. Figure 6-8 shows this scenario’s implementation using SenNet, and

the complete SenNet application and the generated nesC code for this scenario can be found in

APPENDIX F.3. Table 6-6 shows the basic scenario implementation statistics for nesC and

SenNet.

98

Figure 6-8: Screen Snapshot for Network-Level EventBased Scenario Using SenNet

Table 6-6: Network-Level EventBased Application Scenario Statistics

Network Event-Based Application Statistics

LOC and Files Statistics HCM Statistics

 File Names LOC no. of application files n1 N1 n2 N2

nesC

NetEventBased2AppC.nc 17

16 246 1133 217 478

NetEventBased3AppC.nc 17

NetEventBased4AppC.nc 17

NetEventBased5AppC.nc 17

NetEventBased6AppC.nc 17

NetEventBased2C.nc 36

NetEventBased3C.nc 36

NetEventBased4C.nc 36

NetEventBased5C.nc 36

NetEventBased6C.nc 36

Makefile2 2

Makefile3 2

Makefile4 2

Makefile5 2

Makefile6 2

AMsg.h 9

nesC Total 284

SenNet NetSenseForwardApp.sennet 16 1 15 22 12 12

6.5.3 Results Summary

After developing the aforementioned scenarios and analysing the SenNet and nesC code in

terms of LOC and HCM methods, the final results can be summarised below.

99

Regarding counting the code lines, Table 6-7 and Figure 6-10 show a significant improvement

in the number of lines of code required when developing an application using SenNet. They

also show the real power of SenNet when used to develop a network-level application,

especially when the network includes a high number of sensor nodes. As a conclusion, SenNet

saves on average 88.4% of the LOC that developers should write in nesC code.

Table 6-7: LOC Final Statistics

Application Type
nesC SenNet

LOC files LOC files saving

Node-Level Application
Empty 6 3 1 1 83.3%

Sense Forward 57 4 10 1 82.5%

Network-Level Application
Sense Forward 171 10 11 1 93.6%

Event Based 284 16 16 1 94.4%

Average LOC Saving 88.4%

Figure 6-9: nesC and SenNet LOC Statistics

Figure 6-10: SenNet Saving in LOC

One the other hand, Error! Reference source not found. shows the detailed and final results

for HCM parameters calculated for SenNet and nesC. Table 6-9 indicates that

SenNet saves 87.14%, 92.86% and 96.64% in terms of required vocabularies used, application

length, and code difficulty respectively. Figure 6-11 illustrated that a SenNet saves 99.89% of

the programming efforts needed to develop a WSN application using nesC.

6
57

171

284

1 10 11 16

0

100

200

300

Empty Sense Forward Sense Forward Event Based

Node-Level Application Network-Level Application

LO
C

nesC SenNet

83.3% 82.5%

93.6% 94.4%

75.0%
80.0%
85.0%
90.0%
95.0%

100.0%

Empty Sense Forward Sense Forward Event Based

Node-Level Application Network-Level Application

Sa
vi

n
g

LO
C

 (
%

)

100

Table 6-8: HCM Statistics

 Table 6-9: SenNet Saving in Terms of HCM Formulas

Node-Level Network-Level

Average

Saving
Empty

Sense-

Forward

Sense-

Forward

Event-

Trigger

Saving in Application Length 82.35% 93.62% 97.59% 97.89% 92.86%

Saving in Application Vocabulary 76.92% 83.70% 93.77% 94.17% 87.14%

Saving in Application Volume 92.06% 96.18% 98.79% 98.86% 96.47%

Saving in Application Code Difficulty 87.50% 99.35% 99.88% 99.85% 96.64%

Saving in Application Programming

Effort
99.58% 99.98% 100.00% 100.00% 99.89%

Saving in Application Programming Time 100.00% 98.09% 99.12% 97.17% 98.59%

Figure 6-11: SenNet Saving Percentages According to HCM Formulas

92.86%

87.14%

96.47%

96.64%

99.89%

98.59%

80.00% 85.00% 90.00% 95.00% 100.00% 105.00%

Saving in Application Length

Saving in Application Vocabulary

Saving in Application Volume

Saving in Application Code Difficulty

Saving in Application Programming Effort

Saving in Application Programming Time

Saving Percentage

Node-Level Network-Level

Empty

Sense-

Forward

Sense-

Forward

Event-

Trigger

nesC

17 329 956 1611 Application Length - N

13 92 273 463 Application Vocabulary - n

63 2146 7737 14265 Volume - V

8 1388 10885 29397 Difficulty - D

472 2977924 84213716 419353878 Programming Effort - E

26 165440 4678540 23297438 Programming Time – T (Sec)

SenNet

3 21 23 34 Application Length - N

3 15 17 27 Application Vocabulary - n

5 82 94 162 Volume - V

1 9 13 45 Difficulty - D

2 738 1222 7275 Programming Effort - E

0 41 68 404 Programming Time – T (Sec)

101

To sum up, results from this evaluation method showed a significant advantage in using

SenNet, because it reduces the programming vocabularies, effort and time. That implies SenNet

helps in hiding development complexity, which can be considered an answer to Q1 in the

evaluation plan.

6.6 Business Case Study Applicability

WSN can be used with a broad range of applications, so to prove SenNet is applicable and

useful in developing WSN applications, two real business case study scenarios have been

developed to show the potential power of SenNet and how SenNet can be used to implement

many types of application.

The first scenario can be summarised as defining different jobs for multiple sensor nodes, while

the second scenario is defining a single job for a network of sensor nodes, as well as using

node-level aggregation function for data processing in both scenarios. The chosen scenarios

have been developed and tested completely except for the actuation parts, as the current version

of SenNet is focusing on the sensing activities and tasks. The hardware used to test the

generated code functionality for these scenarios is IRIS-XM2110 motes (ATmega1281 low-

power microcontroller) equipped with MTS-400 and MDA-300 sensor board.

• Scenario 1: Light monitoring in tunnels (Ceriotti et al., 2011)

• Scenario 2: Temperature Monitoring for Smart Homes (Rodrigues, Delicato, et al., 2015)

Implementing these scenarios has proved SenNet is appropriate for developing WSN

applications. That provides an answer for Q3 in the evaluation plan.

6.6.1 Scenario 1 - Light Monitoring in Tunnels

A wireless sensor and actuator network is deployed in a traffic tunnel. The sensor devices

sample light values, aggregate them, calculate the average over a 5-second period, and send it

to the network, where they are intercepted by the tunnel control infrastructure, which in turn

controls the artificial light level. The sampling frequency is location-dependent; interior nodes

are sampled less often than motes in entrance and exit zones (Ceriotti et al., 2011).

This scenario has been implemented using SenNet as below:

102

 A group of sensor nodes (3 motes) are programmed to sense light samples. The sensor devices

sample light values, aggregate them, calculate the average over a 5-second period, and send the

result to the sink. The SenNet application developed for this scenario can be seen in Listing

6-8 and Figure 6-12. The sensor nodes were programmed as follows: firstly, define a three

NodeDataProcessing, because we have three different jobs, each applied to a different node.

Then define the main job parameters, such as the necessary aggregation function which is avg;

the dataProcessing rate which represents the timer will be used to fire the average calculation

of the sensed data, as well as defining the sensing sampling frequency. Finally, the main node

resources are defined that will be used to do the sensing job, which in our scenario is a light

sensor. Figure 6-13 shows a sample screenshot for the TinyOS component graph checker that

illustrates how the generated nesC files are error free and all required components are linked

together correctly.

The first sensor node will sample the light every 0.5 minutes (sampling rate = 30000

milliseconds, as SenNet uses the TMillisec interface provided by TinyOS), then calculate the

average samples every 5 minutes (sampling rate = 300000 milliseconds) and send the results

to the sink. The second sensor node will sample the light every 1 minute (sampling rate = 60000

milliseconds), calculate the average samples every 5 minutes (sampling rate = 300000

milliseconds) and send the results to the sink. Finally, the third sensor node will sample the

light every 2 minutes (sampling rate = 120000 milliseconds), calculate the average samples

every 5 minutes (sampling rate = 300000 milliseconds) and send the results to the sink. The

three nodes will send the messages to the sink node (Sink node ID = 1) using Active Message

Protocol (AM) with the average results of the light sensed results. Finally, after completing the

programming process of this scenario, a complete TinyOS application files are generated. The

AMsg.h is a header file that will be used by the nodes to construct the sending message to the

sink, and LMT10AppC.nc, LMT10C.nc and Makefile10 are the nesC files generated for the

sensor node with node-ID = 10 that is configured in the SenNet application. A sample of the

nesC generated files can be shown in APPENDIX G.1.

Listing 6-8: SenNet Application for Scenario-1

**

SeNetApp LMT {

 jobs {

 NodeDataProcessing {

 id 100

103

 nodeDataProcessing avg

 sensingSamplingRate 30000

 dataProcessingRate 300000

 JobTargetNode SensorNode {

 id 10

 nodeResources {

 LightSensor

 }

 }

 jobaction {

 SendMessageAction {

 sendMessageTo 1

 }

 }

 },

 NodeDataProcessing {

 id 200

 nodeDataProcessing avg

 sensingSamplingRate 60000

 dataProcessingRate 300000

 JobTargetNode SensorNode {

 id 20

 nodeResources {

 LightSensor

 }

 }

 jobaction {

 SendMessageAction {

 sendMessageTo 1

 }

 }

 },

 NodeDataProcessing {

 id 300

 nodeDataProcessing avg

 sensingSamplingRate 120000

 dataProcessingRate 300000

 JobTargetNode SensorNode {

 id 30

 nodeResources {

104

 LightSensor

 }

 }

 jobaction {

 SendMessageAction {

 sendMessageTo 1

 }

 }

 }

 }

}

**

Figure 6-12: Sample Screenshot for the SenNet Editor for Scenario-1

105

Figure 6-13: Sample Screenshot for the TinyOS Component Graph for Scenario-1

6.6.2 Scenario 2 - Temperature Monitoring for Smart Homes

Monitoring the temperature of a house instrumented by a wireless sensor network: collect room

temperature data, process such data through an aggregate function so that only the highest

among 10 samples is considered and finally, send only that sample to the sink node. The

environment control is done through actuators connected to the air conditioner. The application

has to keep temperature at 20C° at all times by controlling the air conditioner (Rodrigues,

Delicato, et al., 2015).

This scenario has been implemented using SenNet as below:

A group of sensor nodes will be programmed to collect room temperature data, process the data

through an aggregate function so that only the highest among 10 samples is considered, and

finally send only that sample to the sink node. The whole scenario will be implemented in the

lab.

Two sensor nodes are programmed to collect room temperature data every 1 minute. The

sensed data is processed through an aggregation function so that only the highest data samples

will be considered within a time window of 10 minutes and finally, a message is sent to the

sink node if the temperature becomes greater than 20C°.

The SenNet application developed for this scenario can be seen in Listing 6-9 and Figure 6-14.

The two sensor jobs will perform the same function, so the best way to develop a SenNet

application for this scenario is by defining one job that will be applied to a network that includes

two motes. So, firstly set a NetworkDataProcessing job command that will use the following

configuration parameters:

106

• Apply max aggregation function as the main function that will be the main role of the sensor

nodes included in the network.

• Define the sensing sampling rate that will be applied to the sensors included in the sensor

nodes, which will be every 1 minute (1 minute = 60000 Milliseconds).

• Define the dataProcessingRate, which is the timer that will be responsible for initiating the

aggregation function, which in our scenario is every 10 minutes, equal to 600000

Milliseconds.

• Define the network parameters and how many nodes will be included in this network.

• Define the resources that will be used by each sensor node inside the network to do the

sensing job.

• Define the next job after completing the sensing and calculating the aggregation function,

which is sending the final results to the sink node (sink node ID =1), if the final results are

greater than 20 C°.

After completing the programming process of this scenario, a complete nesC single–node files

are generated. The AMsg.h is a header file that will be used by the nodes to construct the

sending message to the sink. In addition, TMSH2AppC.nc, TMSH2C.nc and Makefile2 are the

nesC files that are generated for one of the two sensor nodes. According to the SenNet

application, network-ID is then specified as 10, but we do not specify the nodes-ID for each

sensor node, so SenNet has assigned node-ID 2 and 3 respectively, as node-ID = 1 is reserved

for the sink node.

Figure 6-15 shows a sample screenshot for the TinyOS component graph checker that

illustrates how the generated nesC files are error free and all required components are linked

together correctly. Besides, sample of the nesC generated files can be shown in APPENDIX

G.2.

Listing 6-9: SenNet Application for Scenario-2

**
SeNetApp TMSH {
 jobs {
 NetworkDataProcessing {
 id 100
 networkDataProcessing max
 sensingSamplingRate 60000
 dataProcessingRate 600000
 JobTargetNetwork FlatNetwork {
 id 10
 nbOfNodes 2

107

 resources {
 TemperatureSensor
 }
 }
 jobaction {
 SendMessageAction {
 sendMessageTo 1
 condition ConditionalAction {
 sensorTerm Temp
 logicalSymbol greaterThan
 value 20
 unit C
 }
 }
 }
 }
 }
}

**

Figure 6-14: Sample Screenshot for the SenNet Editor for Scenario-2

108

Figure 6-15: Sample Screenshot for the TinyOS Component Graph for Scenario-2

6.7 User Study Experiment

Proof of concepts scenarios, HCM and LOC measurement results show that SenNet is a

language that can be used to develop WSN applications effectively, besides reducing the effort

required to develop a WSN application. However, two aspects have not been addressed; the

first aspect is developer’s usability and how average developers (i.e. novice developers with

respect to WSN programming) can use SenNet and whether they can deliver successful

applications using it. The second aspect is related to the WSN domain, the question of whether

SenNet is useful to represent WSN domain concepts and scenarios; we have therefore used

controlled experiment as an evaluation technique to evaluate SenNet and answer these two

aspects. Thus, a small-scale controlled experiment was performed to assess SenNet and nesC

in terms of usability and functional suitability for first-time users. Guidelines for controlled

experiment reported (Jedlitschka, Ciolkowski, & Pfahl, 2008) and Goal/Question/Metric

(GQM) approach (Koziolek, 2008) have been adopted to ensure the correctness and integrity

of this experiment’s results. Ethical approval has been obtained to conduct a user study for this

research, which can be found in APPENDIX H.1.

6.7.1 Goals/Questions/Metrics

This section discussed how the goals, questions and metrics are identified for this user study

experiment according to the GQM approach, taking in consideration the Jedlitschka et al.

(2008) guidelines.

109

• Goals: The experiment goals were identified according to research objective (O3), using

a pre-defined format provided by Jedlitschka et al. (2008). Accordingly, the experiment

goals can be identified as:

G1. To analyse the aspects of Usability when using SenNet for the purpose of WSN

application development.

G2. To analyse the aspects of Functional Suitability when using SenNet for the

purpose of WSN application development.

Usability of a DSL is the degree to which a DSL can be used by specified users to achieve

specified goals (Brooke, 2013; Kahraman & Bilgen, 2015; Lárusdóttir & Ármannsdóttir,

2005). The standard ISO-9241-11 (1998 as cited in Bevan, 2009, p. 2) defined Usability as

“the extent to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use”.

Functional Suitability is the degree to which the DSL is fully developed (Kahraman &

Bilgen, 2015), which means that all required functionalities are offered in the DSL. ISO/IEC

25010: 2011 define functional Suitability as “The degree to which a product or system

provides functions that meet stated and implied needs when used under specified

conditions” (ISO/IEC, 2011, p. 10).

• Questions: Regarding questions then a number of questions have been formulated, as well

as adapting some questions to fit our experiment goals from the Framework for Qualitative

Assessment of DSLs (FQAD) (Kahraman & Bilgen, 2015), the System Usability Scale

(SUS) (Brooke, 1996), besides some other questions proposed by Elsts (2013), Bai (2011),

and Tullis & Albert (2013) to evaluate DSL. The experiment questions are divided into two

parts: pre-experiment and post-experiment questions.

1. The Pre-Experiment questions: these questions include nine questions used to

generate a participant profile, such as programming skills, and technology interest, but

with no personal information.

2. The Post-experiment questions: these twenty-four questions focus on SenNet and

nesC skills that participants gained in the experiment and the tasks they were asked to

program. The twenty-four questions can be divided into four groups.

110

A. The first group is Introductory Questions (IQ), this group includes questions Q1-

Q2 that focus on the SenNet and nesC presentations and tutorials that were given to

the participants to assess their clarity.

B. The second group includes questions Q3-Q17 that related to the first experiment

goal (G1), targeting usability, which implicitly measures effectiveness, efficiency,

and many other metrics.

C. The third group includes questions Q18-Q23 that related to the second experiment

goal (G2) and they implicitly measure appropriateness criteria.

D. The last group includes one question (Q24), which is an open question that gives

participants the opportunity to add comments if they need to.

A complete list of pre- and post-experiment questions can be found in APPENDIX H.2

and H.3.

• Metrics: The metrics identified for this controlled experiment can be classified into two

groups; the first group is measured directly from participants’ feedback to specific

questions, while the second group is measured according to participants’ activity

throughout the experiment, such as how much time participant X consumed to complete

task Y. The general metrics identified for our controlled experiment can be summarised as:

M11. This metric is specified to evaluate SenNet Effectiveness, where effectiveness is the

accuracy and completeness with which users achieve specific goals (Atoum & Bong,

2015; Productivity Commission, 2013). The purpose of M11 is to measure whether or

not SenNet enables developers to develop a successful WSN application. This metric

is measured by checking whether participants could complete their tasks or not, besides

evaluating participants’ responses to Question 3, which asks whether they consider that

SenNet can help them to develop a WSN application.

M12. This metric is specified to evaluate SenNet Efficiency, where efficiency is the accuracy

and completeness of tasks in terms of the resources consumed, such as time or mouse

clicks (Atoum & Bong, 2015; Hussain & Ferneley, 2008; Productivity Commission,

2013). The purpose of this metric is to evaluate the resources consumed to complete a

111

set of tasks using SenNet and nesC (Fenton & Bieman, 2014). This metric was

measured using the below measurements:

M121. Evaluating participant’s feedback to Questions 4-8, which ask the participants

whether they consider that SenNet will reduce the development time and the

Number of activities for task achievement. They are also asked about SenNet

and nesC and which programming language they consider needs less

technology background and programming skills. Which reflects participants

experience in terms of SenNet efficiency.

M122. Time-Saving for Task Accomplishment: which calculates the percentage of

time saved by using SenNet to accomplish a task compared to nesC, this

measurement is calculated for each task using Equation 6-1.

nesC Time – SenNet Time

nesC Time
 x 100%

Equation 6-1: Percentage of SenNet Time Saving for Each Task

M123. Total Time Saved for Tasks Accomplishment: which calculates the percentage

of total time saved by using SenNet to accomplish all tasks compared to nesC,

this measurement is calculated for the set of tasks using Equation 6-2.

nesC Total Time – SenNet Total Time

nesC Time
x 100%

Equation 6-2: Percentage of SenNet Time Saving For All Tasks

M13. This metric is specified to evaluate SenNet Likeability (Kahraman & Bilgen, 2015),

the goal of this metric is to assess the participant's opinion on acceptability and comfort

(Brooke, 2013) using SenNet. This metric is measured by assessing the participant’s

feedback for Questions 9-12. These questions ask the participants their opinion about

SenNet and nesC and which language they consider as a friendly language.

M14. This metric is specified to evaluate SenNet Learnability (Kahraman & Bilgen, 2015);

the goal of this metric is to evaluate which programming language (SenNet or nesC) is

easier to use and learn from the participant’s perspectives. Questions 13 and 14 are used

to measure this metric.

112

M15. This metric is specified to evaluate the Programming Technique preferred by the

participants; this metric will measure whether participants prefer to use network-level

or node-level programming technique. Participants’ feedback on Question 15 is used to

measure this metric.

M16. This metric is specified to evaluate SenNet’s Ability to Maintain Existing

Application (Kahraman & Bilgen, 2015), the goal of this metric is to evaluate in which

programming language (SenNet or nesC) it will be easier to maintain or change an

existing application from the participant’s perspective. Participants’ feedback on

Question 16 is used to measure this metric. Participants will gain the ability to answer

this question after examining Task-3, which will be discussed later.

M17. This Metric is specified to evaluate Mind to program mapping, the goal of this metric

to evaluate how easy it is to map the application logic that is required by the developer

into an application code, or what is the relationship between the program and what the

programmer has in mind (Kahraman & Bilgen, 2015). Participant’s feedback to

Question 17 is used to measure this metric.

M21. This metric is specified to evaluate SenNet Appropriateness, which reflects whether

all concepts and scenarios can be expressed using the DSL (Kahraman & Bilgen, 2015).

The goal of this metric is to reflect whether participants consider that SenNet is

appropriate to express WSN concepts and scenarios, and whether SenNet includes

conflicting elements. The participant’s feedback to Questions 18-23 is used to reflect

this metric.

Table 6-10 and Figure 6-16 illustrated the relationship between goals, questions and metrics.

113

Table 6-10: Goal/Question/Metric Mapping for the User Study

Goal Questions Metric

- Q1-Q2 Introductory Questions (IQ)

Usability Q3 M11 effectiveness

Q4-Q8 M121 Efficiency - UX16

M12 Efficiency

- M122 Time-Saving for Task

Accomplishment

- M123 Total Time Saved for

Tasks Accomplishment

Q9-12 M13 Likeability, user perception

Q13-Q14 M14 Learnability

Q15 M15 Programming Technique

Q16 M16 Maintaining existing applications

Q17 M17 Mind to program mapping

Functional Suitability Q18-Q23 M21 Appropriateness

QuestionsQuestions

GoalsGoals

MetricsMetrics

TasksTasks

effectiveness Efficiency Likeability Learnability
Programming

Technique

Maintaining
existing

applications

Mind to
program
mapping

Appropriateness

Q3 Q4-Q8 Q9-Q12 Q13-Q14 Q16 Q17 Q18-Q23Q15

Usability
Functional
Suitability

Time-Saving for
Task

Accomplishment

Total Time
Saved for Tasks

Accomplishment

Figure 6-16: Goals/Questions/Metrics Mapping for the User Study

6.7.2 Question Rating Scales and Metrics Benchmarking

Regarding questions rating according to the literature review, User Experience (UX) can be

used with many scaling rates such as (3, 4, 5 and 7). Odd or even number of values to be

adopted is another thing that many researchers argue about. Interesting guidelines have been

proposed by Tullis & Albert (2013) regarding rating scale:

• Using multiple scales will ensure obtaining more reliable data from the user.

16 UX: User Experience

114

• Using an odd number of values to enable the user to be neutral, which is natural behaviour

in real world situations.

• The total number of points: some researchers believe that more points are always better,

but according to the literature (Cox, 1980; Friedman & Friedman, 1986) any more than

nine points will rarely provide useful additional information. Furthermore, five and seven

points are the highest number of scaling values used in real-world user experience

questionnaires. Besides, Finstad (2010) established an interesting study comparing five and

seven versions of the same set of rating scales, where five-point scales are more likely than

seven points in the usability inventories.

After taking the above guidelines into consideration, the questions feedback rating was

designed in two groups according to the purpose and nature of the questions; Table 6-13 shows

the different question types.

• Type-1 (SenNet General Evaluation): This group of questions concerned evaluating

SenNet behaviour in general, such as: “did you think SenNet is useful in developing WSN

application?”. Five-scale Likert feedback was used for this type of questions to measure

participants’ satisfaction with SenNet. Table 6-11 shows sample 5-scale questions and the

value assigned to each scale.

Table 6-11: Type-1 Questions Sample

 Likert Scale Value

Were the SenNet and nesC tutorials and presentation given

easy to understand?

Very Easy 5

Easy 4

Neutral 3

Difficult 2

Very Difficult 1

• Type-2 (SenNet vs. nesC Evaluation): This group of questions asked the participants

feedback about a specific aspect, whether SenNet or nesC is more preferable. A three-scale

Likert feedback was used for this type of question. Table 6-12 shows sample 3-scale

questions and the value assigned to each scale.

Table 6-12: Type-2 Questions Sample

 Scale Value

If you needed to develop a WSN application, which language

toolkit would you prefer to use?

SenNet 3

Undecided 2

nesC 1

115

Table 6-13: User Survey Question Types

Goal Questions
Questions

Type
Metric

- Q1-Q2 Type-1 Introductory Questions (IQ)

Usability

Q3 Type-1 M11 effectiveness

Q4, Q5, Q8 Type-1
M121 Efficiency - UX

M12 Efficiency

Q6, Q7 Type-2

- -

M122 Time-Saving for Task

Accomplishment (T1, T2, and

T3)

- -
M123 Total Time Saved for

Tasks Accomplishment

Q9-12 Type-2 M13 Likeability, user perception

Q13-Q14 Type-2 M14 Learnability

Q15 Type-2 M15 Programming Technique

Q16 Type-2 M16 Maintaining existing applications

Q17 Type-2 M17 Mind to program mapping

Functional Suitability Q18-Q23 Type-1 M21 Appropriateness

Regarding Metrics measurement, all the metrics are measured according to participants’

feedback after understanding the presentations and practising the required tasks so that

participants will answer the questions according to their experience; except that M122 (Time-

Saving for Task Accomplishment) and M123 (Total Time Saved for Tasks Accomplishment)

are measured according to the participant's tasks results. Table II shows the metrics required,

besides the results range and the minimum required results. Some tasks have a direct impact

on metric measurement; Table 6-14 presents the available metrics and their measurement

methods. Concerning measurement methods, there are three methods to measure a metric. The

first method is calculating the mean value for the participants’ feedback using 5-scale rating

feedback; this method is called 5-Scale User Feedback (5SUF). The second method is

calculating the mean value of the participants’ feedback using 3-scale rating feedback; this

method is called 3-Scale User Feedback (3SUF). The last method is to measure the participant's

tasks implementation statistically, using Equations 6-1 and 6-2, this method is known as

Participant’s Tasks Implementation Results (PTIR).

116

Table 6-14: Metrics Measurement Methods and Possible Values

Goals Metrics
Measurement

Method
Range

Baseline

Value

Usability

M11 effectiveness 5SUF17 1 - 5 3

M12

Efficiency

M121 SenNet Efficiency-UX
5SUF 1- 5 3

3SUF18 1 - 3 2

M122 Time-Saving for Task

Accomplishment (T1, T2,

and T3)

PTIR19 0% - 100% 50%

M123 Total Time Saved for

Tasks Accomplishment
PTIR 0% - 100% 50%

M13 Likeability 3SUF 1 - 3 2

M14 Learnability 3SUF 1 - 3 2

M15 Programming Technique 3SUF 1 - 3 2

M16 Maintaining existing applications 3SUF 1 - 3 2

M17 Mind to program mapping 3SUF 1- 3 2

Functional

Suitability
M21 Appropriateness 5SUF 1 - 5 3

6.7.3 Experiment Tasks

Studies related to WSN programming languages have been done previously by Miller et al.

(2009) and Elsts et al. (2013), who assessed their new proposed languages BASIC and SEAL

respectively. For that purpose, we selected some tasks to use in our user study experiment.

Tasks T1, T2 and T3 were given to the participants to program using nesC and SenNet, while

T4 was programmed by the participants using SenNet only, using network-level programming

techniques which are not supported by nesC.

T1. Program a sensor node to Blink (toggle) a LED.

T2. Program a sensor node to sense the temperature with a sampling rate of 1 minute and turn

LED1 on.

T3. To “describe the code functionality”, snippets of SenNet and nesC code are provided to

participants. Participants are asked to explain the code functionality. The SenNet snippets

code handed to the participant is a sensor node configured to monitor room temperature

every 3 minutes, then aggregate the sensed data every 15 minutes to compute the maximum

temperature results, then if the resulting figure is greater than 20 C°, the sensor node has

to send a message to the sink. In addition, the nesC snippets code handed to the participants

is a sensor node configured to sense light every 1 minute, and then every 10 minutes, the

17 5SUF: 5-Scale User Feedback Mean Value.
18 3SUF: 3-ScaleUser Feedback Mean Value.
19 PTIR: Participant’s Tasks Implementation Results.

117

sensor node computes the average sensed data, and sends the results to the sink. Sample

of SenNet and nesC snippets code can be found in APPENDIX H.4.

T4. Program 2 different sensing jobs, the first job applied to a single node, and the second job

applied to a network of three sensor nodes.

The participants were given enough time to complete each task. The tasks, presentations, and

material provided were designed such that no example code in the tutorial could be easily

transformed into an exercise solution, but they had to describe all the required information. In

this way, the set of exercises was non-trivial and forced the participants to apply the language

primitives learned in the tutorial.

There is a direct relationship between the type of tasks and their accomplishment with the

metrics measured for this experiment, as shown in Table 6-15. For example, the

accomplishment of all tasks helps in measuring M11 that is related to effectiveness in ensuring

that all goals are met regardless of the resources utilised to accomplish these aims. The tasks

T1, T2 and T3 help in calculating M122 (Time-Saving for Task Accomplishment) and M123

(Total Time Saved for Tasks Accomplishment). Likewise, T4 assists in measuring M15 that

assesses participants’ preferences for working with node-level or network-level development

abstraction. Finally, T3 helps in measuring M16 that deals with whether SenNet or nesC is

better for changing or editing existing applications.

Table 6-15: The Correlation between Goals, Questions, Metrics and Tasks

Goal Questions Metrics Tasks

G1

Q3 M11 T1, T2, T3 and T4

Q4-Q8 M121

 M122 T1, T2 and T3

 M123 T1, T2 and T3

Q9-12 M13

Q13-Q14 M14

Q15 M15 T4

Q16 M16 T3

Q17 M17

G2 Q18-Q23 M21

6.7.4 Experiment Participants

SenNet has been developed targeting beginner developers as discussed previously in Chapter

1. Fifteen participants were invited to participate in the user study, recruited from a population

of current PhD students at the University of Salford, specifically targeting persons with

118

intermediate to good programming skills, but without any experience in WSN programming.

Fifteen is considered a rational number, especially considering previous user studies done by

Tei et al. (2015), Gordon et al. (2010), Rodrigues, Batista, et al. (2015), Cuenca, Bergh, Luyten,

& Coninx (2005), and Elsts et al. (2013) to assess and evaluate newly developed DSL’s, where

they used 4, 5, 10, 12, and 18 participants respectively.

According to participants’ answers to the pre-experiment questions, a complete participants

profile has been constructed:

• Study Background and Technology Interest: The recruited participants’ study

background varied between Computer Engineering and Sciences, Electrical, Electronics

and Communication Engineering, as illustrated in Figure 6-17. That was considered the

perfect sample to deal with WSN technology. Some were also involved in different

technologies such as robotics, cloud computing and mobile networks; some participants

were involved in two or more technologies, such as P-5, who was involved in WSN routing

protocols and cloud computing but had no experience in WSN programming. In terms of

current participant’s technology interest, we categorised them into five main groups

(Networking, Acoustic, Image processing, Intelligent Power Management, and Control and

Robotics) as described in Error! Reference source not found. and Figure 6-18.

Figure 6-17: Participants’ Study Background

Figure 6-18: Participants’ Current Technology Field of Interest

1 1 1

7

3
2

0

2

4

6

8

Information
Systems

Communication
Engineering

Electronic
Engineering

Computer
Engineering

Computer Science Electrical
Engineering

P
ar

ti
ci

p
an

ts

6

2
3 3

1

0

2

4

6

8

Networking Acoustics Image Processing Control &
Robotics

Intelligent Power
Management

P
ar

ti
ci

p
an

ts

119

Table 6-16: Participants’ Categorised Groups According to Technology Interest

 Technology Interest General Technology

P-01 IoT Networking

P-02 IPTV & Mobile Networks Networking

P-03 Mobile Networks Networking

P-04 Cloud Computing Networking

P-05 Cloud Computing & WSN Networking

P-06 Speech Recognition Acoustic

P-07 Intelligent Power Management Intelligent Power Management

P-08 Medical Image Processing Image Processing

P-09 Medical Image Processing Image Processing

P-10 Control & Robotics Control & Robotics

P-11 Control & Robotics Control & Robotics

P-12 Control & Robotics Control & Robotics

P-13 Cloud Computing & Mobile Networks Networking

P-14 Speech Recognition Acoustic

P-15 Medical Image Processing Image Processing

• Programming Skills: Participants were skilled in different General Programming

Languages (GPL) such as C++, PHP, and Visual Basic, as illustrated in Figure 6-19. In

addition, 73% of the participants were currently using DSL and GPL, while only 27% of

the participants were using GPL only, as described in Figure 6-20.

Figure 6-19: Participants’ Programming Experience

Figure 6-20: Participants Using GPL vs. DSL

10

5 5
8

4
1 2 1

4

10

2

0

5

10

15

C++ C Basic Visual
Basic

Pascal Java PHP Prolog SQL Matlab VHDL

P
ar

ti
ci

p
an

ts

Participants Uses GPL
and DSL Languages,

73%

Participants Use
GPL only, 27%

120

• Knowledge of WSN Technology: The recruited participants had different knowledge

levels of WSN technology, which was considered a good way to assess SenNet using

participants with different knowledge levels in technology background, as shown in Table

6-17.

Table 6-17: Participants’ Knowledge of WSN Technology

 Knowledge of WSN Technology

No Information 20%

Poor 40%

Average 27%

Good 7%

Excellent 7%

• WSN Programming Experience: All Participants had no experience in WSN

programming.

6.7.5 Experiment Materials, Tools and Equipments

The participants were provided with a short and customised tutorial for nesC and SenNet, in

addition to the nesC reference manual (Gay, Levis, Culler, & Brewer, 2009), prior to starting

the tasks. In addition, the presentations and tutorials were formulated to match the tasks given

to the participants. In any study that is comparing two languages for programmer usability,

differences in the educational materials and references are a critical key. Therefore, we made

a significant effort to ensure language materials of the same quality were provided.

Each participant was provided with a PC equipped with TinyOS 2.1.2 and nesC 1.3

environments. To help participants develop the required TinyOS applications using a

comfortable environment, we provided them with an Eclipse Juno environment equipped with

Yeti220 plug-in, as well as ready to work SenNet language packages and sufficient space to be

familiar with the two languages.

6.7.6 Experiment Protocol

The general experiment agenda is illustrated in Table 6-18. The total time spent for the

controlled experiment was around 04:40 hours, divided into three sessions: the first session

related to a welcoming speech to identify the purpose of this user study and filling in of the

20 Yeti2: http://tos-ide.ethz.ch/wiki/index.php

http://tos-ide.ethz.ch/wiki/index.php

121

pre-experiment survey (10 min). This was followed by a presentation (120 min) discussing the

basic concepts of WSN, nesC and SenNet. This session ended with a 10-min discussion to

explain any issues not clear to the participants. The second session started with 30 min to give

the participants the opportunity to be familiar with the nesC and SenNet interfaces, besides

explaining the required tasks to be done by the participants, then 90 min was used to program

the tasks by participants, while also recording the time needed to accomplish each task.

Participants started working on the nesC tasks first, then after completing the nesC tasks, they

started working on the SenNet tasks; these tasks were done by the participants in sequence (T1,

T2, and T3) finishing with T4 for SenNet. Finally, in the third session (30 min) the participants

were asked to fill in the final post-experiment questions.

Table 6-18: The Experiment Time Table

Session Sub-session Activities Time Total Session Time

1

Welcoming and participants complete a pre-

experiment survey
10 min

130 min

A presentation about WSN, nesC, and SenNet 120 min

2

Explain the required tasks to be programmed by

the participants and provide the required

materials.

30 min

120 min
Tasks Implementation (T1, T2 and T3) using

nesC and SenNet. Besides, T4 implementation

using SenNet.

90 min

3 Participants fill the post-experiment questions. 30 min 30 min

6.7.7 Experiment Results Discussion

This section will discuss the results obtained in the controlled experiment by evaluating the

participants’ feedback and observing the time spent to accomplish the set of tasks given to

them. The participants’ feedback and the tasks results were processed using Microsoft Excel

and SPSS software applications.

To validate the results’ integrity and check their reliability, we ran Cronbach’s alpha index

(Santos, 1999) to examine their internal consistency, as this measurement is widely used to

verify and analyse the reliability of Likert-type question results, and the preferred alpha index

value is > 0.7 (Creswell, 2009; Shull, Singer, & Sjøberg, 2008). The calculated Cronbach’s

alpha index for our results is 0.785, which can be considered a good result, reflecting highly

inter-correlated results; Table 6-19 shows the Cronbach’s Alpha results for each question.

122

Table 6-19: The Cronbach’s Alpha Index for the Whole Data Set (23 Question Feedback)

Cronbach's Alpha Results Per Question Feedback Results

Q1 .759

Q2 .792

Q3 .773

Q4 .753

Q5 .773

Q6 .761

Q7 .769

Q8 .736

Q9 .756

Q10 .796

Q11 .759

Q12 .769

Q13 .799

Q14 .787

Q15 .795

Q16 .787

Q17 .784

Q18 .783

Q19 .787

Q20 .787

Q21 .783

Q22 .798

Q23 .762

The participants’ feedback regarding the clarity of the presented and provided materials,

besides the task descriptions are illustrated in Table 6-20: most participants (90%) found the

presentations, materials, and tasks description clear, informative and easy to understand, with

a mean value = 4.4621.

Table 6-20: Introductory Questions Results

 Very

Easy
Easy Neutral Difficult

Very

Difficult

Q1: Were the SenNet and nesC tutorials and

presentation given easy to understand?
60% 27% 13% 0% 0%

Q2: Were the descriptions of the tasks clear? 53% 40% 7% 0% 0%

Average 57% 33% 10% 0% 0%

21 5SUF: 5-Scale User Feedback Mean Value, as the range is (5=Strongly Agree, 4=Agree, 3=Neutral,

2=Disagree, 1=Strongly Disagree)

123

6.7.7.1 Metrics Results

This section discusses results of the previous identified metrics:

• M11 (Effectiveness) results show that all participants (100%) agree that SenNet helped

them to develop WSN application successfully, with a mean value of participants’ feedback

= 4.533; Table 6-21 reveals that all participants completed their tasks using SenNet.

• M12 (Efficiency), this metric is measured using M121, M122, and M123. These three

metrics’ results are described below:

1. M121 this metric measures SenNet efficiency using participants’ feedback, where

the results indicate that 91% of the participants consider SenNet is efficient and

decreases the development time and the number of activities for application

development with a mean value = 4.51, and 90% of the participants chose using

SenNet instead of nesC for WSN application development with a mean value =

2.922. Most of the participants (80%) chose SenNet as the language that needs less

technology background than nesC, and all participants chose SenNet as the

language that requires less programming skills than nesC.

2. M122 (Time-Saving for Task Accomplishment) Table 6-21 shows the detailed time

needed for each task using SenNet and nesC. The average times needed to complete

T1, T2 and T3 using nesC were 00:15:12, 00:16:48 and 00:10:24 minutes

respectively, while participants performed these tasks using SenNet in 00:04:08,

00:07:04 and 00:04:24 minutes respectively. Calculating the Time-Saving for Task

Accomplishment using Equation 6-1 shows that the average percentages of time

saved for T1, T2 and T3 using SenNet were 72%, 58% and 55%.

3. M123 (Total Time Saving for Tasks Accomplishment) that can be calculated using

Equation 6-2, SenNet saved 63% of the time required to complete the set of tasks

compared to nesC, which shows the potential power of SenNet in saving

development time and effort.

22 3SUF: 3-Scale User Feedback Mean Value, as the range is (3=SenNet, Neutral=2, 1=nesC)

124

Table 6-21: SenNet and nesC Task Completion Times (M122 and M123)

 nesC SenNet
Time-Saving for Task

Accomplishment
Total Time Saving

for Tasks
Accomplishment T1 T2 T3 T1 T2 T3 T1 T2 T3

P-1 00:14:00 00:17:00 00:12:00 00:06:00 00:05:00 00:03:00 57% 71% 75% 67%

P-2 00:13:00 00:16:00 00:13:00 00:07:00 00:07:00 00:04:00 46% 56% 69% 57%

P-3 00:14:00 00:16:00 00:07:00 00:02:00 00:04:00 00:06:00 86% 75% 14% 68%

P-4 00:17:00 00:18:00 00:12:00 00:02:00 00:09:00 00:05:00 88% 50% 58% 66%

P-5 00:13:00 00:17:00 00:14:00 00:03:00 00:09:00 00:05:00 77% 47% 64% 61%

P-6 00:17:00 00:15:00 00:07:00 00:03:00 00:05:00 00:04:00 82% 67% 43% 69%

P-7 00:20:00 00:15:00 00:07:00 00:05:00 00:07:00 00:03:00 75% 53% 57% 64%

P-8 00:13:00 00:15:00 00:07:00 00:02:00 00:05:00 00:06:00 85% 67% 14% 63%

P-9 00:15:00 00:20:00 00:12:00 00:06:00 00:09:00 00:06:00 60% 55% 50% 55%

P-10 00:20:00 00:21:00 00:08:00 00:07:00 00:09:00 00:04:00 65% 57% 50% 59%

P-11 00:19:00 00:19:00 00:08:00 00:02:00 00:09:00 00:03:00 89% 53% 63% 70%

P-12 00:14:00 00:16:00 00:14:00 00:02:00 00:06:00 00:03:00 86% 63% 79% 75%

P-13 00:18:00 00:18:00 00:15:00 00:05:00 00:09:00 00:06:00 72% 50% 60% 61%

P-14 00:11:00 00:15:00 00:09:00 00:06:00 00:08:00 00:03:00 45% 47% 67% 51%

P-15 00:10:00 00:14:00 00:11:00 00:04:00 00:05:00 00:05:00 60% 64% 55% 60%

Average 00:15:12 00:16:48 00:10:24 00:04:08 00:07:04 00:04:24 72% 58% 55% 63%

• M13 (Likeability), most participants (92%) chose SenNet as the language they found more

acceptable and comfortable to work with than nesC, with a mean value = 2.91. In the same

way 93% of the participants chose SenNet as the tool they would recommend in future for

WSN application development.

• M14 (Learnability), all participants (100%) chose SenNet as the language in which they

could learn, use and remember language commands and vocabularies more easily than

nesC, with a mean value = 3.

• M15 (Programming Technique), most participants (80%) preferred network-level

programming to node-level programming in WSN application development, with a mean

value = 2.6.

• M16 (Ability to Maintain Existing Application), most participants (93%) chose SenNet as

it was easier than nesC in maintaining existing applications, especially in the case of

maintaining applications developed by others, with a mean value = 2.93.

• M17 (Mind to program mapping), most participants (73%) chose SenNet as a

programming language that is easy and provides better support in mapping a problem into

a program code, with a mean value = 2.66.

125

• M21 (appropriateness), most participants (82%) specified that SenNet was appropriate for

WSN application development, with a mean value = 4.12, and they considered that most of

the WSN domain concepts and scenarios could be represented in SenNet.

Referring to Table 6-14 that lays out the main user study experiment metrics and their baseline

values, Table 6-22 shows the final experiment results, where all metrics have higher values

than the baseline values. These results indicate that SenNet gives beginner developers the

required power to start developing WSN applications, as it hides complexity and enables

developers to develop their applications smoothly and easily. Furthermore, SenNet offers many

activities and tasks not available in nesC, besides offering the node and network-level

development.

Table 6-22: User Study Experiment Metrics Results

Goals Metrics Range Baseline Value

Usability

M11 effectiveness 1 - 5 3 4.5

M12

Efficiency

M121 SenNet Efficiency - UX
1 - 5 3 4.5

1 - 3 2 2.9

M122 Time-Saving for Task

Accomplishment (T1, T2, and

T3)

0% - 100% 50% 72%, 58%, 55%

M123 Total Time Saving for

Tasks Accomplishment
0% - 100% 50% 63%

M13 Likeability 1 - 3 2 2.9

M14 Learnability 1 - 3 2 3

M15 Programming Technique 1 - 3 2 2.6

M16 Maintaining existing applications 1 - 3 2 2.9

M17 Mind to program mapping 1 - 3 2 2.6

Functional

Suitability
M21 Appropriateness 1 - 5 3 4.1

6.7.7.2 Final Experiment Results

As a final conclusion, regarding usability, in terms of M11 and M12, most of the participants

(96%) found SenNet was usable and helped them to achieve their required WSN application

successfully with reduced development effort, where SenNet saves 63% of the time required

to complete a set of tasks compared to nesC. In the same way, 82% of the participants found

SenNet functionally suitable to be used for WSN application development in terms of

appropriateness. Detailed user study experiment results are shown in Figure 6-21 and Table

6-23.

126

Furthermore, with regards to SenNet versus nesC usability (M12, M13, M14, M15, M16 and

M17), 88% of the participants found SenNet more usable than nesC for WSN application

development, as illustrated in Figure 6-22 and Table 6-24.

Figure 6-21: User Study Experiment Goals Final Results

Table 6-23: Final User Study Experiment Goals Results

 Mean
Agree

Strongly
Agree Neutral Disagree

Disagree

Strongly

G1 - Usability (M11, M12) 4.5 57% 39% 4% 0% 0%

G2 - Functional Suitability (M21) 4.1 32% 50% 16% 2% 0%

Figure 6-22: SenNet vs. nesC Usability

Table 6-24: SenNet vs. nesC Usability

 Mean SenNet Neutral nesC

Usability (M12, M13, M14, M15, M16, M17) 2.8 88% 8% 4%

6.8 Evaluation Summary

This chapter has demonstrate the usefulness of SenNet and prove its functionality, a simple

home temperature monitoring scenario has been developed, which proved that SenNet reduces

the development efforts compared to nesC. Then it discussed many methods that were used to

evaluate and assess the value of SenNet language and whether it is useful for beginner

developers to develop WSN applications or not. All these methods were used to answer the

questions proposed at the beginning of this chapter.

Q1. Can SenNet hide programming complexity and facilitate the development process?

4.5
4.1

3.5

4

4.5

5

G1 - Usability (M11, M12) G2 - Functional Suitability (M21)

P
ar

ti
ci

p
an

ts

Fe
ed

b
ac

k
M

ea
n

V

al
u

e

Controlled Experiment Goals

88%

8% 4%

0%

50%

100%

SenNet Neutral nesC

P
ar

ti
ci

p
an

ts

Fe
ed

b
ac

k
(%

)

127

Q2. Can developers learn and use SenNet language easily and rapidly?

Q3. Is SenNet suitable to explain WSN concepts and cover most domain scenarios?

Regarding Q1, concerning whether SenNet can hide development complexity or not, we have

answered this question by conducting two methods of assessment, the first method has assessed

SenNet and nesC in terms of specific scenarios using two code analysis measurements. This

proved that SenNet significantly saved the total number of LOC and vocabularies that

developers should deal with to develop an application, where SenNet is a small and compact

language that helps developers to do their jobs with a minimal number of instructions. For the

same purpose, a controlled experiment was conducted using 15 participants to assess SenNet

and nesC, and the experiment results illustrated that most of the participants considered SenNet

was more usable and required less technology background and programming skills than nesC;

Table 6-25 discusses these two method results in detail.

Table 6-25: Question-1 Metrics Result

Method Used Metrics
Possible
Values
Range

Baseline
Final

Results

Application
Source Code

Analysis

Saving in LOC 0% - 100% 50% 88.4%

Reducing in Code Difficulty 0% - 100% 50% 96.6%

Saving in Programming Effort 0% - 100% 50% 99.8%

Saving in Vocabulary 0% - 100% 50% 87.1%

Saving in Program Length 0% - 100% 50% 92.8%

Saving in Program Volume 0% - 100% 50% 96.4%

User Study
Experiment

M11 Effectiveness 0% - 100% 50% 100%

M12 Efficiency

M121 SenNet Efficiency Based on UX23
0% - 100% 50% 91%

0% - 100% 50% 90%

M122 Time-Saving for Task
Accomplishment (T1, T2, and T3)

0% - 100% 50%
72%, 58%,

55%

M123 Total Time Saving for Tasks
Accomplishment

0% - 100% 50% 63%

M15 Programming Technique 0% - 100% 50% 88.4%

To answer Q2, which related to whether SenNet language learning and using is easy, we have

responded to this question using the conducted user study that shown SenNet is more likeable

and learnable than nesC; Table 6-26 discusses these two method results in detail.

23 UX: User Experience

128

Table 6-26: Question-2 Metrics Result

Method Used Metrics
Possible

Values Range
Baseline Final Results

User Study
Experiment

M13 Likeability 0% - 100% 50% 92%

M14 Learnability 0% - 100% 50% 100%

M16 Maintaining Existing Applications 0% - 100% 50% 93%

M17 Mind to program mapping 0% - 100% 50% 73%

Finally, to answer Q3, which deals with whether SenNet is an appropriate tool to develop WSN

applications, we have run three evaluation methods to prove that SenNet is suitable to develop

WSN applications. The first method is scope of application functionality, where SenNet

language was analysed based on Bai guidelines for WSN application functionalities, and the

results showed that SenNet covers 75% of the WSAN functionalities. In the second method,

we developed two real business scenarios to prove SenNet’s suitability. The final method used

to assess SenNet suitability was through a user study, where most of the participants found

SenNet functionally suitable to develop WSN applications; Table 6-27 discusses these three

method results in detail.

Table 6-27: Question-3 Metrics Result

Method Used Metrics
Possible

Values Range
Baseline Final Results

Scope of Application
Functionality

Scope of Application
Functionality

0% - 100% 50% 75%

Business Case Study
Applicability

Applicability to Develop
Real-Business Applications

0 - 1 1 1

User Study Experiment M21 Appropriateness 0% - 100% 50% 82%

129

Chapter 7: Discussion, Conclusion and Future

Work

7.1 Introduction

This chapter presents a summary of the work, describing the key contributions, strengths and

limitations of the research.

7.2 Discussion (Research Outcomes)

The focus of this research project is to reduce complexity in developing WSN systems. Figure

7-1 and the following questions showed how our research has succeeded in answering and

addressing the research problems, besides highlighting the main research theme:

• How Was the Research Problem Identified?

To identify the research problem accurately, three surveys have been presented: The first

survey was concerned with the main challenging and problematic dimensions that face

developing WSN applications mentioned in section 1.3.1 and published in our paper (Salman

& Al-Yasiri, 2016a), where 38 scientific papers were assessed. In this survey, we categorised

the difficulties that face WSN application development in two dimensions, the accidental

complexity and the inherent complexity dimensions.

The second survey concerned the different types of WSN applications developers and showing

their knowledge gap, which was mentioned in section 1.3.2 that assessed more than 80

scientific research papers looking for potential WSN developer types; a summary version of

this survey has been published (Salman & Al-Yasiri, 2016a, 2016b). In this study, we tried to

show all possible developer types for WSN applications and presented their knowledge gaps

in terms of WSN technology background and programming skills.

The third survey was concerned with the related solutions that proposed by the research

community, which was mentioned in section 2.4, where 24 solutions to reduce complexity in

WSN domain have been studied. Furthermore, the discussed solutions have assessed in terms

of a set of feature criteria that suggested in previous studies.

130

• How Has the Research Problem Been Addressed?

As a result of the conclusions in the reviews above particularly the third review, which

discussed the related solutions, a set of design requirements have been outlined in section 2.5.

These design requirements were taken into consideration while developing our proposed

solution SenNet explained in chapters 3, 4 and 5.

Chapter 3 has addressed the first part of our proposed solution which is the SenNet meta-model.

That models the sensor networks domains (Application-Level and Network-Level) that build

on the basis of the ISO/IEC 29182, which is considered a methodology that a developer can

use to find his path to developing a WSN application (Salman & Al-Yasiri, 2016a, 2016b).

This meta-model will be the foundation for the second part of our research solution.

As the second part of our research, The MDD approach is used to utilise the above identified

meta-model and define the SenNet language. SenNet language is shown in Chapters 4 and 5:

Chapter 4 discussed the SenNet internal view, the main components and the source-to-source

translation processes. In Chapter 5, the SenNet language programmer’s view is represented,

such as the text and tree-based editor views, the general SenNet application syntax and the

different and offered commands syntax are discussed.

The proposed solution tries to tackle the research problem by hiding irrelevant information and

presenting the network-level application development strategy as a development abstraction;

in addition, the identified language primitives should be easy to learn and remember by the

beginner developers.

• How Has the Addressed Solution Been Assessed?

The proposed solution assessment and evaluation is described in Chapter 6, where many

evaluation methods have been used to assess SenNet in terms of usability and functional

suitability.

131

How Has the Research Problem Been Addressed?

How Was the Research Problem Identified?

Survey-1
Challenging Dimensions of WSN

Application Development
(Section 1.3.1)

Survey-2
Potential Developers of WSN

Application
(Section 1.3.2)

Conclusion
Reducing Complexity is needed

Survey-3
Limitations in the Related Proposed

Solutions
(Section 2.4)

How Has the Addressed Solution Been Assessed?

Usability Evaluation
Functional Suitability

Evaluation

SAFASCSA RBCSACEUS

Design Requirements
(Section 2.5)

SenNet Meta-Model
(Chapter 3)

SenNet Language –
Programmers View

(Chapter 5)

SenNet Language –
Internal View

(Chapter 4)

Figure 7-1: The Outline of The Thesis Structure

132

7.3 Conclusion

We have presented different aspects of the SenNet language and evaluated it using different

methods. SenNet demonstrates advances over other WSN development methods in several

areas:

• Usability: SenNet provides an abstracted solution, which uses concepts that are either

familiar to the developer or only require a short time to grasp. For example, in the Contiki

operating system, if the developer needs to use a timer using C language, then the developer

has to learn and think in terms of hardware ticks. Equally, in TinyOS and nesC, the

developer must either use hardware ticks or time unit. Similarly, SenNet allows using the

millisecond as a time unit. SenNet has been proven to be more usable than nesC for

inexperienced WSN users by results in a small-scale user study, besides other methods that

prove the same concept.

• Functional Suitability: SenNet is a language designed for use in developing WSN

applications, applications that are not restricted to a particular application domain, for

example human health or structural monitoring applications such as SPINE (Bellifemine et

al., 2011), which is a DSL designed for developing human health monitoring applications.

SenNet showed its functional suitability to develop WSN applications by developing two

real business case studies, besides other methods that prove the same concept.

• Multi-Level Development Abstraction: SenNet is designed to offer the possibility to

develop WSN applications either in node-level or network-level, and giving the ability to

model node, group of nodes and network. Which offers significant advances compared to

currently available programming languages and development methods such as SEAL (Elsts

et al., 2013). On the other hand, some proposed development methods use the MDD

approach to defining three different modelling layers. Each layer deals with a particular

part of the network activities, which entails identifying either specific DSL or DSML to be

used with each layer, such as in LWiSSy (Dantas et al., 2013). In contrast to these two

approaches, SenNet offers both node and network-level using one affordable and easy to

grasp the language.

• Portability: WSN hardware architecture and platforms come in different varieties;

different sensor node platforms may be used in one application. Therefore, portability is a

133

critical requirement for WSN applications. Because SenNet uses HIL interfaces, as shown

in most of the case studies developed and presented in this thesis, this means that the

amount of platform dependent code is very small, so porting the application code to another

platform is fast and easy.

Furthermore, a number of concluding remarks can be highlighted:

I. The development of a WSN application using MDD & DSL approaches allows the code to

be much more concise and free from low-level details compared to the implementation of

the same application using conventional programming languages.

II. Using DSL allows the use of concepts that are already familiar to the developer and are

easy to grasp.

III. Using high-level abstracted DSL with the aid of EMF, more facilities can be offered, such

as a tree-based editor view; furthermore, it can be adapted easily to a visual development

environment. So, the development process will be a more exciting journey, and encourage

beginner developers to get into this world easily and smoothly.

IV. If the developer has a specific algorithm for a certain domain application, then giving the

developer the ability to embed his algorithm within a SenNet application is a great

advantage.

7.4 Limitations

The research work introduced in this thesis has some limitations, which they are beyond the

scope of this study:

• The scope of SenNet language is limited to sensing job types.

• The current SenNet version supports standard data aggregation processing functions, such

as max, min and average.

• The current SenNet version uses independent hardware interfaces provided by TinyOS,

which implies that special hardware types are not supported. As for each customised

hardware, different independent interfaces should be developed.

• Node mobility is not supported by the current SenNet version, due to the limitations of

current mobility routing and localisation algorithms.

134

7.5 Future Work

To address the above limitations and improve the language’s applicability, the followings

future improvements may be undertaken:

• Embedding Actuation Facilities: Expanding the SenNet meta-model and language

semantic by defining new actuation tasks and activities.

• Adding Advanced Functions: This can be done by embedding more algorithms and

functions related to:

1. Aggregation and Fusion algorithms.

2. Mobility routing and localisation algorithms

• Expanding the set of supported hardware types: Expanding the SenNet commands to

support special types of hardware using TinyOS HAL and HPL interfaces.

More future work aspects can be done for SenNet, such as:

• Generate Source Code for Other Languages: The CGC component can be reconfigured

to generate source code for languages other than nesC, such as C or Java.

• Providing Advanced Visual Programming: More sophisticated visual programming and

development editor facilities can be integrated into the SenNet package.

• Expanding the Language Primitives: The SenNet language can be expanded to offer

creating or defining new functions. On the one hand this expansion will provide the

developer with great flexibility. One the other hand, the new language version should not

lose the high-level of abstraction it includes and change it to a new form of GPL languages.

• Validating the Generated Application: The TinyOS component graph can be integrated

with the SenNet package to validate the functionality of the auto-generated nesC code

applications.

135

References

Áemília, P., Ľubomír, W., Sergej, C., & Ján, K. (2011). The Effect of Abstraction in

Programming Languages. Journal of Computer Science and Control Systems, 4(1), 137.

Afanasov, M., Mottola, L., & Ghezzi, C. (2013). Towards context-oriented programming in

wireless sensor networks. In Proceedings of the 2013 ACM conference on Pervasive and

ubiquitous computing adjunct publication - UbiComp ’13 Adjunct (pp. 151–154). New

York, New York, USA: ACM Press. http://doi.org/10.1145/2494091.2494141

Afanasov, M., Mottola, L., & Ghezzi, C. (2014). Context-Oriented Programming for

Adaptive Wireless Sensor Network Software. In 2014 IEEE International Conference

on Distributed Computing in Sensor Systems (pp. 233–240). Marina del Rey (CA,

USA): IEEE. http://doi.org/10.1109/DCOSS.2014.31

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2007). Compilers: Principles,

Techniques, & Tools (2nd Editio). United States of America: Pearson Education

Limited.

Akbal-Delibas, B., Boonma, P., & Suzuki, J. (2009). Extensible and Precise Modeling for

Wireless Sensor Networks. In Information Systems: Modeling, Development, and

Integration (pp. 551–562). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-

642-01112-2_55

Akyildiz, I. F., & Vuran, M. C. (2010). Wireless sensor networks. (I. F. Akyildiz, Ed.). West

Sussex, England: JohnWiley & Sons Ltd. Retrieved from

http://210.32.200.159/download/20100130212654891.pdf

Alkandari, A., Alnasheet, M., Alabduljader, Y., & Moein, S. M. (2012). Water monitoring

system using Wireless Sensor Network (WSN): Case study of Kuwait beaches. In 2012

Second International Conference on Digital Information Processing and

Communications (ICDIPC) (pp. 10–15). IEEE.

http://doi.org/10.1109/ICDIPC.2012.6257270

Ammari, H. M. (2014). The Art of Wireless Sensor Networks Volume 1: Fundamentals. (H.

M. Ammari, Ed.) (Vol. 1). Berlin, Heidelberg: Springer Berlin Heidelberg.

http://doi.org/10.1007/978-3-642-40066-7

Antonopoulos, C., Asimogloy, K., Chiti, S., D’Onofrio, L., Gianfranceschi, S., He, D., …

Vlahoy, G. (2016). Integrated Toolset for WSN Application Planning, Development,

Commissioning and Maintenance: The WSN-DPCM ARTEMIS-JU Project. Sensors,

16(6), 804. http://doi.org/10.3390/s16060804

Aoun, C. G., Alloush, I., Kermarrec, Y., Champeau, J., & Zein, O. K. (2015). A Modeling

Approach for Marine Observatory. Sensors & Transducers, 185(2), 129–139.

Atmel. (2006). Atmel: 8-bit Atmel Microcontroller ATmega128L datasheet. Retrieved from

http://www.atmel.com/images/doc2467.pdf

Atoum, I., & Bong, C. H. (2015). Measuring Software Quality in Use: State-of-the-Art and

Research Challenges. ASQ.Software Quality Professional, 17(2), 4–15. Retrieved from

http://arxiv.org/abs/1503.06934

Avilés-López, E., & García-Macías, J. A. (2009). TinySOA: a service-oriented architecture

for wireless sensor networks. Service Oriented Computing and Applications, 3(2), 99–

108. http://doi.org/10.1007/s11761-009-0043-x

136

Bader, S., & Oelmann, B. (2013). Concealing the complexity of node programming in

wireless sensor networks. In 2013 IEEE Eighth International Conference on Intelligent

Sensors, Sensor Networks and Information Processing (pp. 177–182). IEEE.

http://doi.org/10.1109/ISSNIP.2013.6529785

Baggio, A. (2005). Wireless sensor networks in precision agriculture. Workshop on Real-

World Wireless Sensor Networks (REALWSN 2005). Stockholm, Sweden: ACM.

Bai, L. (2011). Simplifying Design of Wireless Sensor Networks with Programming

Languages , Compilers , and Synthesis. University of Michigan, USA.

Bai, L., Dick, R., & Dinda, P. (2009). Archetype-based design: Sensor network programming

for application experts, not just programming experts. In Information Processing in

Sensor Networks, 2009. IPSN 2009. International Conference on (pp. 85–96). San

Francisco, CA: IEEE. Retrieved from http://dl.acm.org/citation.cfm?id=1602175

Bai, L., Dick, R. P., Chou, P. H., & Dinda, P. a. (2011). Automated construction of fast and

accurate system-level models for wireless sensor networks. 2011 Design, Automation &

Test in Europe, (1), 1–6. http://doi.org/10.1109/DATE.2011.5763178

Bai, L., Dick, R. P., Dinda, P. A., & Chou, P. H. (2011). Simplified programming of faulty

sensor networks via code transformation and run-time interval computation. In

Conference & Exhibition of Design, Automation & Test in Europe (DATE), 2011 (pp. 1–

6). Grenoble, France: IEEE. http://doi.org/10.1109/DATE.2011.5763023

Bakshi, A., Prasanna, V. K., Reich, J., & Larner, D. (2005). The Abstract Task Graph: A

Methodology for Architecture-Independent Programming of Networked Sensor

Systems. In EESR ’05 Proceedings of the 2005 workshop on End-to-end, sense-and-

respond systems, applications and services (pp. 19–24). USENIX Association.

Basili, V. R. (1992). Software Modeling and Measurement: The Goal/Question/Metric

paradigm (Technical Report). MD, USA.

Beal, J., Dulman, S., Usbeck, K., Viroli, M., & Correll, N. (2012). Organizing the Aggregate:

Languages for Spatial Computing. Formal and Practical Aspects of Domain-Specific

Languages, 436–501. http://doi.org/10.4018/978-1-4666-2092-6.ch016

Beckmann, K., & Thoss, M. (2010). A model-driven software development approach using

OMG DDS for wireless sensor networks. In Software Technologies for Embedded and

Ubiquitous Systems (pp. 95–106). Springer Berlin Heidelberg. Retrieved from

http://link.springer.com/chapter/10.1007/978-3-642-16256-5_11

Beigl, M., Krohn, A., Riedel, T., Zimmer, T., Decker, C., & Isomura, M. (2006). The uPart

experience: Building a wireless sensor network. In Proceedings of the fifth international

conference on Information processing in sensor networks - IPSN ’06 (pp. 366–373).

Nashville, TN, USA: IEEE. http://doi.org/10.1145/1127777.1127832

Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., & Sgroi, M. (2011).

SPINE: A domain-specific framework for rapid prototyping of WBSN applications.

Software: Practice and Experience, 41(3), 237–265. http://doi.org/10.1002/spe.998

Bettini, L. (2013). Implementing Domain-Specific Languages with Xtext and Xtend. Packt

Publishing. Birmingham, UK: Packt Publishing Ltd. Retrieved from

http://www.packtpub.com/implementing-domain-specific-languages-with-xtext-and-

xtend/book

Bevan, N. (2009). Extending Quality in Use to Provide a Framework for Usability

Measurement. In K. M. (Ed.), Human Centered Design (HCD 2009, Vol. 5619 LNCS,

137

pp. 13–22). Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-02806-9_2

Bézivin, J. (2005). On the Unification Power of Models. Software & Systems Modeling, 4(2),

171–188. http://doi.org/10.1007/s10270-005-0079-0

Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., … Han, R. (2005). MANTIS OS:

An Embedded Multithreaded Operating System for Wireless Micro Sensor Platforms.

Mobile Networks and Applications, 10(4), 563–579. http://doi.org/10.1007/s11036-005-

1567-8

Birken, K. (2014). Building Code Generators for DSLs Using a Partial Evaluator for the

Xtend Language. In M. T. & S. B. (Eds.), Leveraging Applications of Formal Methods,

Verification and Validation. Technologies for Mastering Change. ISoLA 2014 (Vol.

8802, pp. 407–424). Springer-Verlag Berlin Heidelberg. http://doi.org/10.1007/978-3-

662-45234-9_29

Boonma, P., Somchit, Y., & Natwichai, J. (2013). A Model-Driven Engineering Platform for

Wireless Sensor Networks. In 2013 Eighth International Conference on P2P, Parallel,

Grid, Cloud and Internet Computing (pp. 671–676). COMPIEGNE, France: IEEE.

http://doi.org/10.1109/3PGCIC.2013.115

Boonma, P., & Suzuki, J. (2010a). Moppet: A Model-Driven Performance Engineering

Framework for Wireless Sensor Networks. The Computer Journal, 53(10), 1674–1690.

http://doi.org/10.1093/comjnl/bxp129

Boonma, P., & Suzuki, J. (2010b). TinyDDS: An Interoperable and Configurable

Publish/Subscribe Middleware for Wireless Sensor Networks. In A. M. Hinze & A.

Buchmann (Eds.), Principles and Applications of Distributed Event-Based Systems (pp.

206–231). USA: IGI Global. http://doi.org/10.4018/978-1-60566-697-6.ch009

Boonma, P., & Suzuki, J. (2011). Model-Driven Performance Engineering for Wireless

Sensor Networks with Feature Modeling and Event Calculus. In Proceedings of the 3rd

workshop on Biologically inspired algorithms for distributed systems - BADS ’11 (pp.

17–24). Karlsruhe, Germany: ACM Press. http://doi.org/10.1145/1998570.1998574

Boulis, A., Han, C.-C., & Srivastava, M. B. (2003). Design and Implementation of a

Framework for Efficient and Programmable Sensor Networks. In Proceedings of the 1st

international conference on Mobile systems, applications and services - MobiSys ’03

(pp. 187–200). New York, New York, USA: ACM Press.

http://doi.org/10.1145/1066116.1066121

Brooke, J. (1996). SUS - A quick and dirty usability scale. In P. W. Jordan, B. Thomas, I. L.

McClelland, & B. Weerdmeester (Eds.), Usability Evaluation In Industry (pp. 189–194).

Taylor & Francis Ltd.

Brooke, J. (2013). SUS : A Retrospective. Journal of Usability Studies, 8(2), 29–40.

Retrieved from

http://www.usabilityprofessionals.org/upa_publications/jus/2013february/brooke1.html

%5Cnhttp://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

Brooks, F. (1987). No Silver Bullet Essence and Accidents of Software Engineering. IEEE

Computer, 20(4), 10–19. http://doi.org/10.1109/MC.1987.1663532

Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for

very small devices. IEEE Personal Communications, 7(5), 28–34.

http://doi.org/10.1109/98.878533

Buonadonna, P., Tolle, G., & Gay, D. (2010). BaseStation Application. Intel Research

138

Berkeley. Retrieved from https://github.com/tinyos/tinyos-

main/blob/master/apps/BaseStation/BaseStationP.nc

Cao, Q., Abdelzaher, T., Stankovic, J., & He, T. (2008). The LiteOS Operating System:

Towards Unix-Like Abstractions for Wireless Sensor Networks. In 2008 International

Conference on Information Processing in Sensor Networks (ipsn 2008) (pp. 233–244).

USA: IEEE. http://doi.org/10.1109/IPSN.2008.54

Carboni, D. (2010). PYSENSE: PYTHON DECORATORS FOR WIRELESS SENSOR

MACROPROGRAMMING. In Proceedings of the 5th International Conference on

Software and Data Technologies (pp. 165–169). Athens, Greece: SciTePress - Science

and and Technology Publications. http://doi.org/10.5220/0003038801650169

Carlson, L., & Richardson, L. (n.d.). Ruby Cookbook. (M. Loukides, Ed.) (1st ed.). O’Reilly

Media.

Cecchinel, C., Mosser, S., & Collet, P. (2014). Software Development Support for Shared

Sensing Infrastructures: A Generative and Dynamic Approach. In Ina Schaefer & I.

Stamelos (Eds.), Software Reuse for Dynamic Systems in the Cloud and Beyond (Ina

Schaef, pp. 221–236). Springer International Publishing. http://doi.org/10.1007/978-3-

319-14130-5_16

Cecchinel, C., Mosser, S., & Collet, P. (2016). Automated Deployment of Data Collection

Policies over Heterogeneous Shared Sensing Infrastructures. In 23rd Asia-Pacific

Software Engi- neering Conference. Hamilton, New Zealand: HAL. Retrieved from

https://hal.archives-ouvertes.fr/hal-01411084

Ceriotti, M., Corra, M., D’Orazio, L., Doriguzzi, R., Facchin, D., Guna, S. T., … Torghele,

C. (2011). Is there light at the ends of the tunnel? Wireless sensor networks for adaptive

lighting in road tunnels. In Proceedings of the 10th International Conference on

Information Processing in Sensor Networks (pp. 187–198). Chicago, IL, USA: IEEE.

Cha, H., Choi, S., Jung, I., Kim, H., Shin, H., Yoo, J., & Yoon, C. (2007). RETOS: Resilient,

Expandable, and Threaded Operating System for Wireless Sensor Networks. In 2007 6th

International Symposium on Information Processing in Sensor Networks (pp. 148–157).

Cambridge, MA, USA: IEEE. http://doi.org/10.1109/IPSN.2007.4379674

Chandra, T. B., & Dwivedi, A. K. (2015). Programming Languages for Wireless Sensor

Networks : A Comparative Study. In Computing for Sustainable Global Development

(INDIACom), 2015 2nd International Conference on (pp. 1702–1708). New Delhi:

IEEE.

Chandrasekar, R. K., Uluagac, A. S., & Beyah, R. (2013). PROVIZ: An integrated

visualization and programming framework for WSNs. In 38th Annual IEEE Conference

on Local Computer Networks - Workshops (pp. 146–149). Sydney, NSW, Australia:

IEEE. http://doi.org/10.1109/LCNW.2013.6758511

Cheong, E., Liebman, J., Liu, J., & Zhao, F. (2003). TinyGALS: A Programming Model for

Event-Driven Embedded Systems. In Proceedings of the 2003 ACM symposium on

Applied computing - SAC ’03 (pp. 698–704). Melbourne, Florida, USA: ACM Press.

http://doi.org/10.1145/952532.952668

Cheong, E., & Liu, J. (2005). galsC: A Language for Event-Driven Embedded Systems. In

Design, Automation and Test in Europe (pp. 1050–1055). Munich, Germany: IEEE

Comput. Soc. http://doi.org/10.1109/DATE.2005.165

Chung, W.-Y., Lee, Y.-D., & Jung, S.-J. (2008). A Wireless Sensor Network Compatible

Wearable U-healthcare Monitoring System Using Integrated ECG, Accelerometer and

139

SpO2. In 30th Annual International Conference of the IEEEEngineering in Medicine

and Biology Society, 2008. EMBS 2008. (pp. 1529–1532). Vancouver, BC, Canada:

IEEE. http://doi.org/10.1109/IEMBS.2008.4649460

Cox, E. P. (1980). The Optimal Number of Response Alternatives for a Scale: A Review.

Journal of Marketing Research, 17(4), 407–422. http://doi.org/10.2307/3150495

Creswell, J. W. (2009). Research Design: Qualitative, Quantitative, and Mixed Methods

Approaches (3rd Editio). United States of America: SAGE Publications, Inc.

Cuenca, F., Bergh, J. Van den, Luyten, K., & Coninx, K. (2015). A User Study for

Comparing the Programming Efficiency of Modifying Executable Multimodal

Interaction Descriptions. In Proceedings of the 6th Workshop on Evaluation and

Usability of Programming Languages and Tools - PLATEAU 2015 (pp. 31–38).

Pittsburgh, PA, USA: ACM Press. http://doi.org/10.1145/2846680.2846686

Culler, D. (2003). 10 emerging technologies that will change your world. MIT’s Magazine of

Innovation: Technology Review, 106(1), 37. Retrieved from

http://www2.technologyreview.com/featured-story/401775/10-emerging-technologies-

that-will-change-the/2/

Curtis, B., Kellner, M. I., & Over, J. (1992, September 1). Process modeling.

Communications of the ACM - Special Issue on Analysis and Modeling in Software

Development, 35(9), 75–90. http://doi.org/10.1145/130994.130998

Czarnecki, K., & Helsen, S. (2006). Feature-based survey of model transformation

approaches. IBM Systems Journal, 45(3), 621–645. http://doi.org/10.1147/sj.453.0621

Damaševičius, R. (2006). On the Quantitative Estimation of Abstraction Level Increase in

Metaprograms. Computer Science and Information Systems, 3(1), 53–64.

http://doi.org/10.2298/CSIS0601053D

Daniel, F., Eriksson, J., Finne, N., Fuchs, H., Karnouskos, S., Montero, P. M., … Voigt, T.

(2013). makeSense : Real-world Business Processes through Wireless Sensor Networks.

In G. Fortino, S. Karnouskos, P. J. Marrón, & J. L. M. Lastra (Eds.), Proceedings of 4th

International Workshop on Networks of Cooperating Objects for Smart Cities 2013

(CONET/UBICITEC 2013) (pp. 58–72). Philadelphia, USA: CEUR-WS.org.

Dantas, P., Rodrigues, T., Batista, T., Delicato, F. C., Pires, P. F., Li, W., & Zomaya, A. Y.

(2013). LWiSSy: A Domain Specific Language to Model Wireless Sensor and Actuators

Network Systems. In 2013 4th International Workshop on Software Engineering for

Sensor Network Applications (SESENA) (pp. 7–12). San Francisco, USA: IEEE.

http://doi.org/10.1109/SESENA.2013.6612258

De-Farias, C. M., Brito, I. C., Pirmez, L., Delicato, F. C., Pires, P. F., Rodrigues, T. C., …

Batista, T. (2016). COMFIT: A development environment for the Internet of Things.

Future Generation Computer Systems, (i). http://doi.org/10.1016/j.future.2016.06.031

De-Farias, C. M., Li, W., Delicato, F. C., Pirmez, L., Zomaya, A. Y., Pires, P. F., & Souza, J.

N. De. (2016). A Systematic Review of Shared Sensor Networks. ACM Computing

Surveys, 48(4), 1–50. http://doi.org/10.1145/2851510

De Roover, C., Scholliers, C., Amerijckx, W., D’Hondt, T., & De Meuter, W. (2013).

CrimeSPOT: A language and runtime for developing active wireless sensor network

applications. Science of Computer Programming, 78(10), 1951–1970.

http://doi.org/10.1016/j.scico.2012.07.018

Delamo, M., Felici-Castell, S., Pérez-Solano, J. J., & Foster, A. (2015). Designing an open

140

source maintenance-free Environmental Monitoring Application for Wireless Sensor

Networks. Journal of Systems and Software, 103, 238–247.

http://doi.org/10.1016/j.jss.2015.02.013

Delicato, F. C., Pires, P. F., & Zomaya, A. Y. (2014). Middleware Platforms: State of the Art,

New Issues, and Future Trends. In H. M.Ammari (Ed.), The Art of Wireless Sensor

Networks (Volume 1: Fundamentals) (Vol. 1, pp. 645–674). Springer Berlin Heidelberg.

Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., & Muccini, H.

(2012). A model-driven engineering framework for architecting and analysing Wireless

Sensor Networks. In 2012 Third International Workshop on Software Engineering for

Sensor Network Applications (SESENA) (pp. 1–7). Zurich, Switzerland: IEEE.

http://doi.org/10.1109/SESENA.2012.6225729

Dunkels, A., Eriksson, J., Mottola, L., Voigt, T., Oppermann, F. J., Uzl, K. R., …

Karnouskos, S. (2010). D.1.1. Application and Programming Survey (Technical Report).

Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki - a lightweight and flexible operating

system for tiny networked sensors. In 29th Annual IEEE International Conference on

Local Computer Networks (pp. 455–462). FL, USA: IEEE (Comput. Soc.).

http://doi.org/10.1109/LCN.2004.38

Elsts, A. (2013). A Framework to Facilitate Wireless Sensor Network Application

Development (Doctoral Thesis). University of Latvia. Retrieved from

https://www.researchgate.net/publication/259575286

Elsts, A., Bijarbooneh, F., Jacobsson, M., & Sagonas, K. (2015). ProFuN TG: A Tool for

Programming and Managing Dependable Sensor Network Applications. In 2015 IEEE

40th Local Computer Networks Conference Workshops (LCN Workshops) (pp. 751–

759). Clearwater Beach, FL, USA: IEEE. http://doi.org/10.1109/LCNW.2015.7365924

Elsts, A., Judvaitis, J., & Selavo, L. (2013). SEAL: A Domain-Specific Language for Novice

Wireless Sensor Network Programmers. In 2013 39th Euromicro Conference on

Software Engineering and Advanced Applications (pp. 220–227). Santander, Spain:

IEEE. http://doi.org/10.1109/SEAA.2013.16

Elsts, A., & Selavo, L. (2012). A user-centric approach to wireless sensor network

programming languages. In 2012 Third International Workshop on Software

Engineering for Sensor Network Applications (SESENA) (pp. 29–30). Zurich,

Switzerland: IEEE. http://doi.org/10.1109/SESENA.2012.6225731

Elsts, A., & Selavo, L. (2013). Improving the Usability of Wireless Sensor Network

Operating Systems. Stud. Inform. Univ., 11(1), 35–68. Retrieved from

http://studia.complexica.net/Art/RI110103.pdf%5Cnpapers2://publication/uuid/AD48D3

BD-D225-4FE0-8D54-3A593E7670E9

Essaadi, F., Ben Maissa, Y., & Dahchour, M. (2017). MDE-Based Languages for Wireless

Sensor Networks Modeling: A Systematic Mapping Study. In E. Sabir, H. Medromi, &

M. Sadik (Eds.), Lecture Notes in Electrical Engineering (Vol. 366, pp. 331–346).

Singapore: Springer Singapore. http://doi.org/10.1007/978-981-10-1627-1_26

Eswaran, A., Rowe, A., & Rajkumar, R. (2005). Nano-RK: An Energy-Aware Resource-

Centric RTOS for Sensor Networks. In 26th IEEE International Real-Time Systems

Symposium (RTSS’05) (pp. 256–265). Miami, FL, USA: IEEE.

http://doi.org/10.1109/RTSS.2005.30

Eysholdt, M., & Behrens, H. (2010). Xtext: implement your language faster than the quick

and dirty way. In Proceedings of the ACM international conference companion on

141

Object oriented programming systems languages and applications companion (pp. 307–

309). Nevada, USA: ACM Press. http://doi.org/10.1145/1869542.1869625

Fajar, M., Nakanishi, T., Hisazumi, K., & Fukuda, A. (2012). A Decision Making Framework

for Developing Agricultural Wireless Sensor Network Systems. In Proc. 8th Asian Conf.

for Information Technology in Agriculture (AFITA).

Fenton, N., & Bieman, J. (2014). Software Metrics: A Rigorous and Practical Approach. (R.

LeBlanc, Ed.) (3rd ed.). Taylor & Francis Group, LLC. http://doi.org/10.1201/b17461

Ferro, G., Silva, R., & Lopes, L. (2015). Towards Out-of-the-Box Programming of Wireless

Sensor-Actuator Networks. In 2015 IEEE 18th International Conference on

Computational Science and Engineering (pp. 110–119). Porto, Portugal: IEEE Comput.

Soc. http://doi.org/10.1109/CSE.2015.20

Finstad, K. (2010). Response Interpolation and Scale Sensitivity: Evidence Against 5-Point

Scales. Journal of Usability Studies, 5(3), 104–110.

Flouri, K., Saukh, O., Sauter, R., Jalsan, K. E., Bischoff, R., Meyer, J., & Feltrin, G. (2012).

A versatile software architecture for civil structure monitoring with wireless sensor

networks. Smart Structures and Systems, 10(3), 209–228.

http://doi.org/10.12989/sss.2012.10.3.209

Fowler, M. (2010). Domain-Specific Languages (1 Edition). Addison-Wesley Professional.

http://doi.org/10.1007/978-3-642-03034-5

Frey, J.-E. (2008). WISA - wireless control in theory, practice and production. In 2008 IEEE

International Conference on Emerging Technologies and Factory Automation (pp. xvii–

xvii). Hamburg, Germany: IEEE. http://doi.org/10.1109/ETFA.2008.4638352

Friedman, H. H., & Friedman, L. W. (1986). On the Danger of Using too few Points in a

Rating Scale: A Test of Validity. Journal of Data Collection, 26(2), 60–63. Retrieved

from https://ssrn.com/abstract=2333162

Gaglione, A., Lo, B., & Yang, G. (2014). An Appstore Framework for Body Sensor

Networks. In 11th International Conference on Wearable and Implantable Body Sensor

Networks (BSN). Zurich, Switzerland.

García-hernández, C. F., Ibargüengoytia-gonzález, P. H., García-hernández, J., & Pérez-díaz,

J. A. (2007). Wireless sensor networks and applications: a survey. International Journal

of Computer Science and Network Security, 7(3), 264–273. Retrieved from

http://paper.ijcsns.org/07_book/200703/20070338.pdf

Gay, D., Levis, P., Culler, D., & Brewer, E. (2009). nesC 1.3 Language Reference Manual.

TinyOS Core Working Group. Retrieved from http://tinyprod.net/docs/nesc-ref.pdf

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., & Culler, D. (2003). The nesC

language: A Holistic Approach to Networked Embedded Systems. In Proceedings of the

ACM SIGPLAN 2003 conference on Programming language design and implementation

- PLDI ’03 (pp. 1–11). San Diego, California, USA: ACM.

http://doi.org/10.1145/780822.781133

Geihs, K., Mottola, L., Picco, G. Pietro, & Römer, K. (2011). Second international workshop

on software engineering for sensor network applications. In Proceeding of the 33rd

international conference on Software engineering - ICSE ’11 (pp. 1198–1199).

Honolulu, HI, USA: IEEE. http://doi.org/10.1145/1985793.1986044

Geihs, K., Reichle, R., Wagner, M., & Khan, M. U. (2009). Modeling of Context-Aware

Self-Adaptive Applications in Ubiquitous and Service-Oriented Environments. In B. H.

142

C. Cheng, R. de Lemos, H. Giese, P. Inverardi, & J. Magee (Eds.), Software

Engineering for Self-Adaptive Systems (Vol. 5525 LNCS, pp. 146–163). Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-642-02161-9_8

Getting Started with TinyOS. (n.d.). Retrieved from www.tinyos.net

Ghosh, D. (2011a). DSLs in Action. (C. Kane, Ed.). USA: Manning Publications Co.

Ghosh, D. (2011b, June 1). DSL for the Uninitiated. (M. Y. Vardi, Ed.)Communications of

the ACM, 54(7), 10. http://doi.org/10.1145/1989748.1989750

Goeken, M., & Alter, S. (2009). Towards Conceptual Metamodeling of IT Governance

Frameworks Approach - Use - Benefits. In 2009 42nd Hawaii International Conference

on System Sciences (pp. 1–10). Big Island, HI, USA: IEEE.

http://doi.org/10.1109/HICSS.2009.471

Gonzalez-Perez, C., McBride, T., & Henderson-Sellers, B. (2005). A Metamodel for

Assessable Software Development Methodologies. Software Quality Journal, 13(2),

195–214. http://doi.org/10.1007/s11219-005-6217-7

Gordon, D., & Beigl, M. (2009). D-Bridge: A platform for developing low-cost WSN product

solutions. In 2009 Sixth International Conference on Networked Sensing Systems (INSS)

(pp. 1–4). Pittsburgh, PA, USA: IEEE. http://doi.org/10.1109/INSS.2009.5409950

Gordon, D., Beigl, M., & Neumann, M. A. (2010). dinam: A Wireless Sensor Network

Concept and Platform for Rapid Development. In 2010 Seventh International

Conference on Networked Sensing Systems (INSS) (pp. 57–60). Kassel, Germany: IEEE.

http://doi.org/10.1109/INSS.2010.5573290

Gu, Y., Ren, F., Ji, Y., & Li, J. (2016). The Evolution of Sink Mobility Management in

Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials,

18(1), 507–524. http://doi.org/10.1109/COMST.2015.2388779

Hailpern, B., & Tarr, P. (2006). Model-driven development: The good, the bad, and the ugly.

IBM Systems Journal, 45(3), 451–461. http://doi.org/10.1147/sj.453.0451

Handziski, V., Polastre, J., Hauer, J., Sharp, C., Wolisz, A., & Culler, D. (2005). Flexible

hardware abstraction for wireless sensor networks. In Proceeedings of the Second

European Workshop on Wireless Sensor Networks, 2005. (pp. 145–157). Istanbul,

Turkey: IEEE. http://doi.org/10.1109/EWSN.2005.1462006

Handziski, V., Polastre, J., Hauer, J., Sharp, C., Wolisz, A., Culler, D., & Gay, D. (2004).

TEP 2: Hardware Abstraction Architecture (2.x). TinyOS Enhancement Proposal.

TinyOS Core Working Group.

Hansen, M., & Kusy, B. (2011). Cross-platform wireless sensor network development. In

Information Processing in Sensor Networks (IPSN), 2011 10th International Conference

on (pp. 153–154). Chigaco, IL, USA: IEEE. Retrieved from

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5779091

Hansen, M. T., & Kusy, B. (2011). TinyInventor : A Holistic Approach to Sensor Network

Application Development. In Extending the Internet to Low power and Lossy Networks.

IP+SN 2011 (pp. 153–154). Chigaco, IL, USA: ACM. Retrieved from

http://www.forskningsdatabasen.dk/en/catalog/2185860199

Harrop, P. (2012). Wireless Sensor Networks and the new Internet of Things. IDTechEx.

IDTechEx. Retrieved from http://www.idtechex.com/research/articles/wireless-sensor-

networks-and-the-new-internet-of-things-00004770.asp

Harrop, P., & Das, R. (2012). Wireless Sensor Networks 2011-2021: The new market for

143

Ubiquitous Sensor Networks (USN). IDTechEx. Retrieved from

http://www.idtechex.com/research/reports/wireless-sensor-networks-2011-2021-

000275.asp

Hemel, Z., Kats, L. C. L., Groenewegen, D. M., & Visser, E. (2010). Code generation by

model transformation: a case study in transformation modularity. Software & Systems

Modeling, 9(3), 375–402. http://doi.org/10.1007/s10270-009-0136-1

Henderson-Sellers, B., & Bulthuis, A. (1998). Object-Oriented Metamethods. New York,

NY: Springer. http://doi.org/10.1007/978-1-4612-1748-0

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000, December 1).

System Architecture Directions for Networked Sensors. ACM SIGOPS Operating

Systems Review, pp. 93–104. New York, NY, USA: ACM.

http://doi.org/10.1145/384264.379006

Hu, F., Jiang, M., Celentano, L., & Xiao, Y. (2008). Robust medical ad hoc sensor networks

(MASN) with wavelet-based ECG data mining. Ad Hoc Networks, 6(7), 986–1012.

http://doi.org/10.1016/j.adhoc.2007.09.002

Hudak, P., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W., Peterson, J., … Hughes, J.

(1992). Report on the programming language Haskell. ACM SIGPLAN Notices, 27(5),

1–164. http://doi.org/10.1145/130697.130699

Hughes, D., Greenwood, P., Blair, G., Coulson, G., Grace, P., Pappenberger, F., … Beven, K.

(2008). An experiment with reflective middleware to support grid‐ based flood

monitoring. Concurrency and Computation: Practice and Experience, 20(11), 1303–

1316. http://doi.org/10.1002/cpe.1279

Hughes, D., Thoelen, K., Maerien, J., Matthys, N., Horre, W., Del Cid, J., … Joosen, W.

(2012). LooCI: The Loosely-coupled Component Infrastructure. In Network Computing

and Applications (NCA), 2012 11th IEEE International Symposium (pp. 236–243).

Cambridge, MA, USA: IEEE. http://doi.org/10.1109/NCA.2012.30

Hussain, A., & Ferneley, E. (2008). Usability metric for mobile application. In Proceedings

of the 10th International Conference on Information Integration and Web-based

Applications & Services - iiWAS ’08 (pp. 567–570). New York, New York, USA: ACM

Press. http://doi.org/10.1145/1497308.1497412

Intana, A. (2015). Formal Engineering Methodologies for Wireless Sensor Network

Development with Simulation (Doctoral Thesis). University of Southampton, UK.

Retrieved from http://eprints.soton.ac.uk/id/eprint/387248

Intana, A., Poppleton, M. R., & Merrett, G. V. (2014). A Formal Co-Simulation Approach

forWireless Sensor Network Development. In Proceedings of the 14th

InternationalWorkshop on Automated Verification of Critical Systems (AVoCS 2014)

(pp. 1–15). Electronic Communications of the EASST.

http://doi.org/10.14279/tuj.eceasst.70.969

Intana, A., Poppleton, M. R., & Merrett, G. V. (2015). A Model-based Trace Testing

Approach for Validation of Formal Co-simulation Models. In DEVS ’15 Proceedings of

the Symposium on Theory of Modeling & Simulation (pp. 181–188). Alexandria,

Virginia, USA.

ISO/IEC. (1996). Information technology — Syntactic metalanguage — Extended BNF

(ISO/IEC 14977). Geneva: The British Standards Institution. Retrieved from

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

144

ISO/IEC. (2011). Systems and software Quality Requirements and Evaluation (SQuaRE)

(ISO/IEC 25010). Switzerland: The British Standards Institution. Retrieved from

https://bsol-bsigroup-

com.lcproxy.shu.ac.uk/Bibliographic/BibliographicInfoData/000000000030215101

ISO/IEC. (2013). Information technology — Sensor networks: Sensor Network Reference

Architecture (SNRA) Part 4: Entity models (ISO/IEC 29182-4). Switzerland: The British

Standards Institution.

ISO/IEC. (2014a). Information technology — Sensor networks: Sensor Network Reference

Architecture (SNRA) — Part 3: Reference architecture views (ISO/IEC 29182-3).

Switzerland: The British Standards Institution.

ISO/IEC. (2014b). Information technology — Sensor networks: Sensor Network Reference

Architecture (SNRA) — Part 6: Applications (ISO/IEC 29182-6). Switzerland: The

British Standards Institution.

Jedlitschka, A., Ciolkowski, M., & Pfahl, D. (2008). Reporting Experiments in Software

Engineering. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to Advanced

Empirical Software Engineering (pp. 201–228). London: Springer-Verlag London

Limited. http://doi.org/10.1007/978-1-84800-044-5_8

Jie Liu, Chu, M., Liu, J., Reich, J., & Feng Zhao. (2003). State-Centric Programming for

Sensor-Actuator Network Systems. IEEE Pervasive Computing, 2(4), 50–62.

http://doi.org/10.1109/MPRV.2003.1251169

Jörges, S. (2013). Construction and Evolution of Code Generators: A Model-Driven and

Service-Oriented Approach. Berlin, Heidelberg: Springer Berlin Heidelberg.

http://doi.org/10.1007/978-3-642-36127-2

Julien, C., & Wehrle, K. (2013). 4th International Workshop on Software Engineering for

sensor network applications (SESENA 2013). In 2013 35th International Conference on

Software Engineering (ICSE) (pp. 1551–1552). San Francisco, CA, USA: IEEE.

http://doi.org/10.1109/ICSE.2013.6606782

Kabac, M., Consel, C., & Volanschi, N. (2016). Leveraging Declarations over the Lifecycle

of Large-Scale Sensor Applications. In 2016 Intl IEEE Conferences on Ubiquitous

Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People, and Smart World

Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (pp. 211–219). Toulouse,

France: IEEE. http://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-

SmartWorld.2016.0051

Kahraman, G., & Bilgen, S. (2015). A framework for qualitative assessment of domain-

specific languages. Software & Systems Modeling, 14(4), 1505–1526.

http://doi.org/10.1007/s10270-013-0387-8

Keshavarz, G. (2011). Metric for Early Measurement of Software Complexity. International

Journal on Computer Science and Engineering (IJCSE), 3(6), 2482–2490.

Khedo, K. K., & Subramanian, R. K. (2009). A Service Oriented Component-Based

Middleware Architecture for Wireless Sensor Networks. International Journal of

Computer Science and Network Security (IJCSNS), 9(3). Retrieved from

http://paper.ijcsns.org/07_book/200903/20090324.pdf

Khemapech, I., Miller, A., & Duncan, I. (2005). Simulating Wireless Sensor Networks

(Technical Report). University of St Andrews. Retrieved from

http://ahvaz.ist.unomaha.edu/azad/temp/sac/05-khemapech-simulation-wirless-sensor-

145

networks.pdf

Kirbaş, I., & Bayilmiş, C. (2012). HealthFace: A web-based remote monitoring interface for

medical healthcare systems based on a wireless body area sensor network. Turkish

Journal of Electrical Engineering and Computer Sciences, 20(4), 629–638.

http://doi.org/10.3906/elk-1011-934

Klatt, B. (2007). Xpand: A Closer Look at the model2text Transformation Language

(Technical Report). Germany: Chair for Software Design and Quality (SDQ), Institute

for Program Structures and Data Organization (IPD), University of Karlsruhe.

Kollár, J., Pietriková, E., & Chodarev, S. (2012). Abstraction in programming languages

according to domain-specific patterns. Acta Electrotechnica et Informatica, 12(2), 9–15.

http://doi.org/10.2478/v10198-012-0017-3

Kolovos, D. S., García-Domínguez, A., Rose, L. M., & Paige, R. F. (2017). Eugenia: towards

disciplined and automated development of GMF-based graphical model editors.

Software & Systems Modeling, 16(1), 229–255. http://doi.org/10.1007/s10270-015-

0455-3

Kosar, T., Martinez López, P. E., Barrientos, P. A., & Mernik, M. (2008). A preliminary

study on various implementation approaches of domain-specific language. Information

and Software Technology, 50(5), 390–405. http://doi.org/10.1016/j.infsof.2007.04.002

Kouche, A. El. (2013). Wireless Sensor Network Platform for Harsh Industrial Environments

(Doctoral Thesis). Queen’s University, Ontario, Canada. Retrieved from

http://hdl.handle.net/1974/8342

Kovatsch, M., Mayer, S., & Ostermaier, B. (2012). Moving Application Logic from the

Firmware to the Cloud: Towards the Thin Server Architecture for the Internet of Things.

In 2012 Sixth International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing (pp. 751–756). IEEE. http://doi.org/10.1109/IMIS.2012.104

Koziolek, H. (2008). Goal, Question, Metric. In I. Eusgeld, F. C. Freiling, & R. Reussner

(Eds.), Dependability Metrics (pp. 39–42). Berlin, Heidelberg: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-540-68947-8_6

Kumar, S. A. A., & Simonsen, K. I. F. (2014). Towards a Model-Based Development

Approach for Wireless Sensor-Actuator Network Protocols Position. In Proceedings of

the 4th ACM SIGBED International Workshop on Design, Modeling, and Evaluation of

Cyber-Physical Systems - CyPhy ’14 (pp. 35–39). Berlin, Germany: ACM Press.

http://doi.org/10.1145/2593458.2593465

Kumar S., A. A., Ovsthus, K., & Kristensen., L. M. (2014). An Industrial Perspective on

Wireless Sensor Networks — A Survey of Requirements, Protocols, and Challenges.

IEEE Communications Surveys & Tutorials, 16(3), 1391–1412.

http://doi.org/10.1109/SURV.2014.012114.00058

Kunii, T. L., & Hisada, M. (2000). Overcoming Software Complexity by Constructing

Abstraction Hierarchies - The Principles and Applications. In Proceedings Sixth IEEE

International Conference on Engineering of Complex Computer Systems. ICECCS 2000

(pp. 126–130). Tokyo, Japan: IEEE Comput. Soc.

http://doi.org/10.1109/ICECCS.2000.873936

Kurpjuweit, S., & Winter, R. (2007). Viewpoint-based Meta Model Engineering. In Manfred

Reichert, S. Strecker, & K. Turowski (Eds.), the 2nd International Workshop on Enter-

prise Modelling and Information Systems Architectures (pp. 143–158). Germany:

Gesellschaft für Informatik. Retrieved from

146

http://stl.mie.utoronto.ca/publications/aimag-em.pdf

Kurtz, T. E. (1978, August 1). BASIC. ACM SIGPLAN Notices - Special Issue: History of

Programming Languages Conference, pp. 103–118.

http://doi.org/10.1145/960118.808376

Kushwaha, M., Amundson, I., Koutsoukos, X., Neema, S., & Sztipanovits, J. (2007). OASiS:

A Programming Framework for Service-Oriented Sensor Networks. In 2007 2nd

International Conference on Communication Systems Software and Middleware (pp. 1–

8). Bangalore, India: IEEE. http://doi.org/10.1109/COMSWA.2007.382431

Kyungtae Kang, Min-Young Nam, & Lui Sha. (2013). Model-Based Analysis of Wireless

System Architectures for Real-Time Applications. IEEE Transactions on Mobile

Computing, 12(2), 219–232. http://doi.org/10.1109/TMC.2011.260

Lange, S., Lösche, J., & Piotrowski, K. (2014). Tool-supported Requirements-based

Topology Design for Wireless Sensor Networks. In the 2014 Federated Conference on

Computer Science and Information Systems (pp. 1043–1047). Warsaw, Poland: IEEE.

http://doi.org/10.15439/2014F210

Lárusdóttir, M. K., & Ármannsdóttir, S. E. (2005). A Case Study of Software Replacement.

In Proceedings of the international conference on software development (pp. 129–140).

Reykjavik, Iceland.

Laukkarinen, T., Suhonen, J., & Hännikäinen, M. (2012). A Survey of Wireless Sensor

Network Abstraction for Application Development. International Journal of Distributed

Sensor Networks, 8(12), 740268. http://doi.org/10.1155/2012/740268

Lazarescu, M. (2017). Wireless Sensor Networks for the Internet of Things: Barriers and

Synergies. In Components and Services for IoT Platforms (pp. 155–186). Cham:

Springer International Publishing. http://doi.org/10.1007/978-3-319-42304-3_9

Lazarescu, M., & Lavagno, L. (2016). Wireless Sensor Networks. In S. Ha & J. Teich (Eds.),

Handbook of Hardware/Software Codesign (pp. 1–42). Dordrecht: Springer

Netherlands. http://doi.org/10.1007/978-94-017-7358-4_38-1

Leelavathi, G., Shaila, K., Venugopal, K. R., & Patnaik, L. M. (2013). Design Issues on

Software Aspects and Simulation Tools for Wireless Sensor Networks. International

Journal of Network Security & Its Applications, 5(2), 47–64.

http://doi.org/10.5121/ijnsa.2013.5204

Levis, P. (2006). TinyOS Programming. Retrieved from

http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf

Levis, P. (2012). Experiences from a Decade of TinyOS Development. In 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI ’12) (pp. 207–

220). Hollywood, CA, USA: USENIX Association. Retrieved from

http://dl.acm.org/citation.cfm?id=2387880.2387901

Levis, P., & Culler, D. (2002). Maté: A Tiny Virtual Machine for Sensor Networks. In

ASPLOS X Proceedings of the 10th international conference on Architectural support

for programming languages and operating systems (pp. 85–95). San Jose, California,

USA: ACM Press. http://doi.org/10.1145/605397.605407

Levis, P., & Gay, D. (2009). TinyOS Programming. Cambridge: Cambridge University Press.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., … Culler, D.

(2005). TinyOS: An Operating System for Sensor Networks. In W. Weber, J. M.

Rabaey, & E. Aarts (Eds.), Ambient Intelligence (pp. 115–148). Berlin/Heidelberg:

147

Springer-Verlag Berlin Heidelberg. http://doi.org/10.1007/3-540-27139-2_7

Liu, T., & Martonosi, M. (2003, October 1). Impala: A Middleware System for Managing

Autonomic, Parallel Sensor Systems. ACM SIGPLAN Notices, pp. 107–118.

http://doi.org/10.1145/966049.781516

Lopes, L., & Martins, F. (2016). A safe-by-design programming language for wireless sensor

networks. Journal of Systems Architecture, 63, 16–32.

http://doi.org/10.1016/j.sysarc.2016.01.004

Losilla, F., Vicente-Chicote, C., Álvarez, B., Iborra, A., & Sánchez, P. (2007). Wireless

Sensor Network Application Development: An Architecture-Centric MDE Approach. In

F. Oquendo (Ed.), Software Architecture (pp. 179–194). Berlin, Heidelberg: Springer

Berlin Heidelberg. http://doi.org/10.1007/978-3-540-75132-8_15

Luo, L., Abdelzaher, T. F., He, T., & Stankovic, J. A. (2006). EnviroSuite: An

Environmentally Immersive Programming Framework for Sensor Networks. ACM

Transactions on Embedded Computing Systems, 5(3), 543–576.

http://doi.org/10.1145/1165780.1165782

Mahmood, M. A., Seah, W. K. G., & Welch, I. (2015). Reliability in wireless sensor

networks: A survey and challenges ahead. Computer Networks, 79, 166–187.

http://doi.org/10.1016/j.comnet.2014.12.016

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Anderson, J. (2002). Wireless

sensor networks for habitat monitoring. In Proceedings of the 1st ACM international

workshop on Wireless sensor networks and applications - WSNA ’02 (p. 88). New York,

New York, USA: ACM Press. http://doi.org/10.1145/570738.570751

Maissa, Y. B., Kordon, F., Mouline, S., & Thierry-Mieg, Y. (2012). Modeling and analyzing

wireless sensor networks with VeriSensor. In PNSE’12 International Workshop on Petri

Nets and Software Engineering (Vol. 851, pp. 60–76). Hamburg, Germany.

Malan, D., Fulford-Jones, T., Welsh, M., & Moulton, S. (2004). Codeblue: An Ad Hoc

Sensor Network Infrastructure for Emergency Medical Care. In International Workshop

on Wearable and Implantable Body Sensor Networks (pp. 12–14). London, UK.

Retrieved from http://icawww.epfl.ch/luo/WAMES

2004_files/WAMESproceedings.pdf#page=12

Malavolta, I., & Muccini, H. (2014). A Study on MDE Approaches for Engineering Wireless

Sensor Networks. In 2014 40th EUROMICRO Conference on Software Engineering and

Advanced Applications (pp. 149–157). Verona, Italy: IEEE.

http://doi.org/10.1109/SEAA.2014.61

Marques, E., Balegas, V., Barroca, B. F., Barisic, A., & Amaral, V. (2012). The RPG DSL: A

Case Study of Language Engineering using MDD for Generating RPG Games for

Mobile Phones. In DSM ’12 Proceedings of the 2012 workshop on Domain-specific

modeling (pp. 13–18). Tucson, Arizona, USA: ACM Press.

http://doi.org/10.1145/2420918.2420923

Marques, I. L., da Silva Teofilo, M. R., & Rosa, N. S. (2013). Durin: A development

environment for Wireless Sensor Network. In 2013 4th International Workshop on

Software Engineering for Sensor Network Applications (SESENA) (pp. 19–23). San

Francisco, CA, USA: IEEE. http://doi.org/10.1109/SESENA.2013.6612260

Matthys, N., Huygens, C., Hughes, D., Michiels, S., & Joosen, W. (2012). A Component and

Policy-Based Approach for Efficient Sensor Network Reconfiguration. In 2012 IEEE

International Symposium on Policies for Distributed Systems and Networks (pp. 53–60).

148

Chapel Hill, NC, USA: IEEE. http://doi.org/10.1109/POLICY.2012.17

Meana-Llorián, D., González García, C., Pelayo G-Bustelo, B. C., Cueva Lovelle, J. M., &

Garcia-Fernandez, N. (2016). IoFClime: The fuzzy logic and the Internet of Things to

control indoor temperature regarding the outdoor ambient conditions. Future Generation

Computer Systems. http://doi.org/10.1016/j.future.2016.11.020

Mellor, S. J., Clark, A. N., & Futagami, T. (2003). Model-driven development - Guest

editor’s introduction. IEEE Software, 20(5), 14–18.

http://doi.org/10.1109/MS.2003.1231145

Mellor, S. J., Scott, K., Uhl, A., & Weise, D. (2004). MDA Distilled: Principles of Model-

Driven Architecture. Addison-Wesley.

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-specific

languages. ACM Computing Surveys (CSUR), 37(4), 316–344.

http://doi.org/10.1145/1118890.1118892

Miller, J. S., Dinda, P. a., & Dick, R. P. (2009). Evaluating a BASIC approach to sensor

network node programming. In the 7th ACM Conference on Embedded Networked

Sensor Systems (pp. 155–168). Berkeley, California, USA: ACM.

http://doi.org/10.1145/1644038.1644054

Mohamed, N., & Al-Jaroodi, J. (2011). A survey on service-oriented middleware for wireless

sensor networks. Service Oriented Computing and Applications, 5(2), 71–85.

http://doi.org/10.1007/s11761-011-0083-x

Mohorcic, M., Smolnikar, M., & Javornik, T. (2013). Wireless Sensor Network Based

Infrastructure for Experimentally Driven Research. In Wireless Communication Systems

(ISWCS 2013), Proceedings of the Tenth International Symposium on (pp. 375–379).

Ilmenau, Germany: VDE.

Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of conceptual

models: current state and future directions. Data & Knowledge Engineering, 55(3), 243–

276. http://doi.org/10.1016/j.datak.2004.12.005

Mottola, L., & Picco, G. Pietro. (2011). Programming wireless sensor networks. ACM

Computing Surveys (CSUR), 43(3), 1–51. http://doi.org/10.1145/1922649.1922656

Mottola, L., & Picco, G. Pietro. (2012). Middleware for wireless sensor networks: an outlook.

Journal of Internet Services and Applications, 3(1), 31–39.

http://doi.org/10.1007/s13174-011-0046-7

Mozumdar, M. M. R., Gregoretti, F., Lavagno, L., Vanzago, L., & Olivieri, S. (2008). A

Framework for Modeling, Simulation and Automatic Code Generation of Sensor

Network Application. In 5th Annual IEEE Communications Society Conference on

Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON ’08. (pp. 515–

522). San Francisco, California, USA: IEEE. http://doi.org/10.1109/SAHCN.2008.68

Nachman, L., Huang, J., Shahabdeen, J., Adler, R., & Kling, R. (2008). IMOTE2: Serious

Computation at the Edge. In 2008 International Wireless Communications and Mobile

Computing Conference (pp. 1118–1123). Crete Island, Greece: IEEE.

http://doi.org/10.1109/IWCMC.2008.194

Naiditch, D. (1999). Selecting a Programming Language for Your Project. IEEE Aerospace

and Electronic Systems Magazine, 14(9), 11–14. http://doi.org/10.1109/62.793447

Nakamura, E. F., Loureiro, A. a. F., & Frery, A. C. (2007). Information fusion for wireless

sensor networks. ACM Computing Surveys, 39(3).

149

http://doi.org/10.1145/1267070.1267073

Naumowicz, T., Schröter, B., & Schiller, J. (2009). Prototyping a software factory for

wireless sensor networks. In Proceedings of the 7th ACM Conference on Embedded

Networked Sensor Systems - SenSys ’09 (pp. 369–370). Berkeley, California, USA:

ACM Press. http://doi.org/10.1145/1644038.1644106

Nguyen, X. T., Tran, H. T., Baraki, H., & Geihs, K. (2015). FRASAD: A framework for

model-driven IoT Application Development. In 2015 IEEE 2nd World Forum on

Internet of Things (WF-IoT) (pp. 387–392). IEEE. http://doi.org/10.1109/WF-

IoT.2015.7389085

Novikov, A. M., & Novikov, D. A. (2013). Research Methodology: From Philosophy of

Science to Research Design. (J.-L. Forrest, Ed.). Taylor & Francis Group, LLC.

Oldevik, J., Neple, T., Grønmo, R., Aagedal, J., & Berre, A.-J. (2005). Toward Standardised

Model to Text Transformations. In K. D. Hartman A. (Ed.), Model Driven Architecture

– Foundations and Applications (pp. 239–253). Springer, Berlin, Heidelberg.

http://doi.org/10.1007/11581741_18

Oppermann, F. J., Boano, C. A., & Römer, K. (2014). A Decade of Wireless Sensing

Applications: Survey and Taxonomy. In H. M. Ammari (Ed.), The Art of Wireless

Sensor Networks (Vol. 1, pp. 11–50). Springer Berlin Heidelberg.

http://doi.org/10.1007/978-3-642-40009-4_2

Oppermann, F. J., Romer, K., Mottola, L., Picco, G. Pietro, & Gaglione, A. (2014). Design

and compilation of an object-oriented macroprogramming language for wireless sensor

networks. In 39th Annual IEEE Conference on Local Computer Networks Workshops

(pp. 574–582). Edmonton, AB, Canada: IEEE.

http://doi.org/10.1109/LCNW.2014.6927705

Oshana, R., & Kareling, M. (2013). Software Engineering for Embedded Systems: Methods,

Practical Techniques and Applications. Elsevier Inc.

Ouadjaout, A., Miné, A., Lasla, N., & Badache, N. (2016). Static analysis by abstract

interpretation of functional properties of device drivers in TinyOS. Journal of Systems

and Software, 120, 114–132. http://doi.org/10.1016/j.jss.2016.07.030

Parr, T. (2007). The Definitive ANTLR Reference: Building Domain-Specific Languages. The

Pragmatic Bookshelf. The Pragmatic Bookshelf. Retrieved from

http://www.pragprog.com/titles/tpantlr/the-definitive-antlr-reference

Peter, S., & Langendorfer, P. (2012). Tool-Supported Methodology for Component-Based

Design of Wireless Sensor Network Applications. In 2012 IEEE 36th Annual Computer

Software and Applications Conference Workshops (pp. 526–531). IEEE.

http://doi.org/10.1109/COMPSACW.2012.98

Picco, G. Pietro. (2010). Software Engineering and Wireless Sensor Networks: Happy

Marriage or Consensual Divorce? In Proceedings of the FSE/SDP workshop on Future

of software engineering research - FoSER ’10 (pp. 283–286). Santa Fe, New Mexico,

USA: ACM Press. http://doi.org/10.1145/1882362.1882421

Piotrowski, K., & Peter, S. (2013). Sens4U: Wireless Sensor Network Applications for

Environment Monitoring Made Easy. In 2013 4th International Workshop on Software

Engineering for Sensor Network Applications (SESENA) (pp. 37–42). San Francisco,

CA, USA: IEEE. http://doi.org/10.1109/SESENA.2013.6612264

Polastre, J., Szewczyk, R., & Culler, D. (2005). Telos: enabling ultra-low power wireless

150

research. In IIPSN ’05 Proceedings of the 4th international symposium on Information

processing in sensor networks (pp. 364–369). Los Angeles, California, USA: IEEE.

http://doi.org/10.1109/IPSN.2005.1440950

Productivity Commission. (2013). On efficiency and effectiveness : some definitions.

COMMONWEALTH OF AUSTRALIA.

Randhawa, S. (2014). Research Challenges in Wireless Sensor Network: A State of the Play.

In Conference Proceeding of National conference on convergence of science,

engineering & management in education and research. PUNJAB, INDIA. Retrieved

from http://arxiv.org/abs/1404.1469

Ravichandran, S., Chandrasekar, R. K., Selcuk Uluagac, A., & Beyah, R. (2016). A simple

visualization and programming framework for wireless sensor networks: PROVIZ. Ad

Hoc Networks, 53, 1–16. http://doi.org/10.1016/j.adhoc.2016.06.015

Rawat, P., Singh, K. D., Chaouchi, H., & Bonnin, J. M. (2014). Wireless sensor networks: a

survey on recent developments and potential synergies. The Journal of Supercomputing,

68(1), 1–48. http://doi.org/10.1007/s11227-013-1021-9

Riva, O., & Borcea, C. (2007). The Urbanet Revolution: Sensor Power to the People! IEEE

Pervasive Computing, 6(2), 41–49. http://doi.org/10.1109/MPRV.2007.46

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A

Review and Discussion. Computer Science Education, 13(2), 137–172.

http://doi.org/10.1076/csed.13.2.137.14200

Rodrigues, T., Batista, T., Delicato, F. C., & Pires, P. de F. (2015). Architecture-Driven

Development Approach for WSAN Applications. In 2015 IEEE 13th International

Conference on Embedded and Ubiquitous Computing (pp. 68–75). Porto, Portugal:

IEEE. http://doi.org/10.1109/EUC.2015.15

Rodrigues, T., Batista, T., Delicato, F. C., Pires, P. F., & Zomaya, A. Y. (2013). Model-

driven approach for building efficient Wireless Sensor and Actuator Network

applications. In 2013 4th International Workshop on Software Engineering for Sensor

Network Applications (SESENA) (pp. 43–48). San Francisco, CA, USA: IEEE.

http://doi.org/10.1109/SESENA.2013.6612265

Rodrigues, T., Dantas, P., Delicato, F. C., Pires, P. F., Pirmez, L., Batista, T., … Zomaya, A.

(2011). Model-Driven Development of Wireless Sensor Network Applications. In 2011

IFIP 9th International Conference on Embedded and Ubiquitous Computing (pp. 11–

18). Melbourne, VIC, Australia: IEEE. http://doi.org/10.1109/EUC.2011.50

Rodrigues, T., Delicato, F. C., Batista, T., Pires, P. F., & Pirmez, L. (2015). An approach

based on the domain perspective to develop WSAN applications. Software & Systems

Modeling, 1(1), 1–29. http://doi.org/10.1007/s10270-015-0498-5

Romer, K., & Mattern, F. (2004). The design space of wireless sensor networks. IEEE

Wireless Communications, 11(6), 54–61. http://doi.org/10.1109/MWC.2004.1368897

Rothenberg, J. (1989). The Nature of Modeling. In L. E. Widman, K. A. Loparo, & N. R.

Nielsen (Eds.), AI, Simulation & Modeling (p. 75−92). John Wiley & Sons. Retrieved

from www.rand.org/pubs/notes/2007/N3027.pdf

Sadilek, D. (2007). Prototyping Domain-Specific Languages for Wireless Sensor Networks.

In Proc. of the 4th Int. Workshop on Software Language Engineering. Retrieved from

http://www2.informatik.hu-

berlin.de/~sadilek/publications/2007/ATEM07prototypingDSLs.pdf

151

Sadilek, D. (2008). Domain-Specific Languages for Wireless Sensor Networks. In T.

Kuehne, W. Reisig, & F. Steimann (Eds.), Modellierung (pp. 237–242). Berlin,

Germany: Gesellschaft fuer Informatik. Retrieved from

http://subs.emis.de/LNI/Proceedings/Proceedings127/article2121.html

Salman, A. J., & Al-Yasiri, A. (2016a). Developing Domain-Specific Language for Wireless

Sensor Network application development. In 2016 11th International Conference for

Internet Technology and Secured Transactions (ICITST) (pp. 301–308). Barcelona,

Spain: IEEE. http://doi.org/10.1109/ICITST.2016.7856718

Salman, A. J., & Al-Yasiri, A. (2016b). SenNet: A Programming Toolkit to Develop Wireless

Sensor Network Applications. In 2016 8th IFIP International Conference on New

Technologies, Mobility and Security (NTMS) (pp. 1–7). Larnaca, Cyprus: IEEE.

http://doi.org/10.1109/NTMS.2016.7792476

Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales.

Journal of Extension, 37(2), 1–5. Retrieved from

http://www.joe.org/joe/1999april/tt3.php?ref

Schmitt, C., Kuckuk, S., Kostler, H., Hannig, F., & Teich, J. (2014). An Evaluation of

Domain-Specific Language Technologies for Code Generation. In 2014 14th

International Conference on Computational Science and Its Applications (pp. 18–26).

Guimaraes, Portugal: IEEE. http://doi.org/10.1109/ICCSA.2014.16

Schuette, R., & Rotthowe, T. (1998). The Guidelines of Modeling – An Approach to Enhance

the Quality in Information Models. In L. TW., R. S., & L. L. M. (Eds.), International

Conference on Conceptual Modeling (pp. 240–254). Berlin, Heidelberg: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-540-49524-6_20

Seidewitz, E. (2002). What Models Means. IEEE Software, 20(5), 26–32.

http://doi.org/10.1109/MS.2003.1231147

Selic, B. (2003). The Pragmatics of Model-Driven Development. IEEE Software, 20(5), 19–

25. http://doi.org/10.1109/MS.2003.1231146

Serna, M. A., Sreenan, C. J., & Fedor, S. (2015). A visual programming framework for

wireless sensor networks in smart home applications. In 2015 IEEE Tenth International

Conference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP) (pp. 1–6). Singapore, Singapore: IEEE.

http://doi.org/10.1109/ISSNIP.2015.7106946

Shimizu, R., Tei, K., Fukazawa, Y., & Honiden, S. (2012). Case Studies on the Development

ofWireless Sensor Network Applications Using Multiple Abstraction Levels. In 2012

Third International Workshop on Software Engineering for Sensor Network

Applications (SESENA) (pp. 22–28). Zurich, Switzerland: IEEE.

http://doi.org/10.1109/SESENA.2012.6225730

Shimizu, R., Tei, K., Fukazawa, Y., & Honiden, S. (2014). Toward A Portability Framework

with Multi-Level Models for Wireless Sensor Network Software. In 2014 International

Conference on Smart Computing (pp. 253–260). Hong Kong, China: IEEE.

http://doi.org/10.1109/SMARTCOMP.2014.7043866

Shimizu, R., Tei, K., Fukazawa, Y., & Shinichi, S. (2011). Model driven development for

rapid prototyping and optimization of wireless sensor network applications. In

Proceeding of the 2nd workshop on Software engineering for sensor network

applications - SESENA ’11 (pp. 31–36). Waikiki, Honolulu, HI, USA: ACM Press.

http://doi.org/10.1145/1988051.1988058

152

Shull, F., Singer, J., & Sjøberg, D. I. K. (2008). Guide to Advanced Empirical Software

Engineering (Vol. 1). Springer-Verlag London Limited.

http://doi.org/10.1017/CBO9781107415324.004

Simon, D., Cifuentes, C., Cleal, D., Daniels, J., & White, D. (2006). JavaTM on the bare metal

of wireless sensor devices. In Proceedings of the 2nd international conference on

Virtual execution environments - VEE ’06 (pp. 78–88). Ottawa, Ontario, Canada: ACM

Press. http://doi.org/10.1145/1134760.1134773

Singh, A. P., Vyas, O. P., & Varma, S. (2014). Flexible Service Oriented Network

Architecture for Wireless Sensor Networks. International Journal of Computers

Communications & Control (IJCCC), 9(5), 610–622.

Skubch, H., Wagner, M., Reichle, R., & Geihs, K. (2011). A Modelling Language for

Cooperative Plans in Highly Dynamic Domains. Mechatronics, 21(2), 423–433.

http://doi.org/10.1016/j.mechatronics.2010.10.006

Smith, R. B. (2007). SPOTWorld and the Sun SPOT. In Proceedings of the 6th international

conference on Information processing in sensor networks - IPSN ’07 (pp. 5650–566).

Cambridge, Massachusetts, USA: ACM Press. http://doi.org/10.1145/1236360.1236442

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2008). EMF: Eclipse Modeling

Framework. (E. Gamma, L. Nackman, & J. Wiegand, Eds.) (2nd ed.). Addison-Wesley

Professional.

Stephan, M., & Cordy, J. R. (2012). A Survey of Methods and Applications of Model

Comparison (Technical Report 2011-582). Queen’s University. Kingston, Ontario,

Canada.

Strazdins, G., & Selavo, L. (2014). Wireless Sensor Network Software Design Rules. Baltic

Journal of Modern Computing, 2(2), 84–115.

Sugihara, R., & Gupta, R. K. (2008). Programming models for sensor networks. ACM

Transactions on Sensor Networks, 4(2), 1–29. http://doi.org/10.1145/1340771.1340774

Sun, Y., Demirezen, Z., Mernik, M., Gray, J., & Bryant, B. (2008). Is My DSL a Modeling or

Programming Language? In J. Lawall & L. Réveillère (Eds.), Domain-Specific Program

Development. Nashville, United States. Retrieved from https://hal.archives-

ouvertes.fr/hal-00350257

Taherkordi, A., Eliassen, F., & Johnsen, E. B. (2013). Behavioural design of sensor network

applications using activity-driven states. In 2013 4th International Workshop on

Software Engineering for Sensor Network Applications (SESENA) (pp. 13–18). San

Francisco, CA, USA: IEEE. http://doi.org/10.1109/SESENA.2013.6612259

Tei, K., Shimizu, R., Fukazawa, Y., & Honiden, S. (2015). Model-Driven-Development-

Based Stepwise Software Development Process for Wireless Sensor Networks. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 45(4), 675–687.

http://doi.org/10.1109/TSMC.2014.2360506

Texas Instruments. (2008). MSP430 Microcontroller Datasheet (No. SLAS241). Retrieved

from http://www.ti.com/lit/ds/slas241i/slas241i.pdf

Thang, N. X. (2015). Model-driven development of sensor network applications with

optimization of non- functional constraints (Doctoral Thesis). University of Kassel,

Germany.

The TinyOS 2.x Working Group. (2005). TinyOS 2.0. In Proceedings of the 3rd international

conference on Embedded networked sensor systems - SenSys ’05 (p. 320). San Diego,

153

California, USA: ACM Press. http://doi.org/10.1145/1098918.1098985

Tranquillini, S., Spieß, P., Daniel, F., Karnouskos, S., Casati, F., Oertel, N., … Voigt, T.

(2012). Process-Based Design and Integration of Wireless Sensor Network Applications.

In Barros A., G. A., & K. E. (Eds.), Business Process Management (pp. 134–149).

Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-32885-5_10

Tullis, T., & Albert, B. (2013). Measuring the User Experience: Collecting, Analyzing, and

Presenting Usability Metrics. (M. Dunkerley, Ed.) (2nd ed.). Elsevier Inc.

Tunc, H., Taddese, A., Volgyesi, P., Sallai, J., Valdastri, P., & Ledeczi, A. (2016). Web-

based integrated development environment for event-driven applications. In

SoutheastCon 2016 (pp. 1–8). Norfolk, VA, USA: IEEE.

http://doi.org/10.1109/SECON.2016.7506646

Valero, M., Uluagac, S., Venkatachalam, S., Ramalingam, K. C., & Beyah, R. (2012). The

Monitoring Core: A framework for sensor security application development. In 2012

IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012)

(pp. 263–271). Las Vegas, NV, USA: IEEE.

http://doi.org/10.1109/MASS.2012.6502525

Venčkauskas, A., Štuikys, V., Jusas, N., & Burbaitė, R. (2016). Model-Driven Approach for

Body Area Network Application Development. Sensors, 16(5), 670.

http://doi.org/10.3390/s16050670

Vicente-chicote, C., Losilla, F., Alvarez, B., Iborra, A., & Sanchez, P. (2007). Applying

MDE to the development of flexible and reusable wireless sensor networks.

International Journal of Cooperative Information Systems, 16, 393–412.

http://doi.org/10.1142/S021884300700172X

Vieira, L. F. M., Vitorino, B. A. D., Vieira, M. A. M., Silva, D. C., Fernandes, A. O., &

Loureiro, A. A. F. (2005). WISDOM: a Visual Development Framework for Multi-

platform Wireless Sensor Networks. In 2005 IEEE Conference on Emerging

Technologies and Factory Automation (Vol. 2, pp. 527–534). Catania, Italy: IEEE.

http://doi.org/10.1109/ETFA.2005.1612721

Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., … Wachsmuth,

G. (2013). DSL Engineering: Designing, Implementing and Using Domain-Specific

Languages. dslbook.org. Retrieved from

http://publications.st.ewi.tudelft.nl/bibtex/2551?noheader=1

Volter, M. (2011). From Programming to Modeling - and Back Again. IEEE Software, 28(6),

20–25. http://doi.org/10.1109/MS.2011.139

Walker, Z., Moh, M., & Moh, T.-S. (2007). A Development Platform for Wireless Sensor

Networks with Biomedical Applications. In 2007 4th IEEE Consumer Communications

and Networking Conference (pp. 768–772). Las Vegas, NV, USA: IEEE.

http://doi.org/10.1109/CCNC.2007.156

Wang, B., & Baras, J. S. (2012). Integrated Modeling and Simulation Framework for

Wireless Sensor Networks. In 2012 IEEE 21st International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprises (pp. 268–273). IEEE.

http://doi.org/10.1109/WETICE.2012.28

Wang, M., Cao, J., Li, J., & Dasi, S. (2008). Middleware for Wireless Sensor Networks: A

Survey. Journal of Computer Science and Technology, 23(3), 305–326.

http://doi.org/10.1007/s11390-008-9135-x

154

Wang, Q., & Balasingham, I. (2010). Wireless Sensor Networks - An Introduction. In G. V

Merrett & Y. K. Tan (Eds.), Wireless Sensor Networks: Application-Centric Design.

InTech. http://doi.org/10.5772/13225

Weise, T., Zapf, M., Khan, M. U., & Geihs, K. (2009). Combining Genetic Programming and

Model-Driven Development. International Journal of Computational Intelligence and

Applications, 8(1), 37–52. http://doi.org/10.1142/S1469026809002436

Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., & Welsh, M.

(2006). Deploying a Wireless Sensor Network on an Active Volcano. IEEE Internet

Computing, 10(2), 18–25. http://doi.org/10.1109/MIC.2006.26

Yaacoub, E., Kadri, A., Mushtaha, M., & Abu-Dayya, A. (2013). Air Quality Monitoring and

Analysis in Qatar using a Wireless Sensor Network Deployment. In 2013 9th

International Wireless Communications and Mobile Computing Conference (IWCMC)

(pp. 596–601). Sardinia, Italy: IEEE. http://doi.org/10.1109/IWCMC.2013.6583625

Yu, S., & Zhou, S. (2010). A Survey on Metric of Software Complexity. In 2010 2nd IEEE

International Conference on Information Management and Engineering (Vol. 5, pp.

352–356). Chengdu, China: IEEE. http://doi.org/10.1109/ICIME.2010.5477581

Yuce, M. R. (2010). Implementation of wireless body area networks for healthcare systems.

Sensors and Actuators A: Physical, 162(1), 116–129.

http://doi.org/10.1016/j.sna.2010.06.004

Zhang, Q., Li, J., Rong, J., Xu Weiheng, & He Jinping. (2011). Application of WSN in

precision forestry. In IEEE 2011 10th International Conference on Electronic

Measurement & Instruments (pp. 320–323). Chengdu, China: IEEE.

http://doi.org/10.1109/ICEMI.2011.6038006

Zhao, F., & Liu, J. (2005). Towards semantic services for sensor-rich information systems. In

2nd International Conference on Broadband Networks, 2005. (pp. 44–51). IEEE.

http://doi.org/10.1109/ICBN.2005.1589709

Zheng, X., Perry, D. E., & Julien, C. (2014). BraceForce: A Middleware to Enable Sensing

Integration in Mobile Applications for Novice Programmers. In Proceedings of the 1st

International Conference on Mobile Software Engineering and Systems - MOBILESoft

2014 (pp. 8–17). Hyderabad, India: ACM Press.

http://doi.org/10.1145/2593902.2593907

Zouinkhi, A., Mekki, K., & Abdelkrim, M. N. (2014). Application and Network Layers

Design for Wireless Sensor Network to Supervise Chemical Active Product Warehouse.

International Journal of Computer Science, Engineering and Applications (IJCSEA),

4(6), 53–72. http://doi.org/10.5121/ijcsea.2014.4605

155

APPENDIX A: Conferences and Training Courses

No. Preliminary Study and Training Courses Date

1 Attending MSc Module “Network programming and simulation” 2nd semester 2014/2015

2 Attending MSc Module “Software Architecture and Security” 2nd semester 2014/2015

3
Attending MSc Module “Wireless and Mobile

Telecommunications”
2nd semester 2014/2015

4
College Dean’s Annual Research Showcase Event- Submitting a

poster and an abstract
18th June 2014

5 Attending symposium (PGNET2014, Liverpool) 23-24 /06/ 2014

6
College Dean’s Annual Research Showcase Event- Submitting a

poster and an abstract
28th June 2015

7
Attending The 11th International Conference for Internet

Technology and Secured Transactions (ICITST-2016)
5-7 December 2016

156

APPENDIX B: Surveys

B.1 Sample of Research Articles Referred to WSN

Programming Complexity

The below table includes a sample list of the academic articles that highlighted the complexity

in developing and programming WSN applications.

Academic Article Article Type

(Essaadi et al., 2017) Book Section

(Ouadjaout et al., 2016) Journal Article

(Chandra & Dwivedi, 2015) Conference Paper

(Delamo et al., 2015) Journal Article

(Tei et al., 2015) Journal Article

(Afanasov et al., 2014) Conference Paper

(Cecchinel, Mosser, & Collet, 2014) Book Section

(Delicato et al., 2014) Book Section

(Malavolta & Muccini, 2014) Conference Paper

(Shimizu et al., 2014) Conference Paper

(Afanasov, Mottola, & Ghezzi, 2013) Conference Paper

(Dantas et al., 2013) Conference Paper

(Elsts et al., 2013) Conference Paper

(Julien & Wehrle, 2013) Conference Paper

(Beal et al., 2012) Journal Article

(Shimizu et al., 2012) Conference Paper

(Ceriotti et al., 2011) Conference Paper

(Geihs et al., 2011) Conference Paper

(Mottola & Picco, 2011) Journal Article

(Shimizu et al., 2011) Conference Paper

(Dunkels et al., 2010) Technical Report

(Picco, 2010) Conference Paper

(Khedo & Subramanian, 2009) Journal Article

(Sadilek, 2008) Conference Paper

(Sugihara & Gupta, 2008) Journal Article

(Losilla et al., 2007) Book Section

(Sadilek, 2007) Conference Paper

(Vicente-chicote, Losilla, Alvarez, Iborra, & Sanchez, 2007) Journal Article

(Bakshi, Prasanna, Reich, & Larner, 2005) Conference Paper

(Boulis, Han, & Srivastava, 2003) Conference Paper

157

B.2 Sample of Research Articles Referred to WSN Novice

Developers

The below table includes a sample list of the academic articles that highlighted the importance

of novice developers and how we have to encourage them to develop their own applications.

Academic Article Article Type

(Ravichandran et al., 2016) Journal Article

(Tunc et al., 2016) Conference Paper

(Chandra & Dwivedi, 2015) Conference Paper

(Nguyen, Tran, Baraki, & Geihs, 2015) Conference Paper

(Serna, Sreenan, & Fedor, 2015) Conference Paper

(Singh, Vyas, & Varma, 2014) Journal Article

(Strazdins & Selavo, 2014) Journal Article

(Zheng, Perry, & Julien, 2014) Conference Paper

(Elsts & Selavo, 2013) Journal Article

(Valero et al., 2012) Conference Paper

(Bai, Dick, Dinda, & Chou, 2011) Conference Paper

(Hansen & Kusy, 2011) Book Section

(Gordon et al., 2010) Conference Paper

(Avilés-López & García-Macías, 2009) Journal Article

(Bai, Dick, & Dinda, 2009) Conference Paper

(Miller et al., 2009) Conference Paper

(Khemapech, Miller, & Duncan, 2005) Technical Report

(Vieira et al., 2005) Conference Paper

(Zhao & Liu, 2005) Conference Paper

(Levis & Culler, 2002) Conference Paper

B.3 Sample of Research Documents Referred to Domain

Experts

The below table includes a sample list of the academic articles that highlighted the importance

of domain experts and how we have to encourage them to develop their own applications.

Academic Article Article Type

(Essaadi et al., 2017) Book Section

(Lazarescu, 2017) Book Section

(Antonopoulos et al., 2016) Journal Article

(Cecchinel et al., 2016) Conference Paper

(De-Farias, Brito, et al., 2016) Journal Article

158

(Kabac et al., 2016) Conference Paper

(Lopes & Martins, 2016) Journal Article

(Lazarescu & Lavagno, 2016) Book Section

(Venčkauskas, Štuikys, Jusas, & Burbaitė, 2016) Journal Article

(Elsts et al., 2015) Conference Paper

(Chandra & Dwivedi, 2015) Conference Paper

(Aoun, Alloush, Kermarrec, Champeau, & Zein, 2015) Journal Article

(Rodrigues, Batista, et al., 2015) Conference Paper

(Rodrigues, Delicato, et al., 2015) Journal Article

(Serna et al., 2015) Conference Paper

(Tei et al., 2015) Journal Article

(Delicato et al., 2014) Book Section

(Gaglione, Lo, & Yang, 2014) Conference Paper

(Lange, Lösche, & Piotrowski, 2014) Conference Paper

(Malavolta & Muccini, 2014) Conference Paper

(Oppermann, Boano, et al., 2014) Book Section

(Oppermann, Romer, et al., 2014) Conference Paper

(Shimizu et al., 2014) Conference Paper

(Elsts et al., 2013) Conference Paper

(Bader & Oelmann, 2013) Conference Paper

(Dantas et al., 2013) Conference Paper

(Kyungtae Kang, Min-Young Nam, & Lui Sha, 2013) Journal Article

(Mohorcic, Smolnikar, & Javornik, 2013) Conference Paper

(Oshana & Kareling, 2013) Book Section

(Piotrowski & Peter, 2013) Conference Paper

(Rodrigues et al., 2013) Conference Paper

(Elsts & Selavo, 2012) Conference Paper

(Fajar, Nakanishi, Hisazumi, & Fukuda, 2012) Conference Paper

(Flouri et al., 2012) Journal Article

(Maissa, Kordon, Mouline, & Thierry-Mieg, 2012) Conference Paper

(Matthys, Huygens, Hughes, Michiels, & Joosen, 2012) Conference Paper

(Mottola & Picco, 2012) Journal Article

(Peter & Langendorfer, 2012) Conference Paper

(Shimizu et al., 2012) Conference Paper

(Tranquillini et al., 2012) Book Section

(Wang & Baras, 2012) Conference Paper

(Bai, Dick, Chou, & Dinda, 2011) Journal Article

(Bai, Dick, Dinda, et al., 2011) Conference Paper

(Hansen & Kusy, 2011) Conference Paper

(Mottola & Picco, 2011) Journal Article

(Rodrigues et al., 2011) Conference Paper

(Beckmann & Thoss, 2010) Book Section

(Carboni, 2010) Conference Paper

(Picco, 2010) Conference Paper

(Bai et al., 2009) Conference Paper

159

(Miller et al., 2009) Conference Paper

(Naumowicz, Schröter, & Schiller, 2009) Conference Paper

(Kushwaha, Amundson, Koutsoukos, Neema, & Sztipanovits, 2007) Conference Paper

(Vicente-chicote et al., 2007) Journal Article

(Walker, Moh, & Moh, 2007) Conference Paper

(Luo et al., 2006) Journal Article

(Romer & Mattern, 2004) Journal Article

(Jie Liu, Chu, Liu, Reich, & Feng Zhao, 2003) Journal Article

(García-hernández, Ibargüengoytia-gonzález, García-hernández, &

Pérez-díaz, 2007)
Journal Article

160

APPENDIX C: Demonstration Case Study

/*

 * Copyright (c) 2002-2005 Intel Corporation

 * All rights reserved.

 *

 * This file is distributed under the terms in the attached INTEL-LICENSE

 * file. If you do not find these files, copies can be found by writing to

 * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,

 * 94704. Attention: Intel License Inquiry.

 */

/*

 * @author Phil Buonadonna

 * @author Gilman Tolle

 * @author David Gay

 * Revision: $Id: BaseStationP.nc,v 1.12 2010-06-29 22:07:14 scipio Exp $

 */

/*

 * BaseStationP bridges packets between a serial channel and the radio.

 * Messages moving from serial to radio will be tagged with the group

 * ID compiled into the BaseStation, and messages moving from radio to

 * serial will be filtered by that same group id.

 */

#include "AM.h"

#include "Serial.h"

module BaseStationP @safe() {

 uses {

 interface Boot;

 interface SplitControl as SerialControl;

 interface SplitControl as RadioControl;

 interface AMSend as UartSend[am_id_t id];

 interface Receive as UartReceive[am_id_t id];

 interface Packet as UartPacket;

 interface AMPacket as UartAMPacket;

 interface AMSend as RadioSend[am_id_t id];

 interface Receive as RadioReceive[am_id_t id];

 interface Receive as RadioSnoop[am_id_t id];

 interface Packet as RadioPacket;

 interface AMPacket as RadioAMPacket;

 interface Leds;

 }

}

implementation

{

 enum {

 UART_QUEUE_LEN = 12,

 RADIO_QUEUE_LEN = 12,

 };

 message_t uartQueueBufs[UART_QUEUE_LEN];

 message_t * ONE_NOK uartQueue[UART_QUEUE_LEN];

 uint8_t uartIn, uartOut;

 bool uartBusy, uartFull;

 message_t radioQueueBufs[RADIO_QUEUE_LEN];

 message_t * ONE_NOK radioQueue[RADIO_QUEUE_LEN];

 uint8_t radioIn, radioOut;

 bool radioBusy, radioFull;

 task void uartSendTask();

 task void radioSendTask();

 void dropBlink() {

 call Leds.led2Toggle();

 }

 void failBlink() {

 call Leds.led2Toggle();

 }

 event void Boot.booted() {

 uint8_t i;

 for (i = 0; i < UART_QUEUE_LEN; i++) uartQueue[i] = &uartQueueBufs[i];

 uartIn = uartOut = 0;

 uartBusy = FALSE;

161

 uartFull = TRUE;

 for (i = 0; i < RADIO_QUEUE_LEN; i++) radioQueue[i] = &radioQueueBufs[i];

 radioIn = radioOut = 0;

 radioBusy = FALSE;

 radioFull = TRUE;

 if (call RadioControl.start() == EALREADY) radioFull = FALSE;

 if (call SerialControl.start() == EALREADY) uartFull = FALSE;

 }

 event void RadioControl.startDone(error_t error) {

 if (error == SUCCESS) {radioFull = FALSE;

 }

 }

 event void SerialControl.startDone(error_t error) {

 if (error == SUCCESS) {uartFull = FALSE;

 }

 }

 event void SerialControl.stopDone(error_t error) {}

 event void RadioControl.stopDone(error_t error) {}

 uint8_t count = 0;

 message_t* ONE receive(message_t* ONE msg, void* payload, uint8_t len);

 event message_t *RadioSnoop.receive[am_id_t id](message_t *msg,void *payload,uint8_t len)

{return receive(msg, payload, len);

 }

 event message_t *RadioReceive.receive[am_id_t id](message_t *msg,

 void *payload,uint8_t len) {

 return receive(msg, payload, len);

 }

 message_t* receive(message_t *msg, void *payload, uint8_t len) {

 message_t *ret = msg;

 atomic {

 if (!uartFull)

 {

 ret = uartQueue[uartIn];

 uartQueue[uartIn] = msg;

 uartIn = (uartIn + 1) % UART_QUEUE_LEN;

 if (uartIn == uartOut)

 uartFull = TRUE;

 if (!uartBusy)

 {

 post uartSendTask();

 uartBusy = TRUE;

 }

 }

 else

 dropBlink();

 }

 return ret;

 }

 uint8_t tmpLen;

 task void uartSendTask() {

 uint8_t len;

 am_id_t id;

 am_addr_t addr, src;

 message_t* msg;

 am_group_t grp;

 atomic

 if (uartIn == uartOut && !uartFull)

 {

 uartBusy = FALSE;

 return;

 }

 msg = uartQueue[uartOut];

 tmpLen = len = call RadioPacket.payloadLength(msg);

 id = call RadioAMPacket.type(msg);

 addr = call RadioAMPacket.destination(msg);

 src = call RadioAMPacket.source(msg);

 grp = call RadioAMPacket.group(msg);

 call UartPacket.clear(msg);

 call UartAMPacket.setSource(msg, src);

 call UartAMPacket.setGroup(msg, grp);

 if (call UartSend.send[id](addr, uartQueue[uartOut], len) == SUCCESS)

 call Leds.led1Toggle();

 else

 {

 failBlink();

 post uartSendTask();

 }

162

 }

 event void UartSend.sendDone[am_id_t id](message_t* msg, error_t error) {

 if (error != SUCCESS)

 failBlink();

 else

 atomic

 if (msg == uartQueue[uartOut])

 {

 if (++uartOut >= UART_QUEUE_LEN)

 uartOut = 0;

 if (uartFull)

 uartFull = FALSE;

 }

 post uartSendTask();

 }

 event message_t *UartReceive.receive[am_id_t id](message_t *msg,

 void *payload,uint8_t len) {

 message_t *ret = msg;

 bool reflectToken = FALSE;

 atomic

 if (!radioFull)

 {

 reflectToken = TRUE;

 ret = radioQueue[radioIn];

 radioQueue[radioIn] = msg;

 if (++radioIn >= RADIO_QUEUE_LEN)

 radioIn = 0;

 if (radioIn == radioOut)

 radioFull = TRUE;

 if (!radioBusy)

 {

 post radioSendTask();

 radioBusy = TRUE;

 }

 }

 else

 dropBlink();

 if (reflectToken) {

 //call UartTokenReceive.ReflectToken(Token);

 }

 return ret;

 }

 task void radioSendTask() {

 uint8_t len;

 am_id_t id;

 am_addr_t addr,source;

 message_t* msg;

 atomic

 if (radioIn == radioOut && !radioFull)

 {

 radioBusy = FALSE;

 return;

 }

 msg = radioQueue[radioOut];

 len = call UartPacket.payloadLength(msg);

 addr = call UartAMPacket.destination(msg);

 source = call UartAMPacket.source(msg);

 id = call UartAMPacket.type(msg);

 call RadioPacket.clear(msg);

 call RadioAMPacket.setSource(msg, source);

 if (call RadioSend.send[id](addr, msg, len) == SUCCESS)

 call Leds.led0Toggle();

 else {

 failBlink();

 post radioSendTask(); } }

 event void RadioSend.sendDone[am_id_t id](message_t* msg, error_t error) {

 if (error != SUCCESS)failBlink();

 else

 atomic

 if (msg == radioQueue[radioOut]) {

 if (++radioOut >= RADIO_QUEUE_LEN)radioOut = 0;

 if (radioFull)

 radioFull = FALSE;

 }

 post radioSendTask();

163

APPENDIX D: SenNet Grammar

SeNetApp returns SeNetApp:
 {SeNetApp}
 'SeNetApp'
 name=EString
 '{'
 ('id' id=EInt)?
 ('jobs' '{' jobs+=AbstractJob ("," jobs+=AbstractJob)* '}')?
 '}';
AbstractJob returns AbstractJob:
 NodeDataProcessing | SenseNowJob | SinkJob | SenseJob | NetworkLevelSpecialAlgorithm |
NetworkDataProcessing;
AbstractNode returns AbstractNode:
 SensorNode | ClusterHeadNode | SinkNode | ComputationNode;
AbstractNetwork returns AbstractNetwork:
 FlatNetwork | ClusteredNetwork;
AbstractStartEndingJobTrigger returns AbstractStartEndingJobTrigger:
 ReceiveMessageTrigger | ReceiveSerialMsgTrigger | StartJobTrigger_Impl | StopJobTrigger_Impl |
PushButtonTrigger;
AbstractAction returns AbstractAction:
 ReadNodeMemoryAction | WriteNodeMemoryAction | SendMessageAction | BlinkAction |
SendSerialPortMsgAction;
AbstractSensor returns AbstractSensor:
 AccelerometerSensor | LightSensor | LocationSensor | MicrophoneSensor | TemperatureSensor |
PressureSensor | HumiditySensor | VoltageSensor;
AbstractFlatNode returns AbstractFlatNode:
 SensorNode | ComputationNode;
AbstractClusterNode returns AbstractClusterNode:
 SensorNode | ClusterHeadNode;
EInt returns ecore::EInt:
 '-'? INT;
EString returns ecore::EString:
 STRING | ID;
NodeDataProcessing returns NodeDataProcessing:
 {NodeDataProcessing}
 'NodeDataProcessing'
 '{'
 ('id' id=EInt)?
 ('nodeDataProcessing' nodeDataProcessing=Aggregation)?
 ('sensingSamplingRate' sensingSamplingRate=ELong)?
 ('dataProcessingRate' dataProcessingRate=ELong)?
 ('JobTargetNode' JobTargetNode=AbstractNode)?
 ('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?
 ('start/EndTrigger' '{' start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?
 ('jobaction' '{' jobaction+=AbstractAction ("," jobaction+=AbstractAction)* '}')?
 '}';

SenseNowJob returns SenseNowJob:
 {SenseNowJob}
 'SenseNowJob'
 '{'
 ('id' id=EInt)?
 ('JobTargetNode' JobTargetNode=AbstractNode)?
 ('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?
 ('start/EndTrigger' '{' start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?
 ('jobaction' '{' jobaction+=AbstractAction ("," jobaction+=AbstractAction)* '}')?
 '}';
SinkJob returns SinkJob:
 {SinkJob}
 'SinkJob'
 '{'
 ('id' id=EInt)?
 ('JobTargetNode' JobTargetNode=AbstractNode)?
 ('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?

164

 ('start/EndTrigger' '{' start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?
 ('jobaction' '{' jobaction+=AbstractAction ("," jobaction+=AbstractAction)* '}')?
 '}';
SenseJob returns SenseJob:
 {SenseJob}
 'SenseJob'
 '{'
 ('id' id=EInt)?
 ('sensingSamplingRate' sensingSamplingRate=ELong)?
 ('JobTargetNode' JobTargetNode=AbstractNode)?
 ('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?
 ('start/EndTrigger' '{' start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?
 ('jobaction' '{' jobaction+=AbstractAction ("," jobaction+=AbstractAction)* '}')?
 '}';
NetworkLevelSpecialAlgorithm returns NetworkLevelSpecialAlgorithm:
 {NetworkLevelSpecialAlgorithm}
 'NetworkLevelSpecialAlgorithm'
 '{'
 ('id' id=EInt)?
 ('specialAlgorithmJob' specialAlgorithmJob=Fusion)?
 ('sensingSamplingRate' sensingSamplingRate=ELong)?
 ('algorithmSamplingRate' algorithmSamplingRate=ELong)?
 ('nodeIDList' '{' nodeIDList+=EInt ("," nodeIDList+=EInt)* '}')?
 ('JobTargetNode' JobTargetNode=AbstractNode)?
 ('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?
 ('start/EndTrigger' '{' start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?
 ('jobaction' '{' jobaction+=AbstractAction ("," jobaction+=AbstractAction)* '}')?
 '}';
NetworkDataProcessing returns NetworkDataProcessing:
 {NetworkDataProcessing}
 'NetworkDataProcessing'
 '{'
 ('id' id=EInt)?
 ('networkDataProcessing' networkDataProcessing=Aggregation)?
 ('sensingSamplingRate' sensingSamplingRate=ELong)?
 ('dataProcessingRate' dataProcessingRate=ELong)?
 ('nodeIDList' '{' nodeIDList+=EInt ("," nodeIDList+=EInt)* '}')?
 ('JobTargetNode' JobTargetNode=AbstractNode)?
 ('JobTargetNetwork' JobTargetNetwork=AbstractNetwork)?
 ('start/EndTrigger' '{' start/EndTrigger+=AbstractStartEndingJobTrigger (","
start/EndTrigger+=AbstractStartEndingJobTrigger)* '}')?
 ('jobaction' '{' jobaction+=AbstractAction ("," jobaction+=AbstractAction)* '}')?
 '}';
enum Position returns enums::Position:
 mobile = 'mobile' | static = 'static';
SensorNode returns SensorNode:
 {SensorNode}
 'SensorNode'
 '{'
 ('id' id=EInt)?
 ('position' position=Position)?
 ('nodeResources' '{' nodeResources+=AbstractSensor (","
nodeResources+=AbstractSensor)* '}')?
 '}';
ClusterHeadNode returns ClusterHeadNode:
 {ClusterHeadNode}
 'ClusterHeadNode'
 '{'
 ('id' id=EInt)?
 ('position' position=Position)?
 ('nodeResources' '{' nodeResources+=AbstractSensor (","
nodeResources+=AbstractSensor)* '}')?
 '}';
SinkNode returns SinkNode:
 {SinkNode}
 'SinkNode'
 '{'
 ('id' id=EInt)?
 ('position' position=Position)?
 ('nodeResources' '{' nodeResources+=AbstractSensor (","
nodeResources+=AbstractSensor)* '}')?

165

 '}';
ComputationNode returns ComputationNode:
 {ComputationNode}
 'ComputationNode'
 '{'
 ('id' id=EInt)?
 ('position' position=Position)?
 ('nodeResources' '{' nodeResources+=AbstractSensor (","
nodeResources+=AbstractSensor)* '}')?
 '}';
AccelerometerSensor returns AccelerometerSensor:
 {AccelerometerSensor}
 'AccelerometerSensor'
 ;
LightSensor returns LightSensor:
 {LightSensor}
 'LightSensor'
 ;
LocationSensor returns LocationSensor:
 {LocationSensor}
 'LocationSensor'
 ;
MicrophoneSensor returns MicrophoneSensor:
 {MicrophoneSensor}
 'MicrophoneSensor'
 ;
TemperatureSensor returns TemperatureSensor:
 {TemperatureSensor}
 'TemperatureSensor'
 ;
PressureSensor returns PressureSensor:
 {PressureSensor}
 'PressureSensor'
 ;
HumiditySensor returns HumiditySensor:
 {HumiditySensor}
 'HumiditySensor'
 ;
VoltageSensor returns VoltageSensor:
 {VoltageSensor}
 'VoltageSensor'
 ;
enum InterNodeComm returns enums::InterNodeComm:
 BT = 'BT' | Zigbee = 'Zigbee' | WLan = 'WLan' | RF = 'RF';
enum RoutingProtocol returns enums::RoutingProtocol:
 leach = 'leach' | lqrp = 'lqrp' | spin = 'spin' | aodv = 'aodv' |
dodv = 'dodv' | dsr = 'dsr' | dsdv = 'dsdv' | gsr = 'gsr' | heed = 'heed' | gaf = 'gaf' | gear =
'gear' | tbf = 'tbf' | ead = 'ead' | pegasis = 'pegasis' | teen = 'teen' | speed = 'speed' | ctp =
'ctp' | dismentation = 'dismentation' | activeMessage = 'activeMessage';
FlatNetwork returns FlatNetwork:
 {FlatNetwork}
 'FlatNetwork'
 '{'
 ('id' id=EInt)?
 ('nbOfNodes' nbOfNodes=EInt)?
 ('interNodeComm' interNodeComm=InterNodeComm)?
 ('routingProtocol' routingProtocol=RoutingProtocol)?
 ('resources' '{' resources+=AbstractSensor ("," resources+=AbstractSensor)* '}')?
 ('sink' sink=SinkNode)?
 ('nodes' '{' nodes+=AbstractFlatNode ("," nodes+=AbstractFlatNode)* '}')?
 '}';
ClusteredNetwork returns ClusteredNetwork:
 {ClusteredNetwork}
 'ClusteredNetwork'
 '{'
 ('id' id=EInt)?
 ('nbOfNodes' nbOfNodes=EInt)?
 ('interNodeComm' interNodeComm=InterNodeComm)?
 ('routingProtocol' routingProtocol=RoutingProtocol)?
 ('resources' '{' resources+=AbstractSensor ("," resources+=AbstractSensor)* '}')?
 ('sink' sink=SinkNode)?
 ('clusters' '{' clusters+=Cluster ("," clusters+=Cluster)* '}')?
 '}';
Cluster returns Cluster:

166

 {Cluster}
 'Cluster'
 '{'
 ('id' id=EInt)?
 ('resources' '(' resources+=[AbstractSensor|EString] (","
resources+=[AbstractSensor|EString])* ')')?
 ('nodes' '{' nodes+=AbstractClusterNode ("," nodes+=AbstractClusterNode)* '}')?
 '}';
ReceiveMessageTrigger returns ReceiveMessageTrigger:
 {ReceiveMessageTrigger}
 'ReceiveMessageTrigger'
 ;
ReceiveSerialMsgTrigger returns ReceiveSerialMsgTrigger:
 {ReceiveSerialMsgTrigger}
 'ReceiveSerialMsgTrigger'
 ;
StartJobTrigger_Impl returns StartJobTrigger:
 {StartJobTrigger}
 'StartJobTrigger'
 ;
StopJobTrigger_Impl returns StopJobTrigger:
 {StopJobTrigger}
 'StopJobTrigger'
 ;
PushButtonTrigger returns PushButtonTrigger:
 {PushButtonTrigger}
 'PushButtonTrigger'
 ;
ConditionalAction returns ConditionalAction:
 {ConditionalAction}
 'ConditionalAction'
 '{'
 ('sensorTerm' sensorTerm=EString)?
 ('logicalSymbol' logicalSymbol=LogicalSymbol)?
 ('value' value=ELong)?
 ('unit' unit=EString)?
 '}';
ReadNodeMemoryAction returns ReadNodeMemoryAction:
 {ReadNodeMemoryAction}
 'ReadNodeMemoryAction'
 '{'
 ('condition' condition=ConditionalAction)?
 '}';
WriteNodeMemoryAction returns WriteNodeMemoryAction:
 {WriteNodeMemoryAction}
 'WriteNodeMemoryAction'
 '{'
 ('condition' condition=ConditionalAction)?
 '}';
SendMessageAction returns SendMessageAction:
 {SendMessageAction}
 'SendMessageAction'
 '{'
 ('sendMessageTo' sendMessageTo=EInt)?
 ('condition' condition=ConditionalAction)?
 '}';
BlinkAction returns BlinkAction:
 {BlinkAction}
 'BlinkAction'
 '{'
 ('led' led=Leds)?
 ('status' status=LedStatus)?
 ('condition' condition=ConditionalAction)?
 '}';
SendSerialPortMsgAction returns SendSerialPortMsgAction:
 {SendSerialPortMsgAction}
 'SendSerialPortMsgAction'
 '{'
 ('condition' condition=ConditionalAction)?
 '}';
enum LogicalSymbol returns enums::LogicalSymbol:
 equal = 'equal' | greaterThan = 'greaterThan' | greaterOrEqualThan =
'greaterOrEqualThan' | lessThan = 'lessThan' | lessOrEqualThan = 'lessOrEqualThan' | notEqual =
'notEqual';

167

ELong returns ecore::ELong:
 '-'? INT;
enum Leds returns enums::Leds:
 led0 = 'led0' | led1 = 'led1' | led2 = 'led2';
enum LedStatus returns enums::LedStatus:
 on = 'on' | off = 'off' | toggle = 'toggle';
enum Aggregation returns enums::Aggregation:
 compression = 'compression' | max = 'max' | min = 'min' | avg = 'avg'
| count = 'count';
enum Fusion returns enums::Fusion:
 classification = 'classification' | event_detection = 'event_detection'
| tracking = 'tracking' | decision_making = 'decision_making';

168

APPENDIX E: SenNet CGC Implementation

E.1 AppCGenerator.xtend

class AppCGenerator extends AbstractSeNetGenerator {
 override void doGenerate(Resource resource, IFileSystemAccess fsa) {
 resource.forEachNode[nodeId, nodeJob |
 val fileName = nodeName + "AppC.nc";
 fsa.generateFile(fileName, generateAppCSenNetpp(nodeJob).toString.trim)
]
 }
 def generateAppCSenNetpp(AbstractJob job) '''
 configuration «nodeName»AppC
 {

 }

 implementation {
 components «nodeName»C;
 components MainC;
 «nodeName»C.Boot -> MainC;

 «generateJob(job)»
 }
 '''

 def dispatch generateJob(SenseJob job) '''
 components new TimerMilliC();
 «nodeName»C.Timer -> TimerMilliC;

 «FOR action : job.jobaction»
 «generateAction(action)»
 «ENDFOR»

 «IF job.jobTargetNode != null»
 «FOR sensor : job.jobTargetNode.nodeResources»
 «generateSensor(sensor)»
 «ENDFOR»
 «ENDIF»
 «IF job.jobTargetNetwork != null»
 «FOR sensor : job.jobTargetNetwork.resources»
 «generateSensor(sensor)»
 «ENDFOR»
 «ENDIF»
 '''

 def dispatch generateJob(AbstractJob job) '''
 // Code generation not implemented for job: «job.eClass.name»
 '''

 def dispatch generateAction(SendMessageAction action) '''
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 «nodeName»C.Packet -> AMSenderC;
 «nodeName»C.AMPacket -> AMSenderC;
 «nodeName»C.AMSend -> AMSenderC;
 «nodeName»C.SplitControl -> ActiveMessageC;
 «nodeName»C.Receive -> AMReceiverC;
 '''

 def dispatch generateAction(BlinkAction job) '''
 components LedsC;
 «nodeName»C.Leds -> LedsC;
 '''

169

 def dispatch generateAction(AbstractAction action) '''
 // Code generation not implemented for action: «action.eClass.name»
 '''

 def dispatch generateSensor(TemperatureSensor sensor) '''
 components new SensirionSht11C() as Sensor;
 «nodeName»C.Read -> Sensor.Temperature;
 '''

 def dispatch generateSensor(AbstractSensor sensor) '''
 // Code generation not implemented for sensor: «sensor.eClass.name»
 '''
}

E.2 CGenerator.xtend

class CGenerator extends AbstractSeNetGenerator {

 override void doGenerate(Resource resource, IFileSystemAccess fsa) {
 resource.forEachNode[nodeId, nodeJob |
 val fileName = nodeName + "C.nc";
 fsa.generateFile(fileName, generateAppCSenNetpp(nodeJob).toString.trim)
]
 }

 def generateAppCSenNetpp(AbstractJob job) '''
 «generateJobInclude(job)»

 module «nodeName»C
 {
 uses {
 interface Boot;
 interface SplitControl;
 «generateJobUsage(job)»
 }
 }
 Implementation {
 «generateJobImplementation(job)»
 event void Boot.booted()
 {
 «generateJobBoot(job)»
 }
 «generateJob(job)»
 «FOR action : job.jobaction»
 «generateActionEvent(action)»
 «ENDFOR»
 }
 '''
 def dispatch generateJob(SenseJob job) '''
 event void Timer.fired()
 {
 }
 event void Read.readDone(error_t result, uint16_t data)
 {
 «FOR action: job.jobaction»
 «generateActionWithCondition(action)»
 «ENDFOR»
 }
 event void SplitControl.startDone(error_t error)
 {
 if (error != SUCCESS)
 {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error)

170

 {
 }
 '''

 def dispatch generateJob(AbstractJob job) '''
 // Code generation not implemented for job: «job.eClass.name»
 '''

 def dispatch generateJobUsage(SenseJob job) '''
 interface Read<uint16_t>;
 interface Timer<TMilli>;
 «FOR action : job.jobaction»
 «generateActionUsage(action)»
 «ENDFOR»
 '''

 def dispatch generateJobUsage(AbstractJob job) { "" }

 def dispatch generateJobImplementation(SenseJob job) '''
 «FOR action : job.jobaction»
 «generateActionImplementation(action)»
 «ENDFOR»
 '''

 def dispatch generateJobImplementation(AbstractJob job) '''
 // Code generation not implemented for job: «job.eClass.name»
 '''

 def dispatch generateJobBoot(SenseJob job) '''
 call Timer.startPeriodic(«job.sensingSamplingRate»);
 call SplitControl.start();
 '''

 def dispatch generateJobBoot(AbstractJob job) '''
 // Code generation not implemented for job: «job.eClass.name»
 '''

 def dispatch generateJobInclude(SenseJob job) '''
 #include "Timer.h"
 «FOR action : job.jobaction»
 «generateActionInclude(action)»
 «ENDFOR»
 '''

 def dispatch generateJobInclude(AbstractJob job) { "" }

 def dispatch generateActionEvent(SendMessageAction job) '''
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }

 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }
 '''

 def dispatch generateActionEvent(AbstractAction job) '''
 '''

 def generateActionWithCondition(AbstractAction action) '''
 «IF action.condition != null»
 if («generateCondition(action.condition).toString.trim»)
 {
 «generateAction(action)»
 }
 «ELSE»
 «generateAction(action)»
 «ENDIF»
 '''

171

 def generateCondition(ConditionalAction condition) '''
 «condition.sensorTerm» «condition.logicalSymbol.toOperator» «condition.value»
 '''

 def toOperator(LogicalSymbol symbol) {
 switch(symbol) {
 case EQUAL: "=="
 case GREATER_OR_EQUAL_THAN: ">="
 case GREATER_THAN: ">"
 case LESS_OR_EQUAL_THAN: "<="
 case LESS_THAN: "<"
 case NOT_EQUAL: "!="
 }
 }

 def dispatch generateAction(SendMessageAction action) '''
 if (radioBusy == FALSE)
 {
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = data;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t)))
 {
 radioBusy = TRUE;
 }
 }
 '''

 def dispatch generateAction(BlinkAction action) '''
 call Leds.«action.led.toString.toFirstLower»«action.status.toString.toFirstUpper»();
 '''

 def dispatch generateAction(AbstractAction action) {
 throw new UnsupportedOperationException("Yet to be implemented")
 }

 def dispatch generateActionInclude(SendMessageAction action) '''
 #include "AMsg.h"
 '''

 def dispatch generateActionInclude(AbstractAction action) '''
 '''

 def dispatch generateActionImplementation(SendMessageAction action) '''
 bool radioBusy;
 message_t messagePacket;
 '''

 def dispatch generateActionImplementation(AbstractAction action) '''
 '''

 def dispatch generateActionUsage(SendMessageAction action) '''
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 '''

 def dispatch generateActionUsage(BlinkAction action) '''
 interface Leds;
 '''

 def dispatch generateActionUsage(AbstractAction action) { "" }
}

172

E.3 HeaderGenerator.xtend

class HeaderGenerator extends AbstractSeNetGenerator {

 override void doGenerate(Resource resource, IFileSystemAccess fsa) {
 fsa.generateFile("AMsg.h", '''
 #ifndef AMSG_H
 #define AMSG_H
 typedef nx_struct ActiveMessage
 {
 nx_uint16_t NodeID;
 nx_uint16_t Data;
 } ActiveMessage_t;
 enum
 {
 AM_RADIO = 6
 };
 #endif /* AMSG_H */
 ''')
 }
}

E.4 MakefileGenerator.xtend

package org.wsn.sennet.xtext.generator
import org.eclipse.emf.ecore.resource.Resource
import org.eclipse.xtext.generator.IFileSystemAccess
class MakefileGenerator extends AbstractSeNetGenerator {
 override void doGenerate(Resource resource, IFileSystemAccess fsa) {
 resource.forEachNode[nodeId, nodeJob |
 var makefileName = "Makefile";
 if (nodeId > 0) {
 makefileName += nodeId
 }
 fsa.generateFile(makefileName, '''
 COMPONENT=«nodeName»AppC
 Include $(MAKERULES)
 ''')
]
 }
}

173

APPENDIX F: Application Source Code Analysis

Scenarios Implementation

F.1 Single Node SenseForward Scenario

F.1.1 SenNet Version

SeNetApp SenseForward {
 jobs {
 SenseJob {
 sensingSamplingRate 60000
 JobTargetNode SensorNode {
 nodeResources {
 TemperatureSensor
 }
 }
 jobaction {
 SendMessageAction {
 sendMessageTo 1
 }
 }
 }
 }
}

F.1.2 nesC Version

****************************nesC Configuration File **************************
configuration SenseForward0AppC
{
}
implementation {
 components SenseForward0C;
 components MainC;
 SenseForward0C.Boot -> MainC;
 components new TimerMilliC();
 SenseForward0C.Timer -> TimerMilliC;
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 SenseForward0C.Packet -> AMSenderC;
 SenseForward0C.AMPacket -> AMSenderC;
 SenseForward0C.AMSend -> AMSenderC;
 SenseForward0C.SplitControl -> ActiveMessageC;
 SenseForward0C.Receive -> AMReceiverC;
 components new SensirionSht11C() as Sensor;
 SenseForward0C.Read -> Sensor.Temperature;
}

****************************nesC Module File********************************
#include "Timer.h"

174

#include "AMsg.h"
module SenseForward0C
{
 uses {
 interface Boot;
 interface SplitControl;
 interface Read<uint16_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 }
}
Implementation {
 bool radioBusy;
 message_t messagePacket;
 event void Boot.booted()
 {
 call Timer.startPeriodic(60000);
 call SplitControl.start();
 }
 event void Timer.fired()
 {
 }
 event void Read.readDone(error_t result, uint16_t data) {
 if (radioBusy == FALSE) {
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = data;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t))) {
 radioBusy = TRUE;
 }
 }
 }
 event void SplitControl.startDone(error_t error){
 if (error != SUCCESS){
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error)
 {
 }
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket){
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len){
 return msg;
 }
}

************************nesC Make File*************************************
COMPONENT=SenseForward0AppC
Include $(MAKERULES)

*****************************AMsg.h***************************************
#ifndef AMSG_H
#define AMSG_H
typedef nx_struct ActiveMessage
{
nx_uint16_t NodeID;
nx_uint16_t Data;
} ActiveMessage_t;
enum
{

175

AM_RADIO = 6
};

#endif /* AMSG_H */

F.1.3 HCM Operands and Operators Statistics

Single-Node SenseForward Operand and Operator Statistics

SenNet nesC

Operands Count Operator Count Operands Count Operator Count
1 1 {} 7 1 1 != 1

600 1 jobaction 1 6 1 # 5

sensingSamplingRate 1 jobs 1 6000 1 $ 1

 JobTargetNode 1 ActiveMessage 1 & 3

 nodeResources 1 ActiveMessage_t 4 () 20

 SendMessageAction 1 ActiveMessageC 2 * 5

 sendMessageTo 1 AM_RADIO 3 , 7

 SeNetApp 1 AMPacket 2 . 21

 SenseForwardApp 1 AMReceiverC 2 ; 38

 SenseJob 1 AMSend 4 {} 18

 SensorNode 1 AMSenderC 4 <> 2

 TemperatureSensor 1 Amsg.h 1 = 7

 AMSG_H 2 == 2

 Boot 3 -> 10

 booted 1 as 1

 Data 3 bool 1

 error 4 call 5

 error_t 4 COMPONENT 1

 event 7 components 7

 fired 1 configuration 1

 getPayload 1 define 1

 message_t 4 endif 1

 messagePacket 4 enum 1

 msg 7 typedef 1

 NodeID 2 uint16_t 2

 Packet 3 uint8_t 1

 payload 1 uses 1

 radioBusy 4 void 7

 result 1 stopDone 1

 SensirionSht11C 1 nx_struct 1

 Sensor 2 nx_uint16_t 2

 SingleNodeSenseForwardApp0AppC 2 if 4

 SingleNodeSenseForwardApp0C 10 ifndef 1

 SplitControl 6 implementation 2

 startPeriodic 1 Include 3

 TData 1 interface 8

 Temperature 1 len 1

 Timer 4 MainC 2

 Timer.h 1 MAKERULES 1

 TimerMilliC 2 module 1

 TMilli 1 Read 3

 TOS_NODE_ID 1 readDone 1

 Receive 4

 return 1

 send 1

 sendDone 1

 start 2

 startDone 1

 sizeof 2

 new 4

176

F.2 Network-Level SenseForward Scenario

F.2.1 SenNet

SeNetApp NetSenseForwardApp {
 jobs {
 SenseJob {
 sensingSamplingRate 60000
 JobTargetNetwork FlatNetwork {
 nbOfNodes 3
 resources {
 TemperatureSensor
 }
 }
 jobaction {
 SendMessageAction {
 sendMessageTo 1
 }
 }
 }
 }
}

F.2.2 nesC

************************nesC Configuration File*****************************
configuration NetSenseForwardApp2AppC
{
}
implementation {
 components NetSenseForwardApp2C;
 components MainC;
 NetSenseForwardApp2C.Boot -> MainC;
 components new TimerMilliC();
 NetSenseForwardApp2C.Timer -> TimerMilliC;
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 NetSenseForwardApp2C.Packet -> AMSenderC;
 NetSenseForwardApp2C.AMPacket -> AMSenderC;
 NetSenseForwardApp2C.AMSend -> AMSenderC;
 NetSenseForwardApp2C.SplitControl -> ActiveMessageC;
 NetSenseForwardApp2C.Receive -> AMReceiverC;
 components new SensirionSht11C() as Sensor;
 NetSenseForwardApp2C.Read -> Sensor.Temperature;
}

*************************nesC Module File***********************************
#include "Timer.h"
#include "AMsg.h"
module NetSenseForwardApp2C
{
 uses {
 interface Boot;
 interface SplitControl;
 interface Read<uint16_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;

177

 interface AMSend;
 interface Receive;
 }
}
Implementation {
 bool radioBusy;
 message_t messagePacket;
 event void Boot.booted()
 {
 call Timer.startPeriodic(60000);
 call SplitControl.start();
 }
 event void Timer.fired()
 {
 }
 event void Read.readDone(error_t result, uint16_t data)
 {
 if (radioBusy == FALSE)
 {
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = data;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t)))
 {
 radioBusy = TRUE;
 }
 }
 }
 event void SplitControl.startDone(error_t error)
 {
 if (error != SUCCESS)
 {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error)
 {
 }
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }
}

***************************Makefile**
COMPONENT=NetSenseForwardApp2AppC
Include $(MAKERULES)

**************************AMsg.h**
#ifndef AMSG_H
#define AMSG_H
typedef nx_struct ActiveMessage
{
nx_uint16_t NodeID;
nx_uint16_t Data;
} ActiveMessage_t;
enum
{
AM_RADIO = 6
};
#endif /* AMSG_H */

178

F.2.3 HCM Operands and Operators Statistics

Network-Level SenseForward Operand and Operator Statistics

SenNet nesC

Operands Count Operator Count Operands Count Operator Count
1 1 {} 7 1 3 != 3

3 1 FlatNetwork 1 6000 3 # 6

6000 1 jobaction 1 ActiveMessage_t 9 $ 3

sensingSamplingRate 1 jobs 1 ActiveMessageC 6 & 9

 JobTargetNetwork 1 AM_RADIO 6 () 69

 nbOfNodes 1 AMPacket 6 * 15

 NetSenseForwardApp 1 AMReceiverC 6 , 21

 resources 1 AMSend 12 . 63

 SendMessageAction 1 AMSenderC 12 ; 102

 sendMessageTo 1 AMsg.h 3 {} 48

 SeNetApp 1 Boot 9 <> 6

 SenseJob 1 booted 3 = 18

 TemperatureSensor 1 data 6 == 6

 error 12 -> 30

 error_t 12 as 3

 fired 3 bool 3

 getPayload 3 call 15

 message_t 12 COMPONENT 3

 messagePacket 12 components 21

 msg 21 configuration 3

 NetSenseForwardApp2AppC 6 event 21

 NetSenseForwardApp2C 30 if 12

 NodeID 3 implementation 6

 Packet 9 Include 9

 payload 3 interface 24

 radioBusy 12 len 3

 result 3 MainC 6

 return 3 MAKERULES 3

 SensirionSht11C 3 module 3

 Sensor 6 new 12

 SplitControl 18 Read 9

 startPeriodic 3 readDone 3

 SUCCESS 3 Receive 12

 TData 3 send 3

 Temperature 3 sendDone 3

 Timer 12 sizeof 6

 Timer.h 3 start 6

 TimerMilliC 6 startDone 3

 TMilli 3 stopDone 3

 TOS_NODE_ID 3 uint16_t 6

 FALSE 6 uint8_t 3

 TRUE 3 uses 3

 void 21

179

F.3 Network-Level Event-Based Scenario

F.3.1 SenNet

SeNetApp NetEventBased {
 jobs {
 SenseJob {
 sensingSamplingRate 60000
 JobTargetNetwork FlatNetwork {
 nbOfNodes 5
 resources {
 TemperatureSensor
 }
 }
 jobaction {
 SendMessageAction {
 sendMessageTo 1
 condition ConditionalAction {
 sensorTerm Temp
 logicalSymbol greaterThan
 value 40
 unit C
 }
 }
 }
 }
 }
}

F.3.2 nesC

**********************Sample of nesC Configuration File***********************
configuration NetEventBased2AppC
{
}
implementation {
 components NetEventBased2C;
 components MainC;
 NetEventBased2C.Boot -> MainC;
 components new TimerMilliC();
 NetEventBased2C.Timer -> TimerMilliC;
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 NetEventBased2C.Packet -> AMSenderC;
 NetEventBased2C.AMPacket -> AMSenderC;
 NetEventBased2C.AMSend -> AMSenderC;
 NetEventBased2C.SplitControl -> ActiveMessageC;
 NetEventBased2C.Receive -> AMReceiverC;
 components new SensirionSht11C() as Sensor;
 NetEventBased2C.Read -> Sensor.Temperature;
}

********************** Sample of nesC Module File ****************************
#include "Timer.h"
#include "AMsg.h"
module NetEventBased2C
{
 uses {
 interface Boot;

180

 interface SplitControl;
 interface Read<uint16_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 }
}
Implementation {
 bool radioBusy;
 message_t messagePacket;
 event void Boot.booted() {
 call Timer.startPeriodic(60000);
 call SplitControl.start();
 }
 event void Timer.fired() {
 }
 event void Read.readDone(error_t result, uint16_t data) {
 if (Temp > 40){
 if (radioBusy == FALSE) {
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = data;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t))) {
 radioBusy = TRUE;
 }
 }
 }
 }
 event void SplitControl.startDone(error_t error) {
 if (error != SUCCESS) {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error){
 }
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }
}

*************************Makefile**
COMPONENT=NetEventBased2AppC
Include $(MAKERULES)

*******************************AMsg.h*************************************
#ifndef AMSG_H
#define AMSG_H
typedef nx_struct ActiveMessage
{
nx_uint16_t NodeID;
nx_uint16_t Data;
} ActiveMessage_t;
enum
{
AM_RADIO = 6
};
#endif /* AMSG_H */

181

F.3.3 HCM Operands and Operators Statistics

Network-Level SenseForward Operand and Operator Statistics

SenNet nesC

Operands Count Operator Count Operands Count Operator Count
1 1 {} 8 1 5 != 5

5 1 condition 1 40 5 # 10

40 1 jobaction 1 3000 5 $ 5

3000 1 jobs 1 ActiveMessage_t 15 & 15

C 1 JobTargetNetwork 1 ActiveMessageC 10 () 120

greaterThan 1 nbOfNodes 1 AM_RADIO 10 * 25

logicalSymbol 1 NetEventBased 1 AMPacket 10 , 35

sensingSamplingRate 1 resources 1 AMReceiverC 10 . 105

sensorTerm 1 SendMessageAction 1 AMSend 20 ; 170

unit 1 sendMessageTo 1 AMSenderC 20 {} 85

value 1 SeNetApp 1 AMsg.h 5 < 10

Temp 1 SenseJob 1 Boot 15 = 30

 TemperatureSensor 1 booted 5 == 10

 ConditionalAction 1 data 10 > 15

 FlatNetwork 1 error 20 -> 50

 error_t 20 as 5

 fired 5 bool 5

 getPayload 5 call 25

 interfaceTimer 5 COMPONENT 5

 message_t 20 components 35

 messagePacket 20 configuration 5

 NetEventBased2AppC 10 event 35

 NetEventBased2C 50 if 25

 NodeID 5 implementation 10

 Packet 15 Include 15

 payload 5 interface 35

 radioBusy 20 len 5

 result 5 MainC 10

 SensirionSht11C 5 MAKERULES 5

 Sensor 10 module 5

 SplitControl 30 new 20

 startPeriodic 5 Read 15

 TData 5 readDone 5

 Temp 5 Receive 20

 Temperature 5 return 5

 Timer 15 send 5

 Timer.h 5 sendDone 5

 TimerMilliC 10 sizeof 10

 TMilli 5 start 10

 TOS_NODE_ID 5 startDone 5

 FALSE 10 stopDone 5

 TRUE 5 SUCCESS 5

 uint16_t 10

 uint8_t 5

 uses 5

 void 35

 msg 35

182

APPENDIX G: Business Case Study Applicability

Scenarios - nesC Implementation

G.1 Scenario-1

**************************** LMT10AppC.nc ********************************
configuration LMT10AppC{
}
implementation {
 components LMT10C;
 components MainC;
 LMT10C.Boot -> MainC;
 components new TimerMilliC() as T1;
 components new TimerMilliC() as T2;
 LMT10C.T1 -> T1;
 LMT10C.T2 -> T2;
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 LMT10C.Packet -> AMSenderC;
 LMT10C.AMPacket -> AMSenderC;
 LMT10C.AMSend -> AMSenderC;
 LMT10C.SplitControl -> ActiveMessageC;
 LMT10C.Receive -> AMReceiverC;
 components new Taos2550C() as Sensor;
 LMT10C.Read -> Sensor.VisibleLight;
}

***************************LMT10C.nc*************************************
#include "Timer.h"
#include "AMsg.h"
module LMT10C
{
 uses {
 interface Boot;
 interface SplitControl;
 interface Read<uint8_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 }
}

implementation {
 bool radioBusy;
 message_t messagePacket;
 uint8_t avg counter results;
 event void Boot.booted()
 {
 call T1.startPeriodic(300000);
 call T2.startPeriodic(30000);
 call SplitControl.start();
 }
 event void T1.fired()
 {
 }
 event void T2.fired()
 {
 Call Read.read()

183

 }
 event void Read.readDone(error_t result, uint8_t data)
 {
 avg = avg + data;
 counter = counter + 1;
 }
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 results = avg / counter;
 msg -> TData = results;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t)))
 {
 radioBusy = TRUE;
 }
 }
}
 event void SplitControl.startDone(error_t error)
 {
 if (error != SUCCESS)
 {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error)
 {
 }
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }
}

G.2 Scneario-2

**************************TMSH2AppC.nc**********************************
configuration TMSH2AppC{
}
implementation {
 components TMSH2C;
 components MainC;
 TMSH2C.Boot -> MainC;
 components new TimerMilliC() as T1;
 components new TimerMilliC() as T2;
 TMSH2C.T1 -> T1;
 TMSH2C.T2 -> T2;
 components ActiveMessageC;
 components new AMSenderC(AM_RADIO);
 components new AMReceiverC(AM_RADIO);
 TMSH2C.Packet -> AMSenderC;
 TMSH2C.AMPacket -> AMSenderC;
 TMSH2C.AMSend -> AMSenderC;
 TMSH2C.SplitControl -> ActiveMessageC;
 TMSH2C.Receive -> AMReceiverC;
 components new SensirionSht11C() as Sensor;
 TMSH2C.Read -> Sensor.Temperature;
}

***************************TMSH2C.nc*************************************
#include "Timer.h"

184

#include "AMsg.h"
module TMSH2C
{
 uses {
 interface Boot;
 interface SplitControl;
 interface Read<uint16_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 }
}

implementation {
 bool radioBusy;
 message_t messagePacket;
 uint16_t max results;
 event void Boot.booted() {
 call T1.startPeriodic(600000);
 call T2.startPeriodic(60000);
 call SplitControl.start();
 }
 event void T1.fired() {
 }
 event void T2.fired() {
 }
 event void Read.readDone(error_t result, uint16_t data)
 {
 event void T1.fired()
 {
 event void T2.fired() {
 event void Read.readDone(error_t result, uint16_t data)
 {
 If (max < data);
{
max = data;
 }
 }
 }
 If (max > 20)
{
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 msg -> TData = max;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t))){
 radioBusy = TRUE;
 }
 }
 }
}
 event void SplitControl.startDone(error_t error) {
 if (error != SUCCESS)
 {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error)
 {
 }
 event void AMSend.sendDone(message_t *msg, error_t error){
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }
}

185

APPENDIX H: User Study Experiment

H.1 Ethical Approval Letter

186

H.2 Pre-Experiment Questions

Pre-Experiment Questions Template

No. Question Answer

1 Study Background (Example: Computer Engineering)

2 Current education level (Example: Ph.D. Student 1st year)

3
Which technology are you involved/interested in?

(Example: Cloud Computing, IoT)

4 Do you have any programming Skills?
 Yes

 NO

5 List the programming languages you have used previously

6 How do you rate your programming proficiency?

 Advance Programming Skills

 Intermediate

 Basic

 No Programming Skills

7
How many years have you been working on these

programming languages?

8 How do you rate your WSN background information?

 Excellent

 Good

 Average

 Poor

 No information

9 Have you programmed WSN previously?
 Yes

 NO

H.3 Post-Experiment Questions

Type Comment

IQ Introductory Questions

1 SenNet Direct Evaluation

2 SenNet vs. nesC

3 Open Question

Goal Metrics Type No. Question

IQ 1
Were the SenNet and nesC tutorials and

presentation given easy to understand?

Very Easy

Easy

Neutral

Difficult

Very Difficult

IQ 2 Were the descriptions of the tasks clear?

Very Easy

Easy

Neutral

Difficult

Very Difficult

Usability
M11

effectiveness
1 3

Do you consider that a developer could

successfully develop WSN applications using

SenNet?

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

Agree Strongly

187

M121
Efficiency

1 4

Would you agree that SenNet is more

efficient to use than nesC, in terms of efforts

and time required to successfully develop

WSN application?

Agree

Neutral

Disagree

Disagree Strongly

1 5

According to the tasks you have asked to

program, would you agree that using SenNet

will decrease the development time required

to develop WSN application more than nesC?

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

2 6
Which programming language do you think

would require less background in WSN

technology?

SenNet

nesC

Undecided

2 7
Which programming language do you think

would require less programming skills?

SenNet

nesC

Undecided

1 8

Would you agree that SenNet has the

capability to help users achieve their tasks in

an acceptable number of program

development activities?

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

M13
Likeability,

user
perception

2 9
If you needed to develop a WSN application,

which language toolkit would you prefer to

use?

SenNet

nesC

Undecided

2 10
Which programming language environment

you consider would be the most friendly tool?

SenNet

nesC

Undecided

2 11
Which programming language you would be

more likely to recommend for programming

WSN applications?

SenNet

nesC

Undecided

2 12
Which programming language you consider

would have more attractive symbols?

SenNet

nesC

Undecided

M14
Learnability

2 13
Which programming language you consider

would be easier to learn and use?

SenNet

nesC

Undecided

2 14

Which programming language do you

consider its concepts and symbols are easier

to learn and remember (e.g., ease of learning

elements, ease of learning to develop a

program)?

SenNet

nesC

Undecided

M15
Programming

Technique
2 15

Is it easier to develop a WSN application

using node-level or network-level

programming?

Specific-Node

Network-Level

Undecided

M16
Maintaining

existing
applications

2 16
Which programming language do you

consider easier to make a change or editing

for existing application?

SenNet

nesC

Undecided

M17 Mind to
program
mapping

2 17

Which programming language do you

consider would provide better support a

problem-solving that can be mapped into a

program easily?

SenNet

nesC

Undecided

Functional
Suitability

M21
Appropriaten

ess
1 18

Do you consider that SenNet has satisfied all

WSN application requirements?

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

188

1 19
All concepts and scenarios of the domain can

be expressed in SenNet.

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

1 20
SenNet is appropriate for developing WSN

applications (e.g. to express an algorithm).

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

1 21

SenNet constructs correspond to relevant

domain concepts. The language does not

include concepts that are not important for the

domain.

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

1 22 SenNet does not contain conflicting elements.

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

1 23
SenNet is at the right abstraction level in that

it is not too complex or detailed than

necessary.

Agree Strongly

Agree

Neutral

Disagree

Disagree Strongly

Open Question 3 24
What other operations and activities would

you prefer to be added to the SenNet?

H.4 Task-3

User Study Task-3

*************************SenNet Code Sample********************************
SeNetApp US41 {
 jobs {
 NodeDataProcessing {
 id 100
 nodeDataProcessing max
 sensingSamplingRate 60000
 dataProcessingRate 600000
 JobTargetNode SensorNode {
 nodeResources {
 TemperatureSensor
 }
 }
 jobaction {
 SendMessageAction {
 sendMessageTo 1
 condition ConditionalAction {
 sensorTerm Temp
 logicalSymbol greaterThan
 value 20
 unit C
 }
 }
 }
 }
 }
}

189

***************************nesCode SampleC.nc******************************
#include "Timer.h"
#include "AMsg.h"
module nesCodeSampleC {
 uses {
 interface Boot;
 interface SplitControl;
 interface Read<uint8_t>;
 interface Timer<TMilli>;
 interface Packet;
 interface AMPacket;
 interface AMSend;
 interface Receive;
 }
}

implementation {
 bool radioBusy;
 message_t messagePacket;
 uint8_t avg counter results;
 event void Boot.booted() {
 call T1.startPeriodic(600000);
 call T2.startPeriodic(60000);
 call SplitControl.start();
 }
 event void T1.fired()
 {
 }
 event void T2.fired()
 {
 Call Read.read()
 }
 event void Read.readDone(error_t result, uint8_t data)
 {
 avg = avg + data;
 counter = counter + 1;
 }
 ActiveMessage_t* msg = call Packet.getPayload(&messagePacket,sizeof(ActiveMessage_t));
 msg -> NodeID = TOS_NODE_ID;
 results = avg / counter;
 msg -> TData = results;
 if (call AMSend.send(1,&messagePacket,sizeof(ActiveMessage_t)))
 {
 radioBusy = TRUE;
 }
 }
}
 event void SplitControl.startDone(error_t error) {
 if (error != SUCCESS)
 {
 call SplitControl.start();
 }
 }
 event void SplitControl.stopDone(error_t error) {
 }
 event void AMSend.sendDone(message_t *msg, error_t error)
 {
 if (msg == & messagePacket)
 {
 radioBusy = FALSE;
 }
 }
 event message_t * Receive.receive(message_t *msg, void *payload, uint8_t len)
 {
 return msg;
 }
}
