1,596 research outputs found

    Minimum Bit-Error Rate Design for Space-Time Equalisation-Based Multiuser Detection

    No full text
    A novel minimum bit-error rate (MBER) space–time equalization (STE)-based multiuser detector (MUD) is proposed for multiple-receive-antenna-assisted space-division multiple-access systems. It is shown that the MBER-STE-aided MUD significantly outperforms the standard minimum mean-square error design in terms of the achievable bit-error rate (BER). Adaptive implementations of the MBER STE are considered, and both the block-data-based and sample-by-sample adaptive MBER algorithms are proposed. The latter, referred to as the least BER (LBER) algorithm, is compared with the most popular adaptive algorithm, known as the least mean square (LMS) algorithm. It is shown that in case of binary phase-shift keying, the computational complexity of the LBER-STE is about half of that required by the classic LMS-STE. Simulation results demonstrate that the LBER algorithm performs consistently better than the classic LMS algorithm, both in terms of its convergence speed and steady-state BER performance. Index Terms—Adaptive algorithm, minimum bit-error rate (MBER), multiuser detection (MUD), space–time processing

    A Unifying Approach to Quaternion Adaptive Filtering: Addressing the Gradient and Convergence

    Full text link
    A novel framework for a unifying treatment of quaternion valued adaptive filtering algorithms is introduced. This is achieved based on a rigorous account of quaternion differentiability, the proposed I-gradient, and the use of augmented quaternion statistics to account for real world data with noncircular probability distributions. We first provide an elegant solution for the calculation of the gradient of real functions of quaternion variables (typical cost function), an issue that has so far prevented systematic development of quaternion adaptive filters. This makes it possible to unify the class of existing and proposed quaternion least mean square (QLMS) algorithms, and to illuminate their structural similarity. Next, in order to cater for both circular and noncircular data, the class of widely linear QLMS (WL-QLMS) algorithms is introduced and the subsequent convergence analysis unifies the treatment of strictly linear and widely linear filters, for both proper and improper sources. It is also shown that the proposed class of HR gradients allows us to resolve the uncertainty owing to the noncommutativity of quaternion products, while the involution gradient (I-gradient) provides generic extensions of the corresponding real- and complex-valued adaptive algorithms, at a reduced computational cost. Simulations in both the strictly linear and widely linear setting support the approach

    Distribution dependent adaptive learning

    Get PDF

    Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients

    Get PDF
    It is known by the experience gained from the gravitational wave detector proto-types that the interferometric output signal will be corrupted by a significant amount of non-Gaussian noise, large part of it being essentially composed of long-term sinusoids with slowly varying envelope (such as violin resonances in the suspensions, or main power harmonics) and short-term ringdown noise (which may emanate from servo control systems, electronics in a non-linear state, etc.). Since non-Gaussian noise components make the detection and estimation of the gravitational wave signature more difficult, a denoising algorithm based on adaptive filtering techniques (LMS methods) is proposed to separate and extract them from the stationary and Gaussian background noise. The strength of the method is that it does not require any precise model on the observed data: the signals are distinguished on the basis of their autocorrelation time. We believe that the robustness and simplicity of this method make it useful for data preparation and for the understanding of the first interferometric data. We present the detailed structure of the algorithm and its application to both simulated data and real data from the LIGO 40meter proto-type.Comment: 16 pages, 9 figures, submitted to Phys. Rev.

    Iterative analysis of the steady-state weight fluctuations in LMS-type adaptive filters

    Get PDF

    Echo Cancellation - A Likelihood Ratio Test for Double-talk Versus Channel Change

    Get PDF
    Echo cancellers are in wide use in both electrical (four wire to two wire mismatch) and acoustic (speaker-microphone coupling) applications. One of the main design problems is the control logic for adaptation. Basically, the algorithm weights should be frozen in the presence of double-talk and adapt quickly in the absence of double-talk. The control logic can be quite complicated since it is often not easy to discriminate between the echo signal and the near-end speaker. This paper derives a log likelihood ratio test (LRT) for deciding between double-talk (freeze weights) and a channel change (adapt quickly) using a stationary Gaussian stochastic input signal model. The probability density function of a sufficient statistic under each hypothesis is obtained and the performance of the test is evaluated as a function of the system parameters. The receiver operating characteristics (ROCs) indicate that it is difficult to correctly decide between double-talk and a channel change based upon a single look. However, post-detection integration of approximately one hundred sufficient statistic samples yields a detection probability close to unity (0.99) with a small false alarm probability (0.01)

    The application of neural networks to communication channel equalisation : a comparison between localised and non-localised basis functions

    Get PDF
    Bibliography: leaves. 63-66.Neural networks have been applied to a number of problems over the past few years. One of the emerging applications of neural networks is adaptive communication channel equalisation. This area of research has become prominent due to the reformulation of the equalisation problem as a classification problem. Viewing equalisation as a classification problem allows researchers to apply the knowledge gained from other fields to equalisation. A wide variety of neural network structures have been suggested to equalise communication channels. Each structure may in turn have a number of different possible algorithms to train the equaliser. A neural network is essentially a non-linear classifier; in general a neural network is able to classify data by employing a non-linear function. The primary subject of this dissertation is the comparative performance of neural networks employing non-localised basis (non-linear) functions (Multi-layer Perceptron) versus those employing localised basis functions (Radial Basis Function Network)
    • 

    corecore