46 research outputs found

    A rate control algorithm for scalable video coding

    Get PDF
    This thesis proposes a rate control (RC) algorithm for H.264/scalable video coding (SVC) specially designed for real-time variable bit rate (VBR) applications with buffer constraints. The VBR controller assumes that consecutive pictures within the same scene often exhibit similar degrees of complexity, and aims to prevent unnecessary quantization parameter (QP) fluctuations by allowing for just an incremental variation of QP with respect to that of the previous picture. In order to adapt this idea to H.264/SVC, a rate controller is located at each dependency layer (spatial or coarse grain scalability) so that each rate controller is responsible for determining the proper QP increment. Actually, one of the main contributions of the thesis is a QP increment regression model that is based on Gaussian processes. This model has been derived from some observations drawn from a discrete set of representative encoding states. Two real-time application scenarios were simulated to assess the performance of the VBR controller with respect to two well-known RC methods. The experimental results show that our proposal achieves an excellent performance in terms of quality consistency, buffer control, adjustment to the target bit rate, and computational complexity. Moreover, unlike typical RC algorithms for SVC that only satisfy the hypothetical reference decoder (HRD) constraints for the highest temporal resolution sub-stream of each dependency layer, the proposed VBR controller also delivers HRD-compliant sub-streams with lower temporal resolutions.To this end, a novel approach that uses a set of buffers (one per temporal resolution sub-stream) within a dependency layer has been built on top of the RC algorithm.The proposed approach aims to simultaneously control the buffer levels for overflow and underflow prevention, while maximizing the reconstructed video quality of the corresponding sub-streams. This in-layer multibuffer framework for rate-controlled SVC does not require additional dependency layers to deliver different HRD-compliant temporal resolutions for a given video source, thus improving the coding e ciency when compared to typical SVC encoder con gurations since, for the same target bit rate, less layers are encoded

    Low delay video coding

    Get PDF
    Analogue wireless cameras have been employed for decades, however they have not become an universal solution due to their difficulties of set up and use. The main problem is the link robustness which mainly depends on the requirement of a line-of-sight view between transmitter and receiver, a working condition not always possible. Despite the use of tracking antenna system such as the Portable Intelligent Tracking Antenna (PITA [1]), if strong multipath fading occurs (e.g. obstacles between transmitter and receiver) the picture rapidly falls apart. Digital wireless cameras based on Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes give a valid solution for the above problem. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard has proven to offer excellent performance for the broadcasting of multimedia streams with bit rates over 10 Mbps in difficult terrestrial propagation channels, for fixed and portable applications. However, in typical conditions, the latency needed to compress/decompress a digital video signal at Standard Definition (SD) resolution is of the order of 15 frames, which corresponds to ≃ 0.5 sec. This delay introduces a serious problem when wireless and wired cameras have to be interfaced. Cabled cameras do not use compression, because the cable which directly links transmitter and receiver does not impose restrictive bandwidth constraints. Therefore, the only latency that affects a cable cameras link system is the on cable propagation delay, almost not significant, when switching between wired and wireless cameras, the residual latency makes it impossible to achieve the audio-video synchronization, with consequent disagreeable effects. A way to solve this problem is to provide a low delay digital processing scheme based on a video coding algorithm which avoids massive intermediate data storage. The analysis of the last MPEG based coding standards puts in evidence a series of problems which limits the real performance of a low delay MPEG coding system. The first effort of this work is to study the MPEG standard to understand its limit from both the coding delay and implementation complexity points of views. This thesis also investigates an alternative solution based on HERMES codec, a proprietary algorithm which is described implemented and evaluated. HERMES achieves better results than MPEG in terms of latency and implementation complexity, at the price of higher compression ratios, which means high output bit rates. The use of HERMES codec together with an enhanced OFDM system [2] leads to a competitive solution for wireless digital professional video applications

    Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud

    Full text link
    [EN] This paper presents and evaluates a system that provides TV and radio services in mobility using 4G communications. The system has mainly two blocks, one on the cloud and another on the mobile vehicle. On the cloud, a DVB (Digital Video Broadcasting) receiver obtains the TV/radio signal and prepares the contents to be sent through 4G. Specifically, contents are transcoded and packetized using the DASH (Dynamic Adaptive Streaming over HTTP) standard. Vehicles in mobility use their 4G connectivity to receive the flows transmitted by the cloud. The key element of the system is an on-board proxy that manages the received flows and offers them to the final users in the vehicle. The proxy contains a buffer that helps reduce the number of interruptions caused by hand over effects and lack of coverage. The paper presents a comparison between a live transmission using 4G connecting the clients directly with the cloud server and a near real-time transmission based on an on-board proxy. Results prove that the use of the proxy reduces the number of interruptions considerably and, thus, improves the Quality of Experience of users at the expense of slightly increasing the delay.This work is supported by the Centro para el Desarrollo Tecnologico Industrial (CDTI) from the Government of Spain under the project "Plataforma avanzada de conectividad en movilidad" (CDTI IDI-20150126) and the project "Desarrollo de nueva plataforma de entretenimiento multimedia para entornos nauticos" (CDTI TIC-20170102).Arce Vila, P.; De Fez Lava, I.; Belda Ortega, R.; Guerri Cebollada, JC.; Ferrairó, S. (2019). Proxy-based near real-time TV content transmission in mobility over 4G with MPEG-DASH transcoding on the cloud. Multimedia Tools and Applications. 78(18):26399-26425. https://doi.org/10.1007/s11042-019-07840-6S2639926425781

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Prediction of Quality of Experience for Video Streaming Using Raw QoS Parameters

    Get PDF
    Along with the rapid growth in consumer adoption of modern portable devices, video streaming is expected to dominate a large share of the global Internet traffic in the near future. Today user experience is becoming a reliable indicator for video service providers and telecommunication operators to convey overall end-to-end system functioning. Towards this, there is a profound need for an efficient Quality of Experience (QoE) monitoring and prediction. QoE is a subjective metric, which deals with user perception and can vary due to the user expectation and context. However, available QoE measurement techniques that adopt a full reference method are impractical in real-time transmission since they require the original video sequence to be available at the receiver’s end. QoE prediction, however, requires a firm understanding of those Quality of Service (QoS) factors that are the most influential on QoE. The main aim of this thesis work is the development of novel and efficient models for video quality prediction in a non-intrusive way and to demonstrate their application in QoE-enabled optimisation schemes for video delivery. In this thesis, the correlation between QoS and QoE is utilized to objectively estimate the QoE. For this, both objective and subjective methods were used to create datasets that represent the correlation between QoS parameters and measured QoE. Firstly, the impact of selected QoS parameters from both encoding and network levels on video QoE is investigated. The obtained QoS/QoE correlation is backed by thorough statistical analysis. Secondly, the development of two novel hybrid non-reference models for predicting video quality using fuzzy logic inference systems (FIS) as a learning-based technique. Finally, attention was move onto demonstrating two applications of the developed FIS prediction model to show how QoE is used to optimise video delivery

    Architectural support for ubiquitous access to multimedia content

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores (Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 200

    Designing new network adaptation and ATM adaptation layers for interactive multimedia applications

    Get PDF
    Multimedia services, audiovisual applications composed of a combination of discrete and continuous data streams, will be a major part of the traffic flowing in the next generation of high speed networks. The cornerstones for multimedia are Asynchronous Transfer Mode (ATM) foreseen as the technology for the future Broadband Integrated Services Digital Network (B-ISDN) and audio and video compression algorithms such as MPEG-2 that reduce applications bandwidth requirements. Powerful desktop computers available today can integrate seamlessly the network access and the applications and thus bring the new multimedia services to home and business users. Among these services, those based on multipoint capabilities are expected to play a major role.    Interactive multimedia applications unlike traditional data transfer applications have stringent simultaneous requirements in terms of loss and delay jitter due to the nature of audiovisual information. In addition, such stream-based applications deliver data at a variable rate, in particular if a constant quality is required.    ATM, is able to integrate traffic of different nature within a single network creating interactions of different types that translate into delay jitter and loss. Traditional protocol layers do not have the appropriate mechanisms to provide the required network quality of service (QoS) for such interactive variable bit rate (VBR) multimedia multipoint applications. This lack of functionalities calls for the design of protocol layers with the appropriate functions to handle the stringent requirements of multimedia.    This thesis contributes to the solution of this problem by proposing new Network Adaptation and ATM Adaptation Layers for interactive VBR multimedia multipoint services.    The foundations to build these new multimedia protocol layers are twofold; the requirements of real-time multimedia applications and the nature of compressed audiovisual data.    On this basis, we present a set of design principles we consider as mandatory for a generic Multimedia AAL capable of handling interactive VBR multimedia applications in point-to-point as well as multicast environments. These design principles are then used as a foundation to derive a first set of functions for the MAAL, namely; cell loss detection via sequence numbering, packet delineation, dummy cell insertion and cell loss correction via RSE FEC techniques.    The proposed functions, partly based on some theoretical studies, are implemented and evaluated in a simulated environment. Performances are evaluated from the network point of view using classic metrics such as cell and packet loss. We also study the behavior of the cell loss process in order to evaluate the efficiency to be expected from the proposed cell loss correction method. We also discuss the difficulties to map network QoS parameters to user QoS parameters for multimedia applications and especially for video information. In order to present a complete performance evaluation that is also meaningful to the end-user, we make use of the MPQM metric to map the obtained network performance results to a user level. We evaluate the impact that cell loss has onto video and also the improvements achieved with the MAAL.    All performance results are compared to an equivalent implementation based on AAL5, as specified by the current ITU-T and ATM Forum standards.    An AAL has to be by definition generic. But to fully exploit the functionalities of the AAL layer, it is necessary to have a protocol layer that will efficiently interface the network and the applications. This role is devoted to the Network Adaptation Layer.    The network adaptation layer (NAL) we propose, aims at efficiently interface the applications to the underlying network to achieve a reliable but low overhead transmission of video streams. Since this requires an a priori knowledge of the information structure to be transmitted, we propose the NAL to be codec specific.    The NAL targets interactive multimedia applications. These applications share a set of common requirements independent of the encoding scheme used. This calls for the definition of a set of design principles that should be shared by any NAL even if the implementation of the functions themselves is codec specific. On the basis of the design principles, we derive the common functions that NALs have to perform which are mainly two; the segmentation and reassembly of data packets and the selective data protection.    On this basis, we develop an MPEG-2 specific NAL. It provides a perceptual syntactic information protection, the PSIP, which results in an intelligent and minimum overhead protection of video information. The PSIP takes advantage of the hierarchical organization of the compressed video data, common to the majority of the compression algorithms, to perform a selective data protection based on the perceptual relevance of the syntactic information.    The transmission over the combined NAL-MAAL layers shows significant improvement in terms of CLR and perceptual quality compared to equivalent transmissions over AAL5 with the same overhead.    The usage of the MPQM as a performance metric, which is one of the main contributions of this thesis, leads to a very interesting observation. The experimental results show that for unexpectedly high CLRs, the average perceptual quality remains close to the original value. The economical potential of such an observation is very important. Given that the data flows are VBR, it is possible to improve network utilization by means of statistical multiplexing. It is therefore possible to reduce the cost per communication by increasing the number of connections with a minimal loss in quality.    This conclusion could not have been derived without the combined usage of perceptual and network QoS metrics, which have been able to unveil the economic potential of perceptually protected streams.    The proposed concepts are finally tested in a real environment where a proof-of-concept implementation of the MAAL has shown a behavior close to the simulated results therefore validating the proposed multimedia protocol layers

    Content-Aware Multimedia Communications

    Get PDF
    The demands for fast, economic and reliable dissemination of multimedia information are steadily growing within our society. While people and economy increasingly rely on communication technologies, engineers still struggle with their growing complexity. Complexity in multimedia communication originates from several sources. The most prominent is the unreliability of packet networks like the Internet. Recent advances in scheduling and error control mechanisms for streaming protocols have shown that the quality and robustness of multimedia delivery can be improved significantly when protocols are aware of the content they deliver. However, the proposed mechanisms require close cooperation between transport systems and application layers which increases the overall system complexity. Current approaches also require expensive metrics and focus on special encoding formats only. A general and efficient model is missing so far. This thesis presents efficient and format-independent solutions to support cross-layer coordination in system architectures. In particular, the first contribution of this work is a generic dependency model that enables transport layers to access content-specific properties of media streams, such as dependencies between data units and their importance. The second contribution is the design of a programming model for streaming communication and its implementation as a middleware architecture. The programming model hides the complexity of protocol stacks behind simple programming abstractions, but exposes cross-layer control and monitoring options to application programmers. For example, our interfaces allow programmers to choose appropriate failure semantics at design time while they can refine error protection and visibility of low-level errors at run-time. Based on some examples we show how our middleware simplifies the integration of stream-based communication into large-scale application architectures. An important result of this work is that despite cross-layer cooperation, neither application nor transport protocol designers experience an increase in complexity. Application programmers can even reuse existing streaming protocols which effectively increases system robustness.Der Bedarf unsere Gesellschaft nach kostengünstiger und zuverlässiger Kommunikation wächst stetig. Während wir uns selbst immer mehr von modernen Kommunikationstechnologien abhängig machen, müssen die Ingenieure dieser Technologien sowohl den Bedarf nach schneller Einführung neuer Produkte befriedigen als auch die wachsende Komplexität der Systeme beherrschen. Gerade die Übertragung multimedialer Inhalte wie Video und Audiodaten ist nicht trivial. Einer der prominentesten Gründe dafür ist die Unzuverlässigkeit heutiger Netzwerke, wie z.B.~dem Internet. Paketverluste und schwankende Laufzeiten können die Darstellungsqualität massiv beeinträchtigen. Wie jüngste Entwicklungen im Bereich der Streaming-Protokolle zeigen, sind jedoch Qualität und Robustheit der Übertragung effizient kontrollierbar, wenn Streamingprotokolle Informationen über den Inhalt der transportierten Daten ausnutzen. Existierende Ansätze, die den Inhalt von Multimediadatenströmen beschreiben, sind allerdings meist auf einzelne Kompressionsverfahren spezialisiert und verwenden berechnungsintensive Metriken. Das reduziert ihren praktischen Nutzen deutlich. Außerdem erfordert der Informationsaustausch eine enge Kooperation zwischen Applikationen und Transportschichten. Da allerdings die Schnittstellen aktueller Systemarchitekturen nicht darauf vorbereitet sind, müssen entweder die Schnittstellen erweitert oder alternative Architekturkonzepte geschaffen werden. Die Gefahr beider Varianten ist jedoch, dass sich die Komplexität eines Systems dadurch weiter erhöhen kann. Das zentrale Ziel dieser Dissertation ist es deshalb, schichtenübergreifende Koordination bei gleichzeitiger Reduzierung der Komplexität zu erreichen. Hier leistet die Arbeit zwei Beträge zum aktuellen Stand der Forschung. Erstens definiert sie ein universelles Modell zur Beschreibung von Inhaltsattributen, wie Wichtigkeiten und Abhängigkeitsbeziehungen innerhalb eines Datenstroms. Transportschichten können dieses Wissen zur effizienten Fehlerkontrolle verwenden. Zweitens beschreibt die Arbeit das Noja Programmiermodell für multimediale Middleware. Noja definiert Abstraktionen zur Übertragung und Kontrolle multimedialer Ströme, die die Koordination von Streamingprotokollen mit Applikationen ermöglichen. Zum Beispiel können Programmierer geeignete Fehlersemantiken und Kommunikationstopologien auswählen und den konkreten Fehlerschutz dann zur Laufzeit verfeinern und kontrolliere

    Quality of Service Controlled Multimedia Transport Protocol

    Get PDF
    PhDThis research looks at the design of an open transport protocol that supports a range of services including multimedia over low data-rate networks. Low data-rate multimedia applications require a system that provides quality of service (QoS) assurance and flexibility. One promising field is the area of content-based coding. Content-based systems use an array of protocols to select the optimum set of coding algorithms. A content-based transport protocol integrates a content-based application to a transmission network. General transport protocols form a bottleneck in low data-rate multimedia communicationbsy limiting throughpuot r by not maintainingt iming requirementsT. his work presents an original model of a transport protocol that eliminates the bottleneck by introducing a flexible yet efficient algorithm that uses an open approach to flexibility and holistic architectureto promoteQ oS.T he flexibility andt ransparenccyo mesi n the form of a fixed syntaxt hat providesa seto f transportp rotocols emanticsT. he mediaQ oSi s maintained by defining a generic descriptor. Overall, the structure of the protocol is based on a single adaptablea lgorithm that supportsa pplication independencen, etwork independencea nd quality of service. The transportp rotocol was evaluatedth rougha set of assessmentos:f f-line; off-line for a specific application; and on-line for a specific application. Application contexts used MPEG-4 test material where the on-line assessmenuts eda modified MPEG-4 pl; yer. The performanceo f the QoSc ontrolledt ransportp rotocoli s often bettert hano thers chemews hen appropriateQ oS controlledm anagemenatl gorithmsa re selectedT. his is shownf irst for an off-line assessmenwt here the performancei s compared between the QoS controlled multiplexer,a n emulatedM PEG-4F lexMux multiplexers chemea, ndt he targetr equirements. The performanceis also shownt o be better in a real environmentw hen the QoS controlled multiplexeri s comparedw ith the real MPEG-4F lexMux scheme

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF
    corecore