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Abstract

Along with the rapid growth in consumer adoption of modern portable devices, video

streaming is expected to dominate a large share of the global Internet traffic in the

near future. Today user experience is becoming a reliable indicator for video service

providers and telecommunication operators to convey overall end-to-end system func-

tioning. Towards this, there is a profound need for an efficient Quality of Experience

(QoE) monitoring and prediction. QoE is a subjective metric, which deals with user

perception and can vary due to the user expectation and context. However, available

QoE measurement techniques that adopt a full reference method are impractical in

real-time transmission since they require the original video sequence to be available

at the receivers end. QoE prediction, however, requires a firm understanding of those

Quality of Service (QoS) factors that are the most influential on QoE.

The main aim of this thesis work is the development of novel and efficient models for

video quality prediction in a non-intrusive way and to demonstrate their application
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in QoE-enabled optimisation schemes for video delivery. In this thesis, the corre-

lation between QoS and QoE is utilized to objectively estimate the QoE. For this,

both objective and subjective methods were used to create datasets that represent

the correlation between QoS parameters and measured QoE. Firstly, the impact of

selected QoS parameters from both encoding and network levels on video QoE is

investigated. The obtained QoS/QoE correlation is backed by thorough statistical

analysis. Secondly, the development of two novel hybrid non-reference models for

predicting video quality using fuzzy logic inference systems (FIS) as a learning-based

technique. Finally, attention was move onto demonstrating two applications of the

developed FIS prediction model to show how QoE is used to optimise video delivery.
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Chapter 1
Introduction

The exponential growth of video services and applications has motivated the research

conducted for this thesis. This chapter introduces the context and motivations of the

proposed research in this thesis. It discusses the objectives as well as the primary

contributions of this thesis. The chapter ends with a presentation of the organisation

of the rest of this thesis.

This chapter is organised as follows: the motivation for the proposed research is

described in Section 2. The research objectives are discussed in Section 3, while the

major contributions of this thesis are summarized in Section 4. A brief overview

and a description of the organisation of this thesis are given in Section 5. Section 6

presents the list of publications that have been presented to the research community.
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1.1 Motivation

The motivation for the research conducted in this thesis stems from the search for

answers to two basic questions.

Why video services?

Multimedia services, including 2D and 3D video streaming services, are a key com-

ponent of next generation communication systems. According to a recent study [1],

video is expected to dominate up to 80% of the global internet traffic by 2018. The

same study projected that 66% of this global traffic will be carried over wireless and

mobile devices at this time. Figure 1.1 shows the forecasted data for video consump-

tion and adoption from 2013 to 2018. In addition to Standard-Definition (SD) TV,

system-on-chips are in active development [8] for High-Definition (HD) TV display

on smart phones. Indeed, there is also increasing demand for mobile 3D TV [9], with

possible extensions to immersive video applications [10]. This growth has created a

threat on network resources scarcity as well as opportunities for network operators

and service providers for revenue generation.

Since video, in general, is considered a resource-hungry service, increasing video qual-

ity makes it more sensitive to any problems that occur along the video delivery chain.

This sensitivity is translated into different levels of degradation in the user experi-

ence. When this is coupled with the highly sophisticated functionality offered by

electronic devices nowadays, and the corresponding elevation of consumers’ expec-
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tations to require broadcast level video quality that fully utilizes the capabilities of

their devices, the development of robust, high quality video streaming technology

becomes a priority. As a consequence, in the recent years, video traffic has diverted

the attention of the research as well as industrial communities.

	  Figure 1.1: The forecasted data for video consumption and adoption, 2013-2018 [1]
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Why video QoE prediction and monitoring?

Traditional approaches for measuring user satisfaction rely on Quality of Service

(QoS) parameters collected from the network. These QoS parameters are monitored

and controlled in order to provide a satisfactory level of service quality. Different

QoS parameters such as bandwidth, delay, packet loss, etc., are essential metrics

for determining the service quality from a technical point of view. However, QoS

parameters do not necessarily reflect the users’ satisfaction and feelings towards a

particular service. There is now a realisation that the user’s Quality of Experience

(QoE) is an important metric that should be measured and studied during the design

and management of content delivery systems and other engineering processes. There

are many definitions of QoE [11–16], all of which are based on the underlying concept

that QoE is related to the user’s satisfaction with the offered service.

Adopting a more holistic understanding of quality as perceived by end-users (QoE)

is becoming a vibrant area of research. When customers experience low quality

video service, the service provider cannot afford to wait for customer complaints

before taking remedial action. According to an Accenture survey [13], about 90% of

users do not make complaints about low quality service, preferring to simply leave

their current provider and go to another. To have a competitive advantage, service

providers must be aware of this chain effect and develop the capacity to deliver video

content through bandwidth limited and error-prone networks with a customer-agreed

level of quality for specific services.
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Video QoE prediction and monitoring is a multi-disciplinary approach which draws

on fields such as engineering science, economics, and user psychology. The video QoE

depends on different elements (i.e., content, application, network, etc.) that directly

or indirectly affect the user’s perception of the video services. Moreover, the diver-

sity of these elements makes QoE estimation rather complex and unpredictable. In

addition, there is a lack of accurate quantitative descriptions of QoE. This motivates

the investigation of some prominent challenges related to video QoE prediction and

monitoring as described below.

Subjective vs. objective QoE measurement : There are two methodologies for eval-

uating video QoE: subjective and objective measurements. The subjective method

requires human participation and a controlled environment for the performance of

the test. The disadvantages of this approach are that the methodology cannot be

applied in real-time, is more expensive to implement, and requires more time than

the objective approach. By contrast, the objective method of video QoE is based

on objectively measured application/network parameters. It can be performed in

an intrusive (full reference) or non-intrusive way (reference free). Its disadvantages

are that it is computationally intensive as it may require complex mathematics and

algorithms, and objective metrics can be hard to extract and may not correlate well

with subjective QoE [17].

Impacts of QoS parameters on video QoE : In the research community, QoS is known

to be the most influential factor on QoE [18, 19]. The interactions between vari-

ous QoS parameters and their impacts on video QoE are still not well understood.
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In addition, there is no standardized methodology that directly and quantitatively

maps QoS to QoE. It is also difficult to select network related key performance in-

dicators (KPIs) or QoS parameters that can impact on video QoE. However, the

ability to identify the perceived degree of video impairment due to the impact of QoS

parameters is a key ingredient in the prediction of video QoE. There is a need to quan-

titatively investigate the impacts of QoS parameters (arising from both application

and physical layers) on video QoE.

Video QoE prediction models : Research on video QoE modelling is still limited.

Hence, it is important to model the relationship between QoS and QoE so that QoE

can be predicted in the absence of the reference video (no-reference). However, most

of the current literature in this area discusses only partial solutions and overlooks

some QoS parameters that influence video streaming quality. The existing proposals

for video quality prediction tend to consider either encoder parameters, network

impairment, or the features of the video content, but rarely consider all three in

combination.

Learning and self-adaptive prediction models : Nowadays, researchers study human

cognitive processes very carefully and try to develop models that exhibit similar

behaviour to brain neurons. Since the human mind is known to be non-deterministic,

it is challenging to develop a formal algorithm for human behaviour. This is the reason

why researchers turn their attention to learning and self-adaptive models [20].
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1.2 Thesis Objectives

The hypotheses tested in this thesis are that it is possible to measure and quantify

QoE perceptions, and subsequently to derive a mapping between QoS parameters and

the measured video QoE; and that it is possible to develop a QoS/QoE correlation

framework for video quality prediction and monitoring. In testing these hypotheses,

this thesis addresses the following general objectives:

• determine possible correlations between the raw QoS parameter values and the

video QoE.

• undertake a fundamental investigation to quantify the impact of video encoder

impairments (e.g. bitrate, spatial resolution, quantization parameters), com-

pression ratio, video content type and access network impairments (e.g. pack-

et/block loss, mean burst length) on perceived 2D and 3D video quality.

• develop novel and efficient hybrid non-reference video quality prediction models

to predict perceived video quality from a combination of QoS parameters.

• demonstrate the benefit of the proposed video QoE prediction model by devel-

oping two practical applications in areas such as video quality optimization for

real-time scalable video streaming and efficient resource utilisation scheme for

mobile video delivery.
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1.3 Contributions of the thesis

The key contributions of this thesis are:

• A detailed investigation of the relationships between video QoE, access network

impairments, encoder impairments and video content type was performed. Both

simulation and practical (test-bed) environments were utilized for video QoE

evaluation. The investigation was divided into two main studies, which are

presented in Chapter 4:

– Study 1: Investigated the impact of QoS parameters on the video QoE by

cross-layer simulations of the transmitted 2D and 3D H.264 video streams.

Variable Bitrate (VBR) videos were used in this study. The video quality

was measured using the objective and subjective metrics. This work is

partially derived from the associated publications [21, 22].

– Study 2: Investigated the impact of QoS parameters and compression effi-

ciency on up-to 4kUHD of H.264 and H.265 coded videos, both transmitted

and decoded simultaneously in real-time. Constant Bitrate (CBR) videos

were used in this study. The video quality was measured by the objective

metric which was mapped to MOS. This work is partially derived from the

associated publications [23,24].

• Novel hybrid non-reference models for predicting video quality using fuzzy logic

inference systems (FIS) as a learning-based technique were developed. For end-
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to-end quality estimation, QoS parameters from both application and network

layers were identified. The proposed models were developed using the measured

objective and subjective dataset. The details of these contributions are:

– Model 1: This model is based on a predetermined FIS rule-based method

(FIS-PRB). A semi-manual method was applied to develop the model,

combining human knowledge and the behaviour of QoS parameters with

testing on a simulator. The fuzzy toolbox in Matlab was used to implement

the fuzzy controller. Details of this model can be found in Chapter 5. This

work is partially derived from the associated publications [22,25,26].

– Model 2: This model is based on an automated rule-based method (FIS-

A). The proposed prediction model can automatically adapt the fuzzy

rules that are used for predicting the QoE. The Mendal-Wang method was

used to apply the learning from example (LFE) approach. The model was

implemented in the Java programming language. Details of this model can

be found in Chapter 6. This work is partially derived from the associated

publications [24,27,28].

The proposed models were validated through the correlation of predicted QoE

and measured QoE data, using both testing and external datasets. Further-

more, the proposed models were validated against the RNN-based prediction

model. The FIS-A model was evaluated on a real test-bed which was produced

for the QoE prediction of real-time wireless H.265 video streaming.
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• Two QoE-enabled applications of the developed FIS-A model are proposed:

– Application 1 is a QoE-enabled transport optimisation scheme for real-

time scalable video delivery. The proposed scheme optimises the video

traffic by mapping video quality degradations (that are caused by the

network) to the QoE without penetrating the video packets. The main

objective is to maximize the QoE with respect to the capacity constraints.

This work is partially derived from the associated publications [29, 30]

– Application 2 is a QoE-enabled efficient resource utilisation scheme for

mobile video delivery. This work shows that considering QoE as the basis

for modulation scheme selection in AMC can be generally advantageous

with respect to power and bandwidth efficiency, by contrast with tech-

niques based solely on network parameters. This work is partially derived

from th associated publications [31,32].

These applications show how QoE is used to optimise video delivery and utilize

existing network resources. In particular, QoE/QoS correlation is an indicator

for network management and planning processes that will allow for the avoid-

ance of resource over-provisioning. Details of these applications can be found

in Chapter 7.
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1.4 Outline of Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents a detailed

understanding of video QoE prediction. Different methodologies and techniques for

video QoE measurement are discussed. The video coding techniques and codecs

employed in this thesis are also presented. A number of existing QoE/QoS correlation

models for the prediction of video quality are critically reviewed in order to provide

a “broader picture” of this area of research.

In Chapter 3, the proposed video QoE evaluation framework is presented and dis-

cussed in general terms. This framework exploits the relationship between the QoS

parameters and video quality to objectively predict the QoE.

Chapter 4 presents a deeper investigation which aims to quantify the impact of QoS

parameters on video QoE. Video QoE is evaluated using both simulated and practical

(test-bed) environments. Moreover, subjective and objective assessment methods are

used to measure the QoE.

Two main studies are presented in this chapter. The first study investigates the im-

pact of QoS parameters on the video QoE using cross-layer simulation of the trans-

mitted 2D and 3D H.264 video streams. The second study investigates the impact

of QoS parameters and compression efficiency on up-to 4kUHD of H.264 and H.265

coded videos which are both transmitted and decoded simultaneously in real-time.

Chapter 5 presents a hybrid non-reference model for predicting video quality using
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fuzzy logic inference systems (FIS) as a learning-based technique. The proposed

model is based on a predetermined rule-based method (FIS-PRB). It is validated

using both testing and external unseen datasets. Further validation of this model

is performed against another artificial intelligence method known as the RNN-based

prediction model.

Chapter 6 presents a hybrid non-reference video QoE prediction model based on an

automated rule-based method (FIS-A). The proposed prediction model can automat-

ically formulate the fuzzy rules that are used for predicting the QoE. An extended and

further developed version of the Mendal-Wang method is used to apply the learning

from example (LFE) approach in designing the proposed automated FIS-A model.

The proposed model is validated by using both testing and external unseen datasets.

Further evaluation of the proposed model is performed using a real practical experi-

mental test-bed for H.265 coded video streaming.

Chapter 7 presents two QoE-enabled applications that demonstrate the benefits of the

developed adaptive FIS-A model. The first application is a QoE-enabled transport

optimisation scheme for real-time SVC video delivery. The second application is a

QoE-enabled efficient resource utilisation scheme for mobile video delivery. These

applications show how QoE is used to optimise video delivery and utilize existing

network resources according to users’ QoS requirements.

Finally, Chapter 8 discusses the significance of the results presented in this thesis and

describes some future directions for research.
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Chapter 2
Background and Literature Review

2.1 Introduction

In the past, network quality has been determined by the objective measurement of

a number of criteria. This quantification is called the Quality of Service (QoS) of

the network. QoS measures the ability of the network to achieve more deterministic

behaviour, so that data can be transported with minimal network impairments (e.g.

packet loss, delay) and maximum bandwidth. One should note that QoS does not

consider the user’s perception of the service quality. Another measurement of quality,

which takes the user’s opinion into consideration, is the Quality of Experience (QoE).

The QoE is a subjective metric that involves human dimensions; it incorporates user

perceptions, expectations, and experiences of application and network performance
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into the measurement of network quality [12].

Adopting a more holistic understanding of quality as perceived by end-users (QoE)

is becoming a vibrant area of research. When a customer experiences low quality ser-

vice, the service provider cannot afford to wait for customer complaints. According

to an Accenture survey [13], about 90% of users do not complain about low quality

service, preferring to simply leave their current provider and seek better service else-

where. Therefore, it is essential that the service provider has a means of continually

measuring the QoE and improving it as necessary.

A variety of factors can affect the perceived quality of service including network reli-

ability, the content preparation process, and the terminal performance. The QoS of

multimedia streaming services over IP networks is determined by several interdepen-

dent parameters. Some of these parameters can be adjusted, such as bandwidth and

image resolution, while others such as packet loss and delay can not. These missing

parameters must be considered in order to increase the end user’s satisfaction.

The literature describes a number of different video quality measurement meth-

ods that have different computational and operational requirements. This chapter

presents background information on QoE/QoS correlation and video quality mea-

surement, and highlights some key performance indicators relevant to video QoE. A

review of the existing QoE/QoS correlation models will be provided in order to gain

a “broader picture” of this area of research.
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2.2 QoS and QoE Layers

The term QoS can mean different things to different bodies. The Reference Model

for Open Distributed Processing refers to QoS as a set of quality requirements on the

collective behaviour of one or more objects [33], while, according to the International

Standards Organisation (ISO), QoS characteristics are intended for use in modelling

the actual behaviour of systems. The definition of QoS is independent of the means

by which it is represented or controlled [34]. Another view, expressed by Vogel et

al, is that QoS is the set of those quantitative and qualitative characteristics of a

distributed multimedia system which are necessary in order to achieve the required

functionality of an application [35].

Different solutions for QoS have been proposed, each of which monitors a variety

of layers in the OSI seven layers model. In video streaming services, the two layers

that are generally used for QoS measurements are the application and network layers.

At the application layer, QoS is concerned with parameters such as the frame rate,

resolution, colour, video, and audio codec type. On the other hand, network layer

QoS considers parameters such as delay, jitter, and packet loss. Definitions employed

by different researchers suggest that a perceptual pseudo-layer can be imagined above

both of these layers. This imaginary layer is concerned with the end-user’s experience

(QoE) [36]. Some researchers consider this pseudo-layer to be an extension of the

application layer [37], whereas others view the QoE as an extension of traditional

QoS because QoE provides information regarding the delivered services from the
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user’s viewpoint [38]. Figure 2.1 shows the QoS/QoE layered architecture.

Figure 2.1: QoS/QoE layered architecture

The goal of QoS is to deliver the desired QoE. Delivering a desirable QoE depends on

gaining an understanding of the factors that contribute to the overall user experience.

Figure 2.2 gives a schematic representation of the relationship between QoS and QoE,

which is divided into three zones. When the QoS disturbance lies inside zone 1, the

QoE has a high value, i.e., the user’s satisfaction is not affected. The QoE decreases

when the QoS disturbance reaches zone 2. Finally, when the QoS disturbance enters

zone 3, the QoE may fall, i.e., the user’s satisfaction will be highly affected and

they may stop using the service altogether. In general, when the QoS disturbance

parameter increases, the QoE level and the user’s perception of quality decrease [39].
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Figure 2.2: The mapping curve between QoE and QoS

2.3 Video Streaming

Video delivery by video streaming attempts to overcome the problems associated with

file download, and also provides a significant amount of additional capabilities. The

basic idea of video streaming is to split the video into parts, transmit these parts in

succession, and enable the receiver to decode and playback the video as these parts

are received, without having to wait for the entire video to be delivered. Upon the

end-user’s request, the video content is retrieved from the server and the channel

encoder adapts the video stream to the network QoS requirements. After that, the

encoded video stream is partitioned into packets and transmitted over the network.
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At the end-user’s terminal, the received digital data is transformed into continuous

waveform in the source decoder, which can be viewed using different players at the

application layer [40].

Unlike traditional services, such as web browsing, where the quality of network deliv-

ery is not critical, video streaming services need to deliver content with low distortion

of the video quality from the user’s point of view. Due to network congestion, the

video stream can suffer from different types of perturbation, such packet loss and

variation delay. Figure 2.3 gives an example of the QoS and QoE assessment range

for video services. The QoS assessment is concerned with data management at the

access point, as well as along the network. By contrast, the QoE measurement cov-

ers the whole path taken by packets from their source to their terminal diffusion in

different modes (i.e., visualization, streaming, and downloading modes) [2, 41].

Figure 2.3: The range of QoS and QoE assessment [2]
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Different streaming protocols for data transmission are used to control the data trans-

fer between the video server and the clients. Transmission Control Protocol (TCP)

and User Datagram Protocol (UDP) are the most popular protocols used to commu-

nicate between network devices. Most real-time video services employ UDP as the

transport protocol [42]. Compared to TCP, UDP does not involve any retransmission

mechanism, which makes it attractive to delay-sensitive applications. However, UDP

is an unreliable protocol and the video streams can suffer packet loss which might

cause distortion of the multimedia content [43]. In order to stream the video in real

time, the Real-time Transport Protocol (RTP) [44] must run on top of UDP to make

use of RTP services. RTP does not guarantee QoS or reliable delivery, but provides

support for applications with time constraints by providing a standardized framework

for common functionalities such as time stamps, sequence numbering, and payload

specification. RTP enables detection of lost packets [42].

2.4 Key Performance Indicators for Video Quality

Different Key performance indicators (KPIs) are involved when video content is being

transmitted from the server to a user. KPIs, which are also called QoS parameters,

indicate the overall success or quality of a particular service, in this case, a video

service. The measurement of KPI parameters at different transmission points can help

to identify and locate the sources of problems. In general, video KPIs are classified

into two groups namely: network level and application level QoS parameters [41].
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2.4.1 Application level QoS parameters

Application level KPIs are the performance parameters that are directly associated

with the application layer and the presentation of video content. Some of the impor-

tant application level KPIs are described below.

2.4.1.1 Video Encoding Parameters

Video encoding is the process of taking the original video, as recorded by a camcorder,

mobile phone or webcam, and preparing it for streaming in a digital format according

to specific parameters. Several parameters are briefly discussed below [42]:

• Bit rate refers to the minimum rate at which video bits are transferred from

a source to a destination. The quality of video content increases with higher

video bit rates. Video streams are generally encoded at a Constant Bit rate

(CBR) or a Variable Bit rate (VBR). CBR means that each frame uses the

same amount of bits regardless of whether it needs them or not. CBR is most

commonly used if the video contains a similar motion level across the entire

duration. VBR means that you can vary the amount of bits used to represent

a frame so that the overall average amount of bits-per-frame is achieved.

• Frame rate refers to the number of video frames presented per second. Higher

frame rates lead to better video QoE as the resulting video appears to be

smoother.
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• Resolution refers to the number of pixels in both dimensions (width and height)

of a video frame. A higher frame resolution yields a better video quality. The

choice of the frame resolution is based on the available transmission capacity

and the application.

• 2D/3D Video types, i.e., 2D/3D, refer to the visual dimensions of the video

content. These content types have different service and network requirements.

• The quantization parameter (QP) has considerable influence on the number of

coding bits required for the image block. As the QP increases, the number of

bits required for output encoding becomes smaller. On the other hand, more

output encoding bits are required if the QP is smaller.

2.4.1.2 Video Compression

Video compression reduces redundancies in temporal and spatial directions. In the

temporal reduction, the amount of data needed to store a video frame is reduced by

encoding only the pixels that change between consecutive frames in a sequence. For

spatial reduction, the size of the video data is reduced by selectively discarding up to a

fourth or more of unneeded parts of the original data in a frame. Video compression is

likely to remain an essential component of video services, even with constant advances

in storage and transmission capacities. However, highly compressed video streams

are very susceptible to the effects of network impairment [2, 42].
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The compression system normally includes an encoder and a decoder. The encoder

converts the uncompressed raw media signals into bit streams, while the decoder

converts the compressed form back into a representation of the original video data.

The encoder/decoder pair is often referred to as a CODEC [45]. Examples of video

codec standards are MPEG-4, H.264, and H.265 [46].

Two organizations dominate the video compression standardization industry. One

is the ITU-T VCEG (Video Coding Experts Group) and the other is the ISO/IEC

MPEG (Moving Picture Experts Group). A number of video compression standards

have been proposed. The video streams evaluated in this thesis were encoded us-

ing the H.264/AVC (advanced video coding) [47] and H.265/HEVC (High Efficiency

Video Coding) [48] video codecs, which are discussed briefly below.

• The H.264/AVC video coding standard developed by the ITU-T VCEG and

the ISO/IEC MPEG has the main goal of enhancing compression performance

and providing a ”network-friendly” video representation addressing ”conver-

sational” (video telephony) and ”non-conversational” (storage, broadcast or

streaming) applications [49].

• H.265/HEVC is the successor codec to H.264, which, like H.264, was jointly

developed by the ISO/IEC MPEG and ITU-T VCEG. The primary goal of the

H.265/HEVC codec is to achieve 50 percent better compression efficiency than

H.264 and to support resolutions of up to 8192× 4320 [48].
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2.4.2 Network level QoS parameters

Today’s internet services rely on unreliable and best effort networks. The network

bandwidth available between the source and destination is unknown in advance and

can change over time. Therefore, there is no guarantee that the bandwidth, the

packet loss, the burst loss, and the end-to-end delay will permit good video quality.

Moreover, video streams are highly sensitive to network perturbations. The impact

of network perturbations on video content streaming can result in distortions such

as frame loss, freezing, and pixelization [50]. In order to provide better video QoE,

transmission conditions at the network end should be reliable. The network condition

is represented by different QoS parameters. Each video service has its own QoS

requirements. Some of the network QoS parameters and their descriptions are listed

below [41]:

• Packet loss rate (PLR) is the ratio of the total number of packets lost in trans-

mission compared to the total number of packets sent. Higher packet loss rates

result in lower multimedia QoE.

• Burst loss is the loss of a group of consecutive packets. A higher burst loss

results in a lower video QoE.

• Average delay refers to an average time needed for a packet to reach from the

source to the destination. Larger delay results in the increase of a start-up time

in the multimedia playback.
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• Packet duplication occurs when the same packet is received more than once.

Duplicated packets appear as a result of configuration errors in the network or

defective devices.

• Packet reordering occurs when the sequence number of the packet most recently

received is smaller than the sequence number of a packet previously received.

If the number of reordered packets increases, the video quality decreases.

2.5 QoE Measurement Methods

The current QoE measurement methods can be implicitly categorised into subjective

and objective methods. Subjective methods consist of many participants viewing a

sample video and rating their personal perception of its quality according to a prede-

fined quality scale. The main drawbacks of this approach are: it is high in cost, time

consuming, cannot be used in real time, and lacks repeatability. These limitations

have motivated the development of objective methods that predict subjective quality

solely from the network/media parameters. Nevertheless, the objective methods are

hard to correlate with human perception and some may require high computational

power/time [17,41].

There are a number of different methods for performing both subjective and objective

measurements. The following subsections discuss the common QoE measurement

methods.
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2.5.1 Subjective Methods

Measuring and ensuring good QoE for video applications is very subjective in na-

ture. Subjective video quality measurement methods require an appropriate test

environment. Some of these methods are described in ITU-R BT.500-13 [51] and

ITU-T Rec.P.910 [52]. These standards advise on the type of viewing conditions, the

benchmark for observers, test material selection, assessment procedures, and meth-

ods for statistical analysis. ITU-R Rec.BT.500-13 describes subjective methods that

are specialized for television applications, whereas ITU-T Rec.P.910 is intended for

video applications.

The most commonly used subjective metric for quality measurement is the Mean

Opinion Score (MOS). The standard for MOS is set in the ITU-T recommenda-

tions [52], where it is defined to be a numerical value in the range from 1 to 5. Here

1 is “poor” and 5 is “excellent”. The participation of at least 15 viewers is consid-

ered to be statistically reasonable for these kinds of subjective tests [53]. Generally,

the subjective approach provides the most accurate way to measure video quality.

However, this approach has several limitations such as:

• Testing environment requires strict control.

• Real-time implementation is difficult.

• It is difficult to automate.
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• It is costly and time consuming.

Therefore, there is a need to develop an objective method that produces results

comparable to those provided by subjective testing.

2.5.2 Objective Methods

By definition, the objective approach is based on mathematical and/or compara-

tive techniques that generate a quantitative measure of one-way video quality. This

approach is useful for in-service quality monitoring and the design of networks/ter-

minals, as well as in codec optimization and selection. The lack of a human pres-

ence increases the error margins of the corresponding measurements. However, the

measurement process can be automated and, thus, objective measurements can be

performed quickly enough for real time implementation. Therefore, service providers

and network operators are interested in objective tools that can predict the subjective

MOS given by users with a reasonable degree of accuracy. Objective methods can

be divided into three main groups: full-reference, reduced-reference, and no-reference

methods [17,54].

Full-reference (FR) methods require reference to the source video. A distorted

sample is compared with the original sample in terms of per-pixel processing and

temporal/spatial alignment. These methods are impractical for online monitoring

and prediction. Moreover, it may be impossible to access the source (original) video.

The basic block diagram for the FR method is given in Figure 2.4. The Video Quality
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Metric (VQM) [55], Structural Similarity Index Measurement (SSIM) [56] and Peak-

Signal-to-Noise-Ration (PSNR) [57] are examples of full-reference methods. In this

thesis, VQM and SSIM are used for video quality measurement in Chapter 4.

	  
Figure 2.4: Full-reference method

Reduced-reference (RR) methods use only some features extracted from the orig-

inal video clip. Consequently, if a reduced-reference method is to be used in an IPTV

system, the user requirements should specify the side channel through which the

featured data is transmitted. Figure 2.5 gives a basic block diagram for RR methods.

	  
Figure 2.5: Reduced-reference method
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No-reference (NR) methods use a degraded signal for the estimation of quality

and do not rely on any information about the original reference sequence. This lack

of a requirement for access to the source video clip makes no-reference methods par-

ticularly attractive. By contrast, it is impracticable to use the FR and RR methods

for monitoring live traffic as they require access to the source video. Figure 2.6 shows

a basic block diagram for NR methods.

	  

Figure 2.6: No-reference method

2.6 Classification of Objective Quality Prediction

Models

It is important to investigate the relationship between end user-oriented QoE and

network-oriented QoS parameters. This motivates the search for insight into the

principal ways in which the quantitative parts of QoE are affected by the QoS network

parameters. It is possible to measure and quantify the QoE, and subsequently derive

a mapping correlating the QoS parameters with the measured QoE metrics. Hence, it
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is feasible to build an effective QoE-aware QoS model. A number of objective models

have been devised for estimating QoE. The International Telecommunication Union

(ITU) has developed a standardized classification [5] for these models, based on the

focus of each model type as follows:

• Media layer models (MLM) predict the QoE by analysing the media signal via

HVS. If media signals are not available, this type of model cannot be used. The

FR and RR video quality methods fall into the category of media layer models.

• Parametric packet-layer models (PPLR) predict QoE from the packet-header

information, without handling the media signal itself. They do not look at the

payload information; consequently they have difficulty in evaluating the content

dependence of QoE.

• Parametric planning models (PPM) take quality planning parameters for net-

works and terminals as their input. This type of model requires a priori infor-

mation about the system under testing. These models typically use a mathe-

matical formula, representing the quality estimation as a function of different

parameters.

• Bit-stream layer models (BLM) are a new concept. They lie between parametric

packet-layer models and media-layer models, extracting and analysing content

characteristics from the coded bit-stream to perform their quality measure-

ments. These models often need to decrypt the encrypted multimedia payload,

and can, consequently, have high computational complexity.
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• Hybrid models (HR) are combinations of some or all of these models. They are

considered to be one of the most effective types of models for multimedia QoE

estimation as they exploit as much information as possible to predict the QoE.

Table 2.1 allows the comparison of different objective quality prediction models with

existing video standards.

Table 2.1: Comparison of objective quality prediction models [5]
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One of the main contributions of this thesis is to propose two hybrid non-reference

video quality prediction models that are based on QoS parameters. The proposed

models predict video quality directly from a combination of parameters including

the access network, encoder related parameters and content types. These two QoE

prediction models are discussed in Chapters 5 and 6.
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2.7 Exploring the Existing Video QoE Prediction

Models

This section presents a review of video QoE prediction models. Different approaches

are discussed and analysed in order to obtain a “broader picture” of this area of

research. Some of the reviewed models will be discussed in detail, while the features

of others will be summarised in tabular form.

The ability to identify the perceived degree of video impairment due to QoS parame-

ters is a key aspect of the QoE prediction of video traffic [18]. Moreover, as discussed

in ITU-G. 1080 [58] and TR-126 [19], not all impairments of QoS parameters necessar-

ily result in visible degradations. Therefore, measuring the impacts of a combination

of QoS parameters, including parameters from the access network, encoder related

parameters, and content types, on the quality of the video traffic is still a challenging

task.

Video quality is predicted using either the impact of the NQoS or the AQoS. The

papers, [59–63] consider solely NQoS parameters, such as random packet loss, burst

loss and delay, for QoE estimation. Another group of research studies have focused

on AQoS parameters such as quantization artifacts, frame rate and bit-rate [64–69].

Since the end-user is impacted by both the AQoS and the NQoS, it is important to

understand their impacts in order to have a broader prediction of video quality.
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2.7.1 Models based on Statistical Approaches

In [70–72], video quality prediction models based on a statistical analysis approach

were proposed. The discriminate analysis method (DA) [73] is used in [70] to pre-

dict video quality. The authors argue that the inclusion of parameters related to

the video content and coding can maximize the user-perceived quality and achieve

efficient network utilization. However, their approach suffers from limited accuracy

because it considers only two QoS parameters (bitrate and frame rate). Moreover,

no specific implementation of the QoS parameters at the network level is considered.

Work in [72] proposed a numerical formula for the evaluation of QoE using differ-

ent QoS parameters such as packet loss, burst loss, jitter, delay, and GoP (Group

of Picture) length. However, it also fails to consider user perception, and is lacking

in experimental and validation results. Lastly, the authors did not discuss how new

QoE parameters can be included in their model.

The work of Khan et al. [74,75] proposes non-linear regression-based models to esti-

mate video quality using the PSNR metric that is normalized to MOS. However, their

work does not test spatial resolutions as a QoS factor. Moreover, [76] have presented

a parametric model for estimating video quality for both SD and HD TV which does

not consider video content. Joskowicz et al. [77] present a parametric mathematical

model for video quality prediction that is based solely on objective quality metric

and considers only low video resolutions ( SD, CIF and QCIF).
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2.7.2 Models based on Machine Learning Algorithms

Nowadays, people study human cognitive processes very carefully and try to elabo-

rate models that exhibit similar behaviour to brain neurons. Since the human mind

is known to be non-deterministic, it is challenging to develop a formal algorithm for

human behaviour. This is the reason why researchers turn their attention to self-

adaptive models and learning algorithms. In this regard, learning-based techniques

including various types of machine learning have been the prime focus for the devel-

opment of objective QoE prediction models [78]. One advantage of these algorithms

is that they automatically learn from past observations to make accurate predictions

in the future. They can adapt to changes in the QoS parameters because of their

ability to learn. A number of intelligent algorithms have been proposed in the liter-

ature. However, there is still room for innovative mechanisms to efficiently correlate

QoE from QoS in real time [41].

Most of the intelligent algorithms used for video quality prediction are based on ar-

tificial neural networks (ANN) [59, 79–82]. This is not ideal as neural networks are

computationally complex, and require large training datasets and prolonged training

time. Moreover, their reasoning processes are not transparent. The Decision Tree

(DT) based learning approach was proposed in [83] for video quality prediction using

bit stream information. However, DT only partially suit small datasets, small varia-

tions in the dataset require the regeneration of the tree, and the reasoning process is

not completely transparent [84].
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In addition, the work of [70] was further extended in [85], where the proposed models

were built using two machine Learning methods: DT and Support Vector Machines

(SVM) [86]. The authors found that both methods outperformed the Discriminate

Analysis method which was used in [70]. The authors, however, measured the QoE

in the form of ”yes” or ”no”. They did not consider other QoE scales to predict users

QoE. Further, they did not discuss how new context can be included in their method.

Moreover, in [87], DT and SVM were also used to build an objective QoE model. The

results were then compared with other machine learning methods including ANN, k-

Nearest Neighbours (k-NN) and Random Forest (RF). RF was found to perform

slightly better than the other examined methods. However, neither study considered

different video resolutions or QoS network parameters.

Pokhrel et al. [60] presented a fuzzy logic model for QoE prediction. The estimated

video quality showed a high correlation with the subjective QoE. Nevertheless, the

proposed fuzzy model only considered QoS parameters from the network level, namely

packet loss, burst loss and jitter. In [75,88,89], the Adaptive Neural Fuzzy Inference

System (ANFIS) [90] was used to estimate the video QoE. The authors only con-

sidered a single video resolution, QCIF (176 × 144), and no other higher spatial

resolutions were tested. Moreover, their video quality models used only simulated

data for the video transmission and objective quality measurements.

The survey article [6] provides a comparison of different learning-based techniques

in terms of their modelling capabilities, the contents of which are summarised in

Table 2.2. It can be seen from this table that the fuzzy logic inference system (FIS)
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outperforms other estimation techniques in terms of modelling capabilities. The

advantages of using FIS techniques are that they are simple, computationally less

intensive and their reasoning processes are transparent. Moreover, FIS is good at

making decisions with imprecise information. In general, the performance of learning

algorithms depend highly on the size and coverage of the learning dataset and the

number of input parameters [41].

Table 2.2: Comparison of estimation learning techniques [6]
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RRA N Y P P N Y N P

ANN Y N N N P N Y P

FIS Y P Y Y P Y Y Y

ANFIS Y P Y P P P Y Y

RBS N N/A Y N/A N/A Y Y Y

CR Y P Y P Y P Y N

RT Y Y Y P Y P Y P

DT Y Y Y P Y P Y P

Yes = Y, No= N, Partially = P. LSR= Least Square Regression, RRA= Robust Regression Analysis,

RBS= Rule Based Systems CR= Case-Based Reasoning, RT= Regression Trees
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The following Table 2.3 helps to show which aspects are evaluated by given model,

as well as how many different aspects were evaluated in each model. The review of

these models helps us to compare and make conclusions from the findings.

Table 2.3: A summary of the selected evaluation approaches for each model
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Fiedler et al [39] x x x S/T W RR
Siller et al [91] x x x T W FR
Wang et al [92] x x S/T W NR

Agboma et al [70] x x T WL NR
Menkovski et al [85] x x x x S/T WL NR
Machado et al [82] x x x x S WL FR

Du et al [93] x x x x S/T W FR
Kim et al [72] x x S/T W NR
Khan et al [74] x x x x S WL NR
Han et al [94] x x x S WL NR

Laghari et al [95] x x x x T W NR
Ramos et al [96] x x x S/T W NR

Koumaras et al [97] x x x S/T W NR
Frank et al [98] x x x x S W NR
Mok et al [99] x x x T W NR

Elkotob et al [71] x x x T WL NR
Mushtaq et al [87] x x x x S/T W NR
Hofeld et al [100] x x x T W NR
Staelens et al [83] x x x x S W NR

Kang et al [79] x x x x S WL NR
Cherif et al [81] x x x S WL NR

Pokhrel et al [60] x x x T WL NR
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Overall, it is evident that, while a number of QoE/QoS correlation models appear

in the literature, most of them provide only partial solutions to the QoE prediction

problem. From the literature, we believe that machine learning-based techniques

like the FIS can be valuable for QoE prediction since these techniques can discover

relationships between several context and QoE parameters. FIS has been used in

various telecommunications and engineering problems due to its ability to efficiently

address the innate uncertainty, caused for example by the equipment’s errors, or

external factors. Finally, we conclude that QoE measurement and prediction over

time largely remains an open area of research. In the following section, we briefly

discuss the chosen learning algorithm that is used in this thesis to build a video QoE

prediction model.

2.8 Background to Fuzzy Logic Inference System

Fuzzy logic is a well-known technique for user modelling that could imitate human

reasoning using natural language in which words can imply ambiguous meanings [101].

It is considered as an extension to traditional set theory as statements could be

partial truths, which means lying in between absolute truth and absolute falsity [102].

The idea of fuzzy logic was invented by Professor L. A. Zadeh of the University of

California at Berkeley in 1965, and published a landmark paper entitled Fuzzy Sets.

A number of fuzzy implementations have been used for making decisions based on

imprecise/ambiguous information in various fields [103].
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Typically, a FIS consists of 3 main components as depicted in Figure 2.7: fuzzifier,

fuzzy inference engine, and defuzzifier. The fuzzification module receives crisp inputs

and converts them into fuzzified inputs. These fuzzified inputs, called fuzzy sets,

are then received by the inference engine where linguistic rules (in the form of if-

then) are applied to them. The output of the inference engine is a collection of fuzzy

conclusions. The defuzzication module converts these fuzzy conclusions back into

crisp output [102].

	  

FUZZIFIER DEFUZZIFIER

RULE	  BASE

INFERENCE	  
ENGINE

Crisp	  Inputs Crisp	  Outputs

Figure 2.7: Block diagram of the FIS controller

2.8.1 Fuzzifier

Fuzzification is the first step to apply a fuzzy inference system. Generally, fuzzifica-

tion involves two processes: derive the membership functions for input and output

variables and represent them with linguistic labels. This process is equivalent to

converting or mapping classical set to fuzzy set to varying degrees. The fuzzy set is

converted into an equivalent form (shape) of the membership function. The curve
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values of the membership functions represent the degree to which a particular input

parameter value belongs to the output fuzzy sets [104].

The membership functions can take different forms: triangles, trapezoids, bell curves,

or any other shape so long as the shape accurately represents the distribution of infor-

mation. For example, the triangular shapes of the fuzzy sets could be characterized

by three values: the right boundary R, centre C, and left boundary L. For a crisp in-

put value x, the membership value of x on a triangular fuzzy subset A was calculated

using the formula [102]:

µA(x) =


(x− a)/(b− a) a ≤ x ≤ b

(c− x)/(c− b) b ≤ x ≤ c

0 otherwise

(2.1)

Figure 2.8 shows a fuzzy set with five membership functions in a triangular shape.

Although most fuzzy sets have an odd number of labels, a set can also have an

even number of labels. For example, a fuzzy set may have four or six labels in any

shape, depending on how the inputs are defined in relationship to the membership

function [102].

The core of a fuzzy set is the set of elements whose degree of membership in that set

is equal to 1, which is equivalent to a crisp set. The boundary of a fuzzy set indicates

the range in which all elements whose degree of membership in that set is between 0

and 1 (0 and 1 are excluded) [104]. After the membership functions are defined for
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both input and output, the next step is to define the fuzzy control rule.

Figure 2.8: Membership function chart (triangular shape)

2.8.2 Fuzzy Inference Engine

In artificial intelligence, knowledge can be represented in different forms. One way

to express human knowledge is by using natural language expressions of the form:

IF premise (antecedent), THEN conclusion (consequent)

Fuzzy logic uses a reasoning, or inferencing, process composed of IF...THEN rules,

each providing a response or outcome. A fuzzy rule is a simple IF-THEN rule with

a condition and a conclusion [102]. The fuzzy inference engine contains a collection

of IF-THEN rules, obtained from experts or learnt using automated methods, such
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as Learning From Example (LFE) method. In this thesis, both techniques are used

and will be discussed later.

The inputs taken from the fuzzifier (i.e., membership values) are applied to the an-

tecedents of the fuzzy rules, and the obtained value is then applied to the consequent

membership function (i.e., the output). The fuzzy rules and the combination of the

results of the individual rules were evaluated using fuzzy set operations such as AND

(intersection) and OR (union) [101]. Basically, a rule is activated, or triggered, if an

input condition satisfies the IF part of the rule statement. This results in a control

output based on the THEN part of the rule statement. Sometimes, more than one

rule is triggered at a time in the FIS controller process. In this case, the controller

evaluates all of the triggered rules in order to arrive at a single outcome value and

then proceeds to the defuzzification process.

Figure 2.9(a) illustrates an example of two fuzzy inputs, X1 and X2, and one fuzzy

output, Y1. The rules shown in Figure 2.9(b) represent four of nine possible rules

that cover the two inputs. The four shown, however, cover the four possible triggering

points for the two input readings, X1 and X2. Given the input values in Figure 2.9(a),

the inputs will trigger rule 1 because X1 = ZR AND X2 = NL. This will generate

two outputs for Y1 = NL, one at a grade of 0.6 (due to the input value of X1) and

the other at a grade of 0.75 (due to the value of X2). In a fuzzy logic situation

where a two-input rule with an AND relationship produces two outcome values, the

controller will choose the outcome with the lowest grade, in this case 0.6NL, as shown

in Figure 2.9(c) [3].

44



Figure 2.9: Fuzzy processing example showing (a) two fuzzy input values, (b) the
four rules that they trigger, and (c) the resulting output [3].
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2.8.3 Defuzzifier

Defuzzification is the reverse process of fuzzification. The fuzzifier converts a pre-

cise quantity to a fuzzy term. Likewise, the defuzzifier converts a fuzzy term back

to a precise quantity. The defuzzification process examines all of the rule outcomes

after they have been logically added and then computes a value that will be the fi-

nal output of the fuzzy controller. The output of a fuzzy process can be the logical

union/intersection of the membership functions. There are different defuzzification

techniques such as the centroid method, the weighted average method, and the max-

imum method [101]. The centroid method, which is adopted in this work, relies

mathematically on the centre of gravity (CoG), and is expressed by the following

formula:

y(x) = fs(x) =

∑M
i=1 y

1
∏n

l=1 µF
i
l (xl)∑M

i=1

∏n
l=1 µF

i
l (xl)

. (2.2)

Here, M is the rule number in the rule base, y−i is the centroid of the ith output

fuzzy set Bi, and Πn
l=1 = µF i

l (xl) is the product of the membership values of each

rule’s inputs.

2.9 Chapter Summary

This chapter presented background information about QoS/QoE correlation and the

KPIs for video streaming. Different methodologies and techniques for video QoE

measurement were discussed. In addition, a number of existing QoE/QoS correlation
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models for the prediction of video quality were critically reviewed in order to obtain

a ”broader picture” of this area of research.

It is evident that, while a number of QoE/QoS correlation models appear in the

literature, most of them provide only partial solutions to the QoE prediction problem.

As such, some models are too specific for a particular kind of application, and each

model has varying computational and operational requirements. From the literature,

models that use intelligent machine learning techniques such as FIS outperform the

other methods. Moreover, the existing proposals for video QoE prediction tend to

consider either the video encoder’s parameters, network impairments, or the features

of the video content, but rarely all three in conjunction. There is a need for a novel

hybrid video QoE prediction system that extends the existing work by enlisting a

group of QoS parameters that has not been addressed so far in the context of video

QoE prediction. The next chapter introduces and discusses the proposed video QoE

evaluation framework in general terms.
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Chapter 3
Methodology

This chapter introduces and discusses the proposed video QoE evaluation framework

in general terms. The proposed framework exploits the relationship between QoS

parameters and video quality to objectively predict the QoE. In order to understand

how to exploit this relationship, a fundamental investigation of the relationship be-

tween video QoE and QoS parameters associated with the encoder, access network

and content types, has been undertaken to quantifying their relative impacts. After

the intelligent machine learning algorithms learn about the relationship between the

QoS parameters and the QoE, they are used as an objective tool for QoE prediction.

Figure 3.1 shows the components of the proposed video QoE evaluation framework.

Each component will be described in the following subsections. Additional details

about the framework are explored in the indicated chapters of this thesis.
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Video Streams

SD, qHD, HD, 4KUHD

QoE 
Prediction

QoS 
Parameters

NQoS, AQoS

Subjective test
 MOS 

Objective test
VQM, SSIM 

QoE 
Measurement

Intelligent Machine 
Learning Algorithms

Fuzzy Logic Inference System 
( FIS )

Automated 
Rule-based 

Method

Predetermined 
Rule-based 

Method

Figure 3.1: Components of the Objective QoE Evaluation Framework

3.1 Video Services

The dominance of video services, including 2D and 3D video streaming, on the in-

ternet continues to drive the evolution of internet access methods and core carrier

networks. Consumers also own a growing number of video-capable devices, from

mobile phones to UHD, and even 4k-capable, television sets. The popularity of the

video applications introduces a higher demand for quality. Therefore, estimating the
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QoE is a must for application/service providers in order to retain the highest possi-

ble service quality. The proposed work in this thesis focused on predicting the QoE

of the video streaming service. In this thesis, a number of different video content

types and resolutions are used for performance evaluation. In Chapter 4, the evalu-

ated video streams were encoded by the H.264/AVC and H.265/HEVC video coding

standards. Furthermore, the impact of QoS parameters on video quality in terms

of different video content types and resolutions is investigated and analysed. For

instance, “head & shoulder” video streams (such as in news broadcasting) declare

acceptability thresholds that are substantially different from those used in the case

of streaming an action movie. Further details of this investigation will be discussed

in different chapters.

3.2 QoS Parameters

In the research community, QoS is known to be the most influential factor on QoE

[18,19]. The ability to identify the perceived degree of video impairment due to QoS

parameters in video bit-streams is one of the key aims for video service providers.

QoS is defined in terms of QoS parameters. These parameters are generally used to

represent network layer quality, but they can also correspond to different OSI layers.

In this thesis, the predominant QoS parameters and their ranges of significance are

selected from different QoS layers. In this thesis, we proposed a more practical ap-

proach to investigate the effects of different QoS parameters, including packet loss,
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packet structure, compression efficiency, video codecs, content type, and spatial reso-

lutions, on the QoE for video streaming. An understanding of the perceptual effects

of these key parameters on video quality is important as it forms the basis for the

development of video quality prediction models. We call the video content type and

the parameters related to the encoding process (sender bitrate, quantization param-

eter (QP) and resolution) Application QoS parameters (AQoS). The access network

parameters (packet loss, burst loss, packet duplication and reordering), grouped to-

gether, are referred to as Network QoS parameters (NQoS). There are other different

QoS access network parameters that can be investigated on future work such as

end-to-end delay, jitter, throughput, etc. It is never possible to examine every QoS

parameters but the target on this thesis is to cover QoS parameters from different

QoS layers to judge the likely impact of QoS on video QoE.

Today’s multimedia applications are expected to run in physically heterogeneous en-

vironments composed of both wired and wireless components. Wireless links exhibit

distinct characteristics, such as limited bandwidth, varying error-rates and poten-

tial hand-off operations. Consequently, QoS requirements in wireless networking are

stringent and complicated, taking additionally into account the influencing mobile

device characteristics and limitations. Because of these challenges of the wireless

video streaming, both simulation and test-bed experiments were conducted in this

thesis work using wireless environment. Furthermore, the wired environment was

also used in this thesis work in order to present that the proposed model can be used

on heterogeneous environments.
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3.3 QoE Measurement

QoE is a broad concept that encodes users’ levels of satisfaction with a product.

Of the various aspects that constitute QoE, the user’s perception of the content con-

sumed is considered the most influential [19]. In order to develop a concrete objective

QoE prediction model, a huge QoE dataset and test conditions were constructed for

the proposed work in this thesis, using both objective and subjective methods for

quality assessment. Each method of QoE measurement has its own shortcomings.

To overcome these, various hybrid approaches that combine both subjective and

objective methodologies are proposed. Later, the QoS/QoE mapping datasets are

statistically analysed using 5-way ANOVA to confirm the impact of each chosen QoS

parameter and to identify the most influential parameters.

3.3.1 Objective Method

QoE measurements using the objective method employ video quality metrics. In this

thesis, two types of video quality metrics are used, which are VQM and SSIM. The

VQM was independently evaluated by the video quality experts group (VQEG) [55].

The SSIM was developed by Wang et al [56]. Both quality metrics are normalized to

the subjective MOS scores, using a method based on the one described in [77].
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3.3.2 Subjective Method

The subjective method is the most accurate technique for measuring perceived video

quality. However, the large number of test conditions required to formulate the pro-

posed video QoE evaluation system make it extremely difficult to conduct subjective

tests in which video sequences are assessed by viewers. Consequently, the main use

of subjective assessment is to validate the measured objective scores, and to assure

their credibility so that they can be used confidently for video QoE prediction. In

this thesis, a standard subjective laboratory environment was utilized for the QoE

evaluation of H.264/AVC video streams. A panel of 21 viewers of varying experience

was selected as test subjects. After a training sequence was completed, the evalua-

tions were conducted during individual test sessions held in a lab under controlled

environmental conditions.

3.4 Intelligent Machine Learning Algorithms

Intelligent machine learning algorithms automatically learn from past observations

in order to make more accurate predictions in the future. They have been the prime

focus of researchers developing objective QoE prediction models [87, 105]. Some of

the most popular machines learning algorithms are fuzzy logic inference system (FIS),

decision tree, neural networks, etc. According to [6], the FIS outperforms other es-

timation techniques in terms of modelling capabilities and making decisions with
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imprecise information. In this thesis, the proposed video QoE evaluation framework

used FIS to learn and map the correlation between QoS parameters and measured

QoE. The learning process involves training the algorithm on the measured QoE

dataset. Once the system has learnt, it can predict the QoE, based on any combina-

tion of input QoS parameters. The proposed work provides two novel and efficient

reference-free models for the prediction of video quality in terms of different content

types and resolutions. The first FIS model is based on a predetermined rule-based

method (FIS-PRB). A semi-manual approach was applied to develop the FIS-PRB

model, combining human knowledge and the behaviour of QoS parameters with test-

ing on a simulator. The model is simulated in MATLAB. The second FIS model is

based on an automated rule-based method (FIS-A). It is a self-learning system which

enables the adaptive generation of fuzzy rules from the QoE dataset. The model was

implemented in the Java programming language. The adaptive FIS-A model was

evaluated on a real test-bed which was produced for the QoE prediction of real-time

wireless H.265 video streaming. Further details of this model will be given in Chapter

5 and 6.

3.5 QoE Prediction

In this thesis, the output QoE scores are represented in terms of MOS scores. This

MOS score is as close as possible to the mean score obtained from the objective and

subjective tests. The predicted QoE output (MOS) is compared with the subjectively
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and objectively measured QoE through the calculation of the correlation coefficient

and the Root Mean Squared Error (RMSE).

3.6 QoE-enabled Applications for Video Delivery

To demonstrate the benefits of the video QoE evaluation framework, two practi-

cal examples of QoE-enabled applications for optimising video delivery are given in

Chapter 7. The first application is a QoE-enabled transport optimisation scheme for

real-time SVC video delivery. The second application is a QoE-enabled resource util-

isation scheme for mobile video delivery. These applications show how QoE is used

to optimise video delivery and utilize existing network resources according to users’

QoS requirements. QoS/QoE correlation can be used as an indicator for network

management and planning processes in order to avoid resource over-provisioning.

3.7 Chapter Summary

In this chapter, we presented the proposed video QoE evaluation framework for pre-

dicting the QoE of different coded video streams. This framework learns about the

QoS/QoE correlation in order to objectively predict the QoE using the FIS method.

Furthermore, it incorporates both adaptive and non-adaptive approaches to FIS. The

QoS parameters are associated with different layers of the OSI model. The framework
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utilizes laboratory based subjective and objective tests for correlating QoS parameters

with the measured QoE. The proposed framework will later be applied to estimate

the QoE of H.264/AVC video streams and 4kUHD H.265/AVC video streams. Later

in this thesis, two examples of QoE-enabled applications for enhancing the quality of

video delivery will be presented in order to demonstrate the benefits of the proposed

video QoE evaluation framework.
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Chapter 4
Studying The Impacts of QoS Parameters

on Video QoE According to Content Types

and Resolutions

4.1 Introduction

The trend towards video streaming with increased spatial resolutions and dimensions,

SD, HD, 3D, and 4kUHD, even for portable devices has important implications for

displayed video quality. There is an interplay between packetisation, packet loss vis-

ibility, choice of codec, and viewing conditions, which implies that prior studies at

lower resolutions may not be as relevant. This chapter presents two sets of experi-
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mental studies, the one at a Variable BitRate (VBR) and the other at a Constant

BitRate(CBR), which highlight different aspects of the interpretation. CBR means

that each frame uses the same amount of bits regardless of whether it needs them

or not. VBR means that you can vary the amount of bits used to represent a frame

so that the overall average amount of bits-per-frame is achieved. One of the aims of

the proposed studies on this chapter is investigating the impact of QoS parameters

on the video streaming whether on VBR or CBR encoding modes.

The second experiment also compare and contrast encoding with either an H.264 or

an High Efficiency Video Coding (HEVC) codec, with all results recorded as objective

Mean Opinion Score (MOS). It is never possible to examine every configuration of

wireless video streaming but in the two sets of experiments there is scope for extrap-

olation by the reader to a configuration of interest in order to judge the likely impact

of changing spatial resolutions.

The remainder of this chapter is organized as follows. Section 2 presents the related

work on video QoE evaluation. Section 3 discusses the experimental set-up and results

of the first study. The second study is presented in section 4. Section 5 summarizes

the Chapter.
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4.2 Related Work

The majority of the existing video quality evaluation studies for both the H.264/AVC

and HEVC codecs consider only low resolution video coded streams, and also rarely

consider parameters associated with both the AQoS and the NQoS parameters. The

research in [74] considered both wireless content dependency and network impair-

ments, but the set of test videos had a resolution as low as QCIF (176 × 144 pixel-

s/frame) with only a few packets per frame. The frame rate was also as low as 10

fps. The QoE was measured using the PSNR metric, which is not directly related

to human perception [106]. In fact, the authors of [74] concede that video-frame

resolution does have an impact on overall quality, even for low-bitrate, as presented

in [106].

Much prior research has been conducted on lower resolution imagery (QCIF, CIF

(352×288 pixels/frame), and VGA (640×288)) for which the relationship between the

packet number and the frame size is very different from the one for HD. Nevertheless,

in [107] the packet loss and bitrate were found to be more important than the frame

rate for the subjective quality of lower-resolution videos. In addition, the authors

of [108] presented an analysis of packet loss for compressed video. Their results

showed that, in general, burst losses produce more distortion than an equal number

of isolated losses. However, in [109], a contradictory result was obtained using a set

of subjective experiments.

The impacts of packet structure and compression efficiency on different video resolu-
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tions have only rarely been investigated in the literature. In [110], a quality assess-

ment comparison of H.264/AVC and MPEG-2 was presented. The results demon-

strated that H.264 quality drops steeply for even low packet loss rates (0.02%), while

MPEG-2 quality drops by much less. However, the two video codecs were evaluated

using different bitrates, and only for HD resolution. Also, they only considered one

type of video content.

The authors of [111] approached the impact of packet loss from the point of view

of being able to predict which MPEG-2 Transport Stream (TS) packet losses within

a video frame would be visible to subjective assessors. Amongst their interesting

conclusions was the finding that the wider field of view made HD packet loss more

visible than SD packet loss. The loss of an entire frame was also more visible in HD

than in SD. They encoded the SD and HD video streams in a CBR mode. On the

other hand, work in [112] argues that the degradation caused by a packet loss in HD

is significantly lower than in SD. However, they did not mention the bitrate size or

whether it was CBR or VBR video streams. Moreover, both studies conducted the

comparison with only one type of video content.

Nightingale et al [113] discussed the impact of network impairment on HEVC encoded

video streams at resolutions below HD. Their framework has since been superseded

due to changes in the structure of the H.265 network abstraction layer (NAL) unit.

The same framework was used in [62] and [114] to study the impact of network

impairment on H.265 encoded video streams at resolutions below HD. Anegekuh et

al. [65] carried out objective and subjective tests on video sequences to investigate

60



the impact of video content type and encoding parameter settings on H.265 video

quality. Their initial results showed that varying the video content type and encoding

parameters has an impact on video quality. They did not consider NQoS parameters

and the evaluated video was only at HD resolution.

The evaluation of 3D video QoE is more challenging because additional factors such as

depth perception, comfort levels, and naturalness need to be considered. The effect

of random packet losses on the overall 3D perception was studied in [115] using a

subjective test. They found a negative trend in 3D perception when packet loss rates

increase. Nasseralla et al. examined the quality degradation of 3D video transmitted

over mobile networks through subjective tests in [116] and [117]. They investigated

the effects of random packet losses on the overall 3D perception (i.e., distortions due

to different packet loss rates). None of the above-mentioned studies considered the

3D video evaluation of VBR streams at HD resolutions.

It can be concluded from the related work presented in this section that video QoE

is very sensitive to different values of the AQoS and NQoS parameters. These cor-

respond to different levels of video impairment, and, consequently, to different QoE

values. There are numerous features of QoS parameters, either content-dependent

or content independent, that can influence their impact on the video quality. This

makes it necessary to investigate the correlation between video QoE and QoS param-

eters associated with the access network, encoder, content type, and video resolutions

beyond HD. It is also necessary to study the new video codec H.265/HEVC, since it

provides a reduction in bandwidth and will be favoured as a codec for real-time video
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delivery.

The contributions of this chapter are twofold:

• Study 1: Investigated the impact of QoS parameters on the video QoE by cross-

layer simulation of the transmitted 2D and 3D video streams. The coded videos

were based on a Variable Bitrate (VBR). The video quality was measured using

the objective (VQM) and subjective (MOS) metrics. The QoS/QoE mapping

dataset was statistically analysed with 5-way ANOVA to confirm the impact of

each chosen QoS parameter and to identify the most influential parameters.

• Study 2: Investigated the impact of QoS parameters and compression efficiency

on up-to 4kUHD of the H.264 and H.265 coded videos, both transmitted and

decoded simultaneously in real-time. The coded videos were based on a Con-

stant Bitrate (CBR). The video quality was measured by the objective metric

(SSIM).

The two studies are discussed in the following sections. The results of the experiments

conducted for this chapter will be used in Chapters 5 and 6 for the construction of

the objective non-reference models for perceptual video quality prediction.
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4.3 Study 1: Impact of QoS parameters on 2D and

3D VBR Video Streaming

QoS parameters such as packet loss are recognized as a serious threat that can greatly

prejudice the user’s experience of a service. It turns out that there is a content-

dependency aspect of video streaming, both in terms of content type and compression

ratio, as mediated by the quantization parameter (QP). The QP determines the

bitrate and, hence, the bandwidth required. The implication is that video service

providers should carefully consider the content type and its QP when video is targeted

at portable devices, along, of course, with considering techniques such as channel

coding [118] to protect the video stream.

The contribution of this study is to examine the potential impact of QoS parameters

across SD, HD and 3D video streams. Realistic video configurations were, thus, used

and the extent of the influence of the content type was checked. Further, the need to

carefully balance the QP/video quality against the effects of packet loss is justified

in this study. The QoE measure of video quality employed herein was one that is

known to approximate subjective assessments of quality, namely, the Video Quality

Metric (VQM) [55]. Because the VQM was employed, the correlation between the

packet-loss rate, the error burst length, and the content type was able to be directly

mapped to MOS subjective ratings. Before doing so, however, subjective testing was

used to check that the correlation between VQM adjusted to an MOS scale and HD

video did, indeed, still exist at the higher spatial resolution.
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4.3.1 Experimental Set-Up

4.3.1.1 Video Encoding

Three classes of SD/HD/3D video content formed on the basis of temporal activity

were tested. The spatio-temporal classification metric from recommendation ITU-T

P.910 [52] was used for this purpose. This technique extracts spatial and temporal

features from a video sequence, and then assigns a spatial index (SI) and a temporal

index (TI). The computed indices indicate the content type of each sequence. This

technique is of low complexity and, thus, can classify videos in real-time.

Three video sequences were chosen for analysis, one from each class, as listed in

Table 4.1. The video sequences were assessed in progressive SD, HD (1024 × 720

pixels/frame, i.e. 4:3 aspect ratio), and in 3D plus depth format in SD and HD.

Figure 4.1 shows a sample frame and depth image for the 3D version of the sequences.

Each sequence of length 200 frames (or 8 s in time) was captured in YUV 4:2:0 chroma

format, at 25 fps, as this is typical for wireless video streaming [119]. Both the color

image and the depth map were encoded with the H.264/Advanced Video Coding

(AVC) [47] Joint Model (JM) reference codec [120] at the same QP. The Group of

Picture (GOP) size was 16, where each group included one I-frame and all remaining

frames were P-frames. This reduced the computation time arising from bi-predictive

B-frames, and is the structure recommended for wireless video streaming [119].
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Table 4.1: Video sequences chosen and classes assigned

Video Sequence TI SI Class

Music 4.90 74.41 Low Motion

Poker 12.20 85.69 Moderate Motion

BMX 22.35 99.42 High Motion

Figure 4.1: One representative frame from each of the 3 source video sequences

Within the encoding process, network abstraction layer (NAL) units were RTP pack-

etized. It is also assumed that the RTP packet was encapsulated in a UDP packet,

and then in an IP packet on the network layer. Here the packet loss rate (PLR)

denotes the loss of video slices (NAL units). The choice of UDP packet size matched

the Ethernet maximum transmission unit (MTU) of a regular computer (1472 bytes

payload). The codec output was provided at a Variable Bit Rate (VBR), according

to the QP. VBR allows the quality setting, i.e. QP, of the video to be judged against

the resulting bitrate.
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4.3.1.2 Simulation Scenario and QoS Parameters

The simulation scenario is depicted in Figure 4.2. As previously mentioned, video

sequences were assigned a class identifier according to their temporal activity. After

coding with H.264/AVC outputting in the RTP mode, wireless transmission errors

were introduced into the coded video packets by the simulator. Error concealment

took the form of previous frame replacement. More sophisticated error concealment

methods were avoided in order to allow comparisons with the results of others and

to reduce the latency arising from some error concealment methods. The quality of

the decoded video frames was then assessed using objective and subjective quality

metrics to give an arithmetic mean over the sequence’s frames.

The wireless channel was simulated both by the packet loss ratio (PLR) and by in-

troducing mean burst losses (MBL) into the transmitted packet stream, in order to

analyse a broader range of simulation conditions. The PLR was uniformly distributed

along the packet loss trace, while the MBL was distributed as bursts with a mean

burst length of MBL along the packet loss trace. Packet loss traces were generated,

based on the Gilbert-Elliot model [121] (a two-state Markov chain model), with vary-

ing levels of the PLR and the MBL. Gilbert-Elliott type models do not emulate the

physical channel, but do accurately model the application receiver’s experience of

packet losses resulting from fast fading [122]. The details of the Gilbert-Elliot model

employed are outlined in Appendix A.
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	  Figure 4.2: Conceptual illustration of the simulation scene

Table 4.2 presents the chosen and simulated AQoS parameters (CT, R, QP) and

the selected NQoS parameters (PLR, MBL). The parameter values were selected

carefully in order to generate a broad range of quality levels (QoE). For increased

data confidence, the simulation of each tested condition was repeated ten times, so

that the error trace began at a different displaced position of the coded bit-stream

each time. This resembles real-life communications where errors can occur at any

given point of the transmission time. It also ensured that 2000 video frames were

considered for each simulation condition. Once the QoE of the 10 received videos

was measured, the mean QoE and a 95% confidence interval were calculated.
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Table 4.2: Simulated QoS Parameters

Parameters Values

Content Type (CT) Low, Moderate, High motion

Spatial resolution (R) SD (720× 540), HD (1280× 720)

Quantization Parameter (QP) 16, 24, 32, 40, 48

Packet loss ratio (PLR)% 1, 2.5, 5, 7.5, 10

Mean burst length (MBL) 1, 2.5, 5, 7.5

4.3.2 Video QoE Measurement

QoE is a broad concept that encodes the user’s level of satisfaction. Of the various

dimensions that constitute QoE, the user’s perception of the quality of the content

consumed is considered the most influential [19]. Objective and subjective quality

metrics were used as quality assessment methods in this study.

4.3.2.1 Objective Method

The objective measurements were conducted using a validated FR perceptual 3D

video quality metric [123]. This metric adopts the NTIA General Model [55] for the

assessment of 2D color images. Referred to in the literature as the video quality

metric (VQM) [55], the NTIA General Model was independently evaluated by the

video quality experts group (VQEG) and standardized by ANSI [124] and ITU [57].

For the 3D videos, the depth map was assessed using the depth quality model [123],

which measures the quality of the depth signal based on the identification of dominant
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depth planes. The compound 3D quality was then determined by employing a joint

mathematical model [123] which combined the measured VQM of the 2D color image

with the corresponding depth map.

The VQM is measured on a continuous scale from 0 (complete loss) to 1 (original

quality). The use of this 3D quality metric, which adopts VQM within its engine for

the 2D component, makes the use of several methods applicable to VQM analysis

available for rating 3D video quality. For example, 2D quality measurements of the

same video sequences are made available within the collected 3D dataset. Moreover,

this procedure makes it possible to map the 3D quality scale to the subjective Mean

Opinion Score (MOS). MOS has five grades ranging from 1 to 5, which is the highest

quality [52]. The assessed quality can be normalized to MOS [77] by means of the

equations:

MOS = 5− 4V QM (4.1)

MOS = 5− 4(1−Q) (4.2)

Equation 4.1 was employed for VQM because, on the VQM scale, 1 represents severe

distortion and 0 represents original quality, whereas equation 4.2 was applied to Q,

the 3D quality metric, as that scale’s range is the inverse of the VQM scale. We

assumed that, in practice, the VQM ranged from 0 to 1, rather than to 1.2. Making

this assumption allowed us to convert Q to the VQM range by subtracting Q from 1.
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4.3.2.2 Subjective Method

A subjective assessment test was conducted to assure the credibility of the objective

assessment findings in this study. The measured subjective dataset will also be used

for model validation in Chapters 5 and 6. The standard recommendation ITU-R

BT.500-13 [51] was followed for this test. Because the total number of test conditions

for the measured VQM dataset was 1080, a systematic approach was followed to

select a subset of 64 video sequences for subjective testing. The 2D HD version of

each sequence was chosen to perform a balanced selection of conditions that spanned

the quality scale (0-to-1). This validation can be applied to 3D objective scores since

the methods from ITU-R BT.500-13 are also applicable in 3D scenarios [125].

The selection approach used was based on the Kennard and Stone algorithm [126],

which selects as the next sample the one that is most distant from those samples

already selected. Thus, the selection covered the experimental region uniformly,

yielding a flat distribution of the input data. This guaranteed that each value of

each QoS parameter was achieved over the whole sample space. 20 samples were

selected of each video content type, in addition to the reference video. A panel of 21

viewers were employed as test viewers for a single stimulus (SS) quality evaluation

method, performed in a lab under controlled conditions. 2D videos were displayed on

a 47” LED monitor, and the users marked their MOS responses on a continuous scale

between 1 and 5 as illustrated in Table 4.3. The MOS scores for the 21 observers and

their corresponding 95% confidence intervals are shown in Figure 4.3.

70



Table 4.3: Subjective Mean Openion Scores

Quality Bad Poor Fair Good Excellent

MOS 1 2 3 4 5

Figure 4.3: Subjective MOS scores with 95% confidence intervals

4.3.2.3 Correlation of Objective and Subjective Scores

As a validation measure for the objective scores obtained through simulations, the

correlation between the subjective QoE and the objective QoE for the 2D videos is

presented in Figure 4.4 and expressed in statistical terms using the Pearson Corre-

lation Coefficient (PCC). A PCC of 0.92 indicates a high level of correlation and

acknowledges the validity of the collected objective QoE dataset. A brief description

about the PCC is given in Appendix B.
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Furthermore, to provide a visualisation of the correlation between the three datasets

(2D subjective, 2D objective, and 3D objective), Figure 4.5 portrays a comparison

of the 21 test conditions for the “Poker” HD video with the scored MOS in each of

the three datasets constructed. The 2D objective and 3D objective datasets were

found to be highly correlated with a PCC of 0.99. Consequently, it can be concluded

that the validation of the 2D objective dataset can be extended to validate the 3D

objective dataset. Similar figures for the comparison of the “Music” and “BMX”

videos are presented in Appendix C.
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Figure 4.4: Correlation of subjective MOS and objective MOS
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Figure 4.5: Comparison of the three datasets for Poker HD video sequence

4.3.3 Results and Discussion

For calibration with later results, coding loss with zero packet loss was assessed, as

shown in Figure 4.6. As might be expected, the video quality was reduced with higher

QP. The effect of including a depth image sequence was to degrade the quality (to

some extent) in all cases. At the lowest QP (lowest compression ratio) it was difficult

to distinguish between the three example videos. At the two higher QPs (greater

compression), the temporal activity was an indication of the quality assessment. For

example, the Music video at QP = 32 was of lower assessed quality than the high

motion BMX video. An important finding was that the metrics (2D and 3D) reported

very similar qualities regardless of whether the spatial resolution was SD or HD.
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Figure 4.6: MOS of SD, HD, and 3D video without loss, a) Music b) Poker c) BMX
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4.3.3.1 Impact of PLR on QoE According to Resolution and QP size

When Figure 4.7 is compared with Figure 4.6, it can be observed that the video

resolution plays an important role in determining the impact of packet loss artifacts.

The comparison of Figures 4.7 and 4.6 also shows that, on the whole, the distortion

caused by a packet loss in SD is more than that in HD. We posit that the amount

of information carried in an HD packet is lower than the amount carried in an SD

packet, relative to the stream as a whole, and, thus, HD video is able to tolerate

increased packet losses. As a result, a lost packet affects fewer macroblocks in HD,

and, therefore, causes less spatio-temporal error propagation. In an SD video, an

I packet, for example, may refer to the majority of, if not an entire image and so

its loss will result in serious degradation and a poor MOS score. This observation

has implications for related studies like [127] and [111] where the authors assumed

that video on mobile/portable devices would be restricted to CIF or, even, QCIF

resolution.

The corresponding results for 3D video, obtained by a comparison of Figures 4.8 and

4.7, present a similar pattern, although 3D assessments were consistently lower than

those for the equivalent 2D video. Packet loss in 3D videos caused blockiness artifacts

in different regions of each view. It was also observed that the impact of packet loss

was to smooth out the effect of the QP settings in comparison to Figure 4.6. Further,

as for 2D video, the assessed HD quality was somewhat higher than that for SD video

(except for Poker at SD PLR=7.5).
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Figure 4.7: Impact of PLR on 2D SD and HD video QoE, a) Music b) Poker c) BMX.
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Figure 4.8: Impact of PLR on 3D SD and HD video QoE, a) Music b) Poker c) BMX.
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In addition to the aforementioned general observations, it is apparent that packet

loss has the effect of reducing the difference between the assessments for different

QP sizes. This implies that there is less to be gained in terms of the video QoE

from reducing the QP. Similarly, the bitrate rises with increasing QP, which, in turn,

restricts the number of streams or simultaneous users that can share a wireless link.

To characterize the bitrate, the average P-frame size was found over the test se-

quences, as tabulated in Table 4.4 for 2D video. The bitrates given are, therefore, a

lower bound on the required bandwidths, as I-frames result in bitrate spikes, owing

to less efficient spatial coding. As mentioned before, at the lowest QP, it is apparent

that the bitrate even of SD sequences would stress most wireless networks. For HD

sequences, QP = 16 introduces a steep change in the bitrate, implying that lower

QPs should be avoided in many practical situations. These effects justify the need to

carefully balance the QP/video quality against the effect of packet loss. The use of

CBR video does not remove this requirement. For example, it is possible to set too

high CBR and find a codec matching that rate even though the coding complexity

does not merit it.

For the 3D video, the combined (C= color, D= depth) 3D bitrate tended to follow

those of their 2D counterparts, but the requirement for separate coding of the two

images for each frame resulted in an increase in the bitrate. The table of results

for 3D video frame size is given in Appendix D. These observations are also made

in [117, 128], which confirms that the requirements for 3D video are more stringent

than those for 2D video, since the 3D video consumes a larger portion of the network’s
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bandwidth. Generally, in order to maintain the right balance between good image

quality and available bandwidth, it is necessary to select an appropriate QP for both

2D and 3D video encoding.

Table 4.4: 2D Input P-frame sizes by QP

2D QP
Average size

(bytes)
Average no.
of packets

Approx. bitrate
(Mbps)

BMX
SD

16 297262 198 59.5
24 82668 55 16.5
32 26482 18 5.3

BMX
HD

16 872130 581 174.4
24 137963 92 27.6
32 40923 27 8.2

POKER
SD

16 277931 185 55.6
24 43483 29 8.7
32 13744 9 2.7

POKER
HD

16 607188 504 121.4
24 116278 78 23.3
32 29952 20 6.0

MUSIC
SD

16 166062 111 33.2
24 20750 14 4.2
32 7074 5 1.4

MUSIC
HD

16 522905 349 104.6
24 29866 20 6.0
32 9295 6 1.9

4.3.3.2 Impact of PLR and MBL On QoE According to CT

Figures 4.9 and 4.10 show the correlations between the measured MOS and packet

loss. It can be observed that the quality is highly dependent on the video content

type. We found that, in the case of a lower motion video, the quality was acceptable
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up to a PLR of 4%. For high-motion videos, a PLR of greater than 2% reduced the

quality significantly. It was also found that the overall impact of MBL is less obvious

than that of PLR. This is because the total packet loss does, in fact, have a significant

effect on the resulting distortion. In the case of a changing PLR with random loss,

inter-frame dependencies play an influential role in propagating errors. However,

for burst packet losses, the influence of inter-frame dependencies on temporal error

propagation decreases with the growth in average burst length. Figure 4.10 shows no

significant difference for 2D videos except that the PLR and MBL could cause more

disparate distortions to 3D quality perception due to the complex nature of true 3D

video perception. 3D video provides a sensation of depth by providing a disparate

image of the same scene to each of the viewer’s eyes.

Figure 4.9: Impact of MBL and PLR QoE for different 2D CT
CT: 1=Low motion, 2=Moderate motion, 3=High motion

The key defines the colour mapping to MOS scores
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Figure 4.10: Impact of MBL and PLR on QoE for different 3D CT

CT: 1=Low motion, 2=Moderate motion, 3=High motion

The key defines the colour mapping to MOS scores

4.3.3.3 Analysis of Variance Test

The analysis of variance (ANOVA) test [129] is extremely useful for exploring the

interactions between two or more independent variables. Harnessing ANOVA’s ana-

lytical strength, a fundamental investigation was undertaken to quantify the impact

of AQoS and NQoS parameters on the perceived video QoE. Tables 4.5 shows the

results obtained from the ANOVA test of the 2D video datasets, where the degrees of

freedom are shown in the first column, the second column is the F-statistic and the

third column is the p-value. The p-value is determined from the cumulative distribu-

tion function (cdf) of F [130]. A small p-value (p 0.01) indicates that the video QoE is

significantly affected by the corresponding parameter. Higher F-statistics correspond

to higher proportions of the variance being caused by the independent variables [129].
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The table of ANOVA’s result for 3D video dataset is given in Appendix D.

It can be observed from the magnitudes of the p-values that all five parameters (p-

value = 0) had significant effects on the video QoE. In particular, it can be seen

that the PLR had the highest influence on the QoE (p-value=0) for both the 2D and

3D datasets, followed by QP and CT, while the MBL had the smallest influence on

the QoE. Moreover, there were interactions between each pair of AQoS and NQoS

parameters, each of which was significant. The two way interactions between PLR and

CT, and PLR and QP had the highest influence on the QoE. In addition, the ANOVA

results showed that the combined impact of MBL and CT was also significant.

Table 4.5: Five-way ANOVA on QoE of 2D Video

Source Degree of freedom F-statistics p-value

CT 2 132.724 0.0
R 3 95.354 0.03132

QP 4 159.584 0.0
PLR 5 402.172 0.0
MBL 2 65.991 0.01068

PLR+CT 9 20.218 0.1180
PLR+R 9 5.182 0.3132

PLR+QP 15 26.955 0.11068
PLR+MBL 20 30.466 0.2301
MBL+CT 5 2.868 0.1541
MBL+R 5 7.940 0.48223

MBL+QP 11 13.533 0.28568
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4.4 Study 2: Impact of QoS Parameters on H.264

and HEVC coded CBR Video Streaming

The majority of the related studies discussed earlier were conducted in an off-line

video decoding scenario and, consequently, did not consider the effects of resource

allocation while receiving and decoding a video stream in real-time. Moreover, ex-

ploring the effects of QoS parameters on video quality with respect to the packet

structure and compression ratio have been rarely investigated in the literature.

To see that the packet structure is important in this regard, consider the following.

Based on the available standards, the typical transmitted medium access (MAC) layer

has a fixed payload size of 1500 bytes. If a video is encoded at a CBR of 20Mb/s, the

number of packets generated when using the ETH/IP/UDP protocol stack will be

approximately 1698, while a 10Mb/s video will generate 849 packets. This could mean

that a 20Mb/s stream will be able to tolerate the same percentage of packet losses.

The same scenario could also apply to video resolution, where different resolutions

at the same bitrate would give rise to varied effects from the QoS parameters.

In addition, the bitrate reductions claimed for comparable video quality of H.264

and HEVC encoded streams invite scientific investigation: Are these claims valid

for high resolutions video streams? In addition to examining the perceptual quality

of coding-only impairments, there are other questions to consider: How does H.264

compare to HEVC when packet loss is present? Is there any potential disadvantage
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in the improved compression efficiency of HEVC in terms of robustness to dropped

IP packets? To answer these questions, a practical wireless environment was imple-

mented utilizing video encoders and a network impairment emulator. This study

presents comparative results for the potential impact of packet loss and compres-

sion efficiency across SD, HD, and 4kUHD H.264/H.265 coded video streams, both

transmitted and decoded simultaneously in real-time. In this study, the SSIM metric

was used to objectively measure the video quality. SSIM is one of the best objective

method of measuring video quality in real-time video streaming [131].

4.4.1 Experimental Set-up

4.4.1.1 Video Encoding

Four video sequences were chosen, one in each class, as listed in Table 4.6 and shown

in Figure 4.11. These video sequences were classified, based on the SI and TI indexes

for the luminance component of each piece of video content, as described in [52]. The

video sequences were encoded using both of the H.264 and H.265/HEVC encoders.

In the case of the H.264/AVC coded video, the implementation already available to

FFMPEG was used, while the bespoke solution available in FFMPEG [132,133] and

LiBAV [134] was adopted for HEVC. The encoding parameters are given in Table 4.7.

The choice of bitrate was based on the proposed average bitrate savings of 35.4% in

comparison to H.264/AVC [46].

84



Table 4.6: Video sequences chosen and classes assigned

Video Sequence SI TI Class

Coast 10.8370 16.9183 Low Motion

News 17.5219 21.2441 Low Motion

Foreman 16.3897 38.2870 Moderate Motion

Sintel 19.7101 72.2639 High Motion

Sintel Coast

News Foreman

Figure 4.11: One representative frame from each of the 4 source video sequences

Table 4.7: Encoding Parameters

Codec HEVC H.264/AVC

Profile Main High
Processing Unit Coding Tree Block Macroblocks

Processing Unit Size 64 x 64 16 x 16
Group of Picture (GOP) size 25 25

GOP structure IPPP IPPP
Bitrate 13.5Mb/s 20Mb/s
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Figure 4.12: Topology of the physical tes-tbed environment

4.4.1.2 Test-bed Scene and QoS Parameters

To investigate the effect of QoS Parameters on the video QoE, the SCE [135] WAN

emulator was adopted. The emulator was attached to the outbound connection of the

sender using the bridging mode to enable packet transmission under controlled condi-

tions. A schematic representation of the implementation can be seen in Figure 4.12.

The NQoS parameters evaluated were the packet loss rate (PLR), duplication rate

(PDR), and re-ordering rate (PROR), all of which were expressed as percentage val-

ues. Different values of these parameters were introduced to affect packets randomly,

see Table 4.8.

In order to perform a live transmission of the coded video, the use of MPEG2-TS

was adopted. The NAL units were fragmented into MPEG2-TS and were then re-
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Table 4.8: QoS Measurement Parameters

QoS Parameters Values

Packet Loss (PLR) (%) 1, 2, 5,.....,9
Packet Duplication (PDR) (%) 1, 2, 5,.....,9
Packet Reordering (PROR) (%) 1, 2, 5,.....,9

Combination PLR+PROR+PDR 2%
PLR (2%) + Bitrate 13.5Mb/s, 18Mb/s, 23Mb/s, 25Mb/s

encapsulated into user datagram packets (UDP). Since each MPEG2-TS packet has

fixed size of 188 bytes, each UDP packet is only allowed to carry seven MPEG2-TS

packets (1316 bytes), due to the MTU payload of 1472 bytes imposed by the operating

system. Encoding, de-multiplexing and decoding were performed using open source

applications [136]. With the exception of encoding, which was done offline, all other

processes such as the modified solution for MPEG2-TS transmission (server side), the

demultiplexing of received MPEG2-TS and decoding of the H.265 elementary stream

(ES) (client side) operated in real-time. The decoded (distorted) YUV was then

compared against the original (YUV) to obtain video quality results with respect to

the SSIM quality metric.

4.4.2 QoE Measurement

The QoE of the received video sequences was measured using the structural similarity

index metric (SSIM) [56]. SSIM provides a quality index measure of the similarity

between two images. The resultant SSIM index is a decimal value between -1 and

1, and value 1 is only reachable in the case of two identical sets of data. Owing
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to its excellent performance and extremely low compute cost, SSIM has become

a dominant method of measuring video quality in real-time video streaming and

broadcasting [131]. Zinner et al [7] proposed a mapping between SSIM and MOS in

order to express the measured quality in corresponding subjective terms, as shown

in Table 4.9.

Table 4.9: Mapping of SSIM to MOS [7]

Video sequence SSIM

> 0.99 5 (excellent)
≤ 0.95 & < 0.99 4 (good)
≤ 0.88 & < 0.95 3 (fair)
≤ 0.5 & < 0.88 2 (poor)

< 0.5 1 (bad)

4.4.3 Results and Discussion

All results shown in this section are based on average video quality values with respect

to the SSIM, obtained during the experiments. Each experiment was conducted ten

times. The initial encoded video quality results are displayed in Figure 4.13. The

results suggest a drop in video quality based on the motion complexity of each of

the sequences, while an increase in video quality was observed as the resolution was

decreased. This is a result of the reduced compression ratio provided by the encoder

which made more pixel information available to the compressed image so that less

coded video information was carried in each packet. In addition, the results also

suggest increased performance with respect to video quality for HEVC over H.264.
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This is negligible since the lowest mean SSIM value is 0.968 for Sintel (H.264/AVC).

The presented results in Figure 4.13 appear to differ from experiment ones results

in two ways: 1) higher resolution video results in lower objective MOS ratings; and

2) lower motion videos have higher qualities. However, the results are not contradic-

tory, because, in this set of tests, the CBR was fixed whatever the resolution. This

naturally results in less compression for lower resolutions, as the QP varies to match

the available bitrate. Moreover, the encoders have been able to take advantage of

the additional bitrate to improve the quality of low-motion videos. In other words,

both codecs avoid simply increasing the bitrate artificially, by, for example, including

more intra-coded CTBs or MBs.

Figure 4.13: Quality of HEVC and H.264 coded video without network impairment
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4.4.3.1 Impact of QoS Parameters According to Compression Ratio and

Resolution

Figures 4.14-4.16 show the impact of the QoS parameters on both the HEVC and

H.264/AVC coded content. The H.264/AVC codec now (compared to Figure 4.13)

appears more resilient to packet loss than HEVC resulting in higher quality ratings

for H.264/AVC encoding. This finding strongly suggests that HEVCs more efficient

encoding makes it more sensitive to packet loss, once the relative coding gains have

been allowed for by scaling the CBRs (with HEVC at 13.5 Mbps and H.264/AVC at

20 Mbps). For example, it can been seen that the most sensitive spatial resolution

was 4kUHD (2160p), while the least sensitive was the standard definition (480p)

resolution.

Packet loss now serves to exaggerate the difference in quality already starting to show

in Figure 4.13 between lower (higher quality) and higher resolution (lower quality).

Similarly in Figure 4.14, when packet losses occur higher motion sequences such as

Sintel suffer in quality much more than lower motion sequences such as Coast. Again

a possible explanation, when a fixed CBR is involved, is that lower spatial resolution

and lower motion video sequences will tend to be less compressed. Consequently,

with more coded content per packet for lower resolution and lower motion videos,

error concealment is better able to reconstruct missing packets.
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Figure 4.14: Impact of PLR (2%) on H.264/AVC vs HEVC transmission

Figures 4.15 and 4.16 show the correlation between SSIM and the combined effects of

PROR and PDR. We observe that the impact of packet reordering and duplication

was less than that of packet loss (the lowest values are 0.8862 and 0.8652 (Hevc-

coded sintel) for reordering and duplication, respectively). We also noticed that the

quality was dependent on the video content type, target bitrate and resolution, just

as for packet loss. We further noticed that, due to the duplication of time stamps

for packets, duplicate packets were dropped, thereby requiring additional processing

overhead and, consequently, reducing the hardware resource allocation available to

the decoder.
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Figure 4.15: Impact of PDR (2%) on H.264/AVC vs HEVC transmission

Figure 4.16: Impact of PROR (2%) on H.264/AVC vs HEVC transmission
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4.4.3.2 Impact of QoS Parameters on 4k HEVC Video According to CT

The impact of all three QoS parameters, set at 2% each, on 4kUHD HEVC coded

video can be seen in Figure 4.17. The results suggest that the combination of all

three parameters had a more devastating impact on the test sequences than the

results obtained for the scenarios presented in Figures 4.14-4.16.

In addition, Figure 4.18 illustrates the effect of 2% PLR on different choices of the

target bitrate for 4kUHD HEVC coded video. The results suggest that increasing the

target bitrate reduced the effect of packet loss, and thus increased the video quality.

This can be attributed to the amount of coded information which was distributed

amongst the packets. For example, a 13.5Mb/s video will have fewer packets, but

this means that the amount of coded information in each packet is higher than for

a 25Mb/s video, where this information could be split into two or more packets,

resulting in a reduced sensitivity to packet loss. Moreover, as fast moving content

is more sensitive to packet loss, a higher bitrate is required to achieve a comparable

perceived quality for slow content.
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Figure 4.17: Impact of PLR+PDR+PROR at 2% each on 4kUHD HEVC video
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Figure 4.18: Impact of 2% PLR on target bitrates of 4kUHD HEVC transmission
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Figures 4.19, 4.20 and 4.21, presents results on the impact of different level of PLR,

PDR and PROR on 4kUHD HEVC coded video. In Figure. 4.19, the results presented

show the impact of random packet loss on 4kUHD coded video. These results suggest

that 4kUHD HEVC coded video is very sensitive to packet loss, especially for video

content with higher TI values. It can be seen that from a PLR of 2%, the mean

SSIM of such video contents (Sintel, Foreman, News) is impacted more than lowest

TI value (Coast).

In Figure 4.20, the impact of random packet duplication with packet duplication

ratios (PDR) is shown. Unlike the case of packet loss, the sequences seem tolerate

up to 2% PDR, except in the case of Sintel, where the video quality falls in bad

zone. All sequences gradually drop in quality after 2% PDR. While in Figure 4.21,

the effects of random packet reordering with respect to PROR can be seen. These

results suggest that video sequences with lower motion complexity (TI values), such

as Coast and News can accommodate a maximum of 4% PROR. While those with

higher motion are, the effects of PROR appears to be more obvious after 2%.
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Figure 4.19: The impact of PLR on 4kUHD HEVC transmission

Figure 4.20: The impact of PDR on 4kUHD HEVC transmission
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Figure 4.21: The impact of PROR on 4kUHD HEVC transmission

4.5 Chapter Summary

This chapter presents two sets of experiments, the one at a VBR and the other

at a CBR, which highlight different aspects of the interpretation. The first study

performed an investigation of the impacts of QoS parameters on the video QoE by

cross-layer simulation of the transmitted SD, HD and 3D videos for the VBR scenario.

The video quality was measured using objective and subjective metrics. The results

showed that for a given packet loss rate is likely to have less impact on the QoE of

a HD video than it has upon lower resolution videos when the bitrate is variable for

both resolutions. That observation has implications for earlier related studies which
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assumed mobile/portable devices would be confined to CIF or even QCIF resolution.

The second study investigated the effects of QoS parameters on up-to 4kUHD res-

olution of H.264 and HEVC coded video streams which was both transmitted and

decoded simultaneously in real-time. It was found that, at degradations of 2% in each

of the QoS parameters, the video quality diminished, especially for the sequences

with higher spatial resolution. However, this was because in the experiments the

same CBR was used whether transmitting lower or higher resolution video, including

4kUHD video. Thus, the QP can be lower for lower resolution video than higher

resolution video at the same CBR. Losing a packet from a lower resolution stream

in those circumstances, has less of an impact, than losing a packet from a higher

resolution stream. This highlights the need for careful interpretation of video quality

results depending on the streaming modalities. The results presented also show that

increasing the bitrate reduced the impact of packet loss. This artefact stemmed from

the fragmentation of video data into more packets, and thus provided a trade-off

between video bandwidth allocating and the impact of packet loss.

Overall, we found that video QoE is very sensitive to different values of the AQoS

and NQoS parameters. Therefore, it is important to model the correlation between

QoS and QoE so that the QoE can be predicted without the reference video. The

results from this chapter enable the choice of the parameters required for developing

the non-reference video quality prediction models presented in Chapters 5 and 6. We

use the measured objective and subjective datasets from this chapter as a learning

set to develop the proposed prediction models in Chapters 5 and 6.
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Chapter 5
Hybrid Non-reference Video Quality

Prediction Model Using Fuzzy Logic

System

5.1 Introduction

In Chapter 4, it is observed that video QoE is very sensitive to different values of

AQoS and NQoS parameters, with changes in these values corresponding to differ-

ent levels of video impairments and differing QoE values (MOS scores). It is very

difficult to accurately estimate the video QoE on the basis of observations or simple

mathematical formulas as the relationship between QoS and QoE is fuzzy.
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The video QoE was evaluated in the previous chapter using full reference (FR) quality

metrics in both of subjective and objective scenarios. However, in a real-time scenario,

it is impractical to measure the QoE using FR methods since the reference video is

absent. Consequently, it is important to model the correlation between QoS and

QoE so that No-reference (NR) methods can be used to predict the QoE in the

absence of the reference video, and, even, before the transmitted video is received

by the end user. In order to provide a broader prediction of video quality, hybrid

models that consolidate both NQoS and AQoS parameters have been investigated

in the literature. In addition, many researchers have turned their attention to the

use of machine learning algorithms for predicting video quality due to their ability

to automatically learn from past observations. As discussed in Section 2.7, a number

of video QoE prediction models have been proposed in the literature, but these have

offered only partial solutions which overlook some key QoS parameters along the

video delivery chain. Thus, there is still room for the development of innovative

mechanisms to efficiently correlate the QoS with the QoE.

This chapter presents a hybrid non-reference model for predicting video quality which

uses fuzzy logic inference systems (FIS) as its learning-based technique. The pro-

posed model is based on a predetermined rule-based method (FIS-PRB). The learning

dataset developed in Chapter 4 for the correlation of QoS parameters with the QoE

measured using objective and subjective tests was employed to build the FIS-PRB

model. For end-to-end quality estimation, QoS parameters from both the application

and network layers were identified. The proposed model was validated through the
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correlation of the predicted and measured QoE found using the testing and external

unseen datasets. Furthermore, the proposed model also evaluated by comparing its

performance with another learning technique, which is the RNN.

The remainder of this Chapter is organized as follows. Section 2 presents the exper-

imental set-up and dataset generation. In Section 3, the proposed methodology is

discussed. Section 4 is devoted to the validation of the model. In Section 5, a perfor-

mance comparison with the RNN method is discussed. The 3D video QoE prediction

is outlined in section 6. Finally, Section 7 summarizes the Chapter.

5.2 Experimental set-up and Dataset Generation

The simulation set-up and the generated datasets were as described in Chapter 4

(Section 4.3.1). The objective dataset measured in Chapter 4 for the correlation of

QoS parameters with the QoE were used as a learning set to build the proposed

FIS-PRB model.

We extended the generated objective datasets to include three more video sequences

in order to used them for testing the model. The new three video sequences were

streamed via the same simulation and using the same QoS parameters. Consequently,

the objective dataset includes 6 video sequences, two in each content class, as listed

in Table 5.1. The Music, Poker and BMX video sequences were used for model learn-

ing, while the Fencing, Poznan and Pantomime sequences were chosen for validation.
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Moreover, the subjective dataset was also used for model validation. A systematic

approach was used to select a subset (from the generated objective dataset) desig-

nated for the subjective testing. The selection approach was based on the Kennard

and Stone algorithm [126], which selects the sample that is most distant from those

already selected as the next sample.

Table 5.1: Video sequences chosen and classes assigned

Video Sequence TI SI Class

Music 4.90 74.41 Low Motion

Fencing 7.78 77.20

Poker 12.20 85.69 Moderate Motion

Poznan 11.53 87.78

BMX 22.35 99.42 High Motion

Pantomime 37.17 104.43

5.3 Methodology

According to [6], the FIS outperforms other estimation techniques in terms of mod-

elling capabilities and making decisions with imprecise information. In addition, FIS

provides a way of constructing controller algorithms by means of linguistic labels

and linguistically interpretable rules in a user-friendly way closer to human thinking

and perception. Unlike neural networks or genetic algorithms, FIS does not need a
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period of online training or convergence, making it a proper tool for real-time con-

trol. Additionally, the calculations can be very simple, especially when triangular or

trapezoidal membership functions are adopted [137].

The proposed prediction model is based on a predetermined rule-based method (FIS-

PRB). A semi-manual method was applied to develop the FIS-PRB model, combining

human knowledge and the behaviour of QoS parameters with testing on a simula-

tor. Figure 5.1 illustrates the functional block diagram for the proposed FIS-PRB

prediction model.

Figure 5.1: Functional block diagram of the proposed FIS-based prediction model

The membership functions and fuzzy rule extraction were conducted manually, and

the fuzzy controller was implemented using the Matlab fuzzy toolbox. Once the MFs

and a set of fuzzy rules were extracted from the dataset, the FIS could begin to

perform the mapping between the QoS parameters and the QoE. Algorithm 1 gives

an overview of the process of designing a fuzzy logic system. Background information

about FIS was given in Chapter 2 (Section 2.8). The following sections describe the
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steps for the development of the proposed model, its membership functions and fuzzy

rules extraction.

Algorithm 1: Fuzzy logic system
1. Define the linguistic expressions (Initialisation)
2. Design the membership function using triangle shape (Initialisation)
3. Convert crisp input value to fuzzy value using the MFs (Fuzzification)
4. Manually extract the fuzzy rule base (Fuzzy inference engine)
5. Evaluate the fuzzy rules in the rule base (Fuzzy inference engine)
6. Aggregate the results of each rule (Fuzzy inference engine)
7. Convert the fuzzy value to crisp output value (Defuzzification)

5.3.1 Identifying the Inputs and Output

The chosen input QoS parameters were content type (CT), resolution (Re), quanti-

sation parameters (QP), packet loss ratio (PLR), and mean burst loss (MBL), while

the output was the MOS scores (QoE). Table 5.2 outlines the chosen QoS parameters.

Variations in these QoS parameters affect the quality of the delivered video and, con-

sequently, the user satisfaction level. Once the inputs and the output were identified,

both were categorized into linguistic expressions that represent the quantification of

the QoE values (scores). This was achieved by the design of membership functions

for the input and output variables.
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Table 5.2: The chosen QoS Input Parameters

Parameters Values

Content Type (CT) Low, Moderate, High motion

Spatial resolution (R) SD (720× 540), qHD (960× 576), HD (1280× 720)

Quantization Parameter (QP) 16, 24, 32, 40, 48

Packet loss ratio (PLR) 1%, 2.5%, 5%, 7.5%, 10%

Mean burst length (MBL) 1, 2.5, 5, 7.5

5.3.2 Design of Membership Functions

The data representing the correlation between QoS parameters and the measured

QoE was translated into fuzzy membership functions. In this study, the membership

functions were derived using probability distribution functions (PDF) [138]. Differ-

ent PDFs were built for every QoS parameter. The probabilistic information was

converted into a fuzzy set by dividing the PDF by its peak. Three fuzzy sets (low,

moderate, high) were assigned to each of the chosen QoS input variables. These

fuzzy sets were converted into equivalent forms (shapes) of the membership function

using a curve fitting method [139]. The curve values of the membership functions

represented the degree to which a particular QoS parameter value resulted in dif-

ferent MOS scores. In the proposed system, the fuzzy set was converted into an

equivalent triangular shape, which was simple to implement and increased the speed

of computation [137].

Figure 5.2 shows the membership functions for the QoS input parameters. We note
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that a membership value of 1 represents a high degree of membership in the cor-

responding class and a decreasing value represents deviation from the class. The

relationships represented by the membership functions reflect the “effect” of each

QoS parameter’s value on the QoE. This “effect” is categorised into three fuzzy sets

(low, moderate, high), which are interpreted as low effect, moderate effect, and high

effect. For example, a PLR of 2% has a membership degree of 0.6 in the low effect on

QoE set. In other words, a 2% PLR has a low effect on the QoE to a degree of 60%

(or 0.6). Likewise, a 2% PLR has a moderate effect on the QoE to a degree of 30%

(or 0.3), which is a lower degree. Finally, a 2% PLR has a high effect on the QoE

to a degree of 0%, which means that a 2% PLR has no high effect on the QoE at

all. The membership functions for the QoS input parameters were designed in direct

relation to the values of these QoS parameters. That is, for these QoS parameters

the fuzzy sets (low, moderate, and high) corresponded to numerical values of these

parameters that are low, moderate, or high.

The membership function of the output (QoE) is presented in Figure 5.3. In this work,

the measurement of the QoE was based on the MOS scores (1 to 5). Consequently,

the QoE membership function was assigned five fuzzy sets, according to the standard

MOS definition [52]. In Figure 5.3, each value of the MOS scale is related to the

fuzzy sets (bad, poor, fair, good, excellent) to a different degree. For example, an

MOS value of 3.2 is related to the fair set to a degree of 80% (0.8), and the good set

to a degree of 20% (0.2). However, MOS 3.2 is not a bad, poor, or excellent value,

since it is bad, poor, and excellent to the degree of 0%.
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Figure 5.2: Membership functions of the inputs
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Figure 5.3: Membership functions of the output (QoE)

5.3.3 Fuzzy Rules Extraction

The proposed FIS-PRB employs the Mamdani inference type [140]. Based on the

combinations of QoS parameters and their ratings, the impact of QoS variables on

video quality (QoE) was estimated to give one of the MOS scores (QoE). That is, an

estimated QoE score was associated with each combination of QoS parameter values.

The fuzzy rules were generated by assigning weights to the video impairment scores.

For each combination, the rule weight was calculated as the sum of the weights of the

QoS parameter scores. In this work, the AND operator, which selects the minimum

value of the fuzzy sets was used. After the results for each rule were evaluated, they

were combined to produce a final result using the maximum algorithm [101]. This

algorithm is the most commonly used accumulation method. It combines the results

of the individual rules by selecting the fuzzy set that achieves the greater membership

value in the IF part of the rule. An example of the processing of fuzzy rules extraction

is given in Section 2.8.2.
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The greatest number of rules that can be generated is Xn, where X is the number of

fuzzy sets and n is the number of input variables. So, the maximum number of rules

that can be extracted is 35. However, the actual extracted rules set usually contains

fewer than Xn rules because, for many parameter values, the membership functions

are zero for all fuzzy sets except one or two. A zero-valued membership function

implies that the antecedent is not used in the rule [140]. The number of extracted

fuzzy rules for the proposed model was 243. Table 5.3 shows a sample of the index

fuzzy rules. The final fuzzy rule that was used in the FIS controller had the form:

IF (CT is Low motion) AND (MBL is Low) AND (PLR is Low) AND

(QP is Low) AND (Resolution is Moderate) THEN (QoE is Good)

IF (CT is High motion) AND (MBL is High) AND (PLR is High) AND

(QP is Moderate) AND (Resolution is Moderate) THEN (QoE is bad).

Table 5.3: Examples of the QoE index decision making rules

CT R QP PLR MBL QoE

Moderate Low Low Low Low Excellent

Moderate High Moderate Low Low Good

Low Moderate High Moderate Moderate Poor

High Low Moderate Low Moderate Fair

High Moderate High High High Bad

Low Low Moderate Moderate High Poor

Low Moderate Low Low Moderate Good
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5.3.4 Defuzzification: Predicting the Output

The overall result after the inference step was a set of fuzzy values. This result

was defuzzified to give a crisp output value (QoE), based on the MF of the output

variable. The defuzzification process examined all of the rule outcomes after they

were logically added and then computed a value that was the final output of the

fuzzy controller. In this work, the defuzzification was conducted using the centroid

method. The mathematical basis of this method relies on the centre of gravity (COG)

defuzzification method that is expressed using the following formula [141]:

y(x) = fs(x) =

∑M
i=1 y

1
∏n

l=1 µF
i
l (xl)∑M

i=1

∏n
l=1 µF

i
l (xl)

. (5.1)

Here, M is the rule number in the rule base, y−i is the centroid of the ith output

fuzzy set Bi, and Πn
l=1 = µF i

l (xl) is the product of the membership values of each

rule’s inputs.

5.3.5 Implementation of FIS-PRB model

As discussed in Section 2.8, the FIS controller consists of three main components, or

actions: fuzzification, fuzzy inference processing and defuzzification. These actions

must be completed sequentially in order to determine the appropriate output value.

There are different methods for implementing the FIS controller, one of which is the

MATLAB FIS Toolbox [142] that provides computational and visual aids. In this
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study, the MATLAB FIS toolbox was used to develop a simulation scenario using the

designed membership functions and the extracted fuzzy rules. Figure 5.4 shows the

FIS-PRB model designed using the MATLAB FIS toolbox.

Figure 5.4: The FIS-PRB model in MATLAB toolbox

After this step, the QoE was predicted and compared with the measured QoE. The

validation of the model is presented in the following section.
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5.4 Validation of FIS-PRB Model

5.4.1 Validation by Testing Dataset

The proposed FIS-PRB model was validated against the objective and subjective

datasets given in Chapter 4 (Section 4.3.1). The validation metrics used were R2

correlation and the root mean squared error (RMSE). These metrics have been used

in several related studies including [60,75,87,89]. The reader is referred to Appendix

C for a brief description of the R2 and RMSE metrics.

Figure 5.5 (a-b) shows the correlation between the objectively measured MOS and

the predicted MOS using line and scatter graphs. Each point in Figure 5.5 (a)

represents the predicted MOS of a particular video clip, and the line represents the

measured MOS. The obtained value of R2 was 93.2% and of RMSE was 0.192.

In addition, Figure 5.6 illustrates the correlation of the subjective MOS against the

predicted MOS which reached around 90.6%, with an RMSE value of 0.2661. Due to

cost constraints, the subjective dataset was formed by taking a subset of the objective

dataset. As a result, there were fewer test conditions generated from the subjective

data than from the objective MOS. However, the results obtained using both datasets

indicated that the predicted MOS was highly correlated with the measured MOS.

Thus, the proposed FIS-PRB model had significant success in predicting the user’s

perception. These results show a consistent relationship between QoS and QoE for

wireless video streaming.
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Figure 5.6: Predicted MOS vs Subjectively Measured MOS

5.4.2 Validation by External Dataset

The FIS-PRB model was further validated using an external MOS dataset that has

been made publicly available at [143]. This external dataset is for H.264 encoded

QCIF videos with network conditions of PLR, MBL for three types of video sequences

(CT). In order to perform this validation, the number of input parameters for the

FIS-PRB model was decreased to three: PLR, MBL and CT.

Figure 5.7 shows the correlation between the measured MOS and the predicted MOS.

The FIS-PRB model achieved an R2 score of 88.61%. The model showed a consistent

relationship between the QoS parameters and the QoE, even with the unseen dataset.

However, it is clear that its correlation rate was lower than the one shown in Figure
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5.5. One of the reasons for this reduction in correlation could be the new variation

in some parameters arising from the external dataset. For example, the considered

MBL levels in this external dataset includes new high values in burst lengths compare

with our dataset. Therefore, the rule base of the FIS-PRB model should be updated

to cover the new MBL values.

Figure 5.7: Predicted MOS vs. Measured MOS from External Dataset [Khan 2010]

In addition, this external dataset was first generated for building the video QoE pre-

diction model that is proposed in [75]. The model of [75] is based on the regression

analysis (RA) method. We compare the performance of the proposed FIS-PRB model

with that of the RA-based model from [75] in Table 5.4. The FIS-PRB model out-

performed the RA-based model in terms of the prediction accuracy rate. As shown

the Table 5.4, the correlation rate of the two model is nearly similar, however, the
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RA-based model was already built using this dataset, which is considered as unseen

dataset in the case of the FIS-PRB model. Overall, the results indicate that the

proposed FIS-PRB model performed well in terms of the correlation coefficient and

achieved a reasonable fit, even with the unseen dataset.

Table 5.4: Models performance comparison

Model Type RMSE R2

FIS-PRB model 0.329 88.61%

RA-based model 0.373 87.89%

5.5 Performance Comparision with RNN Method

In this section we compare the performance of the proposed FIS-PRB model with

that of the random neural networks (RNN) technique [144]. We employ the QoE-

RNN model developed in [145] for the comparison. The QoE-RNN model is an

implementation of an RNN in the C programming language that is used in the NAPA-

WINE project to estimate the QoE experienced by a peer. This model is publicly

available at [145]. The measured objective datasets from Chapter 4 (Section 4.3.1)

were used for the learning and testing of the QoE-RNN model, and then the results

were compared with those for the FIS-PRB model.

The RNN is an artificial neural network (ANN) method that was invented by Erol

Gelenbe [144]. Neural networks essentially consist of a system of adjustable param-
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eters called “Weights” and “Biases” that are adjusted during a training phase to

provide specific weights and biases for the network. A scalar input is multiplied by

the effective weight and added to the bias to produce the target output. The neu-

ral network consists of an input layer, one or more hidden layers, and an output

layer [144], as shown in Figure 2. We employed a neural network with an input layer

of 5 input QoS parameters, two hidden layers with 4 neurons, and an output layer of

one output.

Figure 5.8: Neural network architecture

Figure 5.9 illustrates the correlation of the measured MOS against the predicted MOS

which reached around 86.77%, with an RMSE value of 0.399. Table 5.5 presents the

comparison between the proposed FIS-PRB and the QoE-RNN models in terms of the

R2 and RMSE metrics. The FIS-PRB model outperformed the RNN-based model

in terms of prediction accuracy rate. This result confirms the findings of [6] that the

FIS method outperforms other ANN technique due to its modelling capabilities and

transparent reasoning process. By comparison with neural networks, the calculations

for the FIS can be less complex, especially when triangular MFs are adopted [137].
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However, the success of artificial intelligence learning-based techniques are dependant

on their ability to fully learn the relationships between QoS and QoE.

Figure 5.9: Predicted MOS by RNN-based model vs Measured MOS

Table 5.5: Performance comparison with the RNN-based model

Model RMSE R2

FIS-PRB model 0.192 93.4%

QoE-RNN model 0.399 86.77%
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5.6 3D Video QoE Prediction

As mentioned before, the objective and subjective learning dataset measured in Chap-

ter 4 (Section 4.3.1) that correlates the QoS parameters with the measured QoE was

used to build the proposed FIS-PRB model. This dataset includes QoE evaluations

for both 2D and 3D H.264 video streams. This chapter only considers the FIS-based

quality prediction model in the context of 2D video streaming. It should be men-

tioned that the FIS-PRB prediction model was also applied to 3D video streaming,

and the results were published in [26]. The model shows similar performance as with

the 2D video and there was no significant difference other than the observation that

the same QoS parameters could cause disparate distortions in 3D quality perception.

Note that the FIS-PRB in the context of 3D video model was only validated using the

testing dataset because we could not find any public external 3D video QoE dataset

that included both AQoS and NQoS parameters.

5.7 Chapter Summary

This chapter presented a hybrid non-reference FIS-based model for predicting video

quality by mapping the impact of QoS parameters to the user perceived satisfaction

level (QoE). The model developed was based on a predetermined rule-based method

(FIS-PRB). The objective MOS learning dataset generated in Chapter 4 (Section

4.3.1) that correlates the QoS parameters with the measured QoE was used to build
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the proposed FIS-PRB model. For end-to-end quality estimation, QoS parameters

from both of the encoding and access network layers were identified. The defined fuzzy

membership functions were derived from the QoS/QoE correlation using probability

distribution functions.

The proposed model was validated through the correlation of predicted measured

QoE using both testing and external datasets. One conclusion drawn was that the

validation results indicated that the proposed FIS-PRB model achieved an acceptable

correlation rate, even with the unseen dataset. In addition, the FIS-PRB model was

validated against an RNN-based prediction model using the same learning and testing

datasets. The second important conclusion drawn from the results of this chapter was

that the proposed FIS-PRB model showed a significant improvement in performance

over the RNN model. This confirmed the known advantages of using fuzzy logic

systems, brought about by their special features such as modelling capabilities, lower

computational complexity, and transparent reasoning processes. The proposed work

provides a proof of concept for a no-reference QoE prediction technique.

The developed FIS-PRB model is good at making decisions with imprecise informa-

tion and easy to implement. However, it is static because of its fixed, pre-defined

fuzzy rules. Thus, the fuzzy rules base needs to be manually updated when the input

QoS parameters are changed. Therefore, a self-adaptive model needs to be developed

in order to make progress towards the development of a more generic and practical

prediction model. The next chapter presents an adaptive video QoE prediction model

that can be used in real-time environments with changeable network conditions.
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Chapter 6
Adaptive Hybrid Non-reference Model for

Real-time Video Quality Prediction

6.1 Introduction

In general, two main criteria can be used to evaluate prediction techniques: prediction

accuracy and self-adaptability [146]. The prediction accuracy refers to the ability of

the model’s estimated score to match that of the measured QoE. Self-adaptability

refers to the ability of the model to automatically adapt to new datasets without much

complexity and time [146]. The FIS-PRB prediction model proposed in Chapter 5 is

good at making decisions based on imprecise information, but it cannot automatically

formulate the fuzzy rules required for making such decisions. Indeed, each time the

121



input QoS parameters are updated, the fuzzy rules base of the FIS-PRB must be

updated manually.

Adaptive FIS prediction method has been used in several QoS and QoE related mech-

anisms, such as to perform a dynamic bandwidth and buffer allocation on multimedia

traffic [147], to perform congestion control for wireless video streaming [148], and also

to predict the QoE of web services [103]. The deep investigation of the literature pre-

sented in Section 2.6 found very few papers proposed automated no-reference models

for video QoE prediction that take into account both AQoS and NQoS parameters.

Also, the accuracy of these models is still questionable. In [75, 88, 89], the Adaptive

Neural Fuzzy Inference System (ANFIS) [90] was used to estimate the video QoE.

The authors in [75, 89] only considered a single video resolution, QCIF (176 × 144),

and no other higher spatial resolutions were tested. Moreover, they also lack user

perception and experimental and validation results.

This chapter presents an adaptive hybrid no-reference model, based on automated

FIS, that predicts the QoE of real-time video streaming. The proposed model can

automatically formulate the fuzzy rules that are required in order to predict the video

QoE. This work provides an important step towards the development of a real time

QoE prediction model that can be used at intermediate measurement points along

the network path for video streaming. As in previous chapters, the video quality

is predicted using a combination of parameters associated with the encoder and the

access network for different types of content and resolutions. The QoE predictions are

given in terms of the MOS obtained from the objective and subjective tests conducted
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for Chapter 4. The proposed model is validated by comparing the estimated QoE

output with the measured QoE using both testing and external datasets. In addition,

the model is evaluated on a real test-bed which was produced for the QoE prediction

of real-time wireless H.265 video streaming.

The remainder of this chapter is organised as follows. The experimental set-up and

procedure for dataset generation are presented in Section 2. Section 3 discusses the

methodology for the proposed video quality prediction system. Sections 4 and 5 are

devoted to the model validation and performance comparison. The proposed model is

evaluated using a practical test-bed in Section 6. Finally, a summary of this chapter

is given in Section 7.

6.2 Experimental set-up and Dataset Generation

The simulation set-up and the generated datasets are as described in Chapter 4,

Section 4.2. The objective dataset developed in Chapter 4 for the correlation of the

QoS parameters with the QoE are used as a learning set to build the proposed FIS

models in this chapter.

Similar to the experiment in Chapter 5, the generated objective dataset is divided into

learning and testing datasets. Six video sequences were selected for these datasets,

two from each content class as listed in Table 6.1. The Music, Poker and BMX video

sequences were used for model learning, while the Fencing, Poznan and Pantomime
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sequences were used for model validation. Moreover, the subjective dataset was also

used for model validation.

Table 6.1: Video sequences chosen and classes assigned

Video Sequence TI SI Class

Music 4.90 74.41 Low Motion

Fencing 7.78 77.20

Poker 12.20 85.69 Moderate Motion

Poznan 11.53 87.78

BMX 22.35 99.42 High Motion

Pantomime 37.17 104.43

6.3 Methodology

The proposed prediction model is based on an automated FIS rule-base method

(FIS-A). As mentioned before, the FIS consists of three main modules; fuzzifier,

fuzzy inference engine and defuzzifier. In this chapter, the fuzzy inference engine

module utilizes an unsupervised technique for extracting the rules from membership

functions. Figure 6.1 illustrates the functional block diagram for the proposed FIS-A

prediction model.
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Figure 6.1: Functional block diagram for the proposed FIS-A prediction model

Unlike the model developed in Chapter 5, the FIS-A model automatically adapts the

rules for the fuzzy inference system to accommodate changes in the dataset using the

learning from example (LFE) approach [149]. An extended and further developed

version of the Mendal-Wang method [141, 150] was used to implement the LFE ap-

proach. This method is a one-pass approach, centred on obtaining the fuzzy rules

from the set of data under examination. The LFE learning procedure only constructs

the rules, relying entirely on a complete specification of the membership functions by

the analyst. The proposed FIS-A model implemented in the Java language environ-

ment. Algorithm 2 gives an overview of the process of designing a fuzzy logic system.

In the following sections, we describe the steps for developing the proposed model,

its membership functions, and fuzzy rule extraction. Background information about

FIS is given in Chapter 2 (Section 2.7).
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Algorithm 2: Fuzzy logic system
1. Define the linguistic expressions (Initialisation)
2. Design the membership function using triangle shape (Initialisation)
3. Convert crisp input value to fuzzy value using the MFs (Fuzzification)
4. Automatically extract the fuzzy rule base (Fuzzy inference engine)
5. Evaluate the fuzzy rules in the rule base (Fuzzy inference engine)
6. Aggregate the results of each rule (Fuzzy inference engine)
7. Convert the fuzzy value to crisp output value (Defuzzification)

6.3.1 Identifying the Inputs and Output

The chosen input QoS parameters were the content type (CT), resolution (Re), quan-

tisation parameters (QP), packet loss ratio (PLR), and mean burst loss (MBL). The

output was the MOS scores (QoE). Table 4.2 outlines the chosen QoS parameters.

Unlike the model in Chapter 5, the proposed method in this chapter allows the incor-

poration of additional parameters without much complexity and time. The number

of input parameters can be can easily increased due to the FIS-A model ability to

automatically extract the fuzzy rules from the membership functions. The collected

dataset consisted of multiple input and output data pairs of the form:

(x(t); y(t))(t = 1, 2, ..., N), (6.1)

where N is the number of data instances, x(t) ∈ Rn, and y(t) Rk. Once the inputs

and the output were identified, both were converted into linguistic expressions to

represent the quantification of the QoE values (scores). This was achieved by the

design of membership functions for the input and output variables.
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6.3.2 Design of Membership Functions

The correlation between the QoS parameters and the measured QoE was transferred

into fuzzy membership functions. Membership functions are curves that explain how

each linguistic term is linked to a membership value (or degree of membership) be-

tween 0 and 1. In this study, the membership functions were derived using probability

distribution functions (PDF) [138]. Different PDFs were built for every QoS parame-

ter. The probabilistic information was converted into a fuzzy set by dividing the PDF

by its peak. The design of the membership functions was the same as in Chapter 5,

Section 5.3.2.

6.3.3 Fuzzy Rules Extraction based on LFE Approach

The inputs and output were divided into fuzzy areas, based on the antecedent and

consequent fuzzy sets associated with the rules. The extracted rules took a number of

different forms. In the proposed system, fuzzy IF-THEN rules of the following form

were used to represent the relationship between the input pattern x = (x1, ..., xn)T

and the output y = (y1, ..., yn)T :

IF x1 is A
(i)
1 and .... xn is A

(i)
n THEN yk is B

(i)
k , (6.2)

where i = (1, 2, ....M), M is the number of rules, and i is the index for the rules.

There were V fuzzy sets Aq
s, for q ∈ {1, 2, . . . , V }, defined for each input Xs, and
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W fuzzy sets Bh, for h ∈ {1, 2, . . . ,W}, defined for each output yc. Moreover, the

AND operator, which selects the minimum value of the fuzzy sets was used in this

model. The process of extracting the fuzzy rules from the data was performed using

the following two steps, as described in [141,150]:

Step 1:

For a fixed input-output pair (x(t); y(t)) from the dataset (6.1) of N pairs, the mem-

bership values µAq
s
(x

(t)
s ) are computed for each membership function (q ∈ {1, . . . , V }),

and each input variable s ∈ {1, . . . , n} to give q∗ ∈ {1, . . . , V } such that:

µ
Aq∗

s
(x(t)s ) ≥ µAq

s
(x(t)s ). (6.3)

The idea is to select the fuzzy set that achieves the maximum membership value at

the data point as the one in the IF part of the rule. We call the following rule

IF xt1 is A
q∗

1 and .... xtn is A
q∗

n THEN y is centred at y(t), (6.4)

the rule generated by (x(t); y(t)). Note that each of the fuzzy sets Xs associated to

the input variables is characterised by V fuzzy sets Aq
s, where q ∈ {1, . . . , V }, and

so the maximum number of possible rules that can be generated is V n. However,

depending on the dataset, only those rules from the V n possibilities whose dominant

regions contain at least one data point will be generated.

In step 1, one rule is generated for each input and output data pair. For each input,
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the fuzzy set that achieves the maximum membership value at the data point is

selected for the IF part of the rule, as shown in equations (6.3) and (6.4). This rule

will be modified to create its final form in step 2. The weight of the rule is computed

using the formula:

W (t) =
n∏

s=1

µAq
s
(x(t)s ). (6.5)

The weight W (t) of rule t is a measure of the strength of the points x(t) belonging to

the fuzzy region covered by rule t.

Step 2:

Step 1 is repeated for all t ∈ {1, . . . , N} in order to generate N rules using equation

(6.5). Since the number of data points is usually large, many of the rules generated

in Step 1 will share the same IF part, but have differing THEN parts, i.e., they will

share the same antecedent membership functions, but dissimilar consequent values.

In this step, the N rules are divided into groups on the basis of their IF parts. Suppose

there are M such groups, and that group i (i ∈ {1, . . . ,M}) contains Ni rules of the

form:

IF x1 is A
(qi)
1 and .... xn is A

(qi)
n THEN y is centred at y(t

i
u), (6.6)

where u ∈ {1, . . . , Ni} and tiu is the index for the data points in group i. The weighted

average of the rules in this conflict group is then calculated using the formula [150]:

average(i) =

∑Ni

u=1 y
(tiu)w(tiu)∑Ni

u=1w
(tiu)

, (6.7)

where the weights w(tiu) are computed using equation (6.7) from Step (1). These Ni
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rules are then combined into a single rule which has the form:

IF x1 is A
(i)
1 and .... xn is A

(i)
n THEN y is B(i). (6.8)

The output fuzzy set Bi is selected on the basis of finding the set Bh∗
among the W

output fuzzy sets B1, ..., Bw that satisfies:

µBh∗ (average(i)) ≥ µBh (average(i)), (6.9)

where h ∈ {1, 2, ...,W}, and B(i) is chosen to be Bh∗.

Overall, the task performed in Step 1 can be summarized as generating one rule from

each input-output data pair. The idea is to select the fuzzy set that achieves the

maximum membership value at the data point as the one in the IF part of the rule,

see (6.3) and (6.4). The fuzzy set for the THEN part is centered at the data point

y(t), and the weight of the rule W (t), is measured by the agreement between the data

point x(t) with the IF part of the rule, as computed in (6.5).

Since the number N of data points is usually large, many rules generated in Step(1)

will share the same IF part. The task performed in Step 2 is to merge the rules with

the same IF part into a single rule. Since the IF part has already been determined,

this task simply involves determining the fuzzy set B(i) for the THEN part. The idea

is to place the center of B(i) at the weighted average of the output values for the data

points that generate this group of rules, as in equation (6.7), where the weight is the
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rule weight computed in Step 1. The calculations invoke Equations (6.7) and (6.9),

and are repeated for each output value [141,150]. The number of extracted rules was

243 rules. Samples of the extracted fuzzy rules are listed in Appendix E. The final

fuzzy rule that was used in the FIS controller had the form:

IF (CT is High motion) AND (QP is Moderate) AND (Resolution is Moderate) AND

(PLR is High) AND (MBL is High) THEN (QoE is Bad)

IF (CT is Low motion) AND (QP is Moderate) AND (Resolution is Low) AND (PLR

is Low) AND (MBL is Moderate) THEN (QoE is Fair)

6.3.4 Defuzzification: Predicting the Output

The overall result after the inference engine step was a set of fuzzy values that need

to be defuzzified to give a crisp output value (QoE), based on the MF of the output

variable. In this work, the defuzzification was conducted using the centroid method

[141], which was defined in Chapter 5 (section 5.3.4).

6.3.5 Implementation of FIS-A model

Unlike the FIS-PRB model (which was implemented using the Matlab toolbox), the

designed membership functions, fuzzy rule extraction and fuzzy controller for the

FIS-A model were all implemented using a Java programming language environment.

131



In terms of software, the cross-platform versatility of the Java programming language

allowed it to be embedded into real-time video streaming applications, as presented in

Chapter 7. The main components of FIS controller were programmed as Java classes.

The main java class (Fuzzy inference engine) includes the equations of Mendal-Wang

method. Figure 6.2 illustrates the block diagram of the java classes for the FIS-A

model. The predicted QoE is then compared with the measured QoE using the same

validation metrics that were used for the FIS-PRB model. The validation of the

model is discussed in the next section.

Figure 6.2: Diagram of the java classes for the FIS-A model
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6.4 Validation of FIS-A Model

6.4.1 Validation on Testing Dataset

The proposed FIS-A model was validated against the objective and subjective datasets

given in Chapter 4 (Section 4.2), which were also used for the FIS-PRB model. The

validation metrics used were R2 and RMSE. Figure 6.3 (a-b) shows the correlation

between the objectively measured MOS and the predicted MOS using line and scatter

graphs. Each point in Figure 6.3 (a) represents the predicted MOS of a particular

video clip and the line represents the measured MOS. The corresponding R2 value

was 95.2% and the value of RMSE was 0.1098.

In addition, Figure 6.4 shows the correlation between the subjective MOS and the

predicted MOS which reached around 93.1%, with an RMSE value of 0.2181. The

results shown in these figures indicate that the predicted MOS was highly correlated

with the measured MOS. Thus, the proposed FIS-A displayed a significant amount

of success in predicting the user’s perception. These results show a consistent rela-

tionship between the QoS and QoE for real-time video streaming.
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Figure 6.4: Predicted MOS vs Subjectively Measured MOS

6.4.2 Validation on External Dataset

The FIS-A model was further validated using an external MOS dataset that has been

made publicly available at [143]. This external dataset is for H.264 encoded QCIF

videos with network conditions of PLR, MBL for three types of video sequences (CT).

In order to work with this dataset, the number of input parameters for the FIS-A

model was reduced to three: PLR, MBL and CT. Figure 6.5 shows the correlation

between the measured MOS and the predicted MOS for this dataset. The FIS-A

model scored an R2 value of 91.97%, and demonstrated a consistent relationship

between the QoS parameters and the QoE, even with the unseen dataset.
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Figure 6.5: Predicted MOS vs. Measured MOS from External Dataset [Khan 2010]

This external dataset was initially generated for the video QoE prediction model that

was proposed in [151]. The model in [151] is based on the ANFIS method. Thus,

our analysis in this section compares the performance of the proposed FIS-A model

with that of the ANFIS-based model from [151]. Table 6.2 shows the performance

comparison for these models. Unlike the ANFIS-based model which was already

learnt from this external dataset, the proposed FIS-A model performed well in terms

of the correlation coefficient, and achieved a reasonable fit with the external dataset.
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Table 6.2: Models performance comparison

Model Type RMSE R2

FIS-A model 0.217 91.97%

ANFIS-Based 0.315 90.12%

6.5 Performance Comparison with FIS-PRB Model

The validation results for the proposed FIS-PRB and FIS-A models showed that the

measured MOS scores were highly correlated with the predicted MOS scores. This

indicates that the proposed FIS-based models were successful in reflecting the user’s

perception. It can be observed that the correlation rates are very similar when the

validation was based on the testing dataset. However, the two models did not exhibit

similar performances when they were validated by the external unseen dataset that

included new variations in the values of the QoS parameters. The result displayed in

Table 6.3 indicates that the FIS-A model outperformed the FIS-PRB model. This is

because of its ability to automatically adapt the fuzzy rules necessary for predicting

the output using the LFE method. By contrast, as the FIS-PRB model is based

on predefined fixed fuzzy rules, the fuzzy rules base needed to be manually updated

when the values of input QoS parameters were changed.
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Table 6.3: Performance comparison using external dataset

Model RMSE R2

FIS-PRB model 0.329 88.61%

FIS-A model 0.217 91.97%

6.6 Model Evaluation on Real Test-bed

The proposed FIS-A model was further tested with close to real network conditions,

using a real-time transmission of H.265/HEVC video over a wireless network in order

to measure its performance for an on-line video transmission scenario. The test-bed

created in Chapter 4 (Section 4.4) was used in this chapter to evaluate the FIS-A

model. In the following subsections, the evaluation of the test bed is described; then

the analysis of the experimental results is presented.

6.6.1 Experimental Set-Up

The experimental set-up is the same as in Chapter 4, Section (4.4.1). Figure 6.6

shows the topology of the physical test-bed environment. To introduce network

impairments, the SCE [135] WAN emulator was attached, virtually, to the outbound

connection of the sender using the bridging mode. The chosen QoS parameters are

listed in Table 6.4. The collection of input parameters for the proposed FIS-A model
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was decreased to the three inputs: PLR, R, and CT.

Modified UDP network sender

PES
Packetizer

Modified
TS 

Multiplexer

PES
Packetizer
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FileClient/Receiver

HEVC 
Coded 
Video

802.11ad AP

Figure 6.6: Topology of the physical testbed environment.

Table 6.4: Experimental QoS Parameters

Parameters Values
Content Type (CT) Low, Moderate, High motion

Spatial resolution (R) SD (480p), HD (720p), 4kUHD (2160p)
Packet loss ratio (PLR) 1, 2, 5,.....,9

With the exception of encoding, which was done off-line, all other processes such as

the modified solution for MPEG2-TS transmission (server side), the demultiplexing

of received MPEG2-TS, and the decoding of the H.265/HEVC elementary stream

(ES) (client side) operated in real-time. The decoded (distorted) YUV was then

compared against its original (YUV) to obtain video quality results with respect to

the structural similarity index metric (SSIM) [56]. More details of the test-bed’s

implementation can be found in Section (4.4.1).
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6.6.2 Experimental Results

The main objective of this approach was to identify the relationships between the QoS

parameters that affect QoE and the overall perceived QoE. We achieved high accuracy

and made dynamic adaptation possible using this model. Figure 6.7 illustrates the

correlation of the measured MOS with the predicted MOS. The correlation factor

(R2) and the RMSE were used to validate the proposed FIS-A model. Since the R2

score was 90.88% with an RMSE value of 0.3297, the proposed system achieved an

acceptable degree of success in predicting video quality in the real-time scenario.

Table 6.5 shows a further comparison between the test-bed’s result (on-line scenario)

with the result of the model validation by the external dataset (off-line scenario),

which is presented in Section 6.4.2. In both scenarios, the results demonstrate a con-

sistent relationship between QoS and QoE for real-time video streaming. However,

the FIS-A model is expected to be more accurate in the off-line scenario. This is

because, in case of real-time streaming, the computational resources required for pro-

cesses such as decoding complexity increase with the spatial resolution. In addition,

other processes such as inbound network queue packet processing and video display

at the required refresh rate compete for resource allocation. This is quite different

from the off-line scenario, where the QoS parameters are normally fixed.
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Figure 6.7: Predicted MOS vs.Objecively Measured MOS
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Table 6.5: The Performance of FIS-A model in two scenario

Model RMSE R2

Off-line scenario 0.217 91.97%

real-time scenario 0.329 90.88%

6.7 Chapter Summary

This chapter presented an adaptive hybrid non-reference FIS-based model for predict-

ing video quality by measuring the impact of QoS parameters on the user perceived

satisfaction level (QoE). The developed model was based on an automated rule-base

method (FIS-A). The objective MOS learning dataset presented in Chapter 4 for

the correlation of QoS parameters with the measured QoE, was used to build the

proposed FIS-A model. QoS parameters from both of the encoding and access net-

work layers were identified for end-to-end quality estimation. The fuzzy membership

functions were derived from the QoS/QoE correlation using probability distribution

functions.

The proposed model was validated through the correlation of the predicted and mea-

sured QoE using both testing and external datasets. The results showed a high

prediction accuracy. The model achieved a reasonable fit, even when the external

dataset. In all cases, the FIS-A model outperformed the FIS-PRB model, especially

when the models validated by the external unseen dataset. Although the FIS-PRB

142



model is good at making decisions on the basis of imprecise information and is easy

to implement, its fixed pre-defined fuzzy rules mean that it is static. By contrast,

even though the FIS-A model is more complicated, it can adapt to changing network

conditions due to its ability to automatically formulate the fuzzy rules necessary for

predicting the output.

The FIS-A model was also evaluated on a real test-bed for the QoE prediction of

real-time H.265 video streaming. The results showed a strong correlation that could

effectively define the encoding and network impacts on the video QoE. The FIS-

A showed a consistent mapping between the QoS parameters and the QoE. This

work achieved our research objective of developing an adaptive non-reference QoE

prediction model. This is significant because the higher accuracy in determining the

expected level of QoE enables us to make efficient decisions regarding the provisioning

of network resources whilst keeping the customer satisfied. Thus, our model will be

of significant help in the design of applications for the QoE enabled optimisation of

video delivery discussed in Chapter 7.
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Chapter 7
QoE-enabled Applications for Optimising

Video Delivery: Applicability Examples

7.1 Introduction

This chapter demonstrates two applications of the adaptive video quality prediction

model developed in Chapter 6. These are (1) a QoE-enabled transport optimisation

scheme for real-time SVC video delivery and (2) a QoE-enabled resource utilisation

scheme for mobile video delivery. The proposed applications demonstrate the use of

the non-reference QoE prediction model for optimising mobile video delivery. These

applications show how QoE is used to optimise video delivery and utilize existing

network resources. The following sections discuss the two applications.
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7.2 Application 1: QoE-enabled Optimisation Scheme

for Real-Time Multi-layer Video Delivery

As discussed in Chapter 2, the QoS is the major determining factor for the QoE.

Thus, finding the correlation between QoS and QoE is a significant first step towards

a system that can manage video services in an efficient way. Most studies in the

literature that investigate the optimization of video delivery mainly focus their at-

tention on throughput maximization [152,153]. However, real-time applications such

as video streaming are highly sensitive to dynamic changes in the application require-

ments (e.g., data rate, packet loss, etc). As a result, throughput-based optimization

provides a suboptimal solution with respect to the user-perceived quality [154,155].

Other researchers have focused their attention on QoE rather than on traditional

QoS parameters [74, 75, 156–158]. However, these algorithms are difficult to imple-

ment in real-world scenarios (i.e., uncontrolled environments) or only provide partial

solutions such as in [159]. The work in [159] demonstrates the QoE-aware traffic

management for mobile video delivery within the MEDIEVAL architecture (The EU

project MultimEDia transport for mobIlE Video AppLications). The MEDIEVAL

architecture applies a crosslayer framework to efficiently handle video traffic in the

mobile network. The framework proposed a feedback mechanism to link all the QoS

and QoE aspects. However, the framework does not address specific device partic-

ipation in the framework. For instance, the proposal does not define the functions

of interconnecting elements in the network in realizing QoS management. Moreover,
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the authors did not consider multi-layer video stream in high resolution.

We present a QoE-enabled Transport Optimization Scheme (QETOS) for real-time

multi-layer video delivery. The objective of this study is to give an applicable example

that allows the online scenario to be considered. The proposed scheme optimises the

video traffic by mapping QoS parameters (from both application and access network

level) to the QoE without penetrating the video packets. It takes the advantage of the

partitions of the scalable video coding (SVC) [160] that organize the video into layers

of different importance, thereby facilitating the rate adaptation of the video streams.

The proposed work is an application of the developed FIS-A model in Chapter 6.

7.2.1 Characteristics of scalability extension of H.264/AVC

The scalable extension of H.264/AVC [160] is related to H.264/AVC [49], and so it

is also divided into two parts: the Video Coding Layer (VCL) and the Network Ab-

straction Layer (NAL) [161]. There are three main scalability aspects, i.e., temporal,

spatial and quality scalability, for VCL. A typical SVC stream includes one base

layer, and one or more enhancement layers as shown in Figure 7.1. The SVC base

layer has the lowest bitrate and requires the least resources. Adding more enhance-

ment layers to the base layer provides better video quality at the expense of a higher

overall bitrate. The SVC layers are mapped to a finite number of priorities which

are marked in the video packet headers for transmission [160]. The proposed system

in this study takes the advantage of the H.264/SVC partitions. Layered encoding is
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used for adapting the video streams to the network dynamics.

Figure 7.1: Layer prioritization for SVC video streaming.

7.2.2 QoE-based transport optimisation scheme

The proposed QoE-based transport optimisation scheme for real-time SVC delivery

(QETOS) is a practical example of optimising the video traffic by mapping the QoS

parameters to the QoE without penetrating the video packets. In this study, video

streams are encoded in a layered manner in such a way that every additional layer

increases the perceived quality of the stream.

7.2.2.1 System Structure

Normally, the implementation of advanced functionalities such as prediction and

policing on each router in a network introduces a prohibitive workload for the router.

This consequently affects the performance of the router in terms of delay and packet
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loss. Furthermore, the operating system of real-world routers has a limited capacity

and implements only forwarding and switching logic. An approach for the intro-

duction of additional functionalities into a network is the use of Software Defined

Networking (SDN) logic. This approach allows all functions to be implemented by a

remote server, effectively separating the forwarding and switching logic of devices in

the network. Figure 7.2 shows a conceptual diagram for the proposed scheme.
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Figure 7.2: A conceptual diagram for the proposed scheme.

We propose that the main functionalities of the QETOS will be enabled by a QoE

agent that is placed in the SDN server. The QoE agent will perform a per-flow

analysis and make scheduling decisions. We assume that the routers use a Deep

Packet Inspection (DPI) engine at its entry point to inspect the network traffic for

the identification of video flows and extract relevant per-flow QoS parameters. These

parameters are the packet loss rate (PLR) and mean burst length (MBL). The QoE

agent requests the QoS parameters from the router by sending a RTP Control Pro-

tocol (RTCP) report. The primary function of RTCP is to provide feedback on the
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QoS in media distribution by periodically sending statistics information to partici-

pants in a streaming multimedia session [162]. Specifically, the proposed QoE agent

will perform three main functions:

• QoE Prediction: the QoE estimation performed by the FIS-A model devel-

oped in Chapter 6. The measured QoS parameters were constantly fed to the

QoE agent for use as inputs to the FIS-A model in order to estimate the video

QoE on a per flow basis. The number of input parameters for the FIS-A model

was reduced to three: PLR, MBL and CT. Figure 7.3 shows the functional

block diagram for the proposed QoE estimation model.

Figure 7.3: Functional block diagram for the proposed FIS-A prediction model

• Video Layer Dropping: In the case of high network congestion, if the pre-

dicted QoE is below the pre-determined threshold, the low priority video layer

will be selectively dropped in order to ensure the correct transmission of the

video layer with higher priority, thereby guaranteeing a minimum video quality.

The policy will be applied the next time the flow arrives at the edge router.
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• QoE Feedback Messages: at every time step, the QoE agent automatically

sends a QoE feedback message about the traffic status to the network admin-

istrator to solve the congestion issue. If reducing the video layers had no effect

on the MOS, the network administrator will change the traffic route to the least

congested route.

7.2.2.2 Optimisation Mechanism

The optimisation was based on changing the video layer number according to the

current predicted QoE. The work was evaluated by the following procedure:

• At the beginning, the bandwidth was set at 5 Mb/s which was just enough to

allow the video to stream and to accommodate other background traffic.

• During video streaming, the QoE agent runs periodically, i.e. every 5 seconds.

In each period, the QoE agent retrieves information about the video stream

(content type). It also retrieves the QoS parameters (PLR and MBL) from the

router by sending RTCP report. Both types of parameters are required by the

QoE agent to predict the current QoE of the video streams.

• After a few minutes of the video streaming session had elapsed, the network

was deliberately congested causing significant degradation in the video quality.

• Once the QoE is dropped to or below the minimum threshold MOS value (3.5)

for a pre-determined duration, the QoE agent sends a request to the router to
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drop the least important video layers (i.e., the enhancement layers) from the

stream. According to Jammeh et al [156], the minimum threshold for acceptable

quality corresponds to the MOS value of 3.5. Algorithm 1 shows simple pseudo-

code for the policing action that is sent from the QoE agent to the router. The

policy will be applied the next time the flow arrives at the edge router.

• The newly determined layer number was subsequently used in order to maximise

the delivered video QoE above the threshold.

• The QoE agent sends a feedback message to the network administrator to deal

with the congestion issue. If the route is highly congested, the administrator

changes the current route to the least congested route.

Algorithm 1: Simple pseudo-code for the switching logic

Input= the predicted current video QoE value

If (QoE >3.5) Then Action =”No action”

If (3 6 QoE 6 3.5) Then Action =”Drop enhancement layer 2”

If (QoE <3) Then Action =”Drop enhancement layers 2 and 1”

Output= sendToRouter (Action)

7.2.3 Experimental Set-Up

The YUV video sequences used for this particular evaluation were ”Animation” (low

motion) and ”Sport” (high motion) (238 frames) in HD format (1280 × 720 pixels).
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The Joint Scalable Video Model (JSVM) [163] was used to encode/decode the SVC

video streams. The video sequences possessed three layers of spatial, temporal and

quality availabilities. They were encoded using a GOP size of 16 frames and the IPPP

structure. After encoding the raw YUV video with different encoding parameters,

BitStreamExtractor (provided in JSVM) and F-N Stamp (provided in SVEF [164])

were used to generate an original NALU Trace file, which is used as an input file for

the simulator.

To demonstrate the strength of our proposed framework, we integrated the SVEF

(Scalable Video-streaming Evaluation Framework) [164] with network elements and

the fuzzy logic engine (the FIS-A model) from which was written in Java. The key

network components simulated using Java classes included a video server, 3 clients

(end-users), three routers, links between the routers, and an SDN enabled controller.

Each router was capable of communicating with the SDN controller in order to share

important network conditions. The QoE agent (which includes the FIS-A model)

was placed in the SDN controller that was connected to the routers.

The ability of the proposed scheme to maximize the delivered QoE for each user

was tested by varying the available bandwidth. Specifically, we varied the available

bandwidth (βe-a) between the router and the video server. The βe-a was assumed

to be limited with a high probability of a bottleneck. The βe-a bandwidth was set

to different capacities from 1 Mbps to 10 Mbps. Two scenarios were considered.

The first was video streaming in a Best Effort (BE) scenario (without control). The

second scenario included the application of the QETOS to manage the video traffic.
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7.2.4 Results

The performance of the QETOS scheme was compared to the best-effort scenario

(without control) in terms of the delivered quality MOS. Figure 7.4 clearly demon-

strates the improvement in the MOS using the QETOS, especially for higher PLRs

(greater than 0.1 (10%)). Nevertheless, it was difficult for the QETOS to greatly

improve the delivered MOS for PER beyond 10%. This is because the video stream

was so greatly impacted by the network congestion, and reducing the video layers

had no effect on the MOS.
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Figure 7.4: QETOS scenario vs. best-effort scenario in case of different PLR

In Figure 7.5, the QETOS quickly detected a change in the available bandwidth

and adapted the numbers of sent video layers accordingly, resulting in an optimized

QoE for the available bandwidth. The results showed that the proposed scheme
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provided an MOS gain of over 1 compared to the best-effort scenario. In the best-

effort scenario (without control), the QoE suffered a sudden, drastic drop as the

bandwidth was constricted. By contrast, with the QETOS scenario, the delivered

quality was gracefully adapted to the available network bandwidth.
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Figure 7.5: QETOS scenario vs. best-effort scenario

Overall, the results showed that the scheme was responsive to the available network

conditions and delivered the optimum quality for a given available network band-

width. There was a clear improvement in video quality when the less important video

layers (enhancement layers) were dropped to compensate for network congestion. The

proposed QETOS system enhanced video streaming performance and minimized the

side effects of congestion on user perceived quality.
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7.3 Application 2: QoE-enabled Efficient Resource

Utilisation Scheme for Mobile Video Delivery

Wireless resources are still at a premium, firstly, because of lower average cellular

bandwidths under variable link conditions, and, secondly, due to the increasing traffic

demands, especially in the form of streaming video [1]. This trend will have a highly

significant impact on both the user’s perception and network resources. Increasing

the number of base stations, instituting data caps, and limiting the access to some

mobile services are not the only solutions for this challenge. Consequently, the issue

of resource utilisation has become a more pressing issue than ever for networks in

general, and wireless access networks in particular.

Accordingly, research on network resource utilisation has introduced several tech-

niques for more efficient power and bandwidth consumption. The majority of these

techniques are based on QoS and network parameters, where improving the spectral

efficiency, jitter, service latency, etc., is the way to provide an acceptable level of

service to the consumers. For instance, the content-aware approach in [165] used

content quality as the basis for rate control to improve the energy efficiency for mo-

bile IPTV. In [166], a bitQoS-aware resource utilisation was presented, which aimed

to increase user throughput and reduce the probability of packet drop. Their method

was based on adaptively matching the QoS requirements of the user application bits

to the characteristics of the Orthogonal Frequency Division Multiplexing (OFDM)

subcarriers in a mixed-traffic environment. The authors of [167] presented an adap-
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tive bandwidth allocation scheme based on the queue length and the probability of

packet loss. However, little attention has been paid to the resource utilisation ap-

proach that is based on the user’s QoE. The QoE has become the prime performance

criterion for media delivery technologies.

Most existing video QoE-aware approaches for wireless resource management, such

as [154, 168–170], have mainly focused on offline video quality metrics (e.g. PSNR

and SSIM), which are full-reference methods. These visual quality assessment met-

rics require the output of the decoder and the original video reference for their mea-

surements. Metrics of this type are more suitable for performance analysis rather

than practical quality assessment which can be applied for a real-world applica-

tion [171, 172]. The offline QoE estimation method does not provide a practical

solution because it assumes that the QoE is known to the access network before

transmission. By contrast, the online QoE estimation method (no-reference) fills this

gap by providing relatively less accurate, but sufficiently reliable, measurements for

real-time video streaming.

In this work, we present a novel resource utilisation scheme based on the online

QoE estimation of mobile video streaming using the FIS-A model that is presented

in Chapter 6. The main idea is identifying the receiver’s transition between the

Adaptive Modulation and Coding (AMC) regions based on the video QoE, rather

than network parameters (QoS). A mobile video transmission is simulated, through

which the correlation between the receiver’s signal-to-noise ratio (SNR) and perceived

video quality is identified.
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It should be noted that this work was completed in collaboration with the multimedia

group from the Surrey University, UK. They made their WiMAX model available for

this research. This work has been published in [31] and [32].

7.3.1 QoE-enabled Resource Utilisation Scheme

The proposed scheme facilitates the proposal of bandwidth and power efficient re-

source utilisation applications on WiMAX access networks, based on online QoE

estimation. Offline QoE estimation relies on a full-reference quality metric. This

method lacks a practical solution because it assumes that the QoE is known to the

access network before transmission. Moreover, in real-time video streaming, it is

impractical to assess the QoE at the user’s end. The online (no-reference) estima-

tion model fills this gap by providing relatively less accurate, but sufficiently reliable,

measurements for real-time video streaming.

7.3.1.1 SNR thresholds for band AMC transitions

Adaptive Modulation and Coding (AMC) permits the transition of a mobile receiver

between MCS regions. Hence, the receiver’s SNR threshold levels provide a lower

bound for the operational downlink MCS region, as illustrated in Figure 7.6. If the

SNR steps out of the designated operating region, the receiver requests a change to a

new operational MCS region. The IEEE standard [173] suggests that the SNR thresh-

olds bounding each operational region shall be identified at a bit-error-rate (BER)
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of 10−6. By contrast, our proposed scheme identifies the SNR thresholds based on

the user’s perceptual QoE. Accordingly, both methods for assigning the operational

MCS regions were compared using our tested WiMAX model environment. The first

method was based on the threshold of BER=10−6, and the second was based on the

threshold of VQM = 0.8, which corresponds to 4 on the scale. We chose this QoE

threshold since it is regarded by the research community to be a sufficiently high and

acceptable perception level for users, as emphasized by [7].

QPSK 16QAM 64QAM

SNR 
Thresholds

High SNR

Low SNR

Figure 7.6: The SNR thresholds for operational MCS regions

7.3.1.2 QoE Prediction Methodology

In this study, the online QoE estimation was conducted by the FIS-A model devel-

oped in Chapter 6. This prediction model can automatically formulate the fuzzy

rules that are used for predicting the output (QoE). The FIS-A model was updated

to include two additional parameters, which are the MCS, and radio channel envi-

ronments (RCE) (pedestrian and vehicular). Thus, the input parameters were the

video content type (CT), packet error rate (PER), MCS, and RCE. The output was
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MOS scores (VQM mapped to MOS). Figure 7.7 shows the functional block diagram

for the QoE prediction model. Once the inputs and outputs were identified, we cat-

egorized the gathered input/output data into linguistic labels (low, moderate, high)

to represent the quantification of the values. This was achieved by the design of

membership functions for the input and output variables. The membership functions

of the CT and PER are already designed and presented in Chapter 6, while for the

MCS and RCE are shown in Figure 7.8 and 7.9 .

Figure 7.7: Functional block diagram of the FIS-A prediction model
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Figure 7.8: The membership functions of MCS
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Figure 7.9: The membership functions of RCE

7.3.2 Experimental Set-up

Two test video sequences were used (Interview and GT Fly) at a resolution of 720×

576 Standard Definition (SD) with 25 frames/second (fps), giving a total of 250

frames. Based on the H.264 standard [47], the H.264/AVC Reference JM Software

encoder [120] was used for the source video coding. The two video sequences were

classified in terms of two types of video content: high and low motion. Based on a

recommended bitrate for SD video [42], the bitrate allocated to the Interview video

is 1Mbps, whereas the GT Fly video is allocated 2Mbps.

Wireless transmission of the encoded H.264 bit-stream was simulated over a WiMAX

(IEEE 802.16e) channel. The WiMAX simulation model presented in [174] was used

for the simulations. This model explores two radio channel environments (pedestrian

and vehicular) in several modulation and coding schemes (MCS) at different levels

of SNR. The block diagram in Figure 7.10 depicts the simulations conducted to map
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the chosen independent variables (QoS) to the targeted dependent variable (QoE).

Encoder
/ Packetiser

H.264
bit-stream

WiMAX
IEE 802.16

De-packetiser / 
Decoder

Lossy
bit-stream

YUV

Video
Quality Metric

(VQM)

Degraded 
Video

Raw
Video

Pedestrian/Vehicular	  at	  different	  speeds
MCSs,	  SNR	  and	  PLR

YUV

Figure 7.10: Conceptual illustration of the simulation scene

The video bit-stream was channel-coded, modulated, and exposed to different error

traces. A number of error bits are introduced in the 15 seconds error trace depending

on the MCS used. Each error trace was repeated 10 times at randomly chosen starting

positions of the video bit-stream. This is because in real-life scenarios bit errors could

occur at any time during transmission. The SNR-to-BER relationship in this model

is shown in Figure 7.11 for the vehicular scenario. Later, based on the target video

packet size, the bit-error traces are used to produce packet-error rate traces. Thus,

in the end, the simulation model [174] measured the PER for each BER. The PER

parameter is required for the prediction model.
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Channel SNR vs. BER
for the WiMAX Model

for the Vehicular 60km/h scenario
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Figure 7.11: Channel SNR vs. BER for the vehicular scenario

The used WiMAX model offers a downlink capacity of 390 data slots (30 subcarriers x

13 time symbols) in a Time Division Duplex (TDD) frame every 5ms. The maximum

channel transmission rate ranges from 3.744 Mbps for QPSK 1/2 (48 bits per data

slot), to 16.848 Mbps for 64QAM 3/4 (216 bits per data slot). The data bits capacity

of each MCS for the tested WiMAX model are given in Table 7.1.

Table 7.1: The data bits capacity of each MCS for the tested WiMAX model

Modulation QPSK 16QAM 64QAM

Code Rate 1/2 3/4 1/2 3/4 1/2 2/3 3/4

Data TX capacity

(bits/data slot)
48 72 96 144 144 192 216

162



7.3.3 Results

To visualise the simulation results, Figure 7.12 and 7.13 shows the quality achieved

over different levels of SNR for each MCS. It can be noted from these two Figures

that the ”Interview” video scored a higher maximum performance (QoE) than the

”GT Fly” video since it was allocated double the bitrate. This, however, was at

the expense of extra power transmission requirements, which are signified by the

increase in the SNR. The data collected in Figure 7.12 and 7.13 is used to infer the

SNR thresholds suggested at QoE=0.8 (MOS=4), in order to compare it with those

thresholds based on BER.
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Figure 7.12: MOS vs. SNR, Interview video
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Figure 7.13: MOS vs. SNR, GT fly video

Figures 7.14 and 7.15 illustrate the relative performances of the BER-based method

and the QoE-based method for assigning the operational MCS regions. It is clear

that significant efficiencies in bandwidth and power requirements can be achieved by

considering QoE as the basis for MCS selection (through AMC), rather than using the

typical BER-based method. The proposed QoE-based selection for AMC bands not

only is power-efficient, but is also bandwidth-efficient since it keeps a MS allocated

to a higher-order band for longer than it used to be (with the BER-based method).

This conclusion becomes evident when comparing the receiver’s SNR for BER= 10−6

and for QoE = 0.8. Thus, if QoE is considered, the lower value of the SNR implies

that the transition to a higher-order MCS can occur earlier. This early transition to

a higher AMC band means that more data bits per slot can be carried at the same

bandwidth.
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Figure 7.14: MCS vs. SNR, Interview videoGT Fly video - SNR bounds of the MCS operational regions
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Figure 7.15: MCS vs. SNR, GT fly video

Table 7.2 summarizes the percentage of bandwidth increase and power savings that

can be made as a result of such early transition. For example, 50% additional band-
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width is made available to the consumer at a lower SNR for a transition code from

16-QAM 1/2 to 16-QAM 3/4. With regard to power efficiency, as shown in Fig-

ures 7.14 and 7.15, the lower SNR value shows that the consumer can operate on

the same MCS at a lower power level, which is controlled by the transmitting base

station. For instance, in case of the GT Fly clip, the operating SNR threshold for

64QAM 1/2 based on QoE requires 2.75 dB less power than the BER-based method.

In contrast, for Interview clip, the QoE-based method requires 4.12 dB less power

than the BER based method. The percentage of power that could be saved for each

MCS is shown in Table 7.2.

Table 7.2: summary of the percentage of bandwidth increase and power saving

Modulation Code Rate
Percentage of additional

data bits/slot to carry

Percentage of Power Saved

Interview GT Fly

QPSK
1/2 ———– 22.87% 10.53%

3/4 50% 33.13% 2.82%

16QAM
1/2 33.33% 21.66% 7.43%

3/4 50% 21.40% 19.37%

64QAM

1/2 0% 20.26% 14.37%

2/3 33.33% 17.57% 7.58%

3/4 12.5% 10.97% 3.57%
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7.4 Chapter Summary

This chapter presented two applications of the FIS-A model that is developed in

Chapter 6. The first application was a QoE-enabled transport optimisation scheme

for real-time SVC video delivery. The main objective of this application is to give

an applicable example that allows the real-world scenario to be considered. It took

advantage of the SVC Video partitions that organize video into layers of different

importance, thereby facilitating the rate adaptation of video streams. The results

showed that the proposed scheme enhanced video streaming performance and mini-

mized the side effects of congestion on user perceived quality.

The second application was a QoE-enabled resource utilisation scheme for mobile

video delivery. The receiver’s transition between AMC regions was identified, based

on the video QoE rather than QoS parameters. The video QoE was estimated in an

online scenario using the FIS-A model. The results confirmed that considering the

video QoE as the basis for modulation scheme selection in AMC can be generally

advantageous with respect to power and bandwidth efficiency.

These applications showed how QoE is used to optimise video delivery and utilize

existing network resources, according to the user’s QoS requirements. QoE/QoS

correlation is an indicator for network management and planning processes which

allows the avoidance of resource over-provisioning. Furthermore, the results of the

proposed applications provide further evidence that FIS-A performed well in terms

of QoS/QoE correlation.
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Chapter 8
Conclusion and Future Work

8.1 Conclusion

This thesis explored the interesting, but complex, concepts of QoS/QoE correlation

for video QoE prediction with respect to different video resolutions and content types.

The research was broken down into three main sub-goals or challenges: (1) Investigate

the impacts of the AQoS and NQoS related parameters that affect video QoE over

wireless networks for different types of video content and resolutions, (2) Develop

hybrid non-reference video quality prediction models using FIS, (3) Develop QoE-

enabled optimisation applications for video delivery as applicability examples for

the developed video quality prediction model. The contributions of this thesis are

summarized in the following subsections.
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8.1.1 Critical Review of Existing QoE Prediction models

A number of existing QoE/QoS correlation models for the prediction of video quality

were critically reviewed in order to obtain a “broader picture” of this area of research.

The survey article [175] was published for the research community and has been cited

in several papers.

8.1.2 Study the Impact of QoS Parameter on Video QoE

We have provided a deeper insight into the impacts and a quantification of the effects

of different QoS parameters associated with different layers of the OSI model. These

parameters either directly or indirectly affected the video QoE. This work was divided

into two studies that were presented in Chapter 4. The first study investigated the

impact of QoS parameters on the video QoE by means of a cross-layer simulation

of the transmission of SD, HD and 3D videos, encoded at a VBR mode. It was

observed from the results that, for both 2D and 3D videos, the resultant for lower

motion videos was much higher than for high motion complex videos. Moreover,

due to the complex nature of true 3D video perception, the PLR and MBL caused

more noticeable distortions to 3D video than to 2D video. In the case of VBR video

streaming, packet loss was likely to have less of an impact upon the quality of HD

video than upon lower resolution video. Furthermore, the bitrate rose with increasing

QP which, in turn, restricted the number of streams or simultaneous users that could

share a wireless link.
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The second study investigated the effects of QoS parameters, packet structure, and

compression efficiency on SD, HD, and 4kUHD H.264/H.265 coded videos that were

both transmitted and decoded simultaneously in real-time. These videos were coded

at a CBR mode. It was observed from the results that SD videos were more tolerant

to packet loss than videos of higher resolution. This can be attributed to the fact that,

since the bitrate is constant for both SD and HD, the bits-per-pixel value required to

deliver equivalent quality drops as resolutions increase. Moreover, the target bitrate

provided the key to determining the effects of QoS parameters. There was a trade-off

between the compression ratio and the sensitivity of the QoE to the QoS parameters.

The results suggested that, in general, if there was packet loss, the H.264 video codec

outperformed the H.265 video codec. However, if there was no packet loss, then the

H.264 codec performed better.

8.1.3 Hybrid Non-reference Video QoE Prediction Models

This thesis has contributed to the development of new hybrid non-reference models

for predicting video quality using fuzzy logic inference systems (FIS) as a learning-

based technique. Our proposed prediction models were based on a combination of

QoS parameters related to the encoder, access network and content types. The

learning dataset developed in Chapter 4 for the correlation of QoS parameters with

the measured QoE from objective and subjective tests was used to build the two

proposed prediction models, thereby avoiding time consuming subjective tests.
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The first proposed model was based on a predetermined rule-based method (FIS-

PRB). While the second proposed model was based on an adaptive FIS rule-based

method (FIS-A). Both models were validated through the correlation of predicted

QoE and measured QoE on both testing and external unseen datasets. The validation

results showed a high correlation between the measured QoE and the predicted QoE

scores. The FIS-A model was also evaluated on a real test-bed for the QoE prediction

of real-time wireless video streaming. The experimental results showed a reasonable

fit, even in the real-time scenario. Overall, the FIS-A model outperformed the FIS-

PRB model, especially on the external dataset. The proposed models discussed

in Chapters 5 and 6 provide a proof of concept hybrid non-reference video QoE

prediction technique. Both FIS models showed a consistent mapping between the

QoS parameters and the QoE. A second important conclusion that can be drawn

from this work is that the selection of appropriate QoS parameters has a significant

impact on the prediction of video quality. The work has been contributed to the

research community in the following publications [22,24–28].

8.1.4 Two QoE-enabled Applications for Video Delivery

The usefulness of the developed non-reference FIS-A model was demonstrated in

Chapter 7 by its application to two important areas. First, a QoE-enabled transport

optimisation scheme for real-time SVC video delivery was developed. The proposed

application provides a crucial design choice that will optimise the video traffic by

mapping video quality degradations (that are caused by the network) to the QoE
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without penetrating the video packets. The results showed that the proposed scheme

enhanced video streaming performance and minimized the side effects of congestion

on the user perceived quality.

The second application was a QoE-enabled efficient resource utilisation scheme for

mobile video delivery. This work relied on the fact that the use of QoE as the

basis for modulation scheme selection in AMC can be generally advantageous with

respect to power and bandwidth efficiency, when compared to techniques that are

solely based on the BER parameter. The results reflected a significant improvement

in performance when the receiver’s transition between AMC regions was identified

using the video QoE. This efficiency reached up to 33% less power and 50% more

bandwidth. These applications showed how the QoE/QoS correlation be an indicator

for network management and planning processes that helps network manages to avoid

resource over-provisioning. This work has been presented to the research community

in the following publications [29–32].

8.2 Future Work

This thesis has made several advances in the prediction of QoE, based on QoS param-

eters, and has provided a framework for monitoring and estimating the video QoE.

At the same time, it has unlocked the following future directions for research:

• It would be interesting to work towards the development of a more generic video
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QoE prediction model. This would include the consideration and, potentially,

the incorporation of additional QoS parameters into the developed models.

Special care will be taken to measure the computational overhead as we aim to

provide real-time estimation of video QoE over high speed data links.

• The models developed in the thesis for predicting video quality non-intrusively

can be extended to consider voice. This will require the consideration of new

parameters that impact on audiovisual quality. For example, parameters such

as the voice bit rate (BR) may be useful for the prediction of voice quality over

wireless access networks.

• Hybrid approaches have attracted considerable attention in the Computational

Intelligence community. One of the most popular approaches is the hybridiza-

tion between fuzzy logic and GAs leading to genetic fuzzy systems (GFSs). As

we mentioned, the more accurately defined the membership functions the higher

the prediction ability of the system. Genetic algorithms have demonstrated to

be a robust and very powerful tool to perform tasks such as the generation and

tuning of membership functions.

• In the Chapter 7 (appliacation 1), we only considered one policing action which

is dropping video layers. However, this function can be improved to incorporate

additional policing actions such as routing and prioritisation using Differenti-

ated services (DiffServ) mechanism [176]. We will also investigate the use of the

feedback message from FIS systems to implement corrective actions on network
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and application levels in order to return the QoE to satisfactory levels.

• In this thesis, three types of video contents were considered. They broadly

covered video sequences from slow moving (head and shoulder) to fast moving

(sports type). However, cartoon clips and movies were not considered. The

spatio-temporal features of cartoon and movie clips may have an impact on

end-to-end quality.

• It would be interesting to use the video quality prediction model in the area of

mobile Ad hoc network (MANET), considering a new parameters like mobility

and scalability.

• The emergence of cloud computing offers a new approach to media content de-

livery. Using the service concept in cloud computing, a specific media streaming

service can be delivered to a user at a price charged per use, similar to what

is obtainable in a common utility service. This approach makes it possible for

the provider to distinguish between classes of users based on the price and ser-

vice level agreed between the parties. This user-specific classification can be

achieved by, for example, implementing a network aware traffic management

that guarantees a certain QoE to a priority user. for future work, it would be

interesting to apply the QoE-enabled transport optimisation scheme (that is

presented in Chapter 7) on a cloud computing environment. Moreover, mod-

elling the dynamic QoE parameters and including them as part of the service,

strict SLA can easily be delivered to each end-user.
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Appendix A
Gilbert-Elliot model

Packet loss traces are generated based on the Gilbert-Elliot model [121] (a two-state

Markov chain model) with varying the PLR and the MBL. Gilbert-Elliott type models

do not emulate the physical channel but do accurately model the application receivers

experience of packet loss resulting from fast fading [122]. The used Gilbert-Elliot

model is outlined in in Appendix D.

Figure A.1: Two-State Markov Chain Model [4]
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According to this model, no packet losses occur in state GOOD and all packets are

lost in state BAD. The probability of switching from state GOOD to BAD is denoted

as p, while the probability of switching from state BAD to GOOD is denoted by q.

The PLR is calculated by [121]:

PLR = p/(p+ q) (A.1)

The MBL value of 1 depicts random packet losses, whereas other MBL values rep-

resent increasingly bursty conditions, as shown in Table 4.2. The MBL is selected

based on the mean error burst length measured in [177] for typical roaming scenarios

from real-world wireless communication measurements. The MBL of the packet loss

trace is calculated as follow [121]:

MBL = 1/q (A.2)

In addition, each combination of QP, PLR, and MBL are simulated over ten times

to ensure over 3000 video frames are considered per each simulation configuration.

The average video quality of the received video frames are considered to present

simulation results.
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Appendix B
Statistical Performance Metrics

B.1 Pearson Correlation Coefficient (R)

PCC reveals whether or not a linear relationship exists between two variables. Fur-

thermore, it indicates the direction and the strength of this relationship. In other

words, it measures the similarity between two data measures. This is obtained by

dividing the covariance of the two variables by the product of their standard devia-

tions. Hence, for two given data series xi and yi having n observations each, PCC is

calculated by:

(B.1)
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x− and y− are the mean of xi and yi respectively, and −1 ≤ r ≤ 1. Accordingly,

if r = 1, then the two data series are perfectly linear (similar). If r = 0, then they

are not linear (not similar) at all. If r = −1, then they are perfectly inverse to each

other. Any values in between indicate the degree of linear relationship. The squared

PCC, denoted R2, known as the coefficient of determination, indicates how much of

the variance between the two variables is given by the linear fit.

B.2 Root Mean Squared Error (RMSE)

RMSE measures the individual differences (residuals) between two variables (data

series). For example, values predicted and values measured in a model under study.

RMSE aggregates these individual differences into a single measure. Hence, for two

given data series xi and yi having n observations each, RMSE is calculated by:

(B.2)

The unit of RMSE is that of the data series. As a second performance measure in

the QoE prediction model in this thesis, RMSE was used to measure the residuals

between the predicted and the measured QoE. Hence, the unit of RMSE measured

is a QoE unit on the MOS scale.
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Appendix C
Correlation of QoE datasets for MUSIC

and BMX videos

In order to visualise the correlation between the three datasets (2D subjective, 2D

objective, and 3D objective), Figures C.1 C.2 portrait a comparison of 21 test con-

ditions for Music and BMX HD videos with the scored MOS in each of the three

datasets constructed.
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Figure C.1: Comparison of the three datasets for Poker HD video sequence
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Figure C.2: Comparison of the three datasets for Poker HD video sequence
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Appendix D
3D video frame size

Table D.1: 3D Input P-frame sizes by QP
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Table D.2: Five-way ANOVA on QoE of 3D Video

Source Degree of freedom F-statistics p-value

CT 2 141.7391 0
R 2 124.416 0.02975

QP 4 165.981 0
PLR 5 639.172 0
MBL 3 73.354 0.01003

PLR+CT 10 10.218 0.11909
PLR+R 8 5.182 0.3342

PLR+QP 18 71.955 0.1264
PLR+MBL 15 30.466 0.2921
MBL+CT 5 2.868 0.1942
MBL+R 5 7.940 0.52301

MBL+QP 12 13.533 0.29968
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Appendix E
The Extracted Rules of FIS-A Model

Due to the high number of the extracted fuzzy rules, which are about 245 rules, we

listed some of them in the following:

if the video motion is low and the QP is moderate and the Resolution is moderate and the PLR is moderate and the

MBL is low Then QoE is poor

if the video motion is low and the QP is moderate and the Resolution is moderate and the PLR is moderate and the

MBL is moderate Then QoE is poor

if the video motion is low and the QP is moderate and the Resolution is moderate and the PLR is moderate and the

MBL is high Then QoE is poor

if the video motion is low and the QP is moderate and the Resolution is low and the PLR is low and the MBL is

high Then QoE is poor

if the video motion is low and the QP is moderate and the Resolution is low and the PLR is low and the MBL is

moderate Then QoE is poor

if the video motion is low and the QP is moderate and the Resolution is low and the PLR is low and the MBL is low
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Then QoE is fair

if the video motion is moderate and the QP is low and the Resolution is low and the PLR is moderate and the MBL

is low Then QoE is poor

if the video motion is moderate and the QP is low and the Resolution is low and the PLR is moderate and the MBL

is moderate Then QoE is bad

if the video motion is moderate and the QP is low and the Resolution is low and the PLR is moderate and the MBL

is high Then QoE is bad

if the video motion is high and the QP is moderate and the Resolution is moderate and the PLR is moderate and

the MBL is high Then QoE is bad

if the video motion is high and the QP is moderate and the Resolution is moderate and the PLR is moderate and

the MBL is moderate Then QoE is bad

if the video motion is high and the QP is moderate and the Resolution is moderate and the PLR is moderate and

the MBL is low Then QoE is poor

if the video motion is low and the QP is low and the Resolution is moderate and the PLR is low and the MBL is low

Then QoE is good

if the video motion is low and the QP is low and the Resolution is moderate and the PLR is low and the MBL is

moderate Then QoE is good

if the video motion is low and the QP is low and the Resolution is moderate and the PLR is low and the MBL is

high Then QoE is good

if the video motion is low and the QP is low and the Resolution is low and the PLR is moderate and the MBL is

high Then QoE is bad

if the video motion is moderate and the QP is moderate and the Resolution is high and the PLR is moderate and

the MBL is moderate Then QoE is bad

if the video motion is moderate and the QP is moderate and the Resolution is high and the PLR is moderate and

the MBL is high Then QoE is bad
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if the video motion is high and the QP is moderate and the Resolution is moderate and the PLR is low and the MBL

is high Then QoE is poor

if the video motion is high and the QP is moderate and the Resolution is moderate and the PLR is low and the MBL

is moderate Then QoE is poor

if the video motion is high and the QP is moderate and the Resolution is moderate and the PLR is low and the MBL

is low Then QoE is poor

if the video motion is high and the QP is low and the Resolution is high and the PLR is low and the MBL is low

Then QoE is fair
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