5,674 research outputs found

    On the structure of graphs without short cycles

    Get PDF
    The objective of this thesis is to study cages, constructions and properties of such families of graphs. For this, the study of graphs without short cycles plays a fundamental role in order to develop some knowledge on their structure, so we can later deal with the problems on cages. Cages were introduced by Tutte in 1947. In 1963, Erdös and Sachs proved that (k, g) -cages exist for any given values of k and g. Since then, large amount of research in cages has been devoted to their construction. In this work we study structural properties such as the connectivity, diameter, and degree regularity of graphs without short cycles. In some sense, connectivity is a measure of the reliability of a network. Two graphs with the same edge-connectivity, may be considered to have different reliabilities, as a more refined index than the edge-connectivity, edge-superconnectivity is proposed together with some other parameters called restricted connectivities. By relaxing the conditions that are imposed for the graphs to be cages, we can achieve more refined connectivity properties on these families and also we have an approach to structural properties of the family of graphs with more restrictions (i.e., the cages). Our aim, by studying such structural properties of cages is to get a deeper insight into their structure so we can attack the problem of their construction. By way of example, we studied a condition on the diameter in relation to the girth pair of a graph, and as a corollary we obtained a result guaranteeing restricted connectivity of a special family of graphs arising from geometry, such as polarity graphs. Also, we obtained a result proving the edge superconnectivity of semiregular cages. Based on these studies it was possible to develop the study of cages. Therefore obtaining a relevant result with respect to the connectivity of cages, that is, cages are k/2-connected. And also arising from the previous work on girth pairs we obtained constructions for girth pair cages that proves a bound conjectured by Harary and Kovács, relating the order of girth pair cages with the one for cages. Concerning the degree and the diameter, there is the concept of a Moore graph, it was introduced by Hoffman and Singleton after Edward F. Moore, who posed the question of describing and classifying these graphs. As well as having the maximum possible number of vertices for a given combination of degree and diameter, Moore graphs have the minimum possible number of vertices for a regular graph with given degree and girth. That is, any Moore graph is a cage. The formula for the number of vertices in a Moore graph can be generalized to allow a definition of Moore graphs with even girth (bipartite Moore graphs) as well as odd girth, and again these graphs are cages. Thus, Moore graphs give a lower bound for the order of cages, but they are known to exist only for very specific values of k, therefore it is interesting to study how far a cage is from this bound, this value is called the excess of a cage. We studied the excess of graphs and give a contribution, in the sense of the work of Biggs and Ito, relating the bipartition of girth 6 cages with their orders. Entire families of cages can be obtained from finite geometries, for example, the graphs of incidence of projective planes of order q a prime power, are (q+1, 6)-cages. Also by using other incidence structures such as the generalized quadrangles or generalized hexagons, it can be obtained families of cages of girths 8 and 12. In this thesis, we present a construction of an entire family of girth 7 cages that arises from some combinatorial properties of the incidence graphs of generalized quadrangles of order (q,q)

    Maximum Distance Separable Codes for Symbol-Pair Read Channels

    Full text link
    We study (symbol-pair) codes for symbol-pair read channels introduced recently by Cassuto and Blaum (2010). A Singleton-type bound on symbol-pair codes is established and infinite families of optimal symbol-pair codes are constructed. These codes are maximum distance separable (MDS) in the sense that they meet the Singleton-type bound. In contrast to classical codes, where all known q-ary MDS codes have length O(q), we show that q-ary MDS symbol-pair codes can have length \Omega(q^2). In addition, we completely determine the existence of MDS symbol-pair codes for certain parameters

    Generation of cubic graphs and snarks with large girth

    Full text link
    We describe two new algorithms for the generation of all non-isomorphic cubic graphs with girth at least k≥5k\ge 5 which are very efficient for 5≤k≤75\le k \le 7 and show how these algorithms can be efficiently restricted to generate snarks with girth at least kk. Our implementation of these algorithms is more than 30, respectively 40 times faster than the previously fastest generator for cubic graphs with girth at least 6 and 7, respectively. Using these generators we have also generated all non-isomorphic snarks with girth at least 6 up to 38 vertices and show that there are no snarks with girth at least 7 up to 42 vertices. We present and analyse the new list of snarks with girth 6.Comment: 27 pages (including appendix

    Generalized Tur\'an problems for even cycles

    Full text link
    Given a graph HH and a set of graphs F\mathcal F, let ex(n,H,F)ex(n,H,\mathcal F) denote the maximum possible number of copies of HH in an F\mathcal F-free graph on nn vertices. We investigate the function ex(n,H,F)ex(n,H,\mathcal F), when HH and members of F\mathcal F are cycles. Let CkC_k denote the cycle of length kk and let Ck={C3,C4,…,Ck}\mathscr C_k=\{C_3,C_4,\ldots,C_k\}. Some of our main results are the following. (i) We show that ex(n,C2l,C2k)=Θ(nl)ex(n, C_{2l}, C_{2k}) = \Theta(n^l) for any l,k≥2l, k \ge 2. Moreover, we determine it asymptotically in the following cases: We show that ex(n,C4,C2k)=(1+o(1))(k−1)(k−2)4n2ex(n,C_4,C_{2k}) = (1+o(1)) \frac{(k-1)(k-2)}{4} n^2 and that the maximum possible number of C6C_6's in a C8C_8-free bipartite graph is n3+O(n5/2)n^3 + O(n^{5/2}). (ii) Solymosi and Wong proved that if Erd\H{o}s's Girth Conjecture holds, then for any l≥3l \ge 3 we have ex(n,C2l,C2l−1)=Θ(n2l/(l−1))ex(n,C_{2l},\mathscr C_{2l-1})=\Theta(n^{2l/(l-1)}). We prove that forbidding any other even cycle decreases the number of C2lC_{2l}'s significantly: For any k>lk > l, we have ex(n,C2l,C2l−1∪{C2k})=Θ(n2).ex(n,C_{2l},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^2). More generally, we show that for any k>lk > l and m≥2m \ge 2 such that 2k≠ml2k \neq ml, we have ex(n,Cml,C2l−1∪{C2k})=Θ(nm).ex(n,C_{ml},\mathscr C_{2l-1} \cup \{C_{2k}\})=\Theta(n^m). (iii) We prove ex(n,C2l+1,C2l)=Θ(n2+1/l),ex(n,C_{2l+1},\mathscr C_{2l})=\Theta(n^{2+1/l}), provided a strong version of Erd\H{o}s's Girth Conjecture holds (which is known to be true when l=2,3,5l = 2, 3, 5). Moreover, forbidding one more cycle decreases the number of C2l+1C_{2l+1}'s significantly: More precisely, we have ex(n,C2l+1,C2l∪{C2k})=O(n2−1l+1),ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k}\}) = O(n^{2-\frac{1}{l+1}}), and ex(n,C2l+1,C2l∪{C2k+1})=O(n2)ex(n, C_{2l+1}, \mathscr C_{2l} \cup \{C_{2k+1}\}) = O(n^2) for l>k≥2l > k \ge 2. (iv) We also study the maximum number of paths of given length in a CkC_k-free graph, and prove asymptotically sharp bounds in some cases.Comment: 37 Pages; Substantially revised, contains several new results. Mistakes corrected based on the suggestions of a refere

    Exhaustive generation of kk-critical H\mathcal H-free graphs

    Full text link
    We describe an algorithm for generating all kk-critical H\mathcal H-free graphs, based on a method of Ho\`{a}ng et al. Using this algorithm, we prove that there are only finitely many 44-critical (P7,Ck)(P_7,C_k)-free graphs, for both k=4k=4 and k=5k=5. We also show that there are only finitely many 44-critical graphs (P8,C4)(P_8,C_4)-free graphs. For each case of these cases we also give the complete lists of critical graphs and vertex-critical graphs. These results generalize previous work by Hell and Huang, and yield certifying algorithms for the 33-colorability problem in the respective classes. Moreover, we prove that for every tt, the class of 4-critical planar PtP_t-free graphs is finite. We also determine all 27 4-critical planar (P7,C6)(P_7,C_6)-free graphs. We also prove that every P10P_{10}-free graph of girth at least five is 3-colorable, and determine the smallest 4-chromatic P12P_{12}-free graph of girth five. Moreover, we show that every P13P_{13}-free graph of girth at least six and every P16P_{16}-free graph of girth at least seven is 3-colorable. This strengthens results of Golovach et al.Comment: 17 pages, improved girth results. arXiv admin note: text overlap with arXiv:1504.0697
    • …
    corecore