244,484 research outputs found

    The localization number and metric dimension of graphs of diameter 2

    Get PDF
    We consider the localization number and metric dimension of certain graphs of diameter 22, focusing on families of Kneser graphs and graphs without 4-cycles. For the Kneser graphs with a diameter of 22, we find upper and lower bounds for the localization number and metric dimension, and in many cases these parameters differ only by an additive constant. Our results on the metric dimension of Kneser graphs improve on earlier ones, yielding exact values in infinitely many cases. We determine bounds on the localization number and metric dimension of Moore graphs of diameter 22 and polarity graphs

    Hamiltonian cycles in maximal planar graphs and planar triangulations

    Get PDF
    In this thesis we study planar graphs, in particular, maximal planar graphs and general planar triangulations. In Chapter 1 we present the terminology and notations that will be used throughout the thesis and review some elementary results on graphs that we shall need. In Chapter 2 we study the fundamentals of planarity, since it is the cornerstone of this thesis. We begin with the famous Euler's Formula which will be used in many of our results. Then we discuss another famous theorem in graph theory, the Four Colour Theorem. Lastly, we discuss Kuratowski's Theorem, which gives a characterization of planar graphs. In Chapter 3 we discuss general properties of a maximal planar graph, G particularly concerning connectivity. First we discuss maximal planar graphs with minimum degree i, for i = 3; 4; 5, and the subgraph induced by the vertices of G with the same degree. Finally we discuss the connectivity of G, a maximal planar graph with minimum degree i. Chapter 4 will be devoted to Hamiltonian cycles in maximal planar graphs. We discuss the existence of Hamiltonian cycles in maximal planar graphs. Whitney proved that any maximal planar graph without a separating triangle is Hamiltonian, where a separating triangle is a triangle such that its removal disconnects the graph. Chen then extended Whitney's results and allowed for one separating triangle and showed that the graph is still Hamiltonian. Helden also extended Chen's result and allowed for two separating triangles and showed that the graph is still Hamiltonian. G. Helden and O. Vieten went further and allowed for three separating triangles and showed that the graph is still Hamiltonian. In the second section we discuss the question by Hakimi and Schmeichel: what is the number of cycles of length p that a maximal planar graph on n vertices could have in terms of n? Then in the last section we discuss the question by Hakimi, Schmeichel and Thomassen: what is the minimum number of Hamiltonian cycles that a maximal planar graph on n vertices could have, in terms of n? In Chapter 5, we look at general planar triangulations. Note that every maximal planar graph on n ≥ 3 vertices is a planar triangulation. In the first section we discuss general properties of planar triangulations and then end with Hamiltonian cycles in planar triangulations

    Condorcet Domains, Median Graphs and the Single Crossing Property

    Get PDF
    Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation has no cycles. We observe that, without loss of generality, such domain can be assumed to be closed in the sense that it contains the majority relation of every profile with an odd number of individuals whose preferences belong to this domain. We show that every closed Condorcet domain is naturally endowed with the structure of a median graph and that, conversely, every median graph is associated with a closed Condorcet domain (which may not be a unique one). The subclass of those Condorcet domains that correspond to linear graphs (chains) are exactly the preference domains with the classical single crossing property. As a corollary, we obtain that the domains with the so-called `representative voter property' (with the exception of a 4-cycle) are the single crossing domains. Maximality of a Condorcet domain imposes additional restrictions on the underlying median graph. We prove that among all trees only the chains can induce maximal Condorcet domains, and we characterize the single crossing domains that in fact do correspond to maximal Condorcet domains. Finally, using Nehring's and Puppe's (2007) characterization of monotone Arrowian aggregation, our analysis yields a rich class of strategy-proof social choice functions on any closed Condorcet domain

    Structure and algorithms for (cap, even hole)-free graphs

    Get PDF
    A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is a cycle of length at least 5 with exactly one chord and that chord creates a triangle with the cycle. In this paper, we consider (cap, even hole)-free graphs, and more generally, (cap, 4-hole)-free odd-signable graphs. We give an explicit construction of these graphs. We prove that every such graph G has a vertex of degree at most [View the MathML source], and hence [View the MathML source], where ω(G) denotes the size of a largest clique in G and χ(G) denotes the chromatic number of G. We give an O(nm) algorithm for q-coloring these graphs for fixed q and an O(nm) algorithm for maximum weight stable set, where n is the number of vertices and m is the number of edges of the input graph. We also give a polynomial-time algorithm for minimum coloring. Our algorithms are based on our results that triangle-free odd-signable graphs have treewidth at most 5 and thus have clique-width at most 48, and that (cap, 4-hole)-free odd-signable graphs G without clique cutsets have treewidth at most 6ω(G)−1 and clique-width at most 48
    • …
    corecore