15,604 research outputs found

    Towards an Isomorphism Dichotomy for Hereditary Graph Classes

    Get PDF
    In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.Comment: 37 pages, 4 figure

    Assessing the Computational Complexity of Multi-Layer Subgraph Detection

    Get PDF
    Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    On globally sparse Ramsey graphs

    Full text link
    We say that a graph GG has the Ramsey property w.r.t.\ some graph FF and some integer r2r\geq 2, or GG is (F,r)(F,r)-Ramsey for short, if any rr-coloring of the edges of GG contains a monochromatic copy of FF. R{\"o}dl and Ruci{\'n}ski asked how globally sparse (F,r)(F,r)-Ramsey graphs GG can possibly be, where the density of GG is measured by the subgraph HGH\subseteq G with the highest average degree. So far, this so-called Ramsey density is known only for cliques and some trivial graphs FF. In this work we determine the Ramsey density up to some small error terms for several cases when FF is a complete bipartite graph, a cycle or a path, and r2r\geq 2 colors are available

    Large components in random induced subgraphs of n-cubes

    Get PDF
    In this paper we study random induced subgraphs of the binary nn-cube, Q2nQ_2^n. This random graph is obtained by selecting each Q2nQ_2^n-vertex with independent probability λn\lambda_n. Using a novel construction of subcomponents we study the largest component for λn=1+χnn\lambda_n=\frac{1+\chi_n}{n}, where ϵχnn1/3+δ\epsilon\ge \chi_n\ge n^{-{1/3}+ \delta}, δ>0\delta>0. We prove that there exists a.s. a unique largest component Cn(1)C_n^{(1)}. We furthermore show that χn=ϵ\chi_n=\epsilon, Cn(1)α(ϵ)1+χnn2n| C_n^{(1)}|\sim \alpha(\epsilon) \frac{1+\chi_n}{n} 2^n and for o(1)=χnn1/3+δo(1)=\chi_n\ge n^{-{1/3}+\delta}, Cn(1)2χn1+χnn2n| C_n^{(1)}| \sim 2 \chi_n \frac{1+\chi_n}{n} 2^n holds. This improves the result of \cite{Bollobas:91} where constant χn=χ\chi_n=\chi is considered. In particular, in case of λn=1+ϵn\lambda_n=\frac{1+\epsilon} {n}, our analysis implies that a.s. a unique giant component exists.Comment: 18 Page
    corecore