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Abstract
In this paper we resolve the complexity of the isomorphism problem on all but finitely many

of the graph classes characterized by two forbidden induced subgraphs. To this end we develop
new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop
a methodology to show isomorphism completeness of the isomorphism problem on graph classes
by providing a general framework unifying various reduction techniques. Second, we generalize
the concept of the modular decomposition to colored graphs, allowing for non-standard decompo-
sitions. We show that, given a suitable decomposition functor, the graph isomorphism problem
reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of
bounded color valence and hypergraph isomorphism on hypergraphs of bounded color class size
as follows. We say a colored graph has generalized color valence at most k if, after removing
all vertices in color classes of size at most k, for each color class C every vertex has at most k
neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded
generalized color valence can be solved in polynomial time.
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1 Introduction

Given two graphs G1 and G2, the graph isomorphism problem asks whether there exists a
bijection from the vertices of G1 to the vertices of G2 that preserves adjacency and non-
adjacency. In this paper we continue the systematic investigation of the complexity of graph
isomorphism on hereditary graph classes with a focus on classes characterized by finitely
many forbidden induced subgraphs as initiated in [21] (see also [22]).

Given a set of finite graphs H1, . . . ,Ht we define (H1, . . . ,Ht)-free to be the class of all
graphs that do not contain any Hi as an induced subgraph. In the light of the unknown
complexity status of the graph isomorphism problem, the goal in this context is typically
to classify the complexity for the various graph classes into being polynomial time solvable
or isomorphism complete (i.e., polynomially equivalent to graph isomorphism). Recently,
in [26] it is shown that, assuming that graph isomorphism is not polynomial time solvable
in general, there exist graph classes closed under taking (not necessarily induced) subgraphs
which are of intermediate complexity. Trivially, this implies the same conditional existence
of hereditary graph classes (i.e., graph classes characterized by forbidden induced subgraphs)
of intermediate complexity. However, the construction in [26] intrinsically requires the use of
infinitely many forbidden subgraphs. In contrast to this, in [26] it is also shown that there are
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690 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

no intermediate graph classes characterized by finitely many forbidden subgraphs. However,
this statement does not carry over to forbidden induced subgraphs and the question of the
existence of intermediate graph classes characterized by finitely many forbidden induced
subgraphs remains open. A more precise statement of the dichotomy result in [26] is that
a graph class characterized by finitely many forbidden subgraphs has a polynomial time
solvable graph isomorphism problem if one of the forbidden graphs is a union of subdivided
stars, and is graph isomorphism complete otherwise. These graphs, the forests of subdivided
stars, also play a central role in the complexity of hereditary graph classes.

With respect to classes defined by forbidden induced subgraphs, there is a dichotomy
for the isomorphism problem on H1-free graphs into polynomially solvable and isomorphism
complete cases. In [21] the complexity of the isomorphism problem on (H1, H2)-free graphs is
determined for various pairs (H1, H2) and the results also follow the “polynomially solvable
versus isomorphism complete” dichotomy. The crucial cases that were not resolved are those
where either H1 or H2 is a complete graph. More specifically, except for finitely many cases,
the unresolved cases were shown to be polynomially equivalent to a class where one of the
graphs is a complete graph. In the light of all of these results we conjecture the following:

I Conjecture 1. If C = (H1, . . . ,Ht)-free is a graph class defined by the finite set of forbidden
induced subgraphs H1, . . . ,Ht then graph isomorphism of graphs in C is polynomial time
solvable or isomorphism complete.

In this paper we continue the investigation of the complexity of the isomorphism problem
on the graph classes focusing on the case of two forbidden subgraphs, where one of the graphs
is complete. As mentioned above these are the crucial cases that were not resolved. For the
resolution of those classes, techniques beyond those that were developed in [21] are required.
These techniques are presented in this paper leading to the following theorem:

I Theorem 2. On all but finitely many classes of the form (H1, H2)-free the graph isomor-
phism problem is polynomial time solvable or isomorphism complete.

Contribution. In order to prove the theorem, three new techniques for the structural and
algorithmic analysis of graphs are developed in this paper.

Firstly, we develop a methodology to show isomorphism completeness of the isomorphism
problem on graph classes by providing a unifying framework for various reductions typically
used for that purpose. The advantage of this framework is that it allows a streamlined
abstract way to argue why some class is isomorphism complete, which boils down to an
algorithmically checkable argument.

Secondly, we generalize the modular decomposition to colored graphs and define the con-
cept of a colored modular decomposition with respect to a decomposition functor. This not
only allows us to show that the graph isomorphism problem reduces to colored isomorphism
of prime graphs but it also allows us to decompose graphs that are prime with respect to
the classic modular decomposition. To show this reduction we also describe how to remodel
an algorithm that has access to an oracle producing a complete invariant for a graph class
into an algorithm that only has access to an isomorphism test of the graph class.

Thirdly, we extend the techniques of bounded color valence and hypergraph isomorphism
on hypergraphs of bounded color class size as follows. We say a colored graph has generalized
color valence at most k if, after removing all vertices in color classes of size at most k, for
each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C.
We show that isomorphism of graphs of bounded generalized color valence can be solved
in polynomial time. This generalization allows us to perform isomorphism tests for graphs
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whose automorphism group cannot be forced into having bounded size composition factors
even when using finitely many individualization steps. Since for such graphs alternating
groups of unbounded size can appear among the composition factors, it seems that the
standard group theoretic techniques cannot be directly applied. This shows that indeed new
techniques were required to solve the particular cases.

We apply the three mentioned techniques to resolve the complexity of isomorphism on
all but finitely many of the graph classes characterized by two forbidden induced subgraphs.
For the resolved classes we either provide a reduction from the general problem or a poly-
nomial time algorithm. The applications of the techniques include for example showing
that bipartite graphs that are free from a fixed forbidden double star refine into graphs of
bounded generalized color valence. This can be used to show that isomorphism of graphs of
bounded clique number with a fixed forbidden double star can be solved in polynomial time.
We in turn apply this in conjunction with the colored modular decomposition technique to
solve isomorphism for graphs of bounded clique number which do not contain P5 (a path of
length 4) as an induced subgraph. We apply the general reductions to show that classes of
graphs without cliques of size 4 and certain unions of paths are extensive enough to have an
isomorphism problem that is isomorphism complete. Furthermore, we apply the modular
decomposition techniques in conjunction with the bounded generalized color valence to ana-
lyze the structure of various graph classes of bounded clique number with certain forbidden
forests of subdivided stars.

Related work. We refer the reader to [3, 18, 28] for an introduction to the diverse
complexity-theoretic results related to the isomorphism problem. There are numerous results
known on the complexity of graph isomorphism of hereditary graph classes. A collection
showing the problem for many classes to be equivalent to the general problem is given by
Booth and Colbourn [5]. In that paper, the complexity of classes characterized by one
forbidden subgraph H is shown to depend on whether the graph H is an induced subgraph
of P4 (the path on 4 vertices). The systematic study of classes characterized by two forbidden
subgraphs was initiated in [21].

With regard to algorithms, a recent very general result, implying many results devised
earlier on more special graph classes, is a theorem of Grohe and Marx [13] that shows that
isomorphism of graph classes defined by a forbidden topological minor can be solved in
polynomial time.

There are several applications of modules or some form of modular decomposition in the
context of graph isomorphism. For example, Goldberg’s plain exponential algorithm [11] uses
the concept of sections, which can be seen as colored modules. Furthermore, Junttila and
Kaski [17] define non-uniform components within the individualization-refinement approach
that also constitute colored modules. As described below, Rao [27] also exploits the classic
modular decomposition to devise an isomorphism algorithm for gem and co-gem free graphs
(i.e., (P4 ∪̇ K1, P4 ∪̇K1)-free graphs). His technique can be seen as a special case of the
techniques using colored modular decompositions described in this paper. Other hereditary
graph classes, for which isomorphism algorithms make use of modular decomposition, are
for example subclasses of circular-arc graphs (see [7]).

In the early stages of the discovery of the group theoretic technique for the isomorphism
problem, Luks [24] applied the technique to show that isomorphism of graphs of bounded
maximum degree can be solved in polynomial time. Babai [2] applied the notion of bounded
color valence in his algorithm for the general isomorphism problem. Miller (see [25]) applied
this technique in a series of papers to perform isomorphism tests of k-separable and k-
contactable graphs as well as isomorphism of hypergraphs of bounded color class size (see
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692 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

also [1], [4] and [30]). In our generalization in this paper, only the subgraph induced by the
color classes that are not of bounded size is required to exhibit bounded color valence.

There have been several studies aiming at dichotomy results for computational problems
on graph classes characterized by forbidden induced subgraphs. For example, this has been
done for the computation of the chromatic number [20], dominating sets [23], coloring [9],
and list coloring [12] for two forbidden subgraphs.

Moreover there are numerous results analyzing whether the clique width of a graph class
characterized by forbidden subgraphs is bounded (see [8] for an extensive list of references).

Structure of the paper. We mainly apply the three techniques developed in this paper to
classes characterized by two forbidden induced subgraphs. However, the intention behind
their presentation is to allow them to be applicable in a broader sense to practical and
theoretical algorithms for isomorphism of general graphs or maybe for the classes of bounded
clique width. The paper first presents the techniques and then hints at how to apply them
to various classes of two forbidden subgraphs. The full version [29] provides details and
proofs that have mostly been omitted.

In the first part of the paper we provide preliminaries such as introducing notation
and recalling basic tools (Section 2). We then devise a methodology to prove isomorphism
completeness results (Section 3) and briefly describe how to simulate a complete invariant
given only an isomorphism algorithm (Section 4). After this we turn to techniques for
isomorphism testing using modular decompositions (Section 5) and devise a polynomial
time algorithm for graphs of bounded generalized color valence (Section 6).

The reduction techniques can be applied to show the isomorphism completeness of various
graph classes characterized by forbidden induced subgraphs. The algorithmic techniques can
be applied to graph classes with forbidden double stars and graph classes of graphs without
induced paths of length 4. The techniques can also be applied to analyze specific triangle-free
graphs and specific graphs of bounded clique number. (For details see [29].) We conclude
by showing that together with the theorems in [21] this resolves the complexity of all but
finitely many graph classes defined by two forbidden induced subgraphs (Section 7).

2 Preliminaries

In this paper all graphs are finite, simple, undirected graphs. For a graph G, by V (G)
and E(G) we denote the vertex set and the edge set, respectively. By NG(S) = N(S) we
denote the neighborhood of a set S, i.e., the vertices in V (G) \ S adjacent to some vertex
in S. By id we always denote the identity map. The bipartite complement of a bipartite
graph G with bipartition classes A and B is obtained by replacing E(G) with {{a, b} | a ∈
A, b ∈ B} \ E(G).

We write H ≤ G if the graph G contains a graph H as an induced subgraph. A graph G
is H-free if H � G. It is (H1, . . . ,Hk)-free, if it is Hi-free for all i. A graph class C is H-free
(respectively (H1, . . . ,Hk)-free) if this is true for all G ∈ C. A graph class C is hereditary
if it is closed under taking induced subgraphs. The class (H1, . . . ,Hk)-free is the class of
all (H1, . . . ,Hk)-free graphs. Note that each class (H1, . . . ,Hk)-free is hereditary. We say
a graph G contains a graph H (as an induced subgraph) if an induced subgraph of G is
isomorphic to H.

By It, Kt, Pt, and Ct we denote the independent set, the clique, the path, and the cycle
on t vertices, respectively. The clique number of a graph G is the largest integer t such
that G contains Kt. By H ∪̇H ′ we denote the disjoint union of H and H ′; we use tH for the
disjoint union of t copies of the graph H. By G we denote the (edge) complement of G. The
graph K2 ∪̇ I2, i.e., the graph obtained from K4 by deleting an edge, is called the diamond.
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A star is a graph isomorphic to the complete bipartite graph K1,t for some positive
integer t. The subdivision of an edge is the replacement of the edge with a path of length
two. A subdivided star is a possibly repeated subdivision of a star. If a subdivided star has a
vertex of degree at least 3 then this vertex is unique and called the center. For non-negative
integers a0, . . . , at with at > 0, we define the graph H(at, . . . , a1, a0) to be the disjoint union
of an independent set of size a0 with the following subdivided star H. The star H is the
subdivided star that for i ∈ {1, . . . , t} has exactly ai leaves at distance i from the center
and no other leaves. (If

∑t
i=1(ai) < 3 the center of H is defined so that the graph H is a

path whose two leaves have suitable distances from that center.) In [21] it is shown that
isomorphism of (H1, . . . ,Ht)-free graphs is isomorphism complete unless one of the forbidden
graphs is a forest of subdivided stars.

In this paper a colored graph is a vertex colored graph whose coloring does not need to
be proper (i.e., adjacent vertices can have the same color). Isomorphisms between colored
graphs are required to respect the colors. The naive vertex refinement algorithm, or 1-
dimensional Weisfeiler-Lehman algorithm, is a standard technique of repeatedly recoloring
the vertices, refining the partition induced by the colors, by using the multiplicity of colors
appearing among the neighbors of a vertex (see for example [28]). It has the property that
after the refinement, the number of neighbors a vertex v has in a color class C only depends
on the colors of v and C. Such a coloring is called stable. A graph has color valence at
most k if for every vertex v and every color class C there are at most k neighbors of v in C
or there are at most k non-neighbors of v in C.

3 Reductions

In this section we develop a systematic approach to proving isomorphism invariant reduc-
tions. This provides general means to construct isomorphism complete graph classes. Stan-
dard reductions like subdividing, taking complements, and adding isolated vertices fall into
this framework. Likewise, most reductions performed in [21] and also various reductions
in [5] fall into this framework.

I Definition 3. Let J be a finite set and L : J × J → {A,N} be a labeling assigning
every ordered pair of vertices the label A for adjacent or N for non-adjacent. Moreover
let LN : J × J → N ∪ {∞} be a labeling assigning every ordered pair of vertices a non-
negative integer or infinity.

A graph G belongs to the class encoded by the labeled graph (J, L, LN ) if there exists a
map φ : V (G)→ J such that the following hold:
1. If v ∈ V (G) and j ∈ J such that L(φ(v), j) = A and LN (φ(v), j) 6=∞ then there are at

most LN (φ(v), j) vertices v′ ∈ V (G)\{v} that are non-adjacent to v such that φ(v′) = j.
2. If v ∈ V (G) and j ∈ J such that L(φ(v), j) = N and LN (φ(v), j) 6=∞ then there are at

most LN (φ(v), j) vertices v′ ∈ V (G) \ {v} that are adjacent to v such that φ(v′) = j.

In this definition, the triple (J, L, LN ) should be thought of as a generalized graph. The
graph class encoded by (J, L, LN ) then contains graphs that can be obtained by replacing
the elements of J with sets of vertices. In some contexts, this is referred to as blowing-up
the elements of J . Adjacency of the new vertices is essentially governed by the adjacency of
the original graph. However, the values of LN control the number of exceptions to this rule
that are allowed per vertex.

The definition captures various constructions used in graph theory. A first class of ex-
amples is formed by the complete multipartite graphs, which turn out to be graphs modeled
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694 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

with the function L satisfying L(x, y) = N if and only if x = y and the function LN being the
constant function evaluating to 0. A second, more general class of examples modeled by the
definition is the graphs of bounded color valence, which are graphs that frequently appear
in the context of graph isomorphism. Such graphs are obtained whenever LN is a bounded
function. The coloring corresponds to the map φ. A third example is the class of graphs
that map homomorphically onto a finite graph H. This class is obtained by letting (J, L)
model the graph H (i.e., V (H) = J and L(x, y) = A if and only if {x, y} is an edge of H)
and setting LN (x, y) = 0 if L(x, y) = N and LN (x, y) =∞ otherwise.

Of interest to us is the complexity of the isomorphism problem of graph classes encoded
by a triple (J, L, LN ). It turns out that when LN is a bounded function then isomorphism
can be solved in polynomial time.

I Theorem 4. Let (J, L, LN ) be a triple that encodes a graph class. If all values of LN are
finite then isomorphism of graphs encoded by (J, L, LN ) can be solved in polynomial time.

The theorem implicitly shows that isomorphism of graphs that have bounded color va-
lence for some coloring that uses a bounded number of color classes can be solved in poly-
nomial time, even if the color classes are not given.

I Corollary 5. For every positive integer c, graph isomorphism of graphs whose vertices can
be partitioned into c color classes such that the graph has color valence at most c can be
solved in polynomial time.

While encodings can be used to show polynomial time solvability of certain graph classes,
they can also be used to show hardness results as follows.

I Definition 6. An encoding (J, L, LN ) is a simple path encoding in case L is symmetric
(i.e., if L(j, j′) = L(j′, j) holds) and there is a sequence of vertices (p1, . . . , pt) of length at
least 2 in J such that LN (p1, p2) = ∞, LN (pt, pt−1) ≥ 2 and for all k ∈ {1, . . . , t − 1} we
have LN (pk, pk+1) ≥ 1 and LN (pk+1, pk) ≥ 1.

Intuitively, a simple path encoding allows enough freedom to encode bipartite graphs with
one bipartition class having vertices of degree two. We can formally prove this statement in
the form of a reduction.

I Theorem 7. A class of graphs encoded by a simple path encoding is isomorphism complete.

The theorem can be applied to show that various classes are isomorphism complete.

I Theorem 8. The classes (2K2∪̇K1,K4)-free, (P6, P4∪̇P2,K4)-free, (H(1, 0, 3, 0),K4)-free,
bipartite (2P3 ∪̇K1)-free, (H(1, 0, 2, 0),K5)-free are isomorphism complete.

The theorem in turn implies that various classes (H1, H2)-free that are superclasses of
one of these classes are isomorphism complete (such as (K3, 2P3 ∪̇K1)-free).

4 Isomorphism, Invariants and Canonical Labeling

A complete graph invariant for a graph class C is a map Inv : C → D into some class D such
that for graphs G1 and G2 in C we have Inv(G1) = Inv(G2) if and only if G1 and G2 are
isomorphic. A canonical labeling is a map that assigns to every graph G a graph C(G) with
vertex set V (C(G)) = {1, . . . , |G|} and an isomorphism φ : G → C(G) such that the map
assigning C(G) to G is a complete invariant. There are relatively general techniques with
which one can turn a complete invariant into a canonical labeling algorithm [14, 15, 19].
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In this paper, we are mainly interested in isomorphism algorithms, as opposed to canon-
ical labeling algorithms or complete invariants. We will therefore require a tool to simulate
an invariant within one execution of our algorithm, given only an algorithm that performs
isomorphism checks. Our simulated invariant will not be consistent across different calls of
the same algorithm.

I Theorem 9. Let A be a polynomial time algorithm with access to a complete invariant O
for a graph class C given as oracle. Suppose the outputs of A are independent of the choice
of the invariant O. If isomorphism of graphs in C can be solved in polynomial time then
there is a polynomial-time algorithm B whose outputs coincide with those of A, which does
not require access to an oracle.

We use the theorem to replace an invariant with a isomorphism algorithm in the next
section when dealing with modular decompositions (more precisely to prove Theorem 15).

5 Colored modular decomposition

In this section we are concerned with modular decompositions and their application to the
isomorphism problem. We will work with colored graphs since this is convenient in the graph
isomorphism context. However, we will also generalize the concept of a module to that of
a colored module, since this is required by our later applications. Since we do not require
previous knowledge about the uncolored modular decomposition, we will not define it. We
refer the reader to the survey by Habib and Paul [16] for more information on the uncolored
decomposition and its algorithmic applications. For the colors, we will assume that there is
a linear order on the colors. In algorithmic applications such a linear order can always be
obtained by comparing the bit-strings corresponding to the colors lexicographically.

I Definition 10. Let G be a colored graph. A colored module is a subset M of V (G) such
that for all v ∈ V (G) \M , if x, x′ ∈ M are of the same color then either v is adjacent to
both vertices x and x′ or to neither x nor x′.

A moduleM is non-trivial if it contains at least two vertices that cannot be distinguished
by vertices outside of the module. That is, M is non-trivial if there are x, y ∈M such that
for all v ∈ V (G) \M the vertex v is adjacent to x if and only if it is adjacent to y. Note
that every module that contains two vertices of the same color is non-trivial.

I Definition 11. A map assigning to every graph G a subset of the vertices M(G) is said
to be isomorphism invariant if for every isomorphism φ : G → G′ we have φ(M(G)) =
M(G′). A map that assigns to every graph G a partition of a subset of the vertices M(G) =
{M1, . . . ,Mk} is said to be isomorphism invariant if for every isomorphism φ : G → G′ we
have M(G′) = {φ(M1), . . . , φ(Mk)}.

I Definition 12. A decomposition functor is a map assigning to every graph G a partition
of a subset of the vertices into modules that is isomorphism invariant.

A graph G is prime with respect to a decomposition functor Mod if Mod(G) does not
contain non-trivial modules. While there is a standard decomposition functor for the uncol-
ored case, for the colored case it is in general not clear whether we can find a useful functor
to decompose the graphs, and we have to find such a functor for a given graph class first,
in order to decompose the graphs. See [29] for an example illustrating that this allows us to
decompose graphs that are prime with respect to classic modular decomposition.
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696 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

In the remainder of this section, we argue for certain decomposition functors that graph
isomorphism for a hereditary graph class can be solved in polynomial time if the isomorphism
problem for colored prime graphs in the class can be solved in polynomial time. To facilitate
the proof we can assume that we are given a complete invariant for the prime graphs in the
hereditary graph class and then apply Theorem 9.

Our next goal is to define the concept of the quotient graph. In the uncolored case, the
quotient graph is obtained by replacing each module with a single vertex whose adjacency
to the rest of the graph is the same as that of every vertex of the module. However, for the
colored case, the adjacency to the rest of the graph depends on the color of the vertex in
the module. This means that for every adjacency type we need to retain a vertex that has
the same adjacency type with respect to vertices outside the module. (For a vertex v, the
adjacency type with respect to vertices outside the module is the set of vertices outside the
module adjacent to v.)

A replacement operator is an isomorphism invariant map that assigns every non-trivial
module M in a decomposition of a graph G an induced subgraph of M in which the ver-
tices are possibly recolored. We require that for every adjacency type of vertices in M at
least one vertex of M is maintained. Let Inv(M) be a complete graph invariant. Given a
family of modules {M1, . . . ,Mk} that partitions the graph, the quotient graph is obtained
by simultaneously replacing all modules using the replacement operator (i.e., removing from
the module Mi all vertices not in the induced subgraph assigned to Mi by the replacement
operator) and then recoloring every vertex v as the triple (χ(v), L, Inv(Mv)), where χ(v)
is the color of v after the replacement, L is a list of the colors of vertices with the same
adjacency type as v, and Inv(Mv) is the invariant of the module containing v. We say that
the decomposition functor is simple with respect to a replacement operator if for every com-
plete invariant every quotient graph is prime. Intuitively, this means that the decomposition
functor provides us with maximal modules.

I Definition 13. Given a decomposition functor, we say a replacement operator is reversible
if the following holds: two graphs G1 and G2 are isomorphic if and only if their colored
quotient graphs with respect to the decomposition functor and the replacement operator
are isomorphic.

Note that reversibility does not depend on the complete invariant that is used for the recol-
oring of the quotient graph.

We remark that for uncolored graphs the definitions of module, primality and the quo-
tient graph coincide with the usual definition from the literature (see [16]). In that context,
the decomposition functor is typically chosen to partition the graph into components, com-
ponents of the complement graph, or maximal modules. The replacement operator simply
replaces the entire module by one vertex. However, for the applications we have in mind, we
require the more general concept of colored modules. Certain conditions immediately imply
that a replacement operator is reversible.

I Lemma 14. A replacement operator is reversible if 1.) there is only one trivial module,
2.) all replacements contain only one vertex, or 3.) non-trivial modules induce connected
graphs, but the non-trivial modules are pairwise non-adjacent.

A reversible simple decomposition functor can be used to test isomorphism by consid-
ering only isomorphisms between quotient graphs and modules. Iterating this yields an
isomorphism test for decomposable graphs if one has access to a complete invariant for
prime graphs. Using Theorem 9 we can replace the requirement for a complete invariant by
an isomorphism algorithm.
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I Theorem 15. Let C be a hereditary graph class and Mod a simple polynomial-time com-
putable decomposition functor with polynomial-time computable, reversible replacement op-
erator R for colored graphs in C. If the isomorphism problem for colored prime graphs in C
can be solved in polynomial time then the isomorphism problem of all graphs in C can be
solved in polynomial time.

The theorem in particular applies to the standard uncolored modular decomposition.
This decomposition is associated with a simple decomposition functor with polynomial-time
computable, reversible replacement. In his diploma thesis, Fuhlbrück [10] also describes a
reduction for the standard uncolored decomposition functor. Already when trying to solve
the isomorphism problem for uncolored graphs in a graph class C with the described method,
the fact that the quotient graph needs to be colored implies that we require an isomorphism
algorithm for colored prime graphs. In [27], Rao describes a special case of the theorem
for the uncolored modular decomposition, essentially considering hereditary graph classes
in which every prime graph is of bounded size. Moreover, in the isomorphism context, the
bi-join decomposition, also described in [27], can also be treated by using colored modules.

In our applications of Theorem 15 we also use another unrelated technique of dealing
with small color classes that we describe next.

6 Bounded generalized color valence

In this section we show that isomorphism of graphs of bounded generalized color valence can
be solved in polynomial time. However, the proofs of the lemmas and theorems within the
section require familiarity with the computational group theoretic methods that have been
developed within the context of the isomorphism problem. For example, when computing
automorphism groups, cosets, and sets of isomorphisms between two combinatorial objects,
we use a succinct representation by generators and a representative. We also use the set
stabilizer theorem [24] for groups with composition factors of bounded size (see also [1, 4,
25]), which implies that for a permutation group with composition factors of bounded size
acting faithfully on a set, we can compute the stabilizer of any given subset in polynomial
time. For a good overview over the various computational group theoretic techniques, we
refer the reader to [30].

Before we solve the isomorphism problem of graphs of bounded generalized color valence,
let us consider some examples. Hypergraphs on sets of bounded color class size can directly
be encoded as graphs by adding a vertex for every hyperedge that is adjacent to the elements
of the hyperedge. Thus, a polynomial time algorithm for bounded generalized color valence
also gives rise to a polynomial time algorithm for hypergraphs of bounded color class size.
However, there are examples that are not captured by this. Consider a graph of maximum
degree at most c consisting of a large number of components such that there is only a
small number of isomorphism types among these components. Now add an arbitrary finite
number of new vertices colored with new colors such that the added vertices form color
classes of size at most c. The new vertices are connected via edges in an arbitrary way to
the original vertices. The resulting graph has bounded generalized color valence. However,
its automorphism group may contain composition factors of arbitrarily large size. The
isomorphism algorithm for graphs of bounded degree exploits the fact that at least for
components it is possible, by individualizing one vertex, to obtain a group with bounded
composition factor. In the example graphs just described, it is not clear how the standard
group theoretic arguments can be applied.
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698 Towards an Isomorphism Dichotomy for Hereditary Graph Classes

Nevertheless, our goal is to prove that graph isomorphism of graphs with bounded gen-
eralized color valence can be solved in polynomial time. Note that the classes of bounded
generalized color valence are closed under refinement operations such as individualization
and naive vertex refinement.

To solve the isomorphism problem, we need to deal with the small color classes. If there
are only a bounded number of them, we can apply individualization to all vertices in small
color classes. However, the number of small color classes can grow linearly in the number of
vertices. To remedy this problem, we exploit the existence of certain colored modules and
use group theoretic techniques.

We first define a decomposition functor that works well with graphs of bounded gener-
alized color valence that have been refined with naive vertex refinement. Given a subset S
of vertices, we say a vertex v′ /∈ S contained in the color class C ′ is of degree dependence at
most d with respect to S if there is a vertex v in S such that v′ ∈ N(v) ∧ |(N(v) ∩C ′)| ≤ d
or v′ /∈ N(v)∧ |C ′ \ (N(v))| ≤ d. Intuitively, this definition says that there is a vertex v ∈ S
such that individualization of this vertex followed by refinement with respect to adjacency
towards v produces a set of size at most d within which v′ can be found.

I Definition 16. A non-empty subset S is a d-degree dependence module, if no vertex
outside S has degree dependence at most d with respect to S.

I Lemma 17. Let G be a stable graph of color valence at most c. If G does not contain
color classes of size at most 2c then the minimal c-degree dependence modules partition G.
Moreover, the map assigning every such graph the family of minimal c-degree dependence
modules is a polynomial-time computable decomposition functor.

In Lemma 17, using naive vertex refinement is essential. Indeed, consider a wheel, i.e., a
cycle with an added center adjacent to every other vertex. In this graph, there is only one
non-trivial 3-degree dependence module, namely the set that contains only the center of the
wheel. Thus the set of 3-degree dependence modules does not partition the graph.

By defining a faithful group action of the automorphism group of a graph on the c-degree
dependence modules it is possible to gradually compute the automorphism group, yielding
also an isomorphism test for such graphs.

I Theorem 18. Graph isomorphism for colored graphs of generalized color valence at most c
can be solved in polynomial time.

We can combine Theorem 18 and Theorem 15 to show that several graph classes have a
polynomial-time solvable isomorphism problem. These classes include various subcases for
which the complexity of the isomorphism problem was also previously unresolved.

I Theorem 19. The isomorphism problem for the classes (H(1, b, 0),Ks)-free, (P5,Kt)-free,
(H(1, 0, b, 1),K3)-free and (K1,s ∪̇K1,s,Kt)-free can be solved in polynomial time.

7 Comprehensiveness of the case distinction

We now argue that the theorems developed throughout this paper together with the theo-
rems from [21] resolve, except for finitely many cases, the complexity of graph isomorphism
for (H1, H2)-free graphs. In fact, said theorems also either provide a polynomial time algo-
rithm or a reduction from the general isomorphism problem to the respective classes.

Proof of Theorem 2. Let (H1, H2)-free be the graph class for which we want to determine
the complexity. By the results in [21], we may assume that one of the graphs, H2 say, is a
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complete graph. Since graph isomorphism for K2-free graphs is polynomial-time solvable,
we further assume that H2 has at least 3 vertices. By [21, Lemma 2] we may consequently
assume that H1 is a forest of subdivided stars, since the problem is graph isomorphism
complete otherwise. If H1 contains 3 non-trivial components, then H1 contains 3K2 and
the problem is isomorphism complete [21, Lemma 5]. In the following, we can thus assume
that H1 has at most 2 non-trivial components. If H1 has no vertex of degree 3 then if H1 is
sufficiently large, it is either of the form Pi ∪̇ It with i ≤ 3 or it contains the graph 2K2 ∪̇ I2.
In the former case, graph isomorphism is polynomial-time solvable by Theorem 19. In the
latter case, the isomorphism problem is graph isomorphism complete [21, Lemma 5].

(The case H2 = K3). Suppose H2 is the graph K3. Since H2 is fixed, we can assume
that H1 is sufficiently large and we can thus assume by the observation above that H1
contains a vertex of degree 3. If H1 does not contain a P4 then H1 is a union of at most
two stars plus isolated vertices. If there is at most one star, the problem is polynomial-time
solvable by Theorem 19 (or by [21, Theorem 4]). Assuming there are two stars, if there is
more than one isolated vertex then H1 contains 2K2 ∪̇ 2K1 and the problem is isomorphism
complete by [21, Lemma 5]. If neither of the stars is only a single edge then if there exists
an isolated vertex in H1 the problem is isomorphism complete by Theorem 8 and if there is
no isolated vertex in H1 it is polynomial-time solvable by Theorem 19. Finally, if one of the
stars is only an edge then by Theorem 19 the problem is polynomial-time solvable.

If H1 contains a P4 and there are two non-adjacent vertices not in the same connected
component as the P4 then H1 contains P4 ∪̇ 2K1 and the problem is graph isomorphism
complete [21, Lemma 5]. The assumption that this is not the case implies that the vertex of
degree 3 is in the same component as the P4. Since isomorphism of (2K2 ∪̇2K1)-free triangle-
free graphs is isomorphism complete [21, Lemma 5], by assuming that H1 is sufficiently large,
we may further assume there is at most one additional vertex not in the connected component
of the P4. If there is only one vertex of degree 1 non-adjacent to the vertex h of degree at
least 3, and additionally this vertex has distance 2 from h, then H1 is an induced subgraph
of H(1, 0, b, 1) for some positive integer b. This implies that the problem is polynomial-time
solvable by Theorem 19. If H1 contains two leaves of distance at least 3 from the center,
then if H1 is sufficiently large it also contains 2K2 ∪̇ 2K1. If H1 contains a leaf of distance
at least 4 then H1 contains P4 ∪̇ 2K2. In both cases the problem is graph isomorphism
complete by [21, Lemma 5].

(The case H2 = Kn with n > 3). Suppose now H2 is the graph Kn for some n ≥ 4.
Suppose first, H1 contains two non-trivial components. If it contains an isolated vertex, then
it contains 2K2 ∪̇K1 and the problem is isomorphism complete by Theorem 8. If one of the
components contains P4 and the graph is not connected, then the graph contains P4 ∪̇K1 and
the problem is isomorphism complete by [21, Theorem 3]. Otherwise, the two components
form a double star and the problem is polynomial-time solvable by Theorem 19.

Thus we may assume now that there is only one non-trivial component. If there is no P4
in H1, the problem is solvable by [21, Theorem 4]. Otherwise, by [21, Theorem 3], we
can assume that H1 is connected. If H1 is isomorphic to P5, the problem is solvable by
Theorem 19. If H1 is isomorphic to P6 the problem is isomorphism complete by Theorem 8.
We can thus assume that H1 contains a vertex of degree at least 3, which we call the
center. If there is only one leaf not adjacent to the center and this leaf has distance 2 from
the center, then the problem is polynomial-time solvable by Theorem 19. If there are two
leaves not adjacent to the center then H1 contains P4 ∪̇K1 and the problem is isomorphism
complete by [21, Theorem 3]. If there is a leaf of distance at least 3 from the center and
the center has degree 4 then the problem is graph isomorphism complete by Theorem 8.
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We can thus assume that the center has degree 3. Under these conditions, if H2 = K4
and H1 is sufficiently large, then H1 contains P6 and the problem is isomorphism complete
by Theorem 8. In the remaining cases H2 = Kn with n ≥ 5 and H1 has a leaf of distance at
least 2 from the center. In this case the problem is isomorphism complete by Theorem 8. J

8 Conclusion

There is an intricate relationship between the boundedness of the clique width on a graph
class and polynomial-time solvability of the isomorphism problem. While there are classes of
unbounded clique width for which the isomorphism problem is solvable in polynomial time
(for example the graphs of bounded degree or the graphs characterized by a forbidden star
and a forbidden clique (see [21])), there are no classes known to be isomorphism complete
and known to have bounded clique width. It is conceivable, but not known to be true, that
isomorphism on graphs of bounded clique width is solvable in polynomial time. In fact,
it seems that typically an isomorphism reduction to a graph class C yields a proof for the
unboundedness of the clique width. It is easy to see that every class of graphs encoded by
a simple path encoding has unbounded clique width. The reason is that if G′ is the graph
produced from a graph G by the reduction detailed in the proof of Theorem 7 then G can
be obtained from G′ by a finite application of edge complementations between two sets,
followed by an unbounded number of local complementations and vertex removals. This
shows that the clique width of G is bounded by a function of the clique width of G′. Thus,
if G has large clique width then G′ has large clique width.

I Corollary 20. The graphs encoded by a simple path encoding have unbounded clique width.

This implies that many classes (H1, H2)-free have unbounded clique width. In particular the
class (P4∪K1,K4)-free has unbounded clique width, which was previously an unknown case
(see [8]). Conversely, when a graph class is shown to be polynomial-time solvable, often this
is due to some structural insight that actually amounts to showing that the clique width of
the class is bounded. On another note it appears that the solution of the generalized color
valence problem presented in this paper, more precisely a generalization of the technique, is
a first step towards showing polynomial-time solvability of graphs of bounded clique width.
More concretely, the generalization applies to graphs with fixed rank decomposition.

As mentioned in the introduction, for various other computational problems, classifi-
cation results have been considered for classes characterized by two forbidden graphs. For
these problems, there had been extensive prior work and algorithmic techniques were already
available. For the isomorphism problem, such techniques were lacking and the intention of
this paper is to develop them. The fact that for new classes the complexity of isomorphism
can be determined using these techniques, while other methods seem to fail, shows that
these techniques provide something conceptually different.

Concerning a list of open cases that still remain for the classes characterized by two for-
bidden subgraphs, one has to analyze precisely to which classes the techniques can be applied.
For example, Brandstädt and Kratsch [6] show that cycles of length 5 in (P5, P4 ∪K1)-free
graphs are disjoint. By coloring vertices inside a 5-cycle depending on whether they have
a neighbor outside the cycle, we obtain a decomposition functor. Furthermore, there is a
description of the relevant prime graphs in [6] which allows us to apply the modular decom-
position technique. This is just an example and a comprehensive description of the various
cases that can actually be handled with the techniques remains as future work.

Acknowledgments I thank Matasha Mazis for inspiring comments and suggestions.
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