3,854 research outputs found

    Graphs with at most two moplexes

    Full text link
    A moplex is a natural graph structure that arises when lifting Dirac's classical theorem from chordal graphs to general graphs. However, while every non-complete graph has at least two moplexes, little is known about structural properties of graphs with a bounded number of moplexes. The study of these graphs is motivated by the parallel between moplexes in general graphs and simplicial modules in chordal graphs: Unlike in the moplex setting, properties of chordal graphs with a bounded number of simplicial modules are well understood. For instance, chordal graphs having at most two simplicial modules are interval. In this work we initiate an investigation of kk-moplex graphs, which are defined as graphs containing at most kk moplexes. Of particular interest is the smallest nontrivial case k=2k=2, which forms a counterpart to the class of interval graphs. As our main structural result, we show that the class of connected 22-moplex graphs is sandwiched between the classes of proper interval graphs and cocomparability graphs; moreover, both inclusions are tight for hereditary classes. From a complexity theoretic viewpoint, this leads to the natural question of whether the presence of at most two moplexes guarantees a sufficient amount of structure to efficiently solve problems that are known to be intractable on cocomparability graphs, but not on proper interval graphs. We develop new reductions that answer this question negatively for two prominent problems fitting this profile, namely Graph Isomorphism and Max-Cut. On the other hand, we prove that every connected 22-moplex graph contains a Hamiltonian path, generalising the same property of connected proper interval graphs. Furthermore, for graphs with a higher number of moplexes, we lift the previously known result that graphs without asteroidal triples have at most two moplexes to the more general setting of larger asteroidal sets

    A polynomial algorithm for the k-cluster problem on interval graphs

    Full text link
    This paper deals with the problem of finding, for a given graph and a given natural number k, a subgraph of k nodes with a maximum number of edges. This problem is known as the k-cluster problem and it is NP-hard on general graphs as well as on chordal graphs. In this paper, it is shown that the k-cluster problem is solvable in polynomial time on interval graphs. In particular, we present two polynomial time algorithms for the class of proper interval graphs and the class of general interval graphs, respectively. Both algorithms are based on a matrix representation for interval graphs. In contrast to representations used in most of the previous work, this matrix representation does not make use of the maximal cliques in the investigated graph.Comment: 12 pages, 5 figure

    The Neighborhood Polynomial of Chordal Graphs

    Full text link
    The neighborhood polynomial of a graph GG is the generating function of subsets of vertices in GG that have a common neighbor. In this paper we study the neighborhood polynomial and the complexity of its computation for chordal graphs. We will show that it is \NP-hard to compute the neighborhood polynomial on general chordal graphs. Furthermore we will introduce a parameter for chordal graphs called anchor width and an algorithm to compute the neighborhood polynomial which runs in polynomial time if the anchor width is polynomially bounded. Finally we will show that we can bound the anchor width for chordal comparability graphs and chordal graphs with bounded leafage. The leafage of a chordal graphs is the minimum number of leaves in the host tree of a subtree representation. In particular, interval graphs have leafage at most 2. This shows that the anchor width of interval graphs is at most quadratic

    Cluster Deletion on Interval Graphs and Split Related Graphs

    Get PDF
    In the Cluster Deletion problem the goal is to remove the minimum number of edges of a given graph, such that every connected component of the resulting graph constitutes a clique. It is known that the decision version of Cluster Deletion is NP-complete on (P_5-free) chordal graphs, whereas Cluster Deletion is solved in polynomial time on split graphs. However, the existence of a polynomial-time algorithm of Cluster Deletion on interval graphs, a proper subclass of chordal graphs, remained a well-known open problem. Our main contribution is that we settle this problem in the affirmative, by providing a polynomial-time algorithm for Cluster Deletion on interval graphs. Moreover, despite the simple formulation of the algorithm on split graphs, we show that Cluster Deletion remains NP-complete on a natural and slight generalization of split graphs that constitutes a proper subclass of P_5-free chordal graphs. Although the later result arises from the already-known reduction for P_5-free chordal graphs, we give an alternative proof showing an interesting connection between edge-weighted and vertex-weighted variations of the problem. To complement our results, we provide faster and simpler polynomial-time algorithms for Cluster Deletion on subclasses of such a generalization of split graphs

    Parameterized Complexity of Equitable Coloring

    Full text link
    A graph on nn vertices is equitably kk-colorable if it is kk-colorable and every color is used either ⌊n/k⌋\left\lfloor n/k \right\rfloor or ⌈n/k⌉\left\lceil n/k \right\rceil times. Such a problem appears to be considerably harder than vertex coloring, being NP-Complete\mathsf{NP\text{-}Complete} even for cographs and interval graphs. In this work, we prove that it is W[1]-Hard\mathsf{W[1]\text{-}Hard} for block graphs and for disjoint union of split graphs when parameterized by the number of colors; and W[1]-Hard\mathsf{W[1]\text{-}Hard} for K1,4K_{1,4}-free interval graphs when parameterized by treewidth, number of colors and maximum degree, generalizing a result by Fellows et al. (2014) through a much simpler reduction. Using a previous result due to Dominique de Werra (1985), we establish a dichotomy for the complexity of equitable coloring of chordal graphs based on the size of the largest induced star. Finally, we show that \textsc{equitable coloring} is FPT\mathsf{FPT} when parameterized by the treewidth of the complement graph

    Algorithms and Complexity for Geodetic Sets on Planar and Chordal Graphs

    Get PDF
    We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality of a given graph. The problem is known to remain NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies some results in the literature. We then turn our attention to chordal graphs, showing that MGS is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k. Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a rather sophisticated reduction technique to work around their inherent linear structure

    Upper clique transversals in graphs

    Full text link
    A clique transversal in a graph is a set of vertices intersecting all maximal cliques. The problem of determining the minimum size of a clique transversal has received considerable attention in the literature. In this paper, we initiate the study of the "upper" variant of this parameter, the upper clique transversal number, defined as the maximum size of a minimal clique transversal. We investigate this parameter from the algorithmic and complexity points of view, with a focus on various graph classes. We show that the corresponding decision problem is NP-complete in the classes of chordal graphs, chordal bipartite graphs, and line graphs of bipartite graphs, but solvable in linear time in the classes of split graphs and proper interval graphs.Comment: Full version of a WG 2023 pape

    Some remarks on the geodetic number of a graph

    Get PDF
    A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G. We prove that it is NP complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs
    • 

    corecore