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Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil, email: jayme@nce.ufrj.br

Abstract. A set of vertices D of a graph G is geodetic if every vertex of G lies on a
shortest path between two not necessarily distinct vertices in D. The geodetic number of
G is the minimum cardinality of a geodetic set of G.

We prove that it is NP complete to decide for a given chordal or chordal bipartite graph
G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore,
we prove an upper bound on the geodetic number of graphs without short cycles and study
the geodetic number of cographs, split graphs, and unit interval graphs.

Keywords. Cograph; convex hull; convex set; geodetic number; split graph; unit interval
graph

1 Introduction

We consider finite, undirected and simple graphs G with vertex set V (G) and edge set
E(G). The neighbourhood of a vertex u in G is denoted by NG(u). A set of pairwise
non-adjacent vertices is called independent and a set of pairwise adjacent vertices is called
a clique. A vertex is simplicial if its neighbourhood is a clique. The distance dG(u, v)
between two vertices u and v in G is the length of a shortest path between u and v or ∞,
if no such path exists. The diameter of G is the maximum distance between two vertices
in G.

The interval I[u, v] between two vertices u and v in G is the set of vertices of G which
belong to a shortest path between u and v. Note that a vertex w belongs to I[u, v] if and
only if dG(u, v) = dG(u,w) + dG(w, v). For a set S of vertices, let the interval I[S] of S be
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the union of the intervals I[u, v] over all pairs of vertices u and v in S. A set of vertices
S is called geodetic if I[S] contains all vertices of G. Harary et al. [12] define the geodetic
number g(G) of a graph G as the minimum cardinality of a geodetic set. The calculation of
the geodetic number is an NP-hard problem for general graphs [3] and [2,7–10,13] contain
numerous results and references concerning geodetic sets and the geodetic number.

Our results are as follows. In Section 2 we simplify and refine the existing complexity
result [3] by proving that the decision problem corresponding to the geodetic number
remains NP-complete even when restricted to chordal or chordal bipartite graphs. In
Section 3 we prove upper bounds on the geodetic number of graphs without short cycles
and in particular for triangle-free graphs. Finally, in Section 4 we consider the geodetic
number of cographs, split graphs and unit interval graphs.

2 Complexity results for chordal graphs

In this section we prove hardness results for the following decision problem.

Geodetic Set
Instance: A graph G and an integer k.
Question: Does G have a geodetic set of cardinality at most k?

Our proofs will relate Geodetic Set to the following well-known problem. Recall that a
set of vertices D of a graph G is dominating if every vertex in V (G) \D has a neighbour
in D.

Dominating Set
Instance: A graph G and an integer k.
Question: Does G have a dominating set of cardinality at most k?

A graph is chordal if it does not contain an induced cycle of length at least 4. Similarly,
a bipartite graph is chordal bipartite if it does not contain an induced cycle of length at
least 6. The problem Dominating Set is NP-complete for chordal graphs [5] and chordal
bipartite graphs [16].

Theorem 1 Geodetic Set restricted to chordal graphs is NP-complete.

Proof: Since the interval of a given set of vertices can be determined in polynomial time
by shortest path methods, Geodetic Set is in NP.

In order to prove NP-completeness, we describe a polynomial reduction of Dominating
Set restricted to chordal graphs [5] to Geodetic Set restricted to chordal graphs. Let
(G, k) be an instance of Dominating Set such that G is chordal. Let the graph G′ arise
from G as follows: For every vertex u ∈ V (G), add two new vertices xu and yu and add
the new edges uxu and xuyu. Furthermore add a new vertex z and new edges uz and xuz
for every u ∈ V (G). Let k′ = k + |V (G)|. Note that G′ is chordal.
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If G has a dominating set D with |D| ≤ k, then let D′ = D∪{yu | u ∈ V (G)}. Clearly,
{xu | u ∈ V (G)} ∪ {z} ⊆ I[{yu | u ∈ V (G)}] ⊆ I[D′]. Furthermore, if u ∈ V (G) \ D,
then there is a vertex v ∈ D with uv ∈ E(G). Since dG′(v, yu) = 3 and vuxuyu is a path
of length 3 in G′, we have u ∈ I[v, yu] ⊆ I[D′]. Hence D′ is a geodetic set of G′ with
|D′| ≤ k + |V (G)| = k′.

Conversely, if G′ has a geodetic set D′ with |D′| ≤ k′, then let D = D′∩V (G). Clearly,
D is not empty. Since {yu | u ∈ V (G)} ⊆ D′, we have |D| ≤ k′ − |V (G)| = k. If
u ∈ V (G)\D, then either there are two vertices v, w ∈ D with u ∈ I[v, w] or there are two
vertices v ∈ D and w ∈ D′ \ V (G) with u ∈ I[v, w]. In both cases, the distances within G′

imply that v must be a neighbour of u. Hence D is a dominating set of G with |D| ≤ k. 2

Theorem 2 Geodetic Set restricted to chordal bipartite graphs is NP-complete.

Proof: In order to prove NP-completeness, we describe a polynomial reduction of Dom-
inating Set restricted to chordal bipartite graphs [16] to Geodetic Set restricted to
chordal bipartite graphs. Let (G, k) be an instance of Dominating Set such that G is
chordal bipartite.

Let the graph G′ arise from G as follows: Let A and B denote the partite sets of G.
Add four new vertices a1, a2, b1, b2 and add new edges a1b for all b ∈ B ∪ {b1, b2} and b1a
for all a ∈ A ∪ {a1, a2}. Let k′ = k + 2. Note that G′ is chordal bipartite.

If G has a dominating set D with |D| ≤ k, then let D′ = D ∪ {a2, b2}. Clearly,
a1, b1 ∈ I[a2, b2]. Furthermore, if a ∈ A\D, then there is a vertex b ∈ D∩B with ab ∈ E(G).
Since dG′(a2, b) = 3 and a2b1ab is a path of length 3 in G′, we have a ∈ I[a2, b] ⊆ I[D′].
Hence, by symmetry, D′ is a geodetic set of G′ with |D′| ≤ k + 2 = k′.

Conversely, if G′ has a geodetic set D′ with |D′| ≤ k′, then let D = D′∩V (G). Clearly,
a2, b2 ∈ D′ and D is not empty. If a ∈ A \D, then either there are two vertices b ∈ D ∩B
and v ∈ D with a ∈ I[b, v] or there is a vertex vertex b ∈ D ∩B with a ∈ I[b, a2]. In both
cases, the distances within G′ imply that a must be a neighbour of b. Hence, by symmetry,
D is a dominating set of G with |D| ≤ k. 2

3 Bounds for triangle-free graphs

In this section we prove upper bounds on the geodetic number for graphs without short
cycles. The girth of a graph G is the length of a shortest cycle in G or ∞, if G has no
cycles. Our first result is a probabilistic bound for graphs of large girth.

Theorem 3 If G is a graph of order n, girth at least 4h, and minimum degree at least δ,
then

(i)

g(G) ≤ n

(
p+ δ(1− p)(δ−1)

(δ−1)h−1
δ−2

+1 − (δ − 1)(1− p)δ
(δ−1)h−1

δ−2
+1

)
for every p ∈ (0, 1) and
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(ii)

g(G) ≤ n
ln
(
δ
(

(δ − 1) (δ−1)h−1
δ−2

+ 1
))

+ 1

(δ − 1) (δ−1)h−1
δ−2

+ 1
.

Proof: For some p ∈ (0, 1), select every vertex of G independently at random with probabil-
ity p and denote the set of selected vertices by A. If B = V (G)\I[A], then I[A∪B] = V (G)
and hence g(G) ≤ |A ∪B|.

Claim A P[u ∈ B] ≤ δ(1− p)(δ−1)nδ,h+1 − (δ − 1)(1− p)δnδ,h+1 for u ∈ V (G).

Proof of Claim A: Let u ∈ V (G). Let d denote the degree of u and let v1, v2, . . . , vd
denote the neighbours of u. For 1 ≤ i ≤ d, let Vi denote the set of vertices w with
dG(u,w) = dG(vi, w) + 1 ≤ h.

Since G has girth at least 4h, there are no two distinct paths of length at most h
between two vertices. Since the distance between u and a vertex w in Vi for 1 ≤ i ≤ d is
at most h and dG(u,w) = dG(vi, w) + 1, the unique shortest path between u and w passes
through vi.

Let ni = |Vi| for 1 ≤ i ≤ d. Let ñ = n1 + n2 + · · ·+ nd. Note that for 1 ≤ i ≤ d,

ni ≥ nδ,h :=
h−1∑
j=0

(δ − 1)j =
(δ − 1)h − 1

δ − 2
.

If w1 and w2 belong to different sets among V1, V2, . . . , Vd and u does not belong to
some shortest path between w1 and w2, then there is a path between w1 and w2 of length
at most 2h which passes through u and a necessarily distinct shortest path between w1 and
w2 of length strictly less than 2h. The union of these two paths contains a cycle of length
strictly less than 4h, which is a contradiction. Hence the vertex u belongs to some shortest
path between every two vertices from different sets among V1, V2, . . . , Vd. Therefore, if the
vertex u belongs to B, then u 6∈ A and A∩Vi is non-empty for at most one index 1 ≤ i ≤ d.
We obtain P[u ∈ B] ≤ (1− p)fd(n1, n2, . . . , nd) for

fd(n1, n2, . . . , nd) = (1− p)ñ +
d∑
i=1

(1− (1− p)ni) (1− p)ñ−ni

= −(d− 1)(1− p)ñ +
d∑
i=1

(1− p)ñ−ni

Since for 1 ≤ i ≤ d,

∂

∂ni
fd(n1, n2, . . . , nd) = ln(1− p)

−(d− 1)(1− p)ñ +
∑

j∈{1,2,...,d}\{i}

(1− p)ñ−nj


=
∑

j∈{1,2,...,d}\{i}

ln(1− p)
(
(1− p)ñ−nj − (1− p)ñ

)
< 0,
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we obtain

fd(n1, n2, . . . , nd) ≤ fd(nδ,h, nδ,h, . . . , nδ,h)

= d(1− p)(d−1)nδ,h − (d− 1)(1− p)dnδ,h .

Since for d ≥ 1 and c ∈ (0, 1)

∂

∂d

(
dc(d−1) − (d− 1)cd

)
= c(d−1) + ln(c)dc(d−1) − cd − ln(c)(d− 1)cd

= c(d−1) (1− c+ c ln(c) + d ln(c)(1− c))
≤ c(d−1) (1− c+ c ln(c) + ln(c)(1− c))
= c(d−1) (1− c+ ln(c))

< 0,

we obtain

P[u ∈ B] ≤ (1− p)fd(n1, n2, . . . , nd)

≤ (1− p)fd(nδ,h, nδ,h, . . . , nδ,h)
≤ (1− p)fδ(nδ,h, nδ,h, . . . , nδ,h)
= δ(1− p)(δ−1)nδ,h+1 − (δ − 1)(1− p)δnδ,h+1

which completes the proof of the claim. 2

By Claim A, we obtain

E[|A ∪B|] ≤
∑

u∈V (G)

(P[u ∈ A] + P[u ∈ B])

≤ n
(
p+ δ(1− p)(δ−1)nδ,h+1 − (δ − 1)(1− p)δnδ,h+1

)
which proves (i) by the first moment principle [1].

For p =
ln(δ((δ−1)nδ,h+1))

(δ−1)nδ,h+1
, we obtain

E[|A ∪B|] ≤ np+ nδ(1− p)(δ−1)nδ,h+1 − n(δ − 1)(1− p)δnδ,h+1

≤ np+ nδ(1− p)(δ−1)nδ,h+1

≤ np+ nδe−p((δ−1)nδ,h+1)

= n
ln (δ ((δ − 1)nδ,h + 1)) + 1

(δ − 1)nδ,h + 1

which proves (ii). 2

For triangle-free graphs Theorem 3 immediately implies the following.
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Corollary 4 If G is a triangle-free graph of order n and minimum degree at least δ, then

g(G) ≤ n

(
2 ln δ

δ
+

(
1 + 2

(
1− 1

δ

)
ln δ

)
1

δ2

)
.

Proof: This follows easily from Theorem 3 (i) for h = 1 and p = 2 ln(δ)
δ

. 2

We close this section with another simple bound for triangle-free graphs.

Proposition 5 If G is a triangle-free graph of minimum degree at least 2 and M is a
maximal matching in G, then g(G) ≤ 2|M |.

Proof: Let D denote the set of vertices of G which are incident with an edge in M . Since
M is maximal, V (G) \D is an independent set. Hence every vertex v ∈ V (G) \D has two
neighbours u and w in D. Since G is triangle-free, v ∈ I[u,w] ⊆ I[D]. 2

4 Special graph classes

In this section we consider the geodetic number of cographs, split graphs, and unit interval
graphs. We refer the reader to [6] for detailed definitions. Since the geodetic number of
a disconnected graph equals the sum of the geodetic numbers of its components, we may
restrict our attention to connected graphs.

Our first two results give exact values for the geodetic number of cographs and split
graphs.

Theorem 6 If G is connected cograph of order n and G1, . . . , Gk, Gk+1, . . . , Gt are the
subgraphs of G induced by the vertex sets of the connected components of the complement
of G where |V (Gi)| ≥ 2 if and only if 1 ≤ i ≤ k, then

g(G) =


n , if k = 0,
g(G1) , if k = 1, and

min

{
4, min

1≤i≤k
g(Gi)

}
, if k ≥ 2.

Proof: First, let k = 0. Since G is complete, g(G) = n.
Next, let k = 1. If D is a geodetic set of G, then D ∩ V (G1) is a geodetic set of G1.

Conversely, since G1 is non-complete, every geodetic set of G1 is also a geodetic set of G.
Hence g(G) = g(G1).

Finally, let k ≥ 2. Since two non-adjacent vertices from G1 together with two non-
adjacent vertices from G2 form a geodetic set of G, we have g(G) ≤ 4. Furthermore, since
Gi is non-complete for 1 ≤ i ≤ k, every geodetic set of Gi contains two non-adjacent
vertices and hence it is also a geodetic set of G. Thus g(G) ≤ min

1≤i≤k
g(Gi).
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If g(G) = 2, then a geodetic set of G with two elements consists of two non-adjacent
vertices which must both belong to Gj for some 1 ≤ j ≤ k. Hence g(Gj) = min

1≤i≤k
g(Gi) = 2.

If g(G) = 3 and D is a geodetic set of G with three elements which do not all belong
to Gj for some 1 ≤ j ≤ k, then there are two distinct indices 1 ≤ j1, j2 ≤ k such that D
contains exactly two non-adjacent vertices u and v from Gj1 and D contains exactly one
vertex w from Gj2 . Since w ∈ I[u, v], I[u,w] = {u,w}, and I[v, w] = {v, w}, we obtain that
{u, v} is a geodetic set of G contradicting g(G) = 3. Hence, if g(G) = 3, every geodetic set
of G with three elements belongs to Gj for some 1 ≤ j ≤ k and g(Gj) = min

1≤i≤k
g(Gi) = 3.

This completes the proof. 2

Using Theorem 6 and modular decompositions [14, 15], the geodetic number of a cograph
can be computed in linear time.

Theorem 7 Let G be a connected split graph. Let V1 ∪ V2 be a partition of V (G) such
that V1 is a maximal independent set and V2 is a clique. Let S denote the set of simplicial
vertices of G. Let U denote the set of vertices u ∈ V2 \S which have exactly one neighbour
in V1, say u′, V2 ∩ S ⊆ NG(u′) and dG(u′, w) = 2 for all w ∈ V1 \ {u′}.

(i) If U = ∅, then g(G) = |S|.

(ii) If U 6= ∅ and there is a vertex v ∈ V2 \ S such that

(NG(v) ∩ V1) ∩

 ⋃
u∈U\{v}

(NG(u) ∩ V1)

 = ∅,

then g(G) = |S|+ 1.

(iii) If U 6= ∅ and there is no vertex v ∈ V2 \ S as specified in (ii), then g(G) = |S|+ 2.

Proof: Let Ũ = V (G) \ I[S]. It is easy to see that U ⊆ Ũ . Let u ∈ Ũ . Since V1 ⊆ S, we
have u ∈ V2 \ S and u has at most one neighbour in V1. Since V1 is maximal independent,
u has exactly one neighbour u′ in V1. If u′ is non-adjacent to some vertex v ∈ V2 ∩S, then
u ∈ I[u′, v], which is a contradiction. Hence V2 ∩ S ⊆ NG(u′). If there is a vertex w ∈ V1

such that dG(u′, w) ≥ 3, then w has a neighbour x in V2 and u′uxw is a shortest path
between u′ and w, which implies the contradiction u ∈ I[u′, w]. Hence Ũ = U . Since the
vertices in S belong to every geodetic set of G, this implies (i).

If g(G) = |S|+ 1, then U 6= ∅ and G has a geodetic set D with D = S ∪ {v} for some
v ∈ V2\S. Let u ∈ U \{v} and let u′ denote the neighbour of u in V1. Since D is a geodetic
set, u ∈ I[u′, v] which implies that v is non-adjacent to u′, i.e. v satisfies the condition
specified in (ii). Conversely, if the hypothesis of (ii) is satisfied, then S ∪ {v} is a geodetic
set of G which implies g(G) = |S|+ 1. This implies (ii).

Furthermore, if the hypothesis of (iii) is satisfied, then g(G) ≥ |S|+2. Since the vertices
in U are non-simplicial, every vertex u in U is adjacent to a vertex in V2 which is non-
adjacent to the unique neighbour of u in V1. By the hypothesis of (iii), this implies that
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there are two vertices u1 and u2 in U such that their unique neighbours in V1 are distinct.
If u ∈ U \ {u1, u2} and u′ is the unique neighbour of u in V1, then u′ is non-adjacent either
to u1 or to u2 and u ∈ I[u′, u1] ∪ I[u′, u2]. Hence g(G) ≤ |S|+ 2 which implies (iii). 2

Using Theorem 7, the geodetic number of a split graph can be computed in linear time.
Our final result is a best-possible upper bound on the geodetic number of unit interval

graphs.

Theorem 8 If G is a connected unit interval graph with s simplicial vertices and diameter
d, then g(G) ≤ s+ 2(d− 1).

Proof: Let v1, v2, . . . , vn be a canonical ordering of the vertices of G [4,11,17], i.e. for every
edge vivj with 1 ≤ i < j ≤ n the vertices vi, vi+1, . . . , vj form a clique. Let S denote the
set of simplicial vertices. For 0 ≤ i ≤ d, let

Ii = {v ∈ V (G) | dG(v1, v) = i and dG(v, vn) = d− i}.

Clearly, I := I0 ∪ I1 ∪ . . . ∪ Id = I[v1, vn] ⊆ I[S]. For 0 ≤ i ≤ d, let

Ri = {v ∈ V (G) \ (I ∪ S) | dG(v1, v) = i}.

Clearly, for 1 ≤ i ≤ d and u ∈ Ri, we have Ii−1 ∪Ri ∪ Ii ⊆ NG(u)∪ {u}. If Ii−1 ∪Ri ∪ Ii =
NG(u) ∪ {u}, then we call u quasi-simplicial.

For 0 ≤ k ≤ d, let ik and i′k denote the first and last vertex in Ik according to the
canonical ordering of the vertices. For 1 ≤ k ≤ d with Rk 6= ∅, let rk and r′k denote the
first and last vertex in Rk according to the canonical ordering of the vertices.

Starting with the empty set, we construct a geodetic set D of G as follows: Add all
vertices in S to D. If R1 is non-empty, then, since no vertex in R1 is simplicial, R2 is
non-empty and R1 ⊆ I[v1, r2]. In this case add r2 to D. Similarly, if Rd is non-empty,
then, since no vertex in Rd is simplicial, Rd−1 is non-empty and Rd ⊆ I[vn, r

′
d−1]. In this

case add r′d−1 to D. If 2 ≤ k ≤ d − 1 and Rk contains quasi-simplicial vertices, then
ik−1 and i′k are non-adjacent and Rk ⊆ I[ik−1, i

′
k]. In this case add ik−1 and i′k to D. If

2 ≤ k ≤ d − 1 and Rk is non-empty but contains no quasi-simplicial vertices, then every
vertex in Rk is adjacent either to r′k−1 or to rk, i.e. in particular at least one of these two
vertices is well-defined. If rk exists, then all vertices of Rk which are adjacent to rk belong
to I[v1, rk]. In this case add rk to D. Similarly, if r′k−1 exists, then all vertices of Rk which
are adjacent to r′k−1 belong to I[vn, r

′
k−1]. In this case add r′k−1 to D.

From the definition of D and the previous observations, it is clear that D is a geodetic
set of G. Furthermore, D contains at most g+ 2(d−1) vertices which completes the proof.
2

The graphs illustrated in Figure 1 show that Theorem 8 is best-possible. In this figure only
the edges vivj with j = max{k | vivk ∈ E(G)} and i = min{k | vkvj ∈ E(G)} are shown.
Note that R1 = {r1

1, r
2
1} and R2 = {r1

2, r
2
2, r

3
2, r

4
2}.
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Figure 1 Extremal Graph for Theorem 8
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