Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/15
Some remarks on the geodetic number of a graph

Dourado, Mitre C.; Protti, Fábio;
Rautenbach, Dieter; Szwarcfiter, Jayme Luiz

2009

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

Some Remarks on the Geodetic Number of a Graph

Mitre C. Dourado ${ }^{1}$, Fábio Protti ${ }^{2}$, Dieter Rautenbach ${ }^{3}$, and
Jayme L. Szwarcfiter ${ }^{4}$
${ }^{1}$ ICE, Universidade Federal Rural do Rio de Janeiro and NCE - UFRJ, Brazil, email: mitre@nce.ufrj.br
${ }^{2}$ Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE, Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil, email: fabiop@dcc.ufrj.br
${ }^{3}$ Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, email: dieter.rautenbach@tu-ilmenau.de
${ }^{4}$ Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE, Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil, email: jayme@nce.ufrj.br

Abstract

A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.

We prove that it is NP complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.

Keywords. Cograph; convex hull; convex set; geodetic number; split graph; unit interval graph

1 Introduction

We consider finite, undirected and simple graphs G with vertex set $V(G)$ and edge set $E(G)$. The neighbourhood of a vertex u in G is denoted by $N_{G}(u)$. A set of pairwise non-adjacent vertices is called independent and a set of pairwise adjacent vertices is called a clique. A vertex is simplicial if its neighbourhood is a clique. The distance $d_{G}(u, v)$ between two vertices u and v in G is the length of a shortest path between u and v or ∞, if no such path exists. The diameter of G is the maximum distance between two vertices in G.

The interval $I[u, v]$ between two vertices u and v in G is the set of vertices of G which belong to a shortest path between u and v. Note that a vertex w belongs to $I[u, v]$ if and only if $d_{G}(u, v)=d_{G}(u, w)+d_{G}(w, v)$. For a set S of vertices, let the interval $I[S]$ of S be
the union of the intervals $I[u, v]$ over all pairs of vertices u and v in S. A set of vertices S is called geodetic if $I[S]$ contains all vertices of G. Harary et al. [12] define the geodetic number $g(G)$ of a graph G as the minimum cardinality of a geodetic set. The calculation of the geodetic number is an NP-hard problem for general graphs [3] and [2,7-10,13] contain numerous results and references concerning geodetic sets and the geodetic number.

Our results are as follows. In Section 2 we simplify and refine the existing complexity result [3] by proving that the decision problem corresponding to the geodetic number remains NP-complete even when restricted to chordal or chordal bipartite graphs. In Section 3 we prove upper bounds on the geodetic number of graphs without short cycles and in particular for triangle-free graphs. Finally, in Section 4 we consider the geodetic number of cographs, split graphs and unit interval graphs.

2 Complexity results for chordal graphs

In this section we prove hardness results for the following decision problem.

Geodetic Set

Instance: A graph G and an integer k.
Question: Does G have a geodetic set of cardinality at most k ?
Our proofs will relate Geodetic Set to the following well-known problem. Recall that a set of vertices D of a graph G is dominating if every vertex in $V(G) \backslash D$ has a neighbour in D.

Dominating Set

Instance: A graph G and an integer k.
Question: Does G have a dominating set of cardinality at most k ?
A graph is chordal if it does not contain an induced cycle of length at least 4. Similarly, a bipartite graph is chordal bipartite if it does not contain an induced cycle of length at least 6. The problem Dominating Set is NP-complete for chordal graphs [5] and chordal bipartite graphs [16].

Theorem 1 Geodetic Set restricted to chordal graphs is $N P$-complete.
Proof: Since the interval of a given set of vertices can be determined in polynomial time by shortest path methods, Geodetic Set is in NP.

In order to prove NP-completeness, we describe a polynomial reduction of Dominating Set restricted to chordal graphs [5] to Geodetic Set restricted to chordal graphs. Let (G, k) be an instance of Dominating Set such that G is chordal. Let the graph G^{\prime} arise from G as follows: For every vertex $u \in V(G)$, add two new vertices x_{u} and y_{u} and add the new edges $u x_{u}$ and $x_{u} y_{u}$. Furthermore add a new vertex z and new edges $u z$ and $x_{u} z$ for every $u \in V(G)$. Let $k^{\prime}=k+|V(G)|$. Note that G^{\prime} is chordal.

If G has a dominating set D with $|D| \leq k$, then let $D^{\prime}=D \cup\left\{y_{u} \mid u \in V(G)\right\}$. Clearly, $\left\{x_{u} \mid u \in V(G)\right\} \cup\{z\} \subseteq I\left[\left\{y_{u} \mid u \in V(G)\right\}\right] \subseteq I\left[D^{\prime}\right]$. Furthermore, if $u \in V(G) \backslash D$, then there is a vertex $v \in D$ with $u v \in E(G)$. Since $d_{G^{\prime}}\left(v, y_{u}\right)=3$ and $v u x_{u} y_{u}$ is a path of length 3 in G^{\prime}, we have $u \in I\left[v, y_{u}\right] \subseteq I\left[D^{\prime}\right]$. Hence D^{\prime} is a geodetic set of G^{\prime} with $\left|D^{\prime}\right| \leq k+|V(G)|=k^{\prime}$.

Conversely, if G^{\prime} has a geodetic set D^{\prime} with $\left|D^{\prime}\right| \leq k^{\prime}$, then let $D=D^{\prime} \cap V(G)$. Clearly, D is not empty. Since $\left\{y_{u} \mid u \in V(G)\right\} \subseteq D^{\prime}$, we have $|D| \leq k^{\prime}-|V(G)|=k$. If $u \in V(G) \backslash D$, then either there are two vertices $v, w \in D$ with $u \in I[v, w]$ or there are two vertices $v \in D$ and $w \in D^{\prime} \backslash V(G)$ with $u \in I[v, w]$. In both cases, the distances within G^{\prime} imply that v must be a neighbour of u. Hence D is a dominating set of G with $|D| \leq k$.

Theorem 2 Geodetic Set restricted to chordal bipartite graphs is NP-complete.
Proof: In order to prove NP-completeness, we describe a polynomial reduction of Dominating Set restricted to chordal bipartite graphs [16] to Geodetic Set restricted to chordal bipartite graphs. Let (G, k) be an instance of Dominating Set such that G is chordal bipartite.

Let the graph G^{\prime} arise from G as follows: Let A and B denote the partite sets of G. Add four new vertices $a_{1}, a_{2}, b_{1}, b_{2}$ and add new edges $a_{1} b$ for all $b \in B \cup\left\{b_{1}, b_{2}\right\}$ and $b_{1} a$ for all $a \in A \cup\left\{a_{1}, a_{2}\right\}$. Let $k^{\prime}=k+2$. Note that G^{\prime} is chordal bipartite.

If G has a dominating set D with $|D| \leq k$, then let $D^{\prime}=D \cup\left\{a_{2}, b_{2}\right\}$. Clearly, $a_{1}, b_{1} \in I\left[a_{2}, b_{2}\right]$. Furthermore, if $a \in A \backslash D$, then there is a vertex $b \in D \cap B$ with $a b \in E(G)$. Since $d_{G^{\prime}}\left(a_{2}, b\right)=3$ and $a_{2} b_{1} a b$ is a path of length 3 in G^{\prime}, we have $a \in I\left[a_{2}, b\right] \subseteq I\left[D^{\prime}\right]$. Hence, by symmetry, D^{\prime} is a geodetic set of G^{\prime} with $\left|D^{\prime}\right| \leq k+2=k^{\prime}$.

Conversely, if G^{\prime} has a geodetic set D^{\prime} with $\left|D^{\prime}\right| \leq k^{\prime}$, then let $D=D^{\prime} \cap V(G)$. Clearly, $a_{2}, b_{2} \in D^{\prime}$ and D is not empty. If $a \in A \backslash D$, then either there are two vertices $b \in D \cap B$ and $v \in D$ with $a \in I[b, v]$ or there is a vertex vertex $b \in D \cap B$ with $a \in I\left[b, a_{2}\right]$. In both cases, the distances within G^{\prime} imply that a must be a neighbour of b. Hence, by symmetry, D is a dominating set of G with $|D| \leq k$.

3 Bounds for triangle-free graphs

In this section we prove upper bounds on the geodetic number for graphs without short cycles. The girth of a graph G is the length of a shortest cycle in G or ∞, if G has no cycles. Our first result is a probabilistic bound for graphs of large girth.

Theorem 3 If G is a graph of order n, girth at least 4h, and minimum degree at least δ, then
(i)

$$
g(G) \leq n\left(p+\delta(1-p)^{(\delta-1) \frac{(\delta-1)^{h}-1}{\delta-2}+1}-(\delta-1)(1-p)^{\delta \frac{(\delta-1)^{h}-1}{\delta-2}+1}\right)
$$

for every $p \in(0,1)$ and
(ii)

$$
g(G) \leq n \frac{\ln \left(\delta\left((\delta-1) \frac{(\delta-1)^{h}-1}{\delta-2}+1\right)\right)+1}{(\delta-1) \frac{(\delta-1)^{h}-1}{\delta-2}+1}
$$

Proof: For some $p \in(0,1)$, select every vertex of G independently at random with probability p and denote the set of selected vertices by A. If $B=V(G) \backslash I[A]$, then $I[A \cup B]=V(G)$ and hence $g(G) \leq|A \cup B|$.

Claim A $\mathbf{P}[u \in B] \leq \delta(1-p)^{(\delta-1) n_{\delta, h}+1}-(\delta-1)(1-p)^{\delta n_{\delta, h}+1}$ for $u \in V(G)$.
Proof of Claim A: Let $u \in V(G)$. Let d denote the degree of u and let $v_{1}, v_{2}, \ldots, v_{d}$ denote the neighbours of u. For $1 \leq i \leq d$, let V_{i} denote the set of vertices w with $d_{G}(u, w)=d_{G}\left(v_{i}, w\right)+1 \leq h$.

Since G has girth at least $4 h$, there are no two distinct paths of length at most h between two vertices. Since the distance between u and a vertex w in V_{i} for $1 \leq i \leq d$ is at most h and $d_{G}(u, w)=d_{G}\left(v_{i}, w\right)+1$, the unique shortest path between u and w passes through v_{i}.

Let $n_{i}=\left|V_{i}\right|$ for $1 \leq i \leq d$. Let $\tilde{n}=n_{1}+n_{2}+\cdots+n_{d}$. Note that for $1 \leq i \leq d$,

$$
n_{i} \geq n_{\delta, h}:=\sum_{j=0}^{h-1}(\delta-1)^{j}=\frac{(\delta-1)^{h}-1}{\delta-2}
$$

If w_{1} and w_{2} belong to different sets among $V_{1}, V_{2}, \ldots, V_{d}$ and u does not belong to some shortest path between w_{1} and w_{2}, then there is a path between w_{1} and w_{2} of length at most $2 h$ which passes through u and a necessarily distinct shortest path between w_{1} and w_{2} of length strictly less than $2 h$. The union of these two paths contains a cycle of length strictly less than $4 h$, which is a contradiction. Hence the vertex u belongs to some shortest path between every two vertices from different sets among $V_{1}, V_{2}, \ldots, V_{d}$. Therefore, if the vertex u belongs to B, then $u \notin A$ and $A \cap V_{i}$ is non-empty for at most one index $1 \leq i \leq d$. We obtain $\mathbf{P}[u \in B] \leq(1-p) f_{d}\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ for

$$
\begin{aligned}
f_{d}\left(n_{1}, n_{2}, \ldots, n_{d}\right) & =(1-p)^{\tilde{n}}+\sum_{i=1}^{d}\left(1-(1-p)^{n_{i}}\right)(1-p)^{\tilde{n}-n_{i}} \\
& =-(d-1)(1-p)^{\tilde{n}}+\sum_{i=1}^{d}(1-p)^{\tilde{n}-n_{i}}
\end{aligned}
$$

Since for $1 \leq i \leq d$,

$$
\begin{aligned}
\frac{\partial}{\partial n_{i}} f_{d}\left(n_{1}, n_{2}, \ldots, n_{d}\right) & =\ln (1-p)\left(-(d-1)(1-p)^{\tilde{n}}+\sum_{j \in\{1,2, \ldots, d\} \backslash\{i\}}(1-p)^{\tilde{n}-n_{j}}\right) \\
& =\sum_{j \in\{1,2, \ldots, d\} \backslash\{i\}} \ln (1-p)\left((1-p)^{\tilde{n}-n_{j}}-(1-p)^{\tilde{n}}\right) \\
& <0,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
f_{d}\left(n_{1}, n_{2}, \ldots, n_{d}\right) & \leq f_{d}\left(n_{\delta, h}, n_{\delta, h}, \ldots, n_{\delta, h}\right) \\
& =d(1-p)^{(d-1) n_{\delta, h}}-(d-1)(1-p)^{d n_{\delta, h} .} .
\end{aligned}
$$

Since for $d \geq 1$ and $c \in(0,1)$

$$
\begin{aligned}
\frac{\partial}{\partial d}\left(d c^{(d-1)}-(d-1) c^{d}\right) & =c^{(d-1)}+\ln (c) d c^{(d-1)}-c^{d}-\ln (c)(d-1) c^{d} \\
& =c^{(d-1)}(1-c+c \ln (c)+d \ln (c)(1-c)) \\
& \leq c^{(d-1)}(1-c+c \ln (c)+\ln (c)(1-c)) \\
& =c^{(d-1)}(1-c+\ln (c)) \\
& <0,
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\mathbf{P}[u \in B] & \leq(1-p) f_{d}\left(n_{1}, n_{2}, \ldots, n_{d}\right) \\
& \leq(1-p) f_{d}\left(n_{\delta, h}, n_{\delta, h}, \ldots, n_{\delta, h}\right) \\
& \leq(1-p) f_{\delta}\left(n_{\delta, h}, n_{\delta, h}, \ldots, n_{\delta, h}\right) \\
& =\delta(1-p)^{(\delta-1) n_{\delta, h}+1}-(\delta-1)(1-p)^{\delta n_{\delta, h}+1}
\end{aligned}
$$

which completes the proof of the claim.
By Claim A, we obtain

$$
\begin{aligned}
\mathbf{E}[|A \cup B|] & \leq \sum_{u \in V(G)}(\mathbf{P}[u \in A]+\mathbf{P}[u \in B]) \\
& \leq n\left(p+\delta(1-p)^{(\delta-1) n_{\delta, h}+1}-(\delta-1)(1-p)^{\delta n_{\delta, h}+1}\right)
\end{aligned}
$$

which proves (i) by the first moment principle [1].
For $p=\frac{\ln \left(\delta\left((\delta-1) n_{\delta, h}+1\right)\right)}{(\delta-1) n_{\delta, h}+1}$, we obtain

$$
\begin{aligned}
\mathbf{E}[|A \cup B|] & \leq n p+n \delta(1-p)^{(\delta-1) n_{\delta, h}+1}-n(\delta-1)(1-p)^{\delta n_{\delta, h}+1} \\
& \leq n p+n \delta(1-p)^{(\delta-1) n_{\delta, h}+1} \\
& \leq n p+n \delta e^{-p\left((\delta-1) n_{\delta, h}+1\right)} \\
& =n \frac{\ln \left(\delta\left((\delta-1) n_{\delta, h}+1\right)\right)+1}{(\delta-1) n_{\delta, h}+1}
\end{aligned}
$$

which proves (ii).
For triangle-free graphs Theorem 3 immediately implies the following.

Corollary 4 If G is a triangle-free graph of order n and minimum degree at least δ, then

$$
g(G) \leq n\left(\frac{2 \ln \delta}{\delta}+\left(1+2\left(1-\frac{1}{\delta}\right) \ln \delta\right) \frac{1}{\delta^{2}}\right)
$$

Proof: This follows easily from Theorem 3 (i) for $h=1$ and $p=\frac{2 \ln (\delta)}{\delta}$.
We close this section with another simple bound for triangle-free graphs.
Proposition 5 If G is a triangle-free graph of minimum degree at least 2 and M is a maximal matching in G, then $g(G) \leq 2|M|$.

Proof: Let D denote the set of vertices of G which are incident with an edge in M. Since M is maximal, $V(G) \backslash D$ is an independent set. Hence every vertex $v \in V(G) \backslash D$ has two neighbours u and w in D. Since G is triangle-free, $v \in I[u, w] \subseteq I[D]$.

4 Special graph classes

In this section we consider the geodetic number of cographs, split graphs, and unit interval graphs. We refer the reader to [6] for detailed definitions. Since the geodetic number of a disconnected graph equals the sum of the geodetic numbers of its components, we may restrict our attention to connected graphs.

Our first two results give exact values for the geodetic number of cographs and split graphs.

Theorem 6 If G is connected cograph of order n and $G_{1}, \ldots, G_{k}, G_{k+1}, \ldots, G_{t}$ are the subgraphs of G induced by the vertex sets of the connected components of the complement of G where $\left|V\left(G_{i}\right)\right| \geq 2$ if and only if $1 \leq i \leq k$, then

$$
g(G)= \begin{cases}n & , \text { if } k=0 \\ g\left(G_{1}\right) & \text { if } k=1, \text { and } \\ \min \left\{4, \min _{1 \leq i \leq k} g\left(G_{i}\right)\right\} & , \text { if } k \geq 2\end{cases}
$$

Proof: First, let $k=0$. Since G is complete, $g(G)=n$.
Next, let $k=1$. If D is a geodetic set of G, then $D \cap V\left(G_{1}\right)$ is a geodetic set of G_{1}. Conversely, since G_{1} is non-complete, every geodetic set of G_{1} is also a geodetic set of G. Hence $g(G)=g\left(G_{1}\right)$.

Finally, let $k \geq 2$. Since two non-adjacent vertices from G_{1} together with two nonadjacent vertices from G_{2} form a geodetic set of G, we have $g(G) \leq 4$. Furthermore, since G_{i} is non-complete for $1 \leq i \leq k$, every geodetic set of G_{i} contains two non-adjacent vertices and hence it is also a geodetic set of G. Thus $g(G) \leq \min _{1 \leq i \leq k} g\left(G_{i}\right)$.

If $g(G)=2$, then a geodetic set of G with two elements consists of two non-adjacent vertices which must both belong to G_{j} for some $1 \leq j \leq k$. Hence $g\left(G_{j}\right)=\min _{1 \leq i \leq k} g\left(G_{i}\right)=2$.

If $g(G)=3$ and D is a geodetic set of G with three elements which do not all belong to G_{j} for some $1 \leq j \leq k$, then there are two distinct indices $1 \leq j_{1}, j_{2} \leq k$ such that D contains exactly two non-adjacent vertices u and v from $G_{j_{1}}$ and D contains exactly one vertex w from $G_{j_{2}}$. Since $w \in I[u, v], I[u, w]=\{u, w\}$, and $I[v, w]=\{v, w\}$, we obtain that $\{u, v\}$ is a geodetic set of G contradicting $g(G)=3$. Hence, if $g(G)=3$, every geodetic set of G with three elements belongs to G_{j} for some $1 \leq j \leq k$ and $g\left(G_{j}\right)=\min _{1 \leq i \leq k} g\left(G_{i}\right)=3$.

This completes the proof.
Using Theorem 6 and modular decompositions [14, 15], the geodetic number of a cograph can be computed in linear time.

Theorem 7 Let G be a connected split graph. Let $V_{1} \cup V_{2}$ be a partition of $V(G)$ such that V_{1} is a maximal independent set and V_{2} is a clique. Let S denote the set of simplicial vertices of G. Let U denote the set of vertices $u \in V_{2} \backslash S$ which have exactly one neighbour in V_{1}, say $u^{\prime}, V_{2} \cap S \subseteq N_{G}\left(u^{\prime}\right)$ and $d_{G}\left(u^{\prime}, w\right)=2$ for all $w \in V_{1} \backslash\left\{u^{\prime}\right\}$.
(i) If $U=\emptyset$, then $g(G)=|S|$.
(ii) If $U \neq \emptyset$ and there is a vertex $v \in V_{2} \backslash S$ such that

$$
\left(N_{G}(v) \cap V_{1}\right) \cap\left(\bigcup_{u \in U \backslash\{v\}}\left(N_{G}(u) \cap V_{1}\right)\right)=\emptyset,
$$

then $g(G)=|S|+1$.
(iii) If $U \neq \emptyset$ and there is no vertex $v \in V_{2} \backslash S$ as specified in (ii), then $g(G)=|S|+2$.

Proof: Let $\tilde{U}=V(G) \backslash I[S]$. It is easy to see that $U \subseteq \tilde{U}$. Let $u \in \tilde{U}$. Since $V_{1} \subseteq S$, we have $u \in V_{2} \backslash S$ and u has at most one neighbour in V_{1}. Since V_{1} is maximal independent, u has exactly one neighbour u^{\prime} in V_{1}. If u^{\prime} is non-adjacent to some vertex $v \in V_{2} \cap S$, then $u \in I\left[u^{\prime}, v\right]$, which is a contradiction. Hence $V_{2} \cap S \subseteq N_{G}\left(u^{\prime}\right)$. If there is a vertex $w \in V_{1}$ such that $d_{G}\left(u^{\prime}, w\right) \geq 3$, then w has a neighbour x in V_{2} and $u^{\prime} u x w$ is a shortest path between u^{\prime} and w, which implies the contradiction $u \in I\left[u^{\prime}, w\right]$. Hence $\tilde{U}=U$. Since the vertices in S belong to every geodetic set of G, this implies (i).

If $g(G)=|S|+1$, then $U \neq \emptyset$ and G has a geodetic set D with $D=S \cup\{v\}$ for some $v \in V_{2} \backslash S$. Let $u \in U \backslash\{v\}$ and let u^{\prime} denote the neighbour of u in V_{1}. Since D is a geodetic set, $u \in I\left[u^{\prime}, v\right]$ which implies that v is non-adjacent to u^{\prime}, i.e. v satisfies the condition specified in (ii). Conversely, if the hypothesis of (ii) is satisfied, then $S \cup\{v\}$ is a geodetic set of G which implies $g(G)=|S|+1$. This implies (ii).

Furthermore, if the hypothesis of (iii) is satisfied, then $g(G) \geq|S|+2$. Since the vertices in U are non-simplicial, every vertex u in U is adjacent to a vertex in V_{2} which is nonadjacent to the unique neighbour of u in V_{1}. By the hypothesis of (iii), this implies that
there are two vertices u_{1} and u_{2} in U such that their unique neighbours in V_{1} are distinct. If $u \in U \backslash\left\{u_{1}, u_{2}\right\}$ and u^{\prime} is the unique neighbour of u in V_{1}, then u^{\prime} is non-adjacent either to u_{1} or to u_{2} and $u \in I\left[u^{\prime}, u_{1}\right] \cup I\left[u^{\prime}, u_{2}\right]$. Hence $g(G) \leq|S|+2$ which implies (iii).

Using Theorem 7, the geodetic number of a split graph can be computed in linear time.
Our final result is a best-possible upper bound on the geodetic number of unit interval graphs.

Theorem 8 If G is a connected unit interval graph with s simplicial vertices and diameter d, then $g(G) \leq s+2(d-1)$.

Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be a canonical ordering of the vertices of $G[4,11,17]$, i.e. for every edge $v_{i} v_{j}$ with $1 \leq i<j \leq n$ the vertices $v_{i}, v_{i+1}, \ldots, v_{j}$ form a clique. Let S denote the set of simplicial vertices. For $0 \leq i \leq d$, let

$$
I_{i}=\left\{v \in V(G) \mid d_{G}\left(v_{1}, v\right)=i \text { and } d_{G}\left(v, v_{n}\right)=d-i\right\} .
$$

Clearly, $I:=I_{0} \cup I_{1} \cup \ldots \cup I_{d}=I\left[v_{1}, v_{n}\right] \subseteq I[S]$. For $0 \leq i \leq d$, let

$$
R_{i}=\left\{v \in V(G) \backslash(I \cup S) \mid d_{G}\left(v_{1}, v\right)=i\right\}
$$

Clearly, for $1 \leq i \leq d$ and $u \in R_{i}$, we have $I_{i-1} \cup R_{i} \cup I_{i} \subseteq N_{G}(u) \cup\{u\}$. If $I_{i-1} \cup R_{i} \cup I_{i}=$ $N_{G}(u) \cup\{u\}$, then we call u quasi-simplicial.

For $0 \leq k \leq d$, let i_{k} and i_{k}^{\prime} denote the first and last vertex in I_{k} according to the canonical ordering of the vertices. For $1 \leq k \leq d$ with $R_{k} \neq \emptyset$, let r_{k} and r_{k}^{\prime} denote the first and last vertex in R_{k} according to the canonical ordering of the vertices.

Starting with the empty set, we construct a geodetic set D of G as follows: Add all vertices in S to D. If R_{1} is non-empty, then, since no vertex in R_{1} is simplicial, R_{2} is non-empty and $R_{1} \subseteq I\left[v_{1}, r_{2}\right]$. In this case add r_{2} to D. Similarly, if R_{d} is non-empty, then, since no vertex in R_{d} is simplicial, R_{d-1} is non-empty and $R_{d} \subseteq I\left[v_{n}, r_{d-1}^{\prime}\right]$. In this case add r_{d-1}^{\prime} to D. If $2 \leq k \leq d-1$ and R_{k} contains quasi-simplicial vertices, then i_{k-1} and i_{k}^{\prime} are non-adjacent and $R_{k} \subseteq I\left[i_{k-1}, i_{k}^{\prime}\right]$. In this case add i_{k-1} and i_{k}^{\prime} to D. If $2 \leq k \leq d-1$ and R_{k} is non-empty but contains no quasi-simplicial vertices, then every vertex in R_{k} is adjacent either to r_{k-1}^{\prime} or to r_{k}, i.e. in particular at least one of these two vertices is well-defined. If r_{k} exists, then all vertices of R_{k} which are adjacent to r_{k} belong to $I\left[v_{1}, r_{k}\right]$. In this case add r_{k} to D. Similarly, if r_{k-1}^{\prime} exists, then all vertices of R_{k} which are adjacent to r_{k-1}^{\prime} belong to $I\left[v_{n}, r_{k-1}^{\prime}\right]$. In this case add r_{k-1}^{\prime} to D.

From the definition of D and the previous observations, it is clear that D is a geodetic set of G. Furthermore, D contains at most $g+2(d-1)$ vertices which completes the proof.

The graphs illustrated in Figure 1 show that Theorem 8 is best-possible. In this figure only the edges $v_{i} v_{j}$ with $j=\max \left\{k \mid v_{i} v_{k} \in E(G)\right\}$ and $i=\min \left\{k \mid v_{k} v_{j} \in E(G)\right\}$ are shown. Note that $R_{1}=\left\{r_{1}^{1}, r_{1}^{2}\right\}$ and $R_{2}=\left\{r_{2}^{1}, r_{2}^{2}, r_{2}^{3}, r_{2}^{4}\right\}$.

Figure 1 Extremal Graph for Theorem 8

References

[1] N. Alon and J.H. Spencer, The probabilistic method. With an appendix on the life and work of Paul Erdős. 3rd ed., John Wiley \& Sons, 2008.
[2] M. Atici, Graph operations and geodetic numbers, Congressus Numerantium 141 (1999), 95-110.
[3] M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002), 587-591.
[4] K.P. Bogart and D.B. West, A short proof that 'proper=unit', Discrete Math. 201 (1999), 21-23.
[5] K.S. Booth and J.H. Johnson, Dominating sets in chordal graphs, SIAM J. Comput. 11 (1982), 191-199.
[6] A. Brandstädt, V.B. Le, and J.P. Spinrad, Graph classes: a survey, Siam Monographs On Discrete Mathematics, 1999, pp. 304.
[7] J. Cáceres, M.C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, and C. Seara, On geodetic sets formed by boundary vertices, Discrete Math. 306 (2006), 188-198.
[8] G. Chartrand, F. Harary, and P. Zhang, Extremal problems in geodetic graph theory, Congressus Numerantium 131 (1998), 55-66.
[9] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
[10] G. Chartrand, E. M. Palmer, and P. Zhang, The geodetic number of a graph: A survey, Congressus Numerantium 156 (2002), 37-58.
[11] X. Deng, P. Hell, and J. Huang, Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs, SIAM J. Comput. 25 (1996), 390-403.
[12] F. Harary, E. Loukakis, and C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modelling 17 (1993), 89-95.
[13] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo, and C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005), 139-154.
[14] R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, In Proceedings of the Fifth Annual ACMSIAM Symposium on Discrete Algorithms, 1994, 536-545.
[15] R.M. McConnell and J.P. Spinrad, Ordered vertex partitioning, Discrete Math. Theor. Comput. Sci. 4 (2000), 45-60.
[16] H. Müller and A. Brandstädt, The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs, Theoret. Comput. Sci. 53 (1987), 257-265.
[17] F.S. Roberts, Indifference graphs, In: Proof Techniques in Graph Theory, Academic Press, 1969.

