
Cluster Deletion on Interval Graphs and Split
Related Graphs
Athanasios L. Konstantinidis
Department of Mathematics, University of Ioannina, Greece
skonstan@cc.uoi.gr

Charis Papadopoulos
Department of Mathematics, University of Ioannina, Greece
charis@cs.uoi.gr

Abstract
In the Cluster Deletion problem the goal is to remove the minimum number of edges of a given
graph, such that every connected component of the resulting graph constitutes a clique. It is known
that the decision version of Cluster Deletion is NP-complete on (P5-free) chordal graphs, whereas
Cluster Deletion is solved in polynomial time on split graphs. However, the existence of a
polynomial-time algorithm of Cluster Deletion on interval graphs, a proper subclass of chordal
graphs, remained a well-known open problem. Our main contribution is that we settle this problem
in the affirmative, by providing a polynomial-time algorithm for Cluster Deletion on interval
graphs. Moreover, despite the simple formulation of the algorithm on split graphs, we show that
Cluster Deletion remains NP-complete on a natural and slight generalization of split graphs
that constitutes a proper subclass of P5-free chordal graphs. Although the later result arises from
the already-known reduction for P5-free chordal graphs, we give an alternative proof showing an
interesting connection between edge-weighted and vertex-weighted variations of the problem. To
complement our results, we provide faster and simpler polynomial-time algorithms for Cluster
Deletion on subclasses of such a generalization of split graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Cluster deletion, interval graphs, split graphs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.12

Related Version https://arxiv.org/abs/1904.09470

Funding This research is co-financed by Greece and the European Union (European Social Fund –
ESF) through the Operational Programme “Human Resources Development, Education and Lifelong
Learning” in the context of the project “Strengthening Human Resources Research Potential via
Doctorate Research” (MIS–5000432), implemented by the State Scholarships Foundation (IKY).

1 Introduction

In graph theoretic notions, clustering is the task of partitioning the vertices of the graph
into subsets, called clusters, in such a way that there should be many edges within each
cluster and relatively few edges between the clusters. In many applications, the clusters are
restricted to induced cliques, as the represented data of each edge corresponds to a similarity
value between two objects [18, 19]. Under the term cluster graph, which refers to a disjoint
union of cliques, one may find a variety of applications that have been extensively studied
[1, 5, 23]. Here we consider the Cluster Deletion problem which asks for a minimum
number of edge deletions from an input graph, so that the resulting graph is a disjoint union
of cliques. In the decision version of the problem, we are also given an integer k and we want
to decide whether at most k edge deletions are enough to produce a cluster graph.

© Athanasios L. Konstantinidis and Charis Papadopoulos;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:skonstan@cc.uoi.gr
mailto:charis@cs.uoi.gr
https://doi.org/10.4230/LIPIcs.MFCS.2019.12
https://arxiv.org/abs/1904.09470
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Cluster Deletion on Interval Graphs and Split Related Graphs

Although Cluster Deletion is NP-hard on general graphs [24], settling its complexity
status restricted on graph classes has attracted several researchers. Regarding the maximum
degree of a graph, Komusiewicz and Uhlmann [22] have shown an interesting dichotomy
result: Cluster Deletion remains NP-hard on C4-free graphs with maximum degree four,
whereas it can be solved in polynomial time on graphs having maximum degree at most three.
Quite recently, Golovach et al. [14] have shown that it remains NP-hard on planar graphs.
For graph classes characterized by forbidden induced subgraphs, Gao et al. [11] showed that
Cluster Deletion is NP-hard on (C5, P5,bull, fork, co-gem, 4-pan, co-4-pan)-free graphs
and on (2K2, 3K1)-free graphs. Regarding H-free graphs, Grüttemeier et al. [16], showed a
complexity dichotomy result for any graph H consisting of at most four vertices. In particular,
for any graph H on four vertices with H /∈ {P4,paw}, Cluster Deletion is NP-hard on
H-free graphs, whereas it can be solved in polynomial time on P4- or paw-free graphs [16].
Interestingly, Cluster Deletion remains NP-hard on P5-free chordal graphs [3].

On the positive side, Cluster Deletion has been shown to be solved in polynomial
time on cographs [11], proper interval graphs [3], split graphs [3], and P4-reducible graphs
[2]. More precisely, iteratively picking maximum cliques defines a clustering on the graph
which actually gives an optimal solution on cographs (i.e., P4-free graphs), as shown by
Gao et al. in [11]. In fact, the greedy approach of selecting a maximum clique provides a
2-approximation algorithm, though not necessarily in polynomial-time [7]. As the problem
is already NP-hard on chordal graphs [3], it is natural to consider subclasses of chordal
graphs such as interval graphs and split graphs. Although for split graphs there is a simple
polynomial-time algorithm, restricted to interval graphs only the complexity on proper
interval graphs was determined by giving a solution that runs in polynomial-time [3]. Settling
the complexity of Cluster Deletion on interval graphs, was left open [3, 2, 11].

For proper interval graphs, Bonomo et al. [3] characterized their optimal solution by
consecutiveness of each cluster with respect to their natural ordering of the vertices. Based
on this fact, a dynamic programming approach led to a polynomial-time algorithm. It is
not difficult to see that such a consecutiveness does not hold on interval graphs, as potential
clusters might require to break in the corresponding vertex ordering. Here we characterize an
optimal solution of interval graphs whenever a cluster is required to break. In particular, we
take advantage of their consecutive arrangement of maximal cliques and describe subproblems
of maximal cliques containing the last vertex. One of our key observations is that the candidate
clusters containing the last vertex can be enumerated in polynomial time given two vertex
orderings of the graph. We further show that each such candidate cluster separates the graph
in a recursive way with respect to optimal subsolutions, that enables to define our dynamic
programming table to keep track about partial solutions. Thus, our algorithm for interval
graphs suggests to consider a particular consecutiveness of a solution and apply a dynamic
programming approach defined by two vertex orderings. The overall running time of our
algorithm is O(n6) for an interval graph on n vertices.

Furthermore, we complement the previously-known NP-hardness of Cluster Deletion
on P5-free chordal graphs, by providing a proper subclass of such graphs for which we prove
that the problem remains NP-hard. This result is inspired and motivated by the very simple
characterization of an optimal solution on split graphs: either a maximal clique constitutes
the only non-edgeless cluster, or there are exactly two non-edgeless clusters whenever there
is a vertex of the independent set that is adjacent to all the vertices of the clique except one
[3]. Due to the fact that true twins belong to the same cluster in an optimal solution, it is
natural to consider true twins at the independent set, as they are expected not to influence
the solution characterization. Surprisingly, we show that Cluster Deletion remains NP-



A. L. Konstantinidis and C. Papadopoulos 12:3

complete even on such a slight generalization of split graphs. This is achieved by observing
that the constructed graphs given in the reduction for P5-free graphs [3], constitute such
split-related graphs. However, here we give a different reduction that highlights an interesting
connection between edge-weighted and vertex-weighted split graphs. We then study two
different classes of such generalization of split graphs that can be viewed as the parallel of
split graphs that admit disjoint clique-neighborhood and nested clique-neighborhood. For
Cluster Deletion we provide polynomial-time algorithms on both classes of graphs. In
particular, for the former case, a polynomial-time algorithm is already known and is achieved
through computing a minimizer of submodular functions [3]. Here we provide a simpler and
faster (linear-time) algorithm for Cluster Deletion on such graphs that avoids the usage
of submodular functions minimization.

2 Preliminaries

All graphs considered here are simple and undirected. We refer to Diestel’s classical book
[8] for standard graph terminology that is undefined here. Two adjacent vertices u and v

are called true twins if N [u] = N [v], whereas two non-adjacent vertices x and y are called
false twins if N(u) = N(v). For a set of finite graphs H, we say that a graph G is H-free if
G does not contain an induced subgraph isomorphic to any of the graphs of H.

The problem of Cluster Deletion is formally defined as follows: given a graph
G = (V, E), the goal is to compute the minimum set F ⊆ E(G) of edges such that every
connected component of G−F is a clique. A cluster graph is a P3-free graph, or equivalently,
any of its connected components is a clique. Thus, the task of Cluster Deletion is to
turn the input graph G into a cluster graph by deleting the minimum number of edges. Let
S = C1, . . . , Ck be a solution of Cluster Deletion such that G[Ci] is a clique. In such
terms, the problem can be viewed as a vertex partition problem into C1, . . . , Ck. Each Ci

is simple called cluster. Edgeless clusters, i.e., clusters containing exactly one vertex, are
called trivial clusters. The edges of G are partitioned into internal and external edges: an
internal edge uv has both its endpoints u, v ∈ Ci in the same cluster Ci, whereas an external
edge uv has its endpoints in different clusters u ∈ Ci and v ∈ Cj , for i 6= j. Then, the goal
of Cluster Deletion is to minimize the number of external edges which is equivalent to
maximize the number of internal edges. We write S(G) to denote an optimal solution for
Cluster Deletion of the graph G, that is, a cluster subgraph of G having the maximum
number of edges. Given a solution S(G), the number of edges incident only to the same
cluster, that is the number of internal edges, is denoted by |S(G)|.

For a clique C, we say that a vertex x is C-compatible if C \ {x} ⊆ N(x). We start with
few preliminary observations regarding twin vertices. Notice that for true twins x and y, if x

belongs to any cluster C then y is C-compatible.

I Lemma 1 ([3]). Let x and y be true twins in G. Then, in any optimal solution x and y

belong to the same cluster.

The above lemma shows that we can contract true twins and look for a solution on a
vertex-weighted graph that does not contain true twins. Notice, however, that the weights
on the vertices imply weights on the edges of the graph, as they contribute to the total cost
of external and internal edges in a solution. Even though false twins cannot be grouped into
the same cluster as they are non-adjacent, we can actually disregard one of the false twins
whenever their neighborhood forms a clique.

MFCS 2019



12:4 Cluster Deletion on Interval Graphs and Split Related Graphs

I Lemma 2. Let x and y be false twins in G such that N(x) = N(y) is a clique. Then, there
is an optimal solution such that y constitutes a trivial cluster.

Proof. Let Cx and Cy be the clusters of x and y, respectively, in an optimal solution such
that |Cx| ≥ 2 and |Cy| ≥ 2. We construct another solution by replacing both clusters by
Cx ∪ Cy \ {y} and {y}, respectively. To see that this indeed a solution, first observe that x

is adjacent to all the vertices of Cy \ {y} because N(x) = N(y), and Cx ∪ Cy \ {y} ⊆ N [x]
forms a clique by the assumption. Moreover, since |Cx| ≥ 2 and |Cy| ≥ 2, we know that
|Cx|+ |Cy| ≤ |Cx||Cy|, implying that the number of internal edges in the constructed solution
is at least as large as the number of internal edges of the optimal solution. J

Moreover, we prove the following generalization of Lemma 1.

I Lemma 3. Let C and C ′ be two clusters of an optimal solution and let x ∈ C and y ∈ C ′.
If y is C-compatible then x is not C ′-compatible.

Proof. Let S be an optimal solution such that C, C ′ ∈ S. Assume for contradiction that x

is C ′-compatible. We show that S is not optimal. Since y is C-compatible, we can move y to
C and obtain a solution Sy that contains the clusters C ∪ {y} and C ′ \ {y}. Similarly, we
construct a solution Sx from S, by moving x to C ′ so that C \{x}, C ′∪{x} ∈ Sx. Notice that
the Sx forms a clustering, since x is C ′-compatible. We distinguish between the following
cases, according to the values |C| and |C ′|.

If |C| ≥ |C ′| then |Sy| > |S|, because
(|C|+1

2
)

+
(|C′|−1

2
)

>
(|C|

2
)

+
(|C′|

2
)
.

If |C| < |C ′| then |Sx| > |S|, because
(|C|−1

2
)

+
(|C′|+1

2
)

>
(|C|

2
)

+
(|C′|

2
)
.

In both cases we reach a contradiction to the optimality of S. Therefore, x is not C ′-
compatible. J

I Corollary 4. Let C be a cluster of an optimal solution and let x ∈ C. If there is a vertex
y that is C-compatible and N [y] ⊆ N [x], then y belongs to C.

3 Polynomial-time algorithm on interval graphs

Here we present a polynomial-time algorithm for the Cluster Deletion problem on interval
graphs. A graph is an interval graph if there is a bijection between its vertices and a family
of closed intervals of the real line such that two vertices are adjacent if and only if the two
corresponding intervals intersect. Such a bijection is called an interval representation of the
graph. We identify the intervals of the given representation with the vertices of the graph,
interchanging these notions appropriately. Whether a given graph is an interval graph can
be decided in linear time and if so, an interval representation can be generated in linear
time [10, 13]. Notice that every induced subgraph of an interval graph is an interval graph.

Let G be an interval graph. Instead of working with the interval representation of G,
we consider its sequence of maximal cliques. It is known that a graph G with p maximal
cliques is an interval graph if and only if there is an ordering K1, . . . , Kp of the maximal
cliques of G, such that for each vertex v of G, the maximal cliques containing v appear
consecutively in the ordering (see e.g., [10, 13]). A path P = K1 · · ·Kp following such an
ordering is called a clique path of G. Notice that a clique path is not necessarily unique
for an interval graph. Also note that an interval graph with n vertices contains at most n

maximal cliques. By definition, for every vertex v of G, the maximal cliques containing v

form a connected subpath in P.
Given a vertex v, we denote by Ka(v), . . . , Kb(v) the maximal cliques containing v with

respect to P, where Ka(v) and Kb(v) are the first (leftmost) and last (rightmost) maximal



A. L. Konstantinidis and C. Papadopoulos 12:5

cliques containing v. Notice that a(v) ≤ b(v) holds. Moreover, for every edge of G there is a
maximal clique Ki of P that contains both endpoints of the edge. Thus, two vertices u and
v are adjacent if and only if a(v) ≤ a(u) ≤ b(v) or a(v) ≤ b(u) ≤ b(v).

For a set of vertices U ⊆ V , we write a-min U and a-max U to denote the minimum and
maximum value, respectively, among all a(u) with u ∈ U . Similarly, b-min U and b-max U

correspond to the minimum and maximum value, respectively, with respect to b(u).
With respect to the Cluster Deletion problem, observe that for any cluster C of a

solution, we know that C ⊆ Ki where Ki ∈ P , as C forms a clique. A vertex y is said to be
guarded by two vertices x and z if min{a(x), a(z)} ≤ a(y) and b(y) ≤ max{b(x), b(z)} hold.
For a clique C, observe that y is C-compatible if and only if there exists a maximal clique
Ki such that C ⊆ Ki with a(y) ≤ i ≤ b(y). Observe that the following statement generalizes
Corollary 4, in the sense that the neighborhood of the guarded vertex y is not necessarily
contained in the neighborhood of x or z.

I Lemma 5. Let x, y, z be three vertices of G such that y is guarded by x and z. If x and z

belong to the same cluster C of an optimal solution and y is C-compatible then y ∈ C.

Let v1, . . . , vn be an ordering of the vertices such that b(v1) ≤ · · · ≤ b(vn). For every
vi, vj with b(vi) ≤ b(vj), we define the following set of vertices:

Vi,j = {v ∈ V (G) : min{a(vi), a(vj)} ≤ a(v) and b(v) ≤ b(vj)} .

That is, Vi,j contains all vertices that are guarded by vi and vj . We write a(i, j) to denote
the value of min{a(vi), a(vj)} and we simple write Ka(j) and Kb(j) instead of Ka(vj) and
Kb(vj). Notice that for a neighbor u of vj with u ∈ Vi,j , we have either a(vj) ≤ a(u) or
a(vi) ≤ a(u) ≤ a(vj). This means that all neighbors of vj that are totally included (i.e., all
vertices u such that a(vj) ≤ a(u) ≤ b(u) ≤ b(vj)) belong to Vi,j for any vi with b(vi) ≤ b(vj).
To distinguish such neighbors of vj , we define the following sets (see also Figure 1):

U(j) contains the neighbors u ∈ Vi,j of vj such that a(u) < a(vj) ≤ b(u) ≤ b(vj)
(neighbors of vj in Vi,j that partially overlap vj).
M(j) contains the neighbors w ∈ Vi,j of vj such that a(vj) ≤ a(w) ≤ b(w) ≤ b(vj)
(neighbors of vj that are totally included within vj).

In the forthcoming arguments, we restrict ourselves to the graph induced by Vi,j . It is
clear that the first maximal clique that contains a vertex of Vi,j is Ka(i,j), whereas the last
maximal clique is Kb(j). For two vertices vi, vj with b(vi) ≤ b(vj), we define the following:

Ai,j is the value of an optimal solution for Cluster Deletion of the graph G[Vi,j ].
To ease the notation, when we say a cluster of Ai,j we mean a cluster of an optimal solution
of G[Vi,j ]. Notice that A1,n is the desired value for the whole graph G, since V1,n = V (G).

Our task is to construct the values for Ai,j by taking into account all possible clusters
that contain vj . To do so, we show that (i) the number of candidate clusters containing vj

in Ai,j is polynomial and (ii) each such candidate cluster containing vj separates the graph
in a recursive way with respect to optimal subsolutions.

Observe that if vivj ∈ E(G) then vi ∈ U(j) if and only if a(vi) < a(vj), whereas vi ∈M(j)
if and only if a(vj) ≤ a(vi); in the latter case, it is not difficult to see that Vi,j = M(j)∪{vj}.
Thus, whenever vi ∈ M(j) holds, we have Vi,j = Vj,j . The candidates of a cluster of Ai,j

containing vj lie among U(j) and M(j). Let us show with the next two lemmas that we can
restrict ourselves into a polynomial number of such candidates. To avoid repeating ourselves,
in the forthcoming statements we let vi, vj be two vertices with b(vi) ≤ b(vj).

MFCS 2019



12:6 Cluster Deletion on Interval Graphs and Split Related Graphs

vj

vi

M [t]

KtKa(j) Kb(j)

M(j)

vj

M [t]

uq

u1

U [t]
U(j)

vi

Ka(i) Ka(j) Kt Kb(j)

M(j)

Figure 1 Illustrating the sets M(j) and U(j) for vj . The left part shows the case in which
vi ∈ M(j) (or, equivalently, Vi,j = Vj,j), whereas the right part corresponds to the case in which
a(vi) < a(vj).

I Lemma 6. Let C be a cluster of Ai,j containing vj . If there is a vertex w ∈M(j) such that
w ∈ C then there is a maximal clique Kt with a(vj) ≤ t ≤ b(vj) such that Kt ∩M(j) ⊆ C

and C ∩M(j) ⊆ Kt.

Proof. Observe that w ∈ M(j) implies a(vj) ≤ a(w) ≤ b(w) ≤ b(vj). Since vj , w ∈ C, we
know that there is a maximal clique Kt for which C ⊆ Kt with a(vj) ≤ a(w) ≤ t ≤ b(w) ≤
b(vj). We show that all other vertices of Kt ∩M(j) are guarded by vj and w. Notice that
for every vertex y ∈ M(j) we already know that a(vj) ≤ a(y) and b(y) ≤ b(vj). Thus,
for every vertex y ∈ M(j) we have a(vj) = min{a(vj), a(w)} ≤ a(y) and b(y) ≤ b(vj) =
max{b(vj), b(w)}. This means that all vertices of Kt ∩M(j) \ {w} are guarded by vj and w.
Moreover, since C ⊆ Kt, we know that all vertices of Kt∩M(j) are C-compatible. Therefore,
we apply Lemma 5 to every vertex of Kt ∩M(j), showing that Kt ∩M(j) ⊆ C. Furthermore,
there is no vertex of M(j) \Kt that belongs to C, because C ⊆ Kt. J

By Lemma 6, we know that we have to pick the entire set Kt ∩M(j) for constructing
candidates to form a cluster that contains vj and some vertices of M(j). As there are at
most n choices for Kt, we get a polynomial number of such candidate sets. We next show
that we can construct a polynomial number of candidate sets that contain vj and vertices of
U(j). For doing so, we consider the vertices of U(j) increasingly ordered with respect to their
first maximal clique. More precisely, let U(j)≤a = (u1, . . . , u|U(j)|) be an increasingly order
of the vertices of U(j) such that a(u1) ≤ · · · ≤ a(u|U(j)|) (see the right part of Figure 1).

I Lemma 7. Let C be a cluster of Ai,j containing vj and let uq ∈ U(j)≤a.If uq ∈ C then
every vertex of {uq+1, . . . , u|U(j)|} that is C-compatible belongs to C.

Proof. Let u be a vertex of {uq+1, . . . , u|U(j)|}. We show that u is guarded by uq and vj .
By the definition of U(j)≤a, we know that a(uq) < a(u) < a(vj). Moreover, observe that
b(u) ≤ b(vj) holds by the fact that u ∈ Vi,j and b(uq) ≤ b(vj). Thus, we apply Lemma 5 to
u, because uq, vj ∈ C and u is C-compatible, showing that u ∈ C as desired. J

For a(vj) ≤ t ≤ b(vj), let M [t] = Kt ∩M(j). Observe that each M [t] may be an empty
set. On the part M(j), all vertices are grouped into the sets M [a(vj)], . . . , M [b(vj)]. Similar
to the group M [t], let U [t] = U(j) ∩Kt. Then, all vertices of U [t] are {vj , M [t]}-compatible
and all vertices of M [t] are {vj , U [t]}-compatible. Figure 1 depicts the corresponding sets.

I Lemma 8. Let C be a cluster of Ai,j containing vj . Then, there is a(vj) ≤ t ≤ b(vj) such
that M [t] ⊆ C.



A. L. Konstantinidis and C. Papadopoulos 12:7

All vertices of a cluster C containing vj belong to U(j) ∪M(j). Thus, C \ {vj} can be
partitioned into C ∩U(j) and C ∩M(j). Also notice that C ⊆ Kt for some a(vj) ≤ t ≤ b(vj).
Combined with the previous lemmas, we enumerate all such subsets C of U(j) ∪M(j) in
polynomial-time. In particular, we first build all candidates for C ∩M(j), which are exactly
the sets M [t] by Lemmas 6 and 8. Then, for each of such candidate M [t], we apply Lemma 7
to construct all subsets containing the last q vertices of U [t]≤a. Thus, there are at most n2

candidate sets from the vertices of U(j) ∪M(j) that belong to the same cluster with vj .

3.1 Splitting into partial solutions
We further partition the vertices of M(j). Given a pivot group M [t], we consider the vertices
that lie on the right part of M [t]. More formally, for a(vj) ≤ t < b(vj), we define the set
Bj(t) =

((
Kt+1 ∪ · · · ∪Kb(j)

)
\Kt

)
∩M(j). The reason of breaking the vertices of the part

M(j) into sets Bj(t) is the following.

I Lemma 9. Let C be a cluster of Ai,j such that {vj} ∪M [t] ⊆ C, for a(vj) ≤ t ≤ b(vj).
Then, for any two vertices x ∈ Vi,j \ Bj(t) and y ∈ Bj(t), there is no cluster of Ai,j that
contains both of them.

Proof. First observe that y ∈ (M [t + 1] ∪ · · · ∪M [b(j)]) \M [t]. We consider two cases for x,
depending on whether x ∈M(j) or not. Assume that x ∈M(j). If x ∈M [t], then x ∈ C by
Lemma 6, which implies that y /∈ C. If x ∈ (M [a(vj)]∪· · ·∪M [t− 1])\M [t] then xy /∈ E(G).
Now assume that x ∈ U(j). If x ∈ C, then y does not belong to Kt, so that y /∈ C. If
x /∈ C, then we show that x does not belong to a cluster with any vertex of Bj(t). Assume
for contradiction that x belongs to a cluster C ′ such that C ′ ∩Bj(t) 6= ∅. This means that
x ∈ Ki′ with t < i′ ≤ b(vj) and C ′ ⊆ Ki′ . Then vj is C ′-compatible and x is C-compatible,
as both x and vj belong to Kt ∩Ki′ . Therefore, by Lemma 3 we reach a contradiction to x

and vj belonging to different clusters. J

For a non-empty set S ⊆ V (G), we write A(S) to denote the following solutions:
A(S) = Ai′,j′ , where vi′ is the vertex of S having the smallest a(vi′) and vj′ is the vertex
of S having the largest b(vj′).

Having this notation, observe that Ai,j = A(Vi,j), for any vi, vj with b(vi) ≤ b(vj). However,
it is important to notice that A(S) does not necessarily represent the optimal solution of
G[S], since the vertices of S may not be consecutive with respect to Vi′,j′ , so that S is
only a subset of Vi′,j′ in the corresponding solution Ai′,j′ for A(S). Under the following
assumptions, with the next result we show that for the chosen sets we have S = Vi′,j′ .

I Observation 10. Let Vt = Kt ∩ Vi,j, for every min{a(vi), a(vj)} ≤ t ≤ b(vj). If SL =(
Va(i,j) ∪ · · · ∪ Vt−1

)
\ Vt then SL = Vi′,j′ , where i′ = a-min(SL) and j′ = b-max(SL).

Given the clique path P = K1 · · ·Kp, a clique-index t is an integer 1 ≤ t ≤ p. Let
`(j), r(j) be two clique-indices such that a(i, j) ≤ `(j) ≤ a(vj) and a(vj) ≤ r(j) ≤ b(vj). We
denote by `r(j) the minimum value of a(v) among all vertices of v ∈ Kr(j) ∩ Vi,j having
`(j) ≤ a(v). Clearly, `(j) ≤ `r(j) ≤ r(j) holds. A pair of clique-indices (`(j), r(j)) is called
admissible pair for a vertex vj , if both a(i, j) ≤ `(j) ≤ a(vj) and a(vj) ≤ r(j) ≤ b(vj) hold.
Given an admissible pair (`(j), r(j)), we define the following set of vertices:

C(`(j), r(j)) = {z ∈ Vi,j : `r(j) ≤ a(z) and r(j) ≤ b(z)}.

Observe that all vertices of C(`(j), r(j)) induce a clique in G, because C(`(j), r(j)) ⊆ Kr(j).
We say that a vertex u crosses the pair (`(j), r(j)) if a(u) < `r(j) and r(j) ≤ b(u). It is not

MFCS 2019



12:8 Cluster Deletion on Interval Graphs and Split Related Graphs

difficult to see that for a vertex u that crosses (`(j), r(j)), we have u /∈ C(`(j), r(j)). We
prove the following properties of C(`(j), r(j)).

I Lemma 11. Let vi′ , vj′ be two vertices with b(vi′) ≤ b(vj′) and let (`, r) be an admissible
pair for vj′ . Moreover, let vi, vj be the vertices of Vi′,j′ \C(`, r) having the smallest a(vi) and
largest b(vj), respectively. If the vertices of C(`, r) form a cluster in Ai′,j′ then the following
statements hold:
1. Vi,j = Vi′,j′ \ C(`, r).
2. If a(x) ≤ r ≤ b(x) holds for a vertex x ∈ Vi,j, then x crosses (`, r).
3. Every vertex of Bj(r) does not belong to the same cluster with any vertex of Vi,j \Bj(r).
4. Every vertex that crosses (`, r) does not belong to the same cluster with any vertex y ∈ Vi,j

having `r ≤ a(y).

Notice that the number of admissible pairs (`(j), r(j)) for vj is polynomial because there
are at most n choices for each clique-index. Moreover, if vi ∈M(j) then `(j) = a(vj). A pair
of clique-indices (`, r) with ` ≤ r is called bounding pair for vj if either b(vj) < r holds, or vj

crosses (`, r). Given a bounding pair (`, r) for vj , we write (`(j), r(j)) < (`, r) to denote the
set of admissible pairs (`(j), r(j)) for vj with the following restriction on r(j):

r(j) ≤ b(vj), whenever b(vj) < r holds, and r(j) < `, whenever b(vj) ≥ r holds.
Observe that if b(vj) < r holds, then (`(j), r(j)) < (`, r) describes all admissible pairs for
vj with no restriction, regardless of `. On the other hand, if ` < a(vj) and r ≤ b(vj) hold,
then (`, r) is not a bounding pair for vj . In fact, we will show that the latter case will
not be considered in our partial subsolutions. Intuitively, an admissible pair (`(j), r(j))
corresponds to the cluster containing vj , whereas a bounding pair (`, r) forbids vj to select
certain vertices as they have already formed a cluster that does not contain vj (observe that
vj ∈ C(`(j), r(j)) and vj /∈ C(`, r)).

Our task is to construct subsolutions over all admissible pairs for vj with the property
that the vertices of C(`(j), r(j)) form a cluster. To do so, we consider a vertex vj′ with
b(vj) ≤ b(vj′) and a cluster containing vj′ . Let (`, r) be an admissible pair for vj′ such that
a(vj) ≤ r ≤ b(vj). The previous results suggest to consider solutions in which the vertices of
C(`, r) form a cluster in an optimal solution. It is clear that if ` ≤ a(vj) then vj ∈ C(`, r).
Moreover, if b(vj) < r, then no vertex of Vi,j belongs to C(`, r). Thus, we need to construct
solutions for Ai,j , whenever (`, r) is a bounding pair for vj and the vertices of C(`, r) form a
cluster. Such an idea is formally described as follows: Let (`, r) be a bounding pair for vj .

Ai,j [`, r] is the value of an optimal solution for Cluster Deletion of the graph G[Vi,j ]−
(C(`, r) ∪Bj(r)) such that the vertices of C(`, r) form a cluster.

Hereafter, we assume that Bj(t) with t ≥ b(vj) corresponds to an empty set. Figure 2
illustrates a partition of the vertices with respect to Ai,j [`, r]. Notice that an optimal solution
Ai,j without any restriction is described in terms of Ai,j [`, r] by Ai,j [1, b(vj) + 1], since no
vertex of Vi,j belongs to C(1, b(vj) + 1). Therefore, A1,n[1, n + 1] corresponds to the optimal
solution of the whole graph G. As base cases, observe that if Vi,j contains at most one vertex
then Ai,j [`, r] = 0 for all bounding pairs (`, r). For a set C, we write |C|2 to denote the
number

(|C|
2
)
. With the following result, we describe a recursive formulation for the optimal

solution Ai,j [`, r], which is our central tool for our dynamic programming algorithm.

I Lemma 12. Let (`, r) be a bounding pair for vj. Then,

Ai,j [`, r] = max
(`(j),r(j))<(`,r)

(A(VL)[`(j), r(j)] + |C(`(j), r(j))|2 + A(VR)[`, r]) ,

where VL = Vi,j \ (C(`(j), r(j)) ∪Bj(r(j))) and VR = Bj(r(j)) \ (C(`, r) ∪Bj(r)).

I Theorem 13. Cluster Deletion is polynomial-time solvable on interval graphs.



A. L. Konstantinidis and C. Papadopoulos 12:9

vj

CL

C(`(j), r(j))

L

CR

C(`, r)

R

Bj(r)

K`(j) Ka(j) Kr(j) K` Kr Kb(j)

Figure 2 A partition of the set of vertices given in Ai,j [`, r], where VL = CL ∪L and VR = CR ∪R.
Observe that Bj(r(j)) = R ∪ CR ∪ (C (`, r) ∩ Vi,j) ∪ Bj(r).

4 Cluster Deletion on a generalization of split graphs

A graph G = (V, E) is a split graph if V can be partitioned into a clique C and an
independent set I, where (C, I) is called a split partition of G. Split graphs are characterized
as (2K2, C4, C5)-free graphs [9]. They form a subclass of the larger and widely known graph
class of chordal graphs, which are the graphs that do not contain induced cycles of length 4 or
more as induced subgraphs. In general, a split graph can have more than one split partition
and computing such a partition can be done in linear time [17].

Hereafter, for a split graph G, we denote by (C, I) a split partition of G in which C is a
maximal clique. It is known that Cluster Deletion is polynomial-time solvable on split
graphs [3]. In fact, the algorithm given in [3] is characterized by its simplicity due to the
following elegant characterization of an optimal solution: if there is a vertex v ∈ I such that
N(v) = C \ {w} and w has a neighbor v′ in I then the non-trivial clusters of an optimal
solution are C \ {w} ∪ {v} and {w, v′}; otherwise, the only non-trivial cluster of an optimal
solution is C [3]. Here we study whether such a simple characterization can be extended into
more general classes of split graphs. Due to Lemma 1, it is natural to consider true twins
at the independent set, as they are grouped together in an optimal solution and they are
expected not to influence the solution characterization. Surprisingly, we show that Cluster
Deletion remains NP-complete even on such a slight generalization of split graphs. Before
presenting our NP-completeness proof, let us first show that such graphs form a proper
subclass of P5-free chordal graphs. We start by giving the formal definition of such graphs.

I Definition 14. A graph G = (V, E) is called split-twin graph if its vertex set can be
partitioned into C and I such that G[C] is a clique and the vertices of each connected
component of G[I] form true twins in G.

It is clear that in a split-twin graph G the following holds: (i) each connected component of
G[I] is a clique and forms a true-twin set in G, and (ii) contracting the connected components
of G[I] results in a split graph, denoted by G∗. Figure 3 illustrates the induced subgraphs
that are forbidden in a split-twin graph.

I Proposition 15. A graph G is split-twin if and only if it does not contain any of the graphs
C4, C5, P5, 2P3, Ā, X as induced subgraphs.

MFCS 2019



12:10 Cluster Deletion on Interval Graphs and Split Related Graphs

C4 C5 P5 2P3 Ā X

Figure 3 The list of forbidden induced subgraph characterization for split-twin graphs.

Thus by Proposition 15, split-twin graphs form a proper subclass of P5-free chordal
graphs, i.e., of (C4, C5, P5)-free graphs. Now let us show that decision version of Cluster
Deletion is NP-complete on split-twin graphs. This is achieved by observing that the
constructed graphs given in the reduction for P5-free graphs [3], constitute such split-related
graphs. In particular, the reduction shown in [3] comes from the X3C problem: given a
universe X of 3q elements and a collection C = {C1, . . . , C|C|} of 3-element subsets of X,
asks whether there is a subset C ′ ⊆ C such that every element of X occurs in exactly one
member of C ′. The constructed graph G is obtained by identifying the elements of X as a
clique KX and there are |C| disjoint cliques K1, . . . , K|C| each of size 3q corresponding to
the subsets of C and a vertex x of KX is adjacent to all the vertices of Ki if and only if x

belongs to the corresponding subset Ci of Ki. Then, it is not difficult to see that the vertices
of each Ki are true twins and the contracted graph G∗ is a split graph, showing that G is
indeed a split-twin graph. Therefore, by the NP-completeness given in [3], we have:

I Theorem 16. Cluster Deletion is NP-complete on split-twin graphs.

However, here we give a different reduction that highlights an interesting connection
between edge-weighted and vertex-weighted split graphs. In the Edge Weighted Cluster
Deletion problem, each edge of the input graph is associated with a weight and the objective
is to construct a clustered graph having the maximum total (cumulative) weight of edges. As
already explained, we can contract true twins and obtain a vertex-weighted graph as input
for the corresponding Cluster Deletion. Similarly, it is known that for edge-weighted
graphs the corresponding Edge Weighted Cluster Deletion remains NP-hard even
when restricted to particular variations on special families of graphs [3]. In fact, it is known
that Edge Weighted Cluster Deletion remains NP-hard on split graphs even when (i)
all edges inside the clique have weight one, (ii) all edges incident to a vertex w ∈ I have the
same weight q, and (iii) q = |C| [3]. We abbreviate the latter problem by EWCD and denote
by (C, I, k) an instance of the problem where (C, I) is a split partition of the vertices of G

and k is the total weight of the edges in a cluster solution for G. With the following result,
we show an interesting connection between the two variations of the problem when restricted
to split-twin graphs.

I Theorem 17. There exists a polynomial time algorithm that, given an instance (C, I, k)
for EWCD, produces an equivalent instance for Cluster Deletion on split-twin graphs.

Proof. From G, we build a split-twin graph G′ = (C ′ ∪ I ′, E′) by keeping the same clique
C ′ = C, and for every vertex wj ∈ I we apply the following:

We replace wj by q = |C| true twin vertices I ′j (i.e., by a q-clique) such that for any
vertex w′ ∈ I ′j we have NG′(w′) = NG(wj) ∪ (I ′j \ {w′}). That is, their neighbors outside
I ′j are exactly NG(wj). Moreover, the set of vertices I ′1, . . . , I ′|I| form I ′.

By the above construction, it is not difficult to see that G′ is a split-twin graph, since the
graph induced by I ′ is a disjoint union of cliques and two adjacent vertices of I ′ are true



A. L. Konstantinidis and C. Papadopoulos 12:11

twins in G′. Also observe that the construction takes polynomial time because q is at most
n = |V (G)|. We claim that there is an edge weighted cluster solution for G with total weight
at least k if and only if there is a cluster solution for G′ having at least k + |I| ·

(
q
2
)
edges.

Assume that there is a cluster solution S for G with total weight at least k. From S, we
construct a solution S′ for G′. There are three types of clusters in S:
(a) Cluster formed only by vertices of the clique C, i.e., Y ∈ S, where Y ⊆ C. We keep such

clusters in S′. We denote by ta the total weight of clusters of type (a). Notice that since
the weight of edges having both endpoints in C are all equal to one, ta corresponds to
the number of edges in Y .

(b) Cluster formed only by one vertex wj ∈ I, i.e., {wj} ∈ S. In S′ we replace such cluster
by the corresponding clique I ′j having exactly

(
q
2
)
edges. It is clear that the total weight

of such clusters do not contribute to the value of S.
(c) Cluster formed by the vertices y1, . . . , yp, wj , where yi ∈ C and wj ∈ I. As the weights

of the edges between the vertices of yi is one, the total number of weights in such a
cluster is

(
p
2
)

+ p · q. Let tc be the total weight of clusters of type (c). In S′ we replace
wj by the vertices of I ′j and obtain a cluster S′ having

(
p
2
)

+ p · q +
(

q
2
)
number of edges.

Now observe that in S we have ta + tc total weight, which implies ta + tc ≥ k. Thus, in S′

we have at least ta + tc + |I| ·
(

q
2
)
edges, giving the desired bound.

For the opposite direction, assume that there is a solution S′ in G′ having at least
k + |I| ·

(
q
2
)
edges. All vertices of I ′j are true twins and, by Lemma 1, they belong to the

same cluster in S′. Thus, any cluster of S′ has one of the following forms: (i) Y ′, where
Y ′ ⊆ C ′, (ii) I ′j , (iii) I ′j ∪ {y′1, . . . , y′p}, where y′i ∈ C ′. This means that all internal edges
having both endpoints in I ′ contribute to the value of S′ by |I| ·

(
q
2
)
. Moreover, observe that

for any internal edge of S′ of the form y′w′ with y′ ∈ C ′ and w′ ∈ I ′j , we know that there
are exactly q internal edges incident to y′ and the q vertices of I ′j . Thus, internal edges y′w′

of S′ correspond to exactly one internal edge ywj of S having weight q, where y = y′ (recall
that C = C ′) and wj is the vertex of I associated with Ij . Hence, all internal edges outside
each I ′j in S′ correspond to either a weighted internal edge in S or to the same unweighted
edge of C in S. Therefore, there is an edge weighted solution S having weight at least k. J

4.1 Polynomial-time algorithms on subclasses of split-twin graphs
Due to the hardness result given in Theorems 16 and 17, it is natural to consider subclasses
of split-twin graphs related to their analogue subclasses of split graphs. We consider two such
subclasses. The first one corresponds to the split-twin graphs such that the vertices of I have
no common neighbor in the clique, unless they are true or false twins. The second subclass
corresponds to threshold graphs (i.e., split graphs in which the vertices of the independent
set have nested neighborhood) and form the split-twin graphs in which the vertices of I have
a nested neighborhood. We formally define such graphs and give polynomial-time algorithms
for Cluster Deletion. For a vertex x ∈ I we write NC(x) to denote the set N(x) ∩ C.

I Definition 18. A split-twin graph G with partition (C, I) on its vertices is called 1-split-twin
graph if for any two vertices x, y ∈ I, either NC(x) ∩NC(y) = ∅ or NC(x) = NC(y).

It is not difficult to see that in a 1-split-twin graph, any two vertices of I having a
common neighbor in C have the same neighborhood in C. Close related to 1-split-twin
graphs, are the 1-split graphs which are the edge-weighted split graphs in which every vertex
of the independent set is adjacent to exactly one vertex of the clique. It is known that the
(edge-weighted) Cluster Deletion is solved in polynomial-time on 1-split graphs [3]. Let
us explain how to use the algorithm on a 1-split graph to obtain a polynomial-time algorithm

MFCS 2019



12:12 Cluster Deletion on Interval Graphs and Split Related Graphs

on a 1-split-twin graph G = (C, I). Observe that the contracted graph G∗ is 1-split. Let xy

be an edge of G∗. Denote by w(x) and w(y) the weights assigned to x and y that correspond
to the sizes of their true twins classes in G. From the vertex-weighted 1-split graph G∗,
construct an edge-weighted 1-split graph H∗ by removing the vertex weights and for each
edge xy assign weight w(x) · w(y). Then, given a solution of the edge-weighted H∗ taken
from the algorithm of [3], we obtain a solution for Cluster Deletion on G by adding the
internal edges corresponding to each contracted vertex.

Notice, however, that the running time is bounded by the polynomial-time algorithm
of 1-split graphs. In particular the described algorithm of 1-split graphs is accomplished
through a minimizer of a general submodular function provided a given oracle for evaluating
the function value [3]. This means that through such an approach it is unlikely to achieve
a better running time for 1-split-twin graphs, unless there is a faster algorithm with less
number of oracle calls for finding a minimizer of a general submodular function. With our
next result we provide a simpler and faster (linear-time) algorithm for Cluster Deletion
on 1-split-twin graphs that avoids the usage of submodular functions minimization.

I Theorem 19. Cluster Deletion is linear-time solvable on 1-split-twin graphs.

Proof. Let G be a 1-split-twin graph with partition (C, I). First observe that if G is
disconnected then I contains isolated cliques, i.e., true twins having no neighbor in C. Thus
we can restrict ourselves to a connected graph G, since by Lemma 1 each isolated clique is
contained in exactly one cluster of an optimal solution. We now show that all vertices of C

that have a common neighbor in I are true twins. Let u and v be two vertices of C such
that x ∈ N(u) ∩N(v) ∩ I. All vertices of C \ {u, v} are adjacent to both u and v. Assume
that there is a vertex y ∈ I that is adjacent to u and non-adjacent to v. If xy ∈ E(G)
then by the definition of split-twin graphs x and y are true twins which contradicts the
assumption of xv ∈ E(G) and yv /∈ E(G). Otherwise, x and y are non-adjacent and since
NC(x) ∩NC(y) 6= ∅ we reach a contradiction to the definition of 1-split-twin graphs. Thus,
all vertices of C that have a common neighbor in I are true twins.

We partition the vertices of C into true twin classes C1, . . . , Ck, such that each Ci contains
true twins of C. From the previous discussion, we know that any vertex of I is adjacent to
all the vertices of exactly one class Ci; otherwise, there are vertices of different classes in C

that have common neighbor. For a class Ci, we partition the vertices of N(Ci) ∩ I into true
twin classes I1

i , . . . , Iq
i such that |I1

i | ≥ · · · ≥ |I
q
i |.

We claim that in an optimal solution S, the vertices of each class Ij
i with j ≥ 2 constitute

a cluster. To see this, observe first that the vertices of Ij
i , 1 ≤ j ≤ q, are true twins, and by

Lemma 1 they all belong to the same cluster of S. Also, by Lemma 1 we know that all the
vertices of Ci belong to the same cluster of S. Moreover, all vertices between different classes
Ij

i ,I
j′

i are non-adjacent and are Ci-compatible. Since every vertex of Ij
i is non-adjacent to

all the vertices of V (G) \ {Ij
i ∪ Ci}, we know that any cluster of S that contains Ij

i is of
the form either {Ij

i ∪ Ci} or Ij
i . Assume that there is a cluster that contains {Ij

i ∪ Ci} with
j ≥ 2. Then, we substitute the vertices of Ij

i by the vertices of I1
i and obtain a solution of at

least the same size, because |I1
i | ≥ |I

j
i | implies

(|Ci|+|I1
i |

2
)
≥
(|Ci|+|Ij

i
|

2
)
. Thus, all vertices of

each class Ij
i with j ≥ 2 constitute a cluster in an optimal solution S.

This means that we can safely remove the vertices of Ij
i with j ≥ 2, by constructing

a cluster that contains only Ij
i . Hence, we construct a graph G∗ from G, in which there

are only matched pair of k classes (Ci, Ii) such that (i) all sets Ci, Ii are non-empty except
possibly the set Ik, (ii) N(Ci) ∩ I = Ii, (iii) N(Ii) = Ci, (iv) G∗[Ci ∪ Ii] is a clique, and (v)
G∗[C1 ∪ · · · ∪ Ck] is a clique. Our task is to solve Cluster Deletion on G∗, since for the



A. L. Konstantinidis and C. Papadopoulos 12:13

rest of the vertices we have determined their cluster. By Lemma 1, if the vertices of Ci ∪ Cj

belong to the same cluster then the vertices of each Ii and Ij constitute two clusters. Thus,
for each set of vertices Ii we know that either one of Ci ∪ Ii or Ii constitutes a cluster in S.
This boils down to compute a set M of matched pairs (Ci, Ii), having the maximum value∑

(Ci,Ii)∈M

(
|Ci|+ |Ii|

2

)
+
(∑

Cj /∈M |Cj |
2

)
+
∑

Ij /∈M

(
|Ij |
2

)
.

Let (Ci, Ii) and (Cj , Ij) be two pairs of classes such that |Ci|+ |Ii| ≤ |Cj |+ |Ij |. We show
that if (Cj , Ij) /∈ M then (Ci, Ii) /∈ M . Assume for contradiction that (Cj , Ij) /∈ M and
(Ci, Ii) ∈ M . Observe that |Ij | <

∑
Ct /∈M\Cj

|Ct|, because Ij is Cj-compatible. Similarly,
we know that

∑
Ct /∈M\Cj

|Ct| + |Cj | ≤ |Ii|. This however, shows that |Cj | + |Ij | < |Ii|,
contradicting the fact that |Ci|+ |Ii| ≤ |Cj |+ |Ij |. Thus (Cj , Ij) /∈M implies (Ci, Ii) /∈M .

This means that we can consider the k pair of classes (Ci, Ii) in a decreasing order
according to their number of vertices |Ci| + |Ii|. With a simple dynamic programming
algorithm, starting from the largest ordered pair (C1, I1) we know that either (C1, I1) belongs
to M or not. In the former, we add

(|C1|+|I1|
2

)
to the optimal value of (C2, I2), . . . , (Ck, Ik)

and in the latter we know that no pair belongs to M giving a total value of
(∑ |Ci|

2

)
+
∑(|Ii|

2
)
.

By choosing the maximum between the two values, we construct a table of size k needed
for the dynamic programming. Computing the twin classes and the partition (C, I) takes
linear time in the size of G and sorting the pair of classes can be done O(n) time, since∑

(|Ci|+ |Ii|) is bounded by n. Thus, the total running time is O(n + m), as the dynamic
programming for computing M requires O(n) time. Therefore, all steps can be carried out
in linear time for a 1-split-twin graph G. J

I Definition 20. A split-twin graph G with partition (C, I) on its vertices is called threshold-
twin graph if the vertices of I can be ordered w1, . . . , w|I| such that for any wi, wj ∈ I with
i < j, we have NC(wi) ⊆ NC(wj).

For the next result, we prove that there is no P4 in a threshold-twin graph (P4-free graphs
are closed under true twins addition). Thus, by the algorithm given in [11], we have:

I Theorem 21. Cluster Deletion is polynomial-time solvable on threshold-twin graphs.

5 Concluding remarks

It is notable that our algorithm for interval graphs, heavily relies on the linear structure
obtained from their clique paths. Such an observation, leads us to consider few open questions
regarding two main directions. On the one hand, it seems tempting to adjust our algorithm
for other vertex partitioning problems on interval graphs within a more general framework,
as already have been studied for particular graph properties [4, 12, 20, 21, 25]. On the other
hand, it is reasonable to ask whether our approach works for Cluster Deletion on graphs
admitting similar linear structure such as permutation graphs, or graphs having bounded
linear related parameter. Towards the latter direction, observe that Cluster Deletion as
a vertex partitioning problem can be solved in linear time on graphs of bounded treewidth
by using Courcelle’s machinery [6].

Although for other structural parameters it seems rather difficult to obtain similar result,
it is still interesting to settle the complexity of Cluster Deletion on distance hereditary
graphs that admit constant clique-width [15]. In fact, we would like to settle the case in
which from a given cograph we can append degree-one vertices. This comes in conjunction
with the 1-split-twin graphs, as they can be seen as a degree-one extension of a clique.

MFCS 2019



12:14 Cluster Deletion on Interval Graphs and Split Related Graphs

References
1 N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56:89–113,

2004.
2 F. Bonomo, G. Durán, A. Napoli, and M. Valencia-Pabon. A one-to-one correspondence

between potential solutions of the cluster deletion problem and the minimum sum coloring
problem, and its application to P4-sparse graphs. Inf. Proc. Lett., 115:600–603, 2015.

3 F. Bonomo, G. Durán, and M. Valencia-Pabon. Complexity of the cluster deletion problem on
subclasses of chordal graphs. Theor. Comp. Science, 600:59–69, 2015.

4 B. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally checkable
vertex subset and vertex partitioning problems. Theor. Comput. Sci., 511:66–76, 2013.

5 M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In
Proceedings of FOCS 2003, pages 524–533, 2003.

6 B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

7 A. Dessmark, J. Jansson, A. Lingas, E.-M. Lundell, and M. Persson. On the approximability
of maximum and minimum edge clique partition problems. Int. J. Found. Comput. Sci.,
18:217–226, 2007.

8 R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics. Springer,
2012.

9 S. Földes and P. L. Hammer. Split graphs. Congressus Numerantium, 19:311–315, 1977.
10 D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal of

Mathematics, 15:835–855, 1965.
11 Y. Gao, D. R. Hare, and J. Nastos. The cluster deletion problem for cographs. Discrete

Mathematics, 313:2763–2771, 2013.
12 M. U. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with

fixed clique-width. Theor. Comp. Science, 299:719–734, 2003.
13 P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval

graphs. Canadian Journal of Mathematics, 16:539–548, 1964.
14 P. A. Golovach, P. Heggernes, A. L. Konstantinidis, P. T. Lima, and C. Papadopoulos.

Parameterized aspects of strong subgraph closure. In Proceedings of SWAT 2018, pages
23:1–23:13, 2018.

15 M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. Int. J.
Found. Comput. Sci., 11:423–443, 2000.

16 N. Grüttemeier and C. Komusiewicz. On the relation of strong triadic closure and cluster
deletion. In Proceedings of WG 2018, pages 239–251, 2018.

17 P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1:275–284, 1981.
18 P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Math. Pro-

gramming, 79:191–215, 1997.
19 J. Hartigan. Clustering Algorithms. Wiley, New York, 1975.
20 P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A. Telle. Generalized graph

clustering: recognizing (p, q)-cluster graphs. In Proceedings of WG 2010, pages 171–183, 2010.
21 I. A. Kanj, C. Komusiewicz, M. Sorge, and E. Jan van Leeuwen. Solving partition problems

almost always requires pushing many vertices around. In Proceedings of ESA 2018, pages
51:1–51:14, 2018.

22 C. Komusiewicz and J. Uhlmann. Cluster editing with locally bounded modifications. Discrete
Applied Mathematics, 160:2259–2270, 2012.

23 S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
24 R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied

Mathematics, 144:173–182, 2004.
25 J. A. Telle and A. Proskurowski. Algorithms for Vertex Partitioning Problems on Partial

k-Trees. SIAM J. Discrete Math., 10:529–550, 1997.


	Introduction
	Preliminaries
	Polynomial-time algorithm on interval graphs
	Splitting into partial solutions

	Cluster Deletion on a generalization of split graphs
	Polynomial-time algorithms on subclasses of split-twin graphs

	Concluding remarks

