12,803 research outputs found

    Finding branch-decompositions of matroids, hypergraphs, and more

    Full text link
    Given nn subspaces of a finite-dimensional vector space over a fixed finite field F\mathcal F, we wish to find a "branch-decomposition" of these subspaces of width at most kk, that is a subcubic tree TT with nn leaves mapped bijectively to the subspaces such that for every edge ee of TT, the sum of subspaces associated with leaves in one component of TeT-e and the sum of subspaces associated with leaves in the other component have the intersection of dimension at most kk. This problem includes the problems of computing branch-width of F\mathcal F-represented matroids, rank-width of graphs, branch-width of hypergraphs, and carving-width of graphs. We present a fixed-parameter algorithm to construct such a branch-decomposition of width at most kk, if it exists, for input subspaces of a finite-dimensional vector space over F\mathcal F. Our algorithm is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend their framework to branch-decompositions of vector spaces, we developed highly generic tools for branch-decompositions on vector spaces. The only known previous fixed-parameter algorithm for branch-width of F\mathcal F-represented matroids was due to Hlin\v{e}n\'y and Oum (2008) that runs in time O(n3)O(n^3) where nn is the number of elements of the input F\mathcal F-represented matroid. But their method is highly indirect. Their algorithm uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and uses the algorithm of Hlin\v{e}n\'y (2005) on checking monadic second-order formulas on F\mathcal F-represented matroids of small branch-width. Our result does not depend on such a fact and is completely self-contained, and yet matches their asymptotic running time for each fixed kk.Comment: 73 pages, 10 figure

    Ribbon graphs and bialgebra of Lagrangian subspaces

    Full text link
    To each ribbon graph we assign a so-called L-space, which is a Lagrangian subspace in an even-dimensional vector space with the standard symplectic form. This invariant generalizes the notion of the intersection matrix of a chord diagram. Moreover, the actions of Morse perestroikas (or taking a partial dual) and Vassiliev moves on ribbon graphs are reinterpreted nicely in the language of L-spaces, becoming changes of bases in this vector space. Finally, we define a bialgebra structure on the span of L-spaces, which is analogous to the 4-bialgebra structure on chord diagrams.Comment: 21 pages, 13 figures. v2: major revision, Sec 2 and 3 completely rewritten; v3: minor corrections. Final version, to appear in Journal of Knot Theory and its Ramification

    Characterization and Lower Bounds for Branching Program Size using Projective Dimension

    Get PDF
    We study projective dimension, a graph parameter (denoted by pd(G)(G) for a graph GG), introduced by (Pudl\'ak, R\"odl 1992), who showed that proving lower bounds for pd(Gf)(G_f) for bipartite graphs GfG_f associated with a Boolean function ff imply size lower bounds for branching programs computing ff. Despite several attempts (Pudl\'ak, R\"odl 1992 ; Babai, R\'{o}nyai, Ganapathy 2000), proving super-linear lower bounds for projective dimension of explicit families of graphs has remained elusive. We show that there exist a Boolean function ff (on nn bits) for which the gap between the projective dimension and size of the optimal branching program computing ff (denoted by bpsize(f)(f)), is 2Ω(n)2^{\Omega(n)}. Motivated by the argument in (Pudl\'ak, R\"odl 1992), we define two variants of projective dimension - projective dimension with intersection dimension 1 (denoted by upd(G)(G)) and bitwise decomposable projective dimension (denoted by bitpdim(G)(G)). As our main result, we show that there is an explicit family of graphs on N=2nN = 2^n vertices such that the projective dimension is O(n)O(\sqrt{n}), the projective dimension with intersection dimension 11 is Ω(n)\Omega(n) and the bitwise decomposable projective dimension is Ω(n1.5logn)\Omega(\frac{n^{1.5}}{\log n}). We also show that there exist a Boolean function ff (on nn bits) for which the gap between upd(Gf)(G_f) and bpsize(f)(f) is 2Ω(n)2^{\Omega(n)}. In contrast, we also show that the bitwise decomposable projective dimension characterizes size of the branching program up to a polynomial factor. That is, there exists a constant c>0c>0 and for any function ff, bitpdim(Gf)/6bpsize(f)(bitpdim(Gf))c\textrm{bitpdim}(G_f)/6 \le \textrm{bpsize}(f) \le (\textrm{bitpdim}(G_f))^c. We also study two other variants of projective dimension and show that they are exactly equal to well-studied graph parameters - bipartite clique cover number and bipartite partition number respectively.Comment: 24 pages, 3 figure
    corecore