research

Finding branch-decompositions of matroids, hypergraphs, and more

Abstract

Given nn subspaces of a finite-dimensional vector space over a fixed finite field F\mathcal F, we wish to find a "branch-decomposition" of these subspaces of width at most kk, that is a subcubic tree TT with nn leaves mapped bijectively to the subspaces such that for every edge ee of TT, the sum of subspaces associated with leaves in one component of Tβˆ’eT-e and the sum of subspaces associated with leaves in the other component have the intersection of dimension at most kk. This problem includes the problems of computing branch-width of F\mathcal F-represented matroids, rank-width of graphs, branch-width of hypergraphs, and carving-width of graphs. We present a fixed-parameter algorithm to construct such a branch-decomposition of width at most kk, if it exists, for input subspaces of a finite-dimensional vector space over F\mathcal F. Our algorithm is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend their framework to branch-decompositions of vector spaces, we developed highly generic tools for branch-decompositions on vector spaces. The only known previous fixed-parameter algorithm for branch-width of F\mathcal F-represented matroids was due to Hlin\v{e}n\'y and Oum (2008) that runs in time O(n3)O(n^3) where nn is the number of elements of the input F\mathcal F-represented matroid. But their method is highly indirect. Their algorithm uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and uses the algorithm of Hlin\v{e}n\'y (2005) on checking monadic second-order formulas on F\mathcal F-represented matroids of small branch-width. Our result does not depend on such a fact and is completely self-contained, and yet matches their asymptotic running time for each fixed kk.Comment: 73 pages, 10 figure

    Similar works