32 research outputs found

    Fluid Approximation of a Call Center Model with Redials and Reconnects

    Get PDF
    In many call centers, callers may call multiple times. Some of the calls are re-attempts after abandonments (redials), and some are re-attempts after connected calls (reconnects). The combination of redials and reconnects has not been considered when making staffing decisions, while ignoring them will inevitably lead to under- or overestimation of call volumes, which results in improper and hence costly staffing decisions. Motivated by this, in this paper we study call centers where customers can abandon, and abandoned customers may redial, and when a customer finishes his conversation with an agent, he may reconnect. We use a fluid model to derive first order approximations for the number of customers in the redial and reconnect orbits in the heavy traffic. We show that the fluid limit of such a model is the unique solution to a system of three differential equations. Furthermore, we use the fluid limit to calculate the expected total arrival rate, which is then given as an input to the Erlang A model for the purpose of calculating service levels and abandonment rates. The performance of such a procedure is validated in the case of single intervals as well as multiple intervals with changing parameters

    Feedback control ideas for call center staffing

    Get PDF
    European Control Conference 2009 • Budapest, Hungary, August 23–26, 2009Call centers are nowadays a widespread solution to deal with customer support and as platform for different kind of business. Call center staffing is crucial to provide adequate service levels at acceptable costs. The task is usually accomplished using heuristics with the help of a human experts or with some static offline optimization based on operations research. Simulators based on queue theory are in some cases also used. The aim of the paper is to show that call center staffing can be posed as a feedback control problem with the advantage of getting a higher level of automation, and a wealth of results from control theory that can help to obtain the best possible staffing. In the paper the authors briefly describe the working procedures of call centers and how the staffing is usually made. They propose a feedback controller that it is used with a call center simulator. The results show that good call center staffing can be obtained even with a not very sophisticated controller

    A Note on an M/M/s Queueing System with two Reconnect and two Redial Orbits

    Get PDF
    A queueing system with two reconnect orbits, two redial (retrial) orbits, s servers and two independent Poisson streams of customers is considered. An arriving customer of type i, i = 1, 2 is handled by an available server, if there is any; otherwise, he waits in an infinite buffer queue. A waiting customer of type i who did not get connected to a server will lose his patience and abandon after an exponentially distributed amount of time, the abandoned one may leave the system (lost customer) or move into one of the redial orbits, from which he makes a new attempt to reach the primary queue, and when a customer finishes his conversation with a server, he may comeback to the system, to one of the reconnect orbits where he will wait for another service. In this paper, a fluid model is used to derive a first order approximation for the number of customers in the redial and reconnect orbits in the heavy traffic. The fluid limit of such a model is a unique solution to a system of three differential equations

    The probabilistic model of sharing system with collisions, Н-persistence and rejections data processing

    Get PDF
    Рассматривается математическая модель системы совместного доступа с коллизиями, H-настойчивостью и отказами в виде системы массового обслуживания с повторными вызовами вида M|M|1 и проводится анализ ее вероятностных характеристик. Разработан рекуррентный алгоритм вычисления вероятностей числа заявок на орбите, проведена численная реализация нахождения допредельного распределения вероятностей числа заявок на орбите, технических характеристик функционирования системы

    On the estimation of the true demand in call centers with redials and reconnects

    Get PDF
    In practice, in many call centers customers often perform redials (i.e., reattempt after an abandonment) and reconnects (i.e., reattempt after an answered call). In the literature, call center models usually do not cover these features, while real data analysis and simulation results show ignoring them inevitably leads to inaccurate estimation of the total inbound volume. Therefore, in this paper we propose a performance model that includes both features. In our model, the total volume consists of three types of calls: (1) fresh calls (i.e., initial call attempts), (2) redials, and (3) reconnects. In practice, the total volume is used to make forecasts, while according to the simulation results, this could lead to high forecast errors, and subsequently wrong staffing decisions. However, most of the call center data sets do not have customer-identity information, which makes it difficult to identify how many calls are fresh and what fractions of the calls are redials and reconnects. Motivated by this, we propose a model to estimate the number of fresh calls, and the redial and reconnect probabilities, using real call center data that has no customer-identity information. We show that these three variables cannot be estimated simultaneously. However, it is empirically shown that if one variable is given, the other two variables can be estimated accurately with relatively small bias. We show that our estimations of redial and reconnect probabilities and the number of fresh calls are close to the real ones, both via real data analysis and simulation

    Staffing to Maximize Profit for Call Centers with Impatient and Repeat-Calling Customers

    Get PDF
    Motivated by call center practice, we study the optimal staffing of many-server queues with impatient and repeat-calling customers. A call center is modeled as an M/M/s+M queue, which is developed to a behavioral queuing model in which customers come and go based on their satisfaction with waiting time. We explicitly take into account customer repeat behavior, which implies that satisfied customers might return and have an impact on the arrival rate. Optimality is defined as the number of agents that maximize revenues net of staffing costs, and we account for the characteristic that revenues are a direct function of staffing. Finally, we use numerical experiments to make certain comparisons with traditional models that do not consider customer repeat behavior. Furthermore, we indicate how managers might allocate staffing optimally with various customer behavior mechanisms

    Performance Analysis of a Multi-Class, Preemptive Priority Call Center with Time-Varying Arrivals

    Get PDF
    We model a call center as a an Mt/M/nM_{t}/M/n, preemptive-resume priority queue with time-varying arrival rates and two priority classes of customers. The low priority customers have a dynamic priority where they become high priority if their waiting time exceeds a given service-level time. The performance of the call center is estimated by the mean number in the system and mean virtual waiting time for both classes of customers. We discuss some analytical methods of measuring the performance of call center models, such as Laplace transforms. We also propose a more-robust fluid approximations method to model a call center. The accuracy of the performance measures from the fluid approximation method depend on an asymptotic scheme developed by Halfin and Whitt. Here, the offered load and number of servers are scaled by the same factor, which maintains a constant system utilization. The fluid approximations provide estimates for the mean number in system and mean virtual waiting time. The approximations are solutions of a system of nonlinear differential equations. We analyze the accuracy of the fluid approximations through a comparison with a discrete-event simulation of a call center. We show that for a large enough scale factor, the estimates of the performance measures derived from the fluid approximations method are relatively close to those from the discrete-event simulation. Finally, we demonstrate that these approximations remain relatively close to the simulation estimates as the system state varies between under-loaded and over-loaded status
    corecore