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Abstract

A queueing system with two reconnect orbits, two redial (retrial) orbits, s servers and two

independent Poisson streams of customers is considered. An arriving customer of type i, i = 1, 2

is handled by an available server, if there is any; otherwise, he waits in an infinite buffer queue.

A waiting customer of type i who did not get connected to a server will lose his patience and

abandon after an exponentially distributed amount of time, the abandoned one may leave the

system (lost customer) or move into one of the redial orbits, from which he makes a new attempt

to reach the primary queue, and when a customer finishes his conversation with a server, he may

comeback to the system, to one of the reconnect orbits where he will wait for another service. In

this paper, a fluid model is used to derive a first order approximation for the number of customers

in the redial and reconnect orbits in the heavy traffic. The fluid limit of such a model is a unique

solution to a system of three differential equations.

Keywords: Abandonment; Bernoulli feedback; call center; fluid limit; queueing system; reconnect

queue; redial queue; retrial
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2 A.A. Bouchentouf & H. Sakhi

1. Introduction

In queueing theory, such a mechanism in which ejected (or rejected) customers return at random

intervals until they receive service is called a retrial queue. Retrial queues have an important

application in a wide variety of fields, they are also widespread in the evaluation and design

of computer networks, in telecommunications and wireless networks. A retrial queue is similar

to any ordinary queueing system in that there is an arrival process and one or more servers.

The elemental differences are firstly, the customers who enter during a down or busy period of

the server or servers may reattempt to acquire service at some random time in the future, and

secondly a waiting room, which is known as a primary queue, in the context of retrial queues

is not mandatory. In place of the ordinary waiting room is a buffer called an orbit queue (in

our work we call it a redial orbit) to which customers proceed after an unsuccessful attempt

at service, and from which they retry service according to a given probabilistic or deterministic

policy. Owing to the utility and interesting mathematical properties of retrial queueing models,

ample literature on the subject has emerged over the past several decades. For a general survey

of retrial queues and a summary of many of the results, the reader may refer to the works of

(Falin, 1990; Gharbi and Ioualalen, 2006; Falin and Artalejo, 1998; Ebrahimi, 2006; Libman and

Orda, 2002; Walrand, 1991; Choi and Kim, 1998) and references therein.

A queueing system with two orbits and two exogenous streams of different type serves as a model

for two competing job streams in a carrier sensing multiple access system, where the jobs, after

a failed attempt to network access, wait in an orbit queue (Nain, 1985; Szpankowski, 1994). An

example of a carrier sensing multiple access system is a local area computer network with bus

architecture. The two types of customers can be interpreted as customers with different priority

requirements.

A two-class retrial system with a single- server, no waiting room, batch arrivals and classical

retrial scheme was introduced and analyzed in (Kulkarni, 1986). Then, in (Falin, 1988) author

extended the analysis of the model in (Kulkarni, 1986) to the multi-class setting with an arbitrary

number of classes. In (Grishechkin, 1992) the author has established equivalence between the

multi-class batch arrival retrial queues with classical retrial policy and branching processes with

immigration. In (Moutzoukis and Langaris, 1996) a non-preemptive priority mechanism was

added to the model of (Falin, 1988; Kulkarni, 1986). In (Langaris and Dimitriou, 2010) the

authors have considered a multi-class retrial system where retrial classes are associated with

different phases of service.

The retrial queueing model MMAP/M2/1 with two retrial orbits was studied in (Avrachenkov

et al., 2010), where the authors considered a retrial single-server queueing model with two types

of customers. When the server is occupied, the arrival customer moves to the orbit depending

on the type of the customer, one orbit is infinite while the second one is finite. Joint distribution

of the number of customers in the orbits and some performance measures are computed. In

(Bouchentouf and Belarbi, 2013) the authors considered two retrial queueing system with balking

and feedback, the joint generating function of the number of busy server and the queue length

was found by solving the Kummer differential equation by the method of series solution.
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At the present time, call centers are becoming an important way of communication with the

customer. Therefore, the response-time performance of call centers is crucial for customer satis-

faction. Making the right staffing decisions is also fundamental to the costs and the performances

of call centers. Numerous models have been developed in order to decide on the optimal number

of servers, see (Gans et al., 2002), (Halfin and Whitt, 1981), and the references therein.

So, customer redial behaviors in call centers is quite a significant aspect in queueing (Gans et al.,

2002), (Aguir et al., 2008), (Sze, 1984) and the reference therein.

In addition to redials (retrial queue), reconnect is another important aspect, these two latter

equivalent should be considered and modeled, see (Gans et al., 2002), (Ding et al., 2013b).

Appropriately, we can say that neglecting the impact of redials and reconnects will lead to either

overstaffing or understating. In case of overstaffing the performance of the call center will be

good, but at needlessly high costs. and in case of understating, the performance of the call center

will be degraded, and thus, it may lead to customer dissatisfaction.

When the system is heavily loaded, it would lead to low service levels. However, for large call

centers, especially during the busy hours when the inbound volume is quite large, it is possible

that the target service levels can be met even in heavy traffic; for more details see (Garnett et al.,

2002) and (Borst et al., 2004).

Fluid models for call centers have been extensively studied, (Whitt, 2006), (Mandelbaum et al.,

2002). (Whitt,2006), (Mandelbaum et al.,2002). In (Mandelbaum et al., 1999) the fluid and the

diffusion approximation for time varying multiserver queue with abandonment and retrials were

used, it was shown that the fluid and the diffusion approximation can both be obtained by solving

sets of non-linear differential equations. In (Mandelbaum et al., 1998) more general theoretical

results for the fluid and diffusion approximation for Markovian service networks was given. In

(Aguir et al., 2004) the authors extended the model by allowing customer balking behavior. Fluid

models have also been applied in delay announcement of customers in call centers (Ibrahim and

Whitt, 2009; Ibrahim and Whitt, 2011). And recently, in (Ding et al., 2013a) the authors study

call centers with one redial and one orbit; using fluid limit, they calculate the expected total

arrival rate, which is then given as an input to the Erlang, a model for the purpose of calculating

service levels and abandonment rates. The performance of such a procedure is validated in the

case of single intervals as well as multiple intervals with changing parameters.

In the present paper, an analysis of M/M/s queueing model; a call center with two reconnect,

two redials orbits and two exogenous streams of different types is carried out. The goal of this

work is to present a type of call center where the emphasis on reconnect and redial orbits is

crucial in any telecommunication system.

Now, let us outline the structure of the paper. After the introduction in Section 2, we describe

the queueing model. In Section 3, we propose a fluid model, which is a deterministic analogue

of the stochastic model. We prove that the original stochastic model converges to the fluid model

under proper scaling. So, roughly, we use a fluid model to derive first order approximations for

the number of customers in the redial and reconnect orbits in heavy traffic, the fluid limit of such

a model is the unique solution to a system of three differential equations.
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4 A.A. Bouchentouf & H. Sakhi

Fig. 1: A queueing model with two redial and two reconnect orbits

2. The model

Consider a queueing model with two reconnect and two redial orbits and s servers (Figure 1).

Two independent Poisson streams of customers flow into a common infinite buffer queue. An

arriving customer of type i, i = 1, 2 is handled by an available server, if there is any; otherwise,

he waits in an infinite buffer queue. The customers are handled in the order of arrival (FIFO),

The required service time of each customer is independent of its type.

A waiting customer of type i who did not get connected to a server may lose his patience

(impatient customer) and abandon after an exponentially distributed amount of time ψ. We assume

that E(ψ) = 1
ϑ
<∞, where ϑ is the abandonment rate. The impatient customer either definitively

leaves the system with probability α where he is considered as a lost customer or decides to stay

requesting service with probability (1− α). So, if the customer decides not to leave the system,

he will route to one of a separate type-i redial queue that attempts to re-dispatch its jobs with

probability (1 − α)αi, (i = 1, 2) (α1 + α2 = 1), which means that the customer has to choose

between two redial orbits (for instance, customer of type 2 may be routed to redial orbit 1 with

probability (1 − α)α1, or to redial orbit 2 with probability (1 − α)α2,); the choice is random

and does not depend on the threshold of the redial orbits or on the type of the customer. Let’s

note that a redial orbit is an ordinary waiting room where a customer coming from the primary

queue will be waiting until he redials after an exponentially distributed amount of time ωi, (i=1,2)

with E(ωi) = γi < ∞. We assume that the service time of type-i customer has an exponential

distribution with mean 1
µ
. We assume that service times are independent, and the required service

time of each customer is independent of its type. After the customer has been served, he may

later leave the system with probability β or decide to comeback to the system for another service

with probability (1 − β). The type-i customer will enter one of the type-i reconnect queue with

4
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probability (1 − β)βi, with (β1 + β2 = 1). As was been mentioned above (in the case of redial

orbits), let’s note that the customer after getting service may comeback to the system, choosing

between two reconnect orbits (for instance, customer of type 2 may be routed to reconnect orbit

1 with probability (1 − β)β1, or to reconnect orbit 2 with probability (1 − β)β2,), the choice is

random and does not depend on the threshold of the retrial orbits or on the type of the customer.

The reconnect orbit is an ordinary waiting room where a customer coming back from the last

service and requiring another service will be waiting and subsequently will reconnect after an

exponentially distributed time ϕi, with E(ϕi) = θi <∞.

So an abandoned customer of type i have to choose between one of the two retrial orbits, and the

one who decide to comeback for another service have a choice between one of the two reconnect

orbits; this means that a customer of type 1 (resp. of type 2) is not directed automatically to the

redial or reconnect orbits of type 1 (resp. of type 2).

We assume that α and β do not depend on the customers’ experiences in the system. These

experiences include holding time, waiting time and the number of times that customers have

already tried to get a service. This creates a system with five dependent queues. Such a queueing

system serves as a model for two competing job streams in a carrier sensing multiple access

system.

3. Fluid approximation

In this section, we calculate E(ZQ(t)); E(ZR(t)) and E(ZO)(t), where ZQ(t) is the number

of customers in the queue plus the number of customers in service at time t, E(ZR)(t) =

E(ZR1)(t) + E(ZR2)(t) is the number of customers in the redial queues 1 and 2 at time t, and

E(ZO)(t) = E(ZO1)(t) + E(ZO2)(t) is the number of customers in reconnect orbits 1 and 2 at

time t.

So, let

E∆(t) = λ1(t) + λ2(t) + (γ1 + γ1)E(ZR(t)) + (θ1 + θ2)E(ZO(t)); (1)

where ∆(t) stands for the expected number of arrivals up to time t, which is a stochastic process,

λ1(t)+λ2(t) stands for the external arrival rate at time t, (γ1+γ1)E(ZR(t)) and (θ1+θ2)E(ZO(t))

stand for the mean arrival rate due to redials and reconnects at time t, respectively. Therefore,

once E(ZQ(t)); E(ZR(t)) and E(ZO)(t), are known, E∆(t) can be obtained by equation (1).

Note that ZQ(t) does not appear in Equation (1), although we will see later that ZR(t) and ZO(t)

would depend on ZQ(t).

In fact, it is easy to prove that our stochastic process {Z(t); t ≥ 0}, which is defined by

Z(t) := (ZQ(t), ZR1(t), ZR2(t), ZO1(t), ZO2(t))
T ; (2)

is a 5-dimensional Markov process, The state space of this Markov process is Z
5
+. This stochastic

process can be reduced to 3-dimensional Markov process

(ZQ(t);ZR(t);ZO(t))T ,

5
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6 A.A. Bouchentouf & H. Sakhi

with ZR(t) = ZR1(t)+ZR2(t) and ZO(t) = ZO1(t)+ZO2(t). Throughout the paper we will focus

on the study of 3-dimensional Markov process, since we do not think that is necessary to study

each of the reconnect and redial orbits separately.

And since it is a Markov process, we can truncate the system at certain large states, and

numerically obtain the steady state distribution of Z(t) by solving the global balance equations.

But, for the model we consider, it is difficult to formulate and solve the global balance equations,

since their solution offers no insight about the system. Therefore, for the convenience of practical

usage, we will not be solving this Markov process, but other approximation methods instead.

A. Fluid limit

In this subsection, we present the fluid model, which we will show arises from the limit under a

proper scaling of the stochastic model presented in Figure 1. Consider a single interval with the

external arrival rates remaining constant during this interval ( λ1(t) + λ2(t) = λ1 + λ2, t ≥ 0).

The following flow conservation equations hold for this stochastic model

ZQ(t) = ZQ(0) + ∆λ1(t) + ∆λ2(t) +DR(t) +DO(t)−Ds(t) −Da(t). (3)

With

Ds1(t) +Ds2(t) = Ds(t) and Da1(t) +Da2(t) = Da(t).

ZR(t) = ZR(0) +

Da(t)
∑

j=1

Bj(1 − α) −DR(t). (4)

ZO(t) = ZO(0) +

Ds(t)
∑

j=1

Bj(1 − β)−DO(t). (5)

Where ∆λ1(t)+∆λ2(t) is the number of external arrivals of type 1 and 2 during time interval [0; t).

∆λ1(·), and ∆λ2(·) and Poisson processes of rates λ1, and λ2 respectively. DR(t) = DR1(t) +

DR2(t) is the number of redials during [0; t), DO(t) = DO1(t)+DO2(t); the number of reconnects

during [0; t), Ds(t) = Ds1(t)+Ds2(t); number of served customers of types 1 and 2, during [0; t),

and Da(t) = Da1(t)+Da2(t) the number of abandoned customers of types 1 and 2 during [0; t).

Finally Bj(1−α) is a Bernoulli random variable with success probability 1−α, j = 1, ..., Dai
(t),

such that

Bj(1 − α) =







1, if the jth abandoned customer decides to stay in the system and then

enters one of the redial orbits;

0, otherwise.

Therefore, for given Da(t), we have

Da(t)
∑

j=1

Bj(1−α) Bin(Da(t), 1−α), and for a given Ds(t),

we have

Ds(t)
∑

j=1

Bj(1 − β) Bin(Ds(t), 1 − β), (Bin(·, ·) is a Binomial distribution)

6
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Let ∆i be independent Poisson processes of rate 1.

So,

Ds(t) = ∆1

(∫ t

0

µmin{s, ZQ(u)}du

)

, (6)

Da(t) = ∆2

(
∫ t

0

ϑ(ZQ(u) − s)+du

)

, (7)

DR(t) = ∆3

(∫ t

0

(γ1 + γ2)ZR(u)du

)

, (8)

DO(t) = ∆4

(
∫ t

0

(θ1 + θ2)ZO(u)du

)

. (9)

For the proof of these statements, we refer to (Pang et al., 2007). To introduce the fluid limit, we

consider a sequence of models as in Figure 1 such that, in the n-th model, the external arrival

rates are λ1n, λ2n and the number of servers is ns. We add the superscript ”(n)” to all notations

in the n-th model. Similarly to (3)-(5), we then have for the n−th model:

Z
(n)
Q (t) = Z

(n)
Q (0) + ∆

(n)
λ1n(t) + ∆

(n)
λ2n

(t) +D
(n)
R (t) +D

(n)
O (t)−D(n)

s (t)−D(n)
a (t), (10)

Z
(n)
R (t) = Z

(n)
R (0) +

D
(n)
a (t)
∑

j=1

Bj(1 − α) −D
(n)
R (t). (11)

Z
(n)
O (t) = Z

(n)
O (0) +

D
(n)
s (t)
∑

j=1

Bj(1 − β) −D
(n)
O (t). (12)

Now, dividing by n on both sides of equations (10)-(12),we have

Z̄
(n)
Q (t) = Z̄

(n)
Q (0) +G

(n)
Q

(

Z̄(n)
)

(t) +

∫ t

0

HQ

(

Z̄(n)
)

(u)du, (13)

Z̄
(n)
R (t) = Z̄

(n)
R (0) +G

(n)
R

(

Z̄(n)
)

(t) +

∫ t

0

HR

(

Z̄(n)
)

(u)du, (14)

Z̄
(n)
O (t) = Z̄

(n)
O (0) +G

(n)
O

(

Z̄(n)
)

(t) +

∫ t

0

HO

(

Z̄(n)
)

(u)du, (15)

Where

G
(n)
Q

(

Z̄(n)
)

(t) =

(

∆
(n)
λ1n(t)+∆

(n)
λ2n(t)

n
− (λ1 + λ2)t

)

−

(

D̄
(n)
s (t)−

∫ t

0

µmin{s, Z̄
(n)
Q (u)}du

)

−

(

D̄a
(n)

(t) −

∫ t

0

ϑ(Z̄
(n)
Q (u) − s)+du

)

+

(

D̄
(n)
R (t) −

∫ t

0

(γ1 + γ2)Z̄
(n)
R (u)du

)

+

(

D̄
(n)
O (t)−

∫ t

0

(θ1 + θ2)Z̄
(n)
O (u)du

)

(16)
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8 A.A. Bouchentouf & H. Sakhi

G
(n)
R

(

Z̄(n)
)

(t) =





nD̄a
(n)

(t)
∑

j=1

Bj(1 − α)/n−

∫ t

0

(1 − α)ϑ
(

Z̄
(n)
Q (u) − s

)+

du





−

(

D̄
(n)
R (t)−

∫ t

0

(γ1 + γ2)Z̄
(n)
R (u)du

)

(17)

G
(n)
O

(

Z̄(n)
)

(t) =





nD̄s
(n)

(t)
∑

j=1

Bj(1 − β)/n−

∫ t

0

(1 − β)µmin{s, Z̄
(n)
Q (u)}du





−

(

D̄
(n)
O (t) −

∫ t

0

(θ1 + θ2)Z̄
(n)
O (u)du

)

.

(18)

And

D̄s
(n)

(t) = ∆1

(

n

∫ t

0

µmin{s, Z̄
(n)
Q (u)}du

)

/n (19)

D̄a
(n)

(t) = ∆2

(

n

∫ t

0

ϑ(Z̄
(n)
Q (u)− s)+du

)

/n (20)

D̄
(n)
R (t) = ∆3

(

n

∫ t

0

(γ1 + γ2)Z̄
(n)
R (u)du

)

/n (21)

D̄
(n)
O (t) = ∆4

(

n

∫ t

0

(θ1 + θ2)Z̄
(n)
O (u)du

)

/n (22)

And
∫ t

0

HQ

(

Z̄(n)
)

(u)du =

∫ t

0

λ1 + λ2 + (γ1 + γ2)Z̄
(n)
R (u) + (θ1 + θ2)Z̄

(n)
O (u)

−µmin{s, Z̄
(n)
Q (u)} − ϑ

(

Z̄
(n)
Q (u) − s

)+

du

(23)

∫ t

0

HR

(

Z̄(n)
)

(u)du =

∫ t

0

(1 − α)ϑ
(

Z̄
(n)
Q (u) − s

)+

− (γ1 + γ2)Z̄
(n)
R (u)du (24)

∫ t

0

HO

(

Z̄(n)
)

(u)du =

∫ t

0

(1 − β)µmin{s, Z̄
(n)
Q (u)} − (θ1 + θ2)Z̄

(n)
O (u)du (25)

For the convenience of notation, we rewrite equations (13)-(15) in the vector form

Z̄(n)(t) = Z̄(n)(0) +G(n)
(

Z̄(n)
)

(t) +

∫ t

0

HQ(Z̄(n))(u)du (26)

where

G(n)
(

Z̄(n)
)

(t) = (G
(n)
Q

(

Z̄(n)
)

(t), G
(n)
R

(

Z̄(n)
)

(t), G
(n)
O

(

Z̄(n)
)

(t))T

H(n)
(

Z̄(n)
)

(u) = (H
(n)
Q

(

Z̄(n)
)

(u), H
(n)
R

(

Z̄(n)
)

(u), H
(n)
O

(

Z̄(n))(u)
)T
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Now, let us define the fluid scaled process

Z̄n(t) = (Z̄
(n)
Q (t), Z̄

(n)
R (t), Z̄

(n)
O (t))T

Where

Z̄
(n)
Q (t) =

Z
(n)
Q (t)

n
, Z̄

(n)
R (t) =

Z
(n)
R (t)

n
, Z̄

(n)
O (t) =

Z
(n)
O (t)

n
.

Let D([0,∞),R3) be the space of right continuous functions with left limits in R
3 having the

domain [0,∞). We endow D([0,∞),R3) with the usual Skorokhod J1 topology. Assume that

{X(n)}∞n=1 is a sequence of stochastic processes, then X(n) →d x means that X(n) converge

weakly to stochastic process x.

Definition. If there exists a limit in distribution for the scaled process {Z̄(n)(·)}∞n=1, i.e. z̄(n)(·) →d

z(·), then z(·) is called the fluid limit of the original stochastic model.

Now, let us define the fluid limit of the original stochastic model; so if

H0 : (Z
(n)

Q (0), Z
(n)

R (0), Z
(n)

O (0)) →d (zQ(0), ZR(0), zO(0)) as n→ ∞,

holds, then the fluid limit of the original stochastic model is the unique solution to the following

system of equations

ZQ(t) = ZQ(0) + (λ1 + λ2)t+ (γ1 + γ2)

∫ t

0

ZR(u)du+ (θ1 + θ2)

∫ t

0

ZO(u)du−

µ

∫ t

0

min{s, ZQ(u)}du− ϑ

∫ t

0

(ZQ(u)− s)+ du

(27)

ZR(t) = ZR(0) + (1 − α)ϑ

∫ t

0

(ZQ(u) − s)
+
du− (γ1 + γ2)

∫ t

0

ZR(u)du. (28)

ZO(t) = ZO(0) + (1 − β)µ

∫ t

0

min{s, ZQ(u)}du− (θ1 + θ2)

∫ t

0

ZO(u)du. (29)

The proof is as presented in (Ding et al., 2013b).

In the next section, we derive from equations (27)-(29) the fluid limit in stationarity.
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4. The stationarity of the model

In this section we develop conditions under which z(t) is constant. By differentiating Equations

(27)-(29), we obtain

λ1 + λ2 = µmin{s, zQ(∞)}) + ϑ(zQ(∞) − s)+ − (γ1 + γ2)zR(∞)− (θ1 + θ2)zO(∞). (30)

(γ1 + γ2)zR(∞) = (1 − α)ϑ(zQ(∞) − s)+. (31)

(θ1 + θ2)zO(∞) = (1 − β)µ min{s, zQ(∞)}. (32)

Where zQ(∞) = lim
t−→∞

zQ(t), zR(∞) = lim
t−→∞

zR(t), zO(∞) = lim
t−→∞

zO(t). Equations (30)-(32)

can be easily solved with respect to zQ(∞), zR(∞) and zO(∞), yielding

ZQ(∞) =







λ1+λ2

µβ
if λ1+λ2

sµ
< β

λ1+λ2−βµs

ϑα
+ s otherwise

(33)

ZR(∞) =











0 if λ1+λ2

sµ
< β

(1−α)ϑ(zQ(∞)−s)

γ1+γ2
otherwise.

(34)

ZO(∞) =

{

(1−β)µzQ(∞)

θ1+θ2
if λ1+λ2

sµ
< β

(1−β)µs

θ1+θ2
otherwise

(35)

B. Discussion on the results

At first, let us notice that λ1+λ2

sµ
is the load of the system due to the external arrivals. λ1+λ2

µβ
is

the total load when there is no redials. Then let us see that in expressions (33), (34) and (35),

the value of λ1+λ2

µβ
determines whether the fluid model is in heavy traffic or not. So, now if

λ1+λ2

µβ
< 1, since the fluid limit is deterministic, we get zQ(∞) < s, and there is no customer in

the two redial orbits which means that zR(∞) = 0 would hold, which also means that there is

no abandonment at all in the fluid limit. In reality, due to the variability of the service duration

and patience, abandonments would not be 0, though very small. Now, if λ1+λ2

µβ
> 1, by equation

(33), we have zQ(∞) > s. Consequently, the fluid model indicates that there will be zQ(∞)− s

amount of customers waiting, each with rate ϑ, and customers will be routed to the redial orbits

with rate (1 − α)ϑ(zQ(∞) − s).

5. Conclusion

In our paper, a call center with two retrial orbits, two redial orbits and two exogenous streams

of different types was studied; we analyzed this system where customers can abandon, and the

abandoned one may redial; also when a customer finishes service, he may reconnect. In this

work, a fluid model is used to derive first order approximations for the number of customers
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in the redial and reconnect orbits in heavy traffic; the fluid limit of such a model is the unique

solution to a system of three differential equations.
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