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We model a call center as a an Mt/M/n, preemptive-resume priority queue

with time-varying arrival rates and two priority classes of customers. The low

priority customers have a dynamic priority where they become high priority if

their waiting time exceeds a given service-level time. The performance of the

call center is estimated by the mean number in the system and mean virtual

waiting time for both classes of customers. We discuss some analytical methods

of measuring the performance of call center models, such as Laplace transforms.

We also propose a more-robust fluid approximations method to model a call

center.

The accuracy of the performance measures from the fluid approximation

method depend on an asymptotic scheme developed by Halfin and Whitt. Here,



the offered load and number of servers are scaled by the same factor, which main-

tains a constant system utilization. The fluid approximations provide estimates

for the mean number in system and mean virtual waiting time. The approxima-

tions are solutions of a system of nonlinear differential equations.

We analyze the accuracy of the fluid approximations through a comparison

with a discrete-event simulation of a call center. We show that for a large enough

scale factor, the estimates of the performance measures derived from the fluid

approximations method are relatively close to those from the discrete-event sim-

ulation. Finally, we demonstrate that these approximations remain relatively

close to the simulation estimates as the system state varies between under-loaded

and over-loaded status.
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Chapter 1

Call Center Basics

1.1 Introduction

Call centers have become the primary channel of customer interactions, sales,

and service for many businesses. Traditional call center performance modelling

is based on simple Markovian queueing models, developed to analyze telephone

traffic across the Public Switched Telephone Network (PSTN). Closed-form so-

lutions for most of these queueing models are only available for steady-state

behavior. Thus, these solutions are not applicable to practical call centers be-

cause of the time-varying, or transient, behavior of the arrival call process. In

addition, these traditional models become problematic as call centers progress

from handling only voice calls to handling multiple types of calls, such as voice,

e-mail, faxes, and Web chat sessions. In other words, they do not accurately

analyze the performance of modern, multimedia call centers.

To better measure the performance of multimedia call centers over time, we

develop mathematical fluid approximations instead of using simple Markovian

queueing models. We model a multimedia call center as a preemptive-resume

priority queue with time-varying arrival rates and two priority classes of cus-

1



tomers. The high priority customer class consists of regular telephone, or voice,

calls, while the low priority customer class contains e-mail calls. The low priority

calls have a dynamic priority where they are upgraded to high priority status

based on their service level. Usually, this service level is defined as the probabil-

ity that the waiting-time in queue is less than a given time duration, although

sometimes it is defined as the probability that the mean waiting-time is less than

a given duration.

The call center performance measured by our fluid approximation is the mean

number of calls in the system and the mean virtual waiting time for each cus-

tomer class. Our preemptive-resume, time-varying model cannot be easily solved

with traditional Markovian queueing techniques. The fluid approximations are

computed using an asymptotic scheme where the ratio of the offered load to

the number of servers remains constant. The mean number in system for both

customer classes is a solution to a system of differential equations. We investi-

gate the effectiveness of the fluid approximations through a comparison with the

stochastic, discrete-event simulation method and measure the difference between

the mean number in system computed using both methods. We also discuss our

results and describe our future efforts for computing the mean virtual delay for

both customer classes.

1.2 Overview

Traditionally, customers contacted a call center by talking to a customer service

representative (CSR), or agent, over the telephone. Now, customers can contact

an agent over the Internet, either by e-mail or chat session. Many companies use

call centers, such as banks, financial institutions, information technology (IT)
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help desks, and government agencies. The growth of call centers has been sub-

stantial over the last two decades. According to industry estimates, there were

69, 500 call centers in the United States. That number is expected to grow to

approximately 78, 000 by the end of 2003 [15]. The industry is expected to have

an annual growth rate of twenty (20) percent over the next few years [19]. These

numbers represent explosive growth over the numbers from the late 1970s [39].

Also, 4.5 million people worked in North American call centers in 1995, and over

10 million will have worked in call centers by 2004 [39]. Currently, 70 percent

of all business transactions are done over the telephone. The managers of these

call centers attempt to provide their customers with efficient and convenient ser-

vice. However, their job is much more difficult today, because there are far more

products and services being sold and supported than a few years ago. Thus, the

managers struggle to deliver different service levels to different types of customers

with different needs and issues.

1.2.1 Technical Components

A traditional call center has several main components, namely, an automatic call

distributor (ACD), an interactive voice response unit (IVR), desktop computers,

and telephones. The ACD is a telephone switch located at a customer’s premises

and provides methods for the distribution of customer calls [8]. There are a

finite number of trunks (i.e., telephone lines) connecting the ACD to the PSTN.

However, a large ACD switch can connect approximately 30, 000 lines physically

to the PTSN, and process roughly 250, 000 calls per hour [5]. As customer calls

arrive, the ACD receives and routes them either to the IVR where customer

transactions are handled automatically, or to an idle CSR, who provides the
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necessary service. If no CSR is available, the calls are placed in a queue (i.e.,

on hold). The CSR responds to the calls routed to them using their telephone

and desktop computer. For example, if the agent is answering a telephone call,

that agent can access the customer information database through the desktop

computer. The heart of a traditional call center is this dynamic routing of a new

or pending call by the ACD to the most appropriate and available CSR. This

call routing or assignment process must take into consideration such factors as

the call priority, call arrival time, and CSR skills and availability. It requires

a dynamic, real-time management of all CSR skill levels and availability, the

call/caller identity and status, and customer information databases. Therefore,

the flow of an arriving call through a call center can be complex.

Many managers of established, or traditional, call centers enhance their ex-

isting infrastructure by enabling Web integration, instead of implementing all-

Internet call centers, where all customer interaction occurs over the Internet [9].

Thus, a call center owner typically provides bandwidth access to the Internet

and installs an Internet call manager application. Also, the owner typically adds

software to existing ACD systems, CTI applications, and agent stations. Finally,

a voice over Internet (VOIP) gateway device is connected to the ACD to allow

the call center to handle incoming voice calls over the Internet.

We provide a diagram of a Web-enabled call center in Figure 1.1.

1.2.2 Management of a Call Center

A business manager must determine how to improve the performance of a call

center to meet an ever-increasing demand. This job involves determining the ca-

pacity of the telephone trunk lines that connect the call centers to the customers,
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Figure 1.1: Web-Enabled Call Center

and assigning an appropriate number of agents to the call center. Both trunk

capacity and agent staffing contribute greatly to the cost of the call center. The

manager wants to minimize this cost while controlling the desired blocking prob-

ability (i.e., the probability a customer receives a busy signal) and improving the

customer response times. Thus, the proper sizing of the call center becomes a

non-trivial task and is critical to the success of the business operation.

Multimedia customer service capability is also critical to the success of the

today’s call center business operation. Business managers must now account for

different types of interactions between customers and call agents (i.e., CSRs) be-

sides standard telephone calls. These different types of interactions are mainly

Web-enabled customer services. The rapid growth of e-commerce, which pro-

vides detailed and timely customer information, is spurring the development of
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Web-enabled call centers. The Web-based technology that has made this de-

velopment possible includes instant messaging, e-mail, faxes, and click-to-call

links, which are Web-site buttons that generate agent callbacks over the Public

Switched Telephone Network (PSTN) [39]. Although the traditional telephone

PBX/ACD switches and the PSTN are still the mainstays of most of today’s

call center operations, there is a dramatic industry shift in call centers towards

including Internet Protocol (IP) networking in support of multimedia customer

communications. Thus, Web-enabled call centers will not only handle calls from

the telephone network, but also traffic from the Internet. For example, customers

can access a business website through information retrieval, business transaction

data entry, or an e-mail exchange and simultaneously converse with a CSR over a

voice telephone conversation. Eventually, traditional call centers will evolve into

purely Web-based multimedia call centers, where all customer interactions will

occur strictly over the Internet (i.e., no calls will use the PSTN) [8].

The advancement in call center technologies provides more benefits, but also

more challenges. For example, current technologies provide managers greater

flexibility in routing and queueing calls by prioritizing certain types of incoming

calls and allowing customers to access call agents with different skill sets. The

manager’s job of scheduling agents and satisfying multiple customer service levels

therefore becomes more complex.

1.2.3 Operation of a Call Center

Multimedia, or Web-enabled, call centers operate somewhat differently than tra-

ditional call centers. Here, an agent can handle all call types (voice, e-mail, or

fax, for instance), two call types, or only one call type. Thus, agents can have
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multiple skills or only one skill. When different types of calls arrive at the call

center, they wait for service, or queue, at different places. For example, voice

calls made over the Internet or the telephone network queue at the ACD, while

customer e-mails queue at the e-mail server. Usually, telephone, or voice, calls

have the highest priority in the call center. If an agent has a choice between

responding to a voice call and e-mail, or voice call and fax, then the agent will

answer the voice call first. E-mails have the next highest priority, and faxes have

the lowest priority. E-mails arrive and queue at the e-mail server. When there

is no telephone call in the call center, any e-mail, arriving or in queue, will be

serviced by the next appropriate agent. However, faxes can arrive at the fax

server over the Internet, or at the ACD over the telephone network. The faxes at

the ACD are directed to a fax machine. Thus, faxes can queue at the fax server

or the fax machine. When there is no telephone call or e-mail in the call center,

any fax in the system will be handled by the next appropriate agent.

Since telephone calls have the highest priority, these calls are allowed to in-

terrupt any other call type receiving service from an agent. For example, if an

agent is responding to an e-mail and the telephone rings on his/her desk, then

the agent will stop working on the e-mail and answer the telephone call. Once

the agent has finished with the voice call and no other voice call arrives, then

he/she will finish responding to the e-mail. E-mails will be allowed to interrupt

faxes in a similar manner.

Besides this priority service discipline, the voice calls have another important

characteristic. The voice calls will wait in queue for only a certain period of time

before abandoning the system, i.e., customers calling over the telephone will get

impatient and leave the system. Some customers will call again (i.e., retry for
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service) after some additional time. Thus, voice calls have some probability of

abandoning the system while in queue.

The key to operating these multimedia call centers effectively is computer

telephony integration (CTI). Computer telephony integration is a broad tech-

nology aimed at improving telephone call handling activities by using intelligent

computer information systems [14]. CTI technology is used to selectively route

voice calls to automated, self-service application processes (such as the IVR sys-

tem) or to call agents. This technology provides a business with an opportunity

to improve the efficiency of its customer-relationships. CTI functions allow dy-

namic information about incoming and outbound calls to be linked in real-time

with business applications and database information. For example, CTI-based

strategies already assist traditional ACD technology with the accurate reporting

of expected waiting times to a telephone caller in queue and effective switching of

callers in queue to the IVR [14]. Also, using CTI, an agent can automatically ac-

cess, almost instantaneously, a customer’s file in the companys database, instead

of searching for a paper file in a central archive. For example, suppose a customer

calls from a telephone help-desk for technical support. The customer can usually

be automatically identified by the ACD, using ANI (Automatic Number Identifi-

cation). The information from the customer’s file, which may be relevant to this

specific request, is then displayed on the agents computer screen. This informa-

tion may also provide the agent with tips on supporting the customer’s request.

After identifying the customers need, the agent could almost respond instanta-

neously with an automatic e-mail or fax that resolves the customers problem [44].

Thus, with the assistance of CTI technology, an agent can possibly respond much

more efficiently to a customer’s request.
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Now, with the convergence of voice and data technologies, CTI-based strate-

gies have become even more important in the queueing of both Web-based “calls”

and telephone calls at the ACD in multimedia call centers. For example, CTI

and ANI are used to route different types of calls (such as phone calls, e-mails,

and faxes) to appropriately skilled agents. Therefore, CTI enables faster and

more effective responses for all call types, reduces CSR call handling time, and

minimizes call handling errors, each of which is an important task.

Therefore, the operation and management of call centers have become more

complex. As customers interact in more ways with agents than just the telephone,

call handling tasks have become more difficult to control. As the number of call

centers continues to rise, businesses must determine efficient methods to improve

system performance.

1.3 Research Contributions

Fluid approximations have been used by many researchers to model queueing

systems. Newell [55] developed fluid and diffusion approximations to estimate

queue lengths and the mean waiting-time for customers in non-stationary queues.

Also, Halachmi and Franta [26] used fluid and diffusion heuristic approaches to

compute the mean waiting-time of customers. Recently, Mandelbaum et al. [51]

derived fluid approximations to estimate the queue length and virtual waiting-

time for time-varying queues with abandonment and retrials under an asymptotic

scheme. However, their model assumes only a single class of customers and a

first-come-first-serve (FCFS) discipline. Although they expanded their model to

handle customer priorities, they only approximate the queue length, or number

in system, process. Additionally, their customer priorities are static, or constant
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over time, for the low priority customers.

We make contributions to the previous call center research, mentioned above,

in several ways. First, we develop an extension of the fluid model studied by

Mandelbaum et al. Unlike their model, our model incorporates two different

customer classes with a preemptive-resume priority service discipline. In our

model, the low priority customers have dynamic priorities. Thus, at some point in

time, we allow these customers to be upgraded to the high priority class. Second,

although our model computes the same fluid approximations as those determined

by Mandelbaum et al., we compute these approximations for two separate priority

classes of customers. Third, we develop a low priority algorithm to analyze the

flow of low priority customers through our call center model. With our algorithm,

we determine the fluid approximations for the mean number in system and mean

virtual waiting time for low priority customers. Finally, we give further evidence

of the usefulness of these fluid approximations for modelling call centers. By

comparing the approximations with performance estimates from a discrete-event

simulation model, we show that our fluid approximations are accurate estimates of

the system performance measures. Also, our model provides much more scalable

approximations than those from the discrete-event simulation of a call center.

Specifically, the complexity of our fluid model does not increase as the size (i.e.,

number of agents/staff) of the call center substantially increases, whereas the

computational burden, in terms of the number of events tracked and run-time,

of a discrete-event simulation will increase proportionally.
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Chapter 2

Literature Review

2.1 Overview of Call Centers

Call centers, or their modern-day equivalent, contact centers, are the preferred

and prevalent way for many companies to communicate with their customers.

The percentage of U. S. workers who are employed by call centers is approxi-

mately three (3) percent, or roughly 1.55 million agents. A call center workspace

usually consists of a large room of agents stationed in cubicles, with a computer

and telephone in each cubicle. In some of the largest, best-practice call cen-

ters, agents handle thousands of calls per hour, customers rarely abandon while

waiting for service, and about half of the calls are answered immediately [19].

Call centers that operate at such high levels of agent utilization and customer

service levels rely on sound scientific principles for management and design. In

fact, many call centers use some level of mathematical analysis, from classical

Erlang approximations to a wide-range of heuristic algorithms, to model their

operations.

Call center managers have increasingly relied on scientific research on call cen-

ters to effectively design their operations [19]. This research includes analysis of
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call forecasting, optimal staffing levels, infrastructure planning (i.e., number and

type of ACDs and circuits), and workforce management. For example, Pinedo et

al. [58] gives the basics of call center management in the financial and other in-

dustries. Anupindi and Smythe [3] describe computer and equipment technology

that will enable future call centers, and Duxbury et al. [17] examine standard

techniques used in agent-customer interactions and their possibly evolution. Also,

Brigandi et al. [12] use a discrete-event simulation model to design and evaluate

a network of call centers. Finally, Gans, Koole, and Mandelbaum [19] provide a

comprehensive overview of the research areas related to call centers.

We provide a summary of some of the queueing theory-related research used to

analyze the performance of call centers. We discuss research related to applying

queueing models to call centers, the types of distributions used for call center

data, fluid and diffusion models of call centers, computational methods for the

waiting time distributions and their inversion, and staffing levels for call centers.

2.1.1 Queueing Models for Call Centers

Simple call centers are a natural application for queueing models based on their

operational structure. In a queueing model of a call center, the customers are

calls, servers (i.e., resources) are telephone agents or communication equipment,

and the queues consist of callers that await service from a system resource. A

Markovian queueing model is represented symbolically as M/M/N/L. The first

M identifies the arrival process as a stationary Poisson process, where the inter-

arrival times of customers, or calls, are exponentially distributed with a mean

constant call rate. (Note that Mt identifies a non-stationary Poisson process,

where the arrival call rates vary over time.) If M were replaced by GI, then the
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inter-arrival times would have a general (i.e. any) distribution with independent

observations. The second M identifies the service times of the calls as exponen-

tially distributed random variables. If this M were replaced with a G, then the

service times would have a general distribution. The N represents the number

of servers, or call agents, at the queue. Finally, the L represents the number of

spaces available in the system, i.e., the total number of servers and queue spaces.

In call center terminology, this value L is known as the total number of trunk

lines available to calls.

The simplest and most-widely used call center model is the M/M/n queue,

also known as the Erlang C queue [19]. For most applications, however, Erlang

C oversimplifies the real-world problem. For example, it assumes that no cus-

tomers are blocked from the system (i.e., no busy signals) and that customers

do not abandonment or retry for service. But the modern call center is often a

much more complicated queueing network. Brandt et al. [11] discusses why call

centers that allow customers to access an IVR, prior to joining an agents queue,

should be modelled as two queues in tandem. In many systems, the customer’s

time spent at the IVR can be negligible compared to their time spent with an

agent, in which case the two queue model can be simplified to one. Garnett and

Mandelbaum [20] and Bhulai and Koole [20] use models incorporating multiple

groups of agents with varying skill levels and exhibit the increase in the com-

plexity of their models. In additiona, the Erlang C model becomes insufficient

when geographically dispersed groups of agents over multiple interconnected call

centers are used as discussed in Kogan et al. [43]. Erlang C does not provide

good performance estimates for the time-varying arrival and service rate models

employed by Mandelbaum et al. [53], or for the multiple class of customer models
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discussed in the research of Aksin and Harker [1] and Armony and Maglaras [4].

In both the Erlang B and Erlang C models, the arrival of the calls to the call

center are modelled as a stationary Poisson process. The Poisson process is a

process from a broader class of stochastic processes known as counting processes,

which count the cumulative number of random events that have occurred up to

some point in time. A counting process, N(t), has the following properties:

1. N = {N(t) : t ≥ 0} and takes values in S = {0, 1, 2, . . .}.

2. N(0) = 0; if s < t then N(s) ≤ N(t)

A counting process is a Poisson process with rate λ if [25]:

1. The process has independent increments, meaning that the numbers of

events in any pair of disjoint time intervals are statistically independent.

2. The process has stationary increments, meaning that the distribution of the

number of events in any time interval depends only on the length of the

time interval and not on when the interval occurred.

3.

P (N(t + h) = n + m | N(t) = n) =





λh + o(h) if m = 1;

o(h) if m > 1;

1− λh + o(h) if m = 0;

where h is small and o(h) is a summation of terms of order h2 and above such that

limh→0
o(h)

h
= 0. Therefore, the Poisson process can be summarized as follows:

• The probability that a customer arrives at any time does not depend on

when other customers arrived.
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• The probability that a customer arrives within a small interval of time

starting at any time does not depend on the current time.

• Customers arrive one at a time.

Finally, the Poisson process has the following properties:

1. The number of events N(t) in any time interval of length t has a Poisson

distribution with mean λt, i.e., P (N(t) = x) = (λt)n

n!
e−λt , x = 0, 1, 2, . . ..

2. The inter-arrival times are independent exponential random variables with

mean 1
λ
.

The Erlang-B model can be represented as an M/M/n/n queue. Again, ρ =

λ
µ·n , where the quantity λ/µ is defined as the offered load of the traffic. Whenever

n calls are present in the system, a call may be blocked from entering the call

center. This blocking probability, βn, is an important performance measure and

is given by the following steady-state formula:

βn = P (all n servers are busy) =

( λ
µ

)n

n!

∑n
k=0

( λ
µ

)k

k!

. (2.1)

The above formula is also referred to as the Erlang B, or Erlang Loss formula.

The Erlang-C model can be represented as the M/M/n/ queue. There is no

probability of blocking incoming calls since there is infinite waiting space. In

this model, the probability of waiting in queue (i.e. probability of call delay), or

P (D > 0), is important to measure and is given by the following steady-state

formula:

P (D > 0) = P (at least n calls in system) =
( (nρ)n

n!
)( 1

1−ρ
)

[
∑n−1

k=0
(nρ)k

k!
+ ( (nρ)n

n!
)( 1

1−ρ
)]

, (2.2)
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where D is the delay of a customer call. Also, the mean delay, E[D], is given by

[41]:

E[D] =
(P (D > 0)(e−(n−ρ)µt))

µ(n− ρ)
. (2.3)

Now, the steady-state waiting time distribution is well-known for the M/M/1

and M/M/n queues. In both cases, their Laplace transforms are inverted to

obtain the following steady-state formulas:

P (W ≤ x) = W (x) = 1− ρe−µ(1−ρ)x, x >= 0, for M/M/1 and, (2.4)

P (W ≤ x | W > 0) = P (W (x)|W > 0) = 1− e−(nµ−λ)x, x ≥ 0, for M/M/n.

(2.5)

The above formula for the M/M/n Markovian model is used in practice to

approximate the number of call agents required to satisfy customer performance

at given service levels. Similarly, the formula for the M/M/n/n Markovian model

is used to estimate the mean waiting time in queue experienced by customers.

Although these models provide valuable insight into the real system, they are

often based on the following, limiting assumptions:

1. Every call is of the same type;

2. Every call agent can handle calls equally fast;

3. The inter-arrival rates are always stationary (i.e., they never vary with

time); thus, the system can enter steady-state as ρ approaches 1;

4. Calls are queued on a first-come-first-serve basis.
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Unfortunately, under these assumptions, the Markovian approximations can

sometimes differ significantly from the real-world call center performance mea-

sures.

Although queueing theory can be used to model call centers, the existing the-

ory on call center management has a few issues in its applications to real-world

problems [19]. First, the majority of research on queueing theory either are not

developed for practical problems, or do not provide enough of a practical solution

to real-world problems. Second, researchers often do not validate their models

by applying them to real-world instances of their problem. Finally, researchers

have trouble developing accurate real-world models, because unpredictable hu-

man factors, such as abandonments and retrials, need to be incorporated. Accu-

rate empirical data is often difficult to collect for such factors.

2.1.2 Abandonment, Retrials, and Blocking Models

However, there has been some research performed to model the human behavior

of customers and agents. Zohar et al. [54] present empirical data and propose

dynamic learning models to measure customer abandonment decisions. Also,

Kort [45] develops customer opinion and behavior models to assess abandonment,

retrials, and complaint behavior. Palm [57] developed the first models for human

factors in telephone services in the 1940s [19]. He studied the behavior of people

as they made telephone calls. He observed that callers abandoned their call while

waiting for a dial tone, while dialing the telephone number, or while waiting for

the connection to be completed across the network. Palm and Kort ultimately

showed that the time that callers wait for a dial tone can be modelled with the

Weibull distribution. Baccelli and Hebuterne [7] showed that the distribution of
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the waiting time until a call is completed across the network can be modelled as

an Erlang phase-type distribution with three (3) phases.

For call centers, the most common analytical models for performance analysis

are the M/M/n/n, or Erlang B, and the M/M/n, Erlang C queues. Each one has

its limitations though. The Erlang B does not allow customers to wait in queue

if all servers are busy. Thus, too many customers may receive busy signals, and

be blocked from entering the system. Some call center managers provision a large

number of telephone lines to reduce the number of blocked customers. However,

in queueing models with infinite capacity, such as the Erlang C, customers tend

to experience long delays, especially when the number of customers in queue

becomes large. These long delays can also increase customer abandonment.

There are some research models that attempt to compensate for the limi-

tations of the Erlang B and C models. Baccelli and Hebuterne [7] show that

the M/M/n/B + G queue, where B represents the overall number of lines and

(B ≥ n), and G is a general distribution for the customer abandonment, is a

good model for balancing blocking and delay requirements. Finally, Riordan [62]

and Garnett et al. [21] provide mathematical details for an analytically tractable

model is the M/M/n/B + M , where patience is assumed to be exponentially

distributed [19].

2.1.3 Call Center Data

Existing performance models are based on data collected by the ACD, or tele-

phone switch located on the customer premises. The ACD routes calls to agents

and captures each calls arrival time, waiting time in the tele-queue, and ser-

vice duration. Managers use the ACD data to create reports consisting of total
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counts and averages over 30 minute periods, and weekly periods for example [19].

However, call centers do not always have sufficient historical data to develop

forecasts. Furthermore, certain factors, such as weather conditions, cannot be

predicted. However, Jongbloed and Koole [35] offer a possible solution. They

develop a method to derive intervals for arrival rates rather than point estimates.

Gordon and Fowler [22] also offer a solution to this problem.

Call Arrivals

The arrival process of calls to a call center is a random process, where customers

decide to call independently of each other. There is a small probability that each

customer will call during a short period of time, i.e., a 1 minute interval of time.

Also, there is a potentially large number of statistically identical customers of

the call center. An arrival process with these properties can be modelled as a

Poisson process. If more customers are likely to call at one time as opposed to

another, the arrival process would have the properties of a time-inhomogeneous

Poisson process. Call center modelers often assume that arrival rates are con-

stant over individual periods of time, such as 30 minute intervals. Thus, the

true arrival rate function can be often approximated by a piecewise constant

function. Therefore, standard steady-state analysis and, more importantly, well-

known analytical queueing formulas for estimates of system performance can be

used during each time interval. However, these performance estimates will only

be accurate if steady state is achieved relatively fast during these intervals [28].

Finally, the Poisson assumption on the arrival process fails when customers expe-

rience frequent busy-signals, i.e., calls are blocked from entering the call center,

or retrials occur often, i.e., customer satisfaction is low.
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Service Duration

In most queueing theory models of call centers, the service time distribution is

assumed to be exponentially distributed. We make this assumption in our call

center model. This exponential assumption leads to the application of models

that are analytically tractable, with well-known formulas for performance mea-

sures.

There exist models that show the exponential assumption for the service times

is reasonable. For example, Kort [45] validates that exponential service time

distributions are acceptable. Harris et al. [29], who analyze IRS call centers, uses

exponentially distributed service times in their model of the large IRS call center

for the United States federal government. However, other types of distributions

have been used for the service time. For example, Mandelbaum et al. [52] discuss

a good fit of the lognormal family to the service times for an banking call center

model.

Often, there is a practical need for non-standard service time distributions.

First, various aspects of the call center have associated service times, such as the

IVR and agents work after a call is completed. Currently, not much is known

about the IVR service distributions, although the time a customer spends at

the IVR is usually negligible. Also, the call handling time, which the sum of

the call’s service time and any “after-call” work performed by the agent after

a call has been completed, is an important parameter to managers. Harris et

al. also show that the after-call work time can be ignored, if it is less than 5

percent of the total call handling time. Thus, the call handling time can be made

equivalent to the service time in such cases. Second, management decisions could

dramatically affect service duration. For example, agents can artificially inflate
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the number of calls served during a day by hanging up on customers before service

is satisfactorily completed to meet a incentive programs. Thus, customers delay

would be small, but customer service levels would suffer. Next, for call centers

with a complex set of services, agents with specialized skills can be grouped

together to increase response times. Whitt [70] discusses how such a partition of

agent skills can lead to efficient models. Finally, the human behavior of agents

can affect service times, or work rates, during different times of the day, week, or

month [65].

2.2 Performance Models

Queueing models are used to analyze the performance of a call center. By com-

puting performance measures, such as actual customer service levels and agent

utilization, researchers can determine the affect of maintaining target service lev-

els on the efficiency of a call center’s operations. Typically, these measures are

estimated using functions of the incoming traffic, or calls, and available resources,

such as agents and telephone lines.

2.2.1 Single Customer Class, Single-Skill Agents

The simplest and most used performance model is the stationary M/M/n queue.

It describes a single-customer class call center with n single-skill agents. The calls

arrive randomly as a Poisson process to the queue. The time-period is assumed

to be short-enough such that calls arrive at a constant rate. The staffing level

and service rates are also assumed constant. The model assumes out busy sig-

nals, abandonment, retrials and time-varying conditions. The fluid and diffusion
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approximations of Mandelbaum et al. [51] incorporates all of these conditions,

except for busy signals. Since they assume an infinite queue capacity, they do

not account for the blocking of some arriving calls. These approximations are

relatively new and have not been developed much for serious applications [19].

For call center models, the useful approximations typically occur in heavy-

traffic, which is usually defined by the offered load converging to 1. In the M/G/n

queue, Kleinrock [41] provides the Kingman’s classical result for the waiting time

being approximately exponential, for a small to moderate number of agents n.

However, Halfin and Whitt [27] show that, for large n, the waiting times do not

necessarily converge asymptotically to an exponential distribution in the M/M/n

queue. Thus, the number of servers, or agent staffing level, representing the

largest cost in call center, can greatly influence customer waiting times.

2.2.2 Time-Varying Arrival Rates

More realistic models incorporate time-varying arrival rates, which makes perfor-

mance analysis more complex. Thus, the arrival process is modelled as an inho-

mogeneous Poisson process. To measure performance in this setting, Green and

Kolesar [24] propose the pointwise stationary approximation. Here, the weighted

sums of interval performance measures are taken, using the individual arrival

rate for each interval. An alternative way to measure performance is to use the

average arrival rate as the input for a model. Green and Kolesar [23] [24] show

that this can give extremely bad results, even if the staffing levels are constant.

Sudden significant changes in the arrival rate, and hence offered load, cause

stationary methods to be less effective. Borst, Mandelbaum and Reiman [10]

study the asymptotic behavior of the minimal required staffing as the load tends
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to ∞. Overloading could occur from an external event, such as advertising a

telephone number on TV, or opening the call center in the middle of the day [19].

Fluid and diffusion models, as studied by Mandelbaum et al. [50], account for

such abrupt changes in the offered load. These results are extended in Mandel-

baum, Massey, Reiman, Rider, and Stolyar [51]. Unfortunately, Altman, Jimenez,

and Koole [2] argue that these fluid approximations do not work as well in under

loaded situations [19]. A numerical way to include non-stationary behavior in the

modelling of staffing levels is described in Fu, Marcus and Wang [18]. Finally,

Jennings et al. [34] developed heuristic staffing guidelines, in opposition to the

pointwise stationary approximation, that give rise to a time-varying square-root

staffing principle.

2.2.3 Fluid and Diffusion Approximations

Numerical Integration of ODEs

For their time-varying arrival rate model, Mandelbaum et al. [51] used Euler’s

method to compute the fluid and diffusion approximations for the mean number

in system, mean virtual waiting time, variance of the number in system and vir-

tual waiting time, and their corresponding distributions. Their results compared

favorably to results from a simulation of their stochastic service system. The

formula for Euler’s method is:

yn+1 = yn + hf(xn, yn) + O(h2), (2.6)

where yn is the approximate solution of the true solution y(x) at xn, h is the

length of the subinterval [xn, xn+1) step-size, and f is the right-hand side of the

differential equation. At each step, the order of the error for the method is O(h2).
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O(h) is a summation of terms of order h and above such that limh→0
O(h)

h
= C

for some constant term C. However, this method is not as accurate as more

sophisticated methods and not always stable. If a more accurate and stable

method is needed, then the Runge-Kutta method can be implemented. The

classical fourth-order Runge-Kutta formula is the most often used form of Runge-

Kutta. Its formula is (see Stoer and Bulirsch [64]):

k1 = hf(xn, yn),

k2 = hf(xn +
h

2
, yn +

k1

2
),

k3 = hf(xn +
h

2
, yn +

k2

2
),

k4 = hf(xn + h; yn + k3);

yn+1 = yn + k1 + k2 + k3 + k4 + O(h5), (2.7)

where the method requires four evaluations of the right-hand side of the differ-

ential equation.

Fluid Models

A more realistic arrival process for a call center is a non-stationary Poisson process

for which the arrival rate varies over time. More specifically, the counting process,

N(t), is a non-stationary Poisson process if [25]:

1. The process has independent increments.

2.

P (N(t + h) = n + m | N(t = n) =





λth + o(h) if m = 1;

o(h) if m > 1;

1− λth + o(h) if m = 0.
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where λt = the arrival rate at time t. The definition is identical to the stationary

Poisson process defined in Section 2.1.1, except that the arrival rate, λt is now a

function of time. The non-stationary Poisson process does not have the property

that the inter-arrival times are exponential random variables. However, Hall

states that it does have several properties in common with the stationary Poisson

process. [28] Some properties are:

1. The number of arrivals over the interval [a, b] is Poisson with mean E[N(b)−
N(a)] =

∫ b
a λtdt = Λ(b)−Λ(a), where Λ(t) is the expected number of arrivals

between 0 and t.

2. If N(t) is the number of events in [0, τ ], then the unordered event times are

defined by N(t) independent random variables with probability distribution

P (T ≤ t) = Λ(t)
Λ(τ)

, where T is the random variable for the event time.

The last property states that the event times can have any distribution as defined

by Λ(t). Note that for a stationary Poisson process, this property means that the

event times have a conditionally uniform probability distribution on [0, τ ], given

N(t).

Non-stationary Poisson processes have two types of variation: random varia-

tion and predictable variation [28]. The predictable is associated with the function

Λ(t), which gives the expected number of arrivals as a function of time. The ran-

dom variation is reflected in the exact arrival times of customers. A sample path

of the function, N(t), of the exact number of arrivals, A(t), is susceptible to

random variation. Thus, Λ(t) and N(t) will have somewhat different values over

time. Because the number of arrivals in any time interval has a Poisson distribu-

tion, the mean, Λ(t), must equal its variance. Thus, the coefficient of variation
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in A(t), which is the ratio of its standard deviation to its mean, is the following:

C[A(t)] =

√
variance

mean
=

√
Λ(t)

Λ(t)
=

1√
Λ(t)

(2.8)

As shown in Equation (2.8), the larger the value of Λ(t), the smaller the random

variations between the precise number of arrivals, A(t), and the expected number

of arrivals, Λ(t).

For busy queueing systems, sometimes these random variations are minor

compared to the predictable variations. For example, a busy highway toll plaza

might have an average of 8, 000 arrivals per hour. Over a one (1) hour period,

there will be 8, 000 customers expected to arrive at the plaza. If the coefficient

of variation CV equals 1/
√

8000 = 0.011, then, since the CV is small, A(t) is

assumed to be known with certainty and equal to Λ(t), in which case, a non-

stationary Poisson arrival pattern can be approximated by a deterministic

model.

Deterministic queueing models are usually classified as fluid approxima-

tions. Although customers are discrete, not continuous, quantities, a large num-

ber of customers can be approximated by a continuous variable and thus modelled

as a fluid [28]. A helpful method of visualizing a fluid queueing model is by imag-

ing water filling and draining from a tub. A faucet fills the tub with water, and

a drain empties the water from the tub. As water fills the tub, the tub becomes

a queue, and the water becomes the customers entering and leaving the queue.

The arrival rate is the rate at which the water flows out of the faucet into the

tub. Also, the service rate is the speed at which the water drains from the tub.

If the water enters the tub faster than it exits, then its level will rise, equivalent

to a queue forming when customers arrive faster than they are served. Finally,

if the water is drained faster than it enters, then its level will decrease, until all
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the water has left the tub.

The validity of the deterministic approximation depends on the variability

of the service and inter-arrival times. For the Mt/M/1 queue, random queues

will form when ρ∗(t) < 1, where ∀sε[0, t), ρ∗(t)=sup{
∫ t

s
Λ(r)dr

µ·(t−s)} . However, the fluid

approximation predicts that queues only form when ρ∗(t) > 1. An accurate fluid

approximation should account for these random queues.

A queueing system with a non-stationary arrival process, i.e., time-varying

arrival rates, will never enter into steady-state. In other words, the probability

distribution of performance measures, such as the number of customers in the

system, will not converge to a steady-state distribution, where the probability

becomes independent of any initial conditions, or transient effects. However,

steady-state equations can be used to approximate the behavior of the system,

particularly if the:

• arrival rate changes slowly, and

• the system operates below capacity, i.e. ρ∗(t) < 1

When the conditions above are satisfied, the behavior of a non-stationary

queuing system can be modelled with steady-state equations during periods of

constant arrival rates, and the system is said to be in quasi-steady state .

Now, as ρ∗(t) increases from a number much smaller than one (1) to a number

much greater than one (1), estimating the expected queue length becomes more

difficult. For the following values of ρ∗(t), we explain the difficulties (see Hall

[28]):

1. ρ∗(t) ¿ 1: The quasi-steady state model is valid, and provides a good

queue length estimate;
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2. ρ∗(t) ≤ 1, (1-ρ∗(t)) small: The queue lengths are difficult to predict. The

quasi-steady state model is not valid. The deterministic, or fluid, approxi-

mation is not valid either because it predicts a queue length of zero (random

queues are only predicted for stage 3 as noted above);

3. ρ∗(t) > 1: The growth of the expected queue length is accurately predicted

by the deterministic approximation. Note that the quasi-steady state model

not applicable here.
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Figure 2.1: Queue Length Phases for Time-Varying Systems

In Figure 2.1, we give a graphical view of the queue length phases.

Finally, in the second stage, there are two ways to estimate the queue length.

The first uses a diffusion model, discussed in the next section, and the second

uses simulation, discussed in the next chapter.
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Diffusion Models

Diffusion models are used in physics to represent the molecular diffusion of fluids,

but are also useful in the analysis of the stochastic behavior of non-stationary

queueing systems. Diffusion models provide both relatively simple and robust

results when an exact analysis of these systems is extremely difficult. As discussed

in the previous section, deterministic fluid models can be used to approximate

queue behavior. Stochastic diffusion models can also be used. The rate at which a

fluid diffuses across a boundary is similar to the transition rate across a boundary

line between two states in a transition rate diagram [28].

There are two types of diffusion models. One is the diffusion equation,

which is a differential equation first developed for molecular diffusion. Newell

[56] examines the derivation of the diffusion equation, and its role in developing

non-stationary queueing results. The other is the diffusion process which

is a stochastic process where the time between events are independent, normal

random variables. A special case of the diffusion process is Brownian motion. As

applied to queueing theory, the fundamental assumption of the diffusion equation

is the following (see Hall [28]):

• The arrival and departure processes behave like diffusion processes, and

• The arrival and departure processes are mutually independent, whenever

the queue size is positive.

Thus, stochastic processes, including Poisson processes, can be approximated

with a diffusion process.
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Single Customer Class

Mandelbaum et al. [49], [51] derive fluid and diffusion approximations for the

number in system and virtual waiting time for the single customer class, first-

come first-serve (FCFS), Mt/M/n queue. Their model incorporates abandon-

ments, retrials, and time-varying arrival rates. The concepts and methods pre-

sented by these researchers form the basis for our fluid and diffusion model. Note

that in [51], Mandelbaum et al. developed the method for the single customer

class, FCFS, Mt/M/n queue with abandonments and retrials. Ultimately, this

method will be extended to the two customer class, preemptive-resume priority,

Mt/M/n queue with abandonments, which is the call center model of interest.

The limit theorem results will yield fluid and diffusion approximations to the

virtual waiting-time distribution for both high and low priority customers.

Sample Path Construction

To motivate the sample path construction of the single customer class, FCFS,

Mt/M/n queue with abandonments, we give a brief description of this queue

without abandonments. Note that for a single-server queue, FCFS is the same

service discipline as FIFO, or first-in-first-out. Thus, the first customer arrival

will depart the system before the second customer arrival. However, for multi-

server queues, FCFS is not always the same as FIFO. In other words, the second

customer arrival might depart the system before the first one.

The Mt/Mt/n mean number in system process Q ≡ {Q(t) | t ≥ 0} is a

continuous-time Markov chain with time-varying instantaneous transition rates.

Each customer has a first-come, first-serve service discipline within the class.

The arrival process is a time-inhomogeneous Poisson process with rate function
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Figure 2.2: The Single-Customer Class Mt/M/n queue

{λi(t) | i = 1, 2; t ≥ 0}, where each λi(t) is assumed to be locally integrable. The

queue has a fixed number of servers, n, where each server has an independent,

exponentially distributed service time with rate µ.

We provide a single customer class queue diagram in Figure 2.2. Note that

x ∧ y represents the minimum between x and y.

Because there is only one type of customer, the sample path construction

reduces to the one-dimensional case. The standard approach to constructing the

sample path distribution for this queueing process is to state that its transition

probabilities, i.e.,

pi,j(t) = P(Q(t) = j | Q(0) = i), (2.9)

for all non-negative integers i and j, are the unique solutions to the forward

equations:

d

dt
pi,0(t) = µ · pi,1(t)− λt · pi,0(t), if j = 0; (2.10)

d

dt
pi,j(t) = λt · pi,j−1(t) + µ ·min(j + 1, n) · pi,j+1(t)

−(λt + µ min(j, n))pi,j(t), if j ≥ 1 (2.11)

where pi,j(0) = 1 ⇔ i = j and pi,j(0) = 0 otherwise. (For more details, see Wolff,
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[73].)

The Mt/M/n queueing process is the canonical example for a special family

of continuous-time Markov chains (CTMCs) called Markovian service networks

[51]. Markovian service networks are discussed in detail by Mandelbaum et al.

in [49]. This family can be defined precisely by an alternative method to the

computation of the forward equations. Instead, an implicit definition of the

transition probabilities can be used to construct the random sample paths directly

[51]. The sample paths for the queueing process are the unique set of solutions

to the functional equation:

Q(t) = Q(0) + Π1
(∫ t

0
λsds

)
− Π2

(∫ t

0
µ · (Q(s) ∧ n)ds

)
, (2.12)

where Q(t) is the number of customers in the system (waiting in queue and at

the server). Also, {Πj(t) | t ≥ 0, j = 1, 2} are independent, standard (mean rate

1) Poisson processes, and λt is an integrable function of time t. Note that ∀ real

x and y , x ∧ y ≡ min(x,y).

Similarly, the random sample paths of the number-in-system process, Q(t),

for the above Mt/M/n queue, with customers abandoning at a rate of β, are

uniquely determined by the following equation:

Q(t) = Q(0) + Π1
(∫ t

0
λsds

)
− Π2

(∫ t

0
µ · (Q(s) ∧ n)ds

)

−Π3
(∫ t

0
β · (Q(s)− n)+ds

)
, (2.13)

where {Πj(t) | t ≥ 0, j = 1, 2, 3} are independent, standard Poisson processes, λt

is an integrable function of time t, and x+ ≡ max(x, 0) [49]. Using the theory of

strong approximations for Poisson processes, the above sample path construction

can be employed to do an asymptotic sample path analysis. The asymptotic

analysis can then be used to obtain the fluid and diffusion limit theorems.
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Asymptotic Mean Number in System Results

The asymptotic regime that will be implemented consists of scaling up the number

of servers to counter a similar scaling up of the arrival rate of customers. Halfin

and Whitt [27] describe several asymptotic regimes, including the one used by

Mandelbaum et al. [51]. Specifically, only two parameters will be scaled by

an index η, not including the initial conditions for the mean number in system

process, Q(0), which will vary with η as Qη(0) = ηQ(0)(0)+
√

ηQ(1)(0)+o(
√

η) for

constants Q(0)(0) and Q(1)(0). These constants will be formally defined shortly.

The first scaled parameter is the external arrival rate, λt, which is the intensity

of the Poisson arrival process. It will be scaled as λη
t = η · λt. The last scaled

parameter is the number of servers, n, which will be scaled as nη = η · n [51].

Actually, Qη(0) and nη should be integer-valued, so their expressions should be

denoted as the greatest integer less than or equal to their scaled values. Thus, the

scaled number in system process Qη(t) is uniquely determined by the relation:

Qη(t) = Qη(0) + Π1
(∫ t

0
ηλsds

)
− Π2

(∫ t

0
µ · (Qη(s) ∧ ηn)ds

)

−Π3
(∫ t

0
β · (Qη(s)− ηn)+ds

)
. (2.14)

The results and theorems presented here have been adapted from those stated

by Mandelbaum, Massey, and Reiman [51] and Mandelbaum et al. [49]. Their

results are based on a similar model that incorporated customer retrials. Thus,

customers are allowed to abandon the system completely, or abandon the system,

enter a secondary queue, and re-enter the system after a random period of time.

The fundamental concepts and theorems used here are discussed in detail in [49]

and proven in [51]. Now, for the model of interest, the limit theorem for the

functional strong law of large numbers can be stated. The initial conditions for
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the mean number in system process satisfy the following asymptotic assumption:

lim
η→∞

1

η
Qη(0) = Q(0)(0) a.s., (2.15)

where Q(0)(0) is a constant. Thus, the functional strong law of large numbers

(FSSLN) limit theorem is:

Theorem 2.1

lim
η→∞

1

η
Qη = Q(0), a.s., (2.16)

where the convergence is uniform on compact sets of t. Moreover, Q(0) = {Q(0)(t) |
t ≥ 0} is uniquely determined by (Q(0)(0) and the differential equation:

d

dt
Q(0)(t) = λt − µ · (Q(0)(t) ∧ n)− β · (Q(0)(t)− n)

+
(2.17)

This theorem states rigorously that Qη ≈ ηQ(0) for large η, independent of the

Poisson process assumption on Q(t), where Q(0) is called the fluid approximation

for Qη. The proof of the theorem is given in [49].

However, this fluid approximation can be refined using the functional central

limit theorem. In this case, the initial conditions satisfy the following assumption:

lim
η→∞

√
η

(
1

η
Qη(0)−Q(0)

)
d
=Q(1)(0), (2.18)

where Q(1)(0) is a constant. Before the theorem is stated, some notation must

be defined. First, limη→∞ Xn
d
= Y denotes that {Xn | n ≥ 0} converges in

distribution to Y . Second, X
d
= Y implies that the random variables X and

Y have the same distribution. Now, the functional central limit theorem is:

Theorem 2.2

lim
η→∞

√
η

(
1

η
Qη −Q(0)

)
d
=Q(1), (2.19)
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where Q(1) =
{
Q(1)(t) | t ≥ 0

}
is a diffusion process. This is a convergence in

distribution of the stochastic processes in an appropriate functional space [49].

Moreover, if the set of time points
{
t ≥ 0 | Q(0)(t) = n

}
has measure zero

for the multi-server queue with abandonment model, then
{
Q(1)(t) | t ≥ 0

}
is a

Gaussian process. The mean for Q(1) then solves the differential equation:

d

dt
E

[
Q(1)(t)

]
= −

(
µ · 1{Q(0)(t)≤n} + β · 1{Q(0)(t)≥n}

)
E

[
Q(1)(t)

]
(2.20)

Finally, the variance for Q(1) solves the differential equation:

d

dt
Var

[
Q(1)(t)

]
= 2

(
β · 1{Q(0)(t)≥n} + µ · 1{Q(0)(t)≤n}

)
Var

[
Q(1)(t)

]
+

λt + β ·
(
Q(0)(t)− n

)+
+ µ ·

(
Q(0)(t) ∧ n

)
. (2.21)

This theorem states rigorously that Qη ≈ ηQ(0) +
√

ηQ(1) for large η, where Q(1)

is called the diffusion approximation for Qη.

Time-varying queues alternate between three phases. For a given time t, these

phases are:

• Underloaded ⇒ Q(0)(t) < n,

• Critically-loaded ⇒ Q(0)(t) = n, and

• Overloaded ⇒ Q(0)(t) > n.

Note that the fluid model for the Mt/M/n queue must be allowed to alternate

between the under-loading and overloading phases to guarantee the results of

Theorem (2.2). However, if the model “lingers” too long in the critically-loaded

phase, then the approximations will be affected by this lingering behavior. Thus,

the model should only remain in the critically-loaded phase for values of t, where

the set
{
t | Q(0)(t) = n

}
has measure zero. [51]
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Asymptotic Virtual Waiting-Time Results

Once the mean number in system process approximations are determined, the

asymptotic results for the virtual waiting-time can be computed. As in the mean

number in system process section, the results and theorems presented here have

been adapted and summarized from those stated by Mandelbaum, Massey, and

Reiman [51] and Mandelbaum et al. [49]. To compute the waiting-time of a

virtual customer arriving to the system at a fixed time τi ≥ 0, i = 1, 2, · · ·, an

additional assumption is required. After this time τi, the original model will be

modified as follows:

• There are no new exogenous arrivals into the system after time τi.

• In particular, the servers only process any remaining customers in the sys-

tem at time τi.

Theorem 2.1 and Theorem 2.2 still apply to the modified model; however, certain

terms in their equations, corresponding to the arrivals after time τi, will become

zero [51].

The asymptotic results also require some new notation. Denote the arrival

and departure processes for the system by:

Aη = {Aη | t ≥ 0} , and ∆η = {∆η | t ≥ 0} (2.22)

respectively. By convention, let the arrival process include the customers in the

system at time 0. So, Aη(0) = Q̂η(0), ∆η(0) = 0, and Aη(t)−∆η(t) = Q̂η(t), t ≥ 0,

where Q̂η(t) is the mean number in system process for the modified queue.

The previous assumptions and notations lead to the following fluid limit re-

sult:
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Theorem 2.3 As a joint process,

lim
η→∞

1

η

(
Q̂η, Aη, ∆η

)
=

(
Q̂(0), A(0), ∆(0)

)
a.s. (2.23)

and this convergence is uniform on compact sets of t. The fluid limit Q̂(0)(t)

satisfies equation 7.1 for t < τ . For t ≥ τ , the following properties hold:

1. The future evolution of Q̂(0)(t) is determined by the differential equation:

d

dt
Q̂(0)(t) = −µ · (Q̂(0)(t) ∧ n)− β · (Q̂(0)(t)− n)

+
. (2.24)

2. There are no future arrivals, so that A(0)(t) = A(0)(τ).

3. The deterministic process ∆(0) is a continuously differentiable non-decreasing

function in [0,∞] .

Also, the additional assumption leads to the following diffusion limit result:

Theorem 2.4

lim
η→∞

√
η

(
1

η
Q̂η − Q̂(0),

1

η
Aη − A(0),

1

η
∆η −∆(0)

)
d
=

(
Q̂(1), A(1), ∆(1)

)
. (2.25)

Moreover, if the set of time points
{
t ≥ 0 | Q̂(0)(t) = n

}
has measure zero for the

multi-server queue with abandonment model, then
{
Q̂(1)(t) | t ≥ 0

}
is a Gaussian

process. For t ≥ τ , Var
[
Q̂(1)(t)

]
solves the differential equation:

d

dt
Var

[
Q̂(1)(t)

]
= −2

(
β · 1{Q̂(0)(t)≥n} + µ · 1{Q̂(0)(t)≤n}

)
Var

[
Q̂(1)(t)

]
+

β ·
(
Q̂(0)(t)− n

)+
+ µ ·

(
Q̂(0)(t) ∧ n

)
. (2.26)

It follows from the above theorem and definitions that

Q̂(1)(t) = A(1)(t)−∆(1)(t). (2.27)
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Before the asymptotic result for the virtual waiting time distribution can be

stated, a few more definitions and assumptions must be given. The potential

service initiation process Dη for the server is defined as:

Dη(t) = ∆η(t) + ηn, t ≥ 0. (2.28)

Recall that Aη(t)−∆η(t) = Q̂η(t), t ≥ 0. So, if Q̂η(t) < ηn, then Aη(t) < Dη(t).

Thus, by Theorem 4.3,

lim
η→∞

1

η
Dη(·) = D(0)(·) a.s., (2.29)

where the convergence is uniform on compact sets of t and D(0)(t) = ∆(0)(t) +

n, t ≥ 0. Note that D(0)(t) is continuously differentiable because ∆(0)(t) is con-

tinuously differentiable as the fluid limit of the departure process. Thus, the

derivative of D(0)(t) is denoted by d(0)(t). The following assumption for D(0)(t)

is important, but not too restrictive for the virtual waiting time result [51]:

lim
t→∞D(0)(t) > A(0)(τ), (2.30)

where D0)(t) is continuously differentiable with strictly positive derivative. Note

that, based on previous definitions, A(0)(·) and A(0)(τ) are constant on the interval

[τ,∞). Also, it is convenient to assume that all processes are defined on the

interval [−T,∞) where T = n/d(0)(0) instead of [0,∞). This interval extension

assumes that there are no arrivals or departures within the interval [−T, 0).

Now, Theorem 4.3 and Theorem 4.4 can be written in terms of D as follows:

lim
η→∞

1

η
(Qη, Aη, Dη) =

(
Q̂(0), A(0), D(0)

)
(2.31)

and,

lim
η→∞

√
η

(
1

η
Q̂η − Q̂(0),

1

η
Aη − A(0),

1

η
Dη −D(0)

)
d
=

(
Q̂(1), A(1), D(1)

)
, (2.32)
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where D(1) = ∆(1) and t ≥ −T .

Note that A(0), D(0), A(1), D(1) are continuous and D(0)(−T ) = D(1)(−T ) = 0

[51]. Let the first attainment process, {S(η)(t)}, be defined for all t ≥ −T as:

Sη(t) = inf{s ≥ −T : D(η)(s) > Aη(t)}, (2.33)

and,

S(0)(t) = inf{s ≥ −T : D(0)(s) > A(0)(t)}. (2.34)

Similarly, define the attainment waiting time process as:

W η(t) = Sη(t)− t, (2.35)

and,

W (0)(t) = S(0)(t)− t. (2.36)
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Figure 2.3: Fluid Approximation of Waiting Time

In Figure 2.3, we provide a graphical explanation of the fluid approximation,

W (0)(t), to the attainment waiting time.
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The conventions and assumption defined above allow the previous processes

to be well-defined and finite with probability 1 for sufficiently large η.

Now, define the virtual waiting time at τi, Ŵ η(τ), as the time a customer

arriving to the queueing service node at time τi would have to wait until its

service starts, assuming that customer does not the queue [51]. Thus, the virtual

waiting time, Ŵ η(τ), and the attainment waiting time, W η(t), are related as:

Ŵ η(τ) = W η(τ)+. (2.37)

So, if Q̂η(τ) < ηn, then W η(τ) (and W (0)(τ)) will be negative. Therefore, by

definition, Ŵ η(τ) = 0. If W η(τ) is non-negative, then Ŵ η(τ) will have the same

value as W η(τ).

The next theorem follows directly from Equation (4.28), Equation (4.29),

and the theorem in Puhalskii [60]. Those results yield the following convergence

theorem:

Theorem 2.5

lim
η→∞

1

η

(
Q̂η, Aη, Dη,W η

)
=

(
Q̂(0), A(0), D(0),W (0)

)
, a.s., (2.38)

and,

lim
η→∞

√
η

(
1

η
Q̂η − Q̂(0),

1

η
Aη − A(0),

1

η
Dη −D(0),W η −W (0)

)
d
=

(
Q̂(1), A(1), D(1),W (1)

)
,

(2.39)

where

W (1)(t) =
A(1)(t)−D(1)(S(0)(t))

d(0)(S(0)(t))
and S(0)(t) = inf{s ≥ −T : D(0)(s) > A(0)(t)}.

(2.40)

In Figure 2.4, we show a magnified view of the small boxed area in Figure 2.3.

The figure gives a graphical definition of the attainment waiting time, which was
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A(0)(t)+ A(1)(t)

t + W(0) (t)

D
(0

) (t)
D

(0
) (t)

+D
(1

) (t)

A(0)(t)

A(1)(t)

D(0)(t + W(0) (t))

W(1) (t)  =  A(1)(t) -D(0)(t + W(0) (t))
d(0)(t + W(0) (t))

Figure 2.4: Diffusion Approximation of Waiting Time

defined above as the first time after time t that the number of departures equals

the number of arrivals. Here, the fluid approximations, A(0)(t) and D(0)(t), to

the arrival and queue departure processes are improved by the addition of their

corresponding diffusion terms, A(1)(t) and D(1)(t). Thus, the fluid approximation,

W (0)(t), to the attainment waiting time must also be adjusted by its diffusion

term, W (1)(t). Remember that the virtual waiting time and attainment waiting

time are related by the Equation (2.37).

Since the processes A(1)(t), D(1)(t), Q̂(1)(t), W (1)(t) are continuous with prob-

ability one, their finite dimensional distributions converge [51]. In particular,

consider the non-trivial case S(0)(τ) ≥ τ , which is equivalent to Q̂(0)(τ) ≥ n.

Moreover, assume that the set of points
{
t | Q̂(0)(t) = n

}
has measure zero on

[0, τ ]. Then:

lim
η→∞W η(τ) = W (0)(τ) a.s.
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and

lim
η→∞

√
η(W η(τ)−W (0)(τ))

d
= W (1)(τ) =

Q̂(1)(S(0)(τ))

d(0)(S(0)(τ))

where Q̂(1)(S(0)(τ)) is a Gaussian process with a mean and variance computed as

follows. First, solving equation 4.21 for Q̂(0)(·) in the interval [τ,∞] yields:

d

dt
Q̂(0)(t) = −βQ̂(0)(t) + (β − µ)n, t ≥ τ.

Now, by definition,

S(0)(τ) = min
{
t ≥ τ | Q̂(0)(t) = n

}
.

Second, the mean, E
[
Q̂(1)(S(0)(τ))

]
, and variance, Var

[
Q̂(1)(S(0)(τ))

]
, are com-

puted as the solutions to the following equations:

d

dt
E[Q̂(1)(t)] = −β · E[Q̂(1)(t)], t ≥ τ. (2.41)

and

d

dt
Var[Q̂(1)(t)] = −2βVar[Q̂(1)(t)] + β(Q̂(0)(t)− n) + µn, t ≥ τ. (2.42)

Observe that since zero is a solution to equation 2.41, the mean can be assumed

to be zero. Finally, noting that d(0)
(
S(0)(τ)

)
= nµ when S(0)(τ) ≥ τ gives:

Var
[
W (1)(τ)

]
=

Var
[
Q̂(1)(S(0)(τ))

]

(nµ)2 (2.43)

2.3 Simulation of Queueing Models

A simulation algorithm consists of techniques for using computers to model the

operations of real-world processes or facilities, often called systems. In order

to analyze a system, certain assumptions are made about how it works. These
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assumptions are used to develop mathematical or logical relationships that consti-

tute a model. Sometimes, these relationships are relatively simple. In such cases,

mathematical methods, like algebra, calculus, or probability theory, might be

used to derive exact, or analytical, solutions. However, most real-world systems

are too complex for any model to provide analytical solutions. Thus, a computer

simulation must be used to evaluate a model numerically. For example, a sim-

ulation of a queueing model for a call center must be used to incorporate many

of the real-world characteristics of a call center, such as abandonments, retrials,

and time-varying rates, in the performance analysis of the system.

Simulation is one of the most widely used operations research techniques.

Lane, Monsour, and Harpell [46] found in their longitudinal study that simulation

was consistently ranked as one of the three most important operations research

techniques [47]. However, there are some disadvantages to the method [47]. First,

the models used to study large-scale systems can be very complex. Also, the task

of writing computer programs to execute these models can be difficult, despite the

development of excellent simulation software packages. Second, a large amount of

computer time is sometimes required to evaluate a model. However, the problem

is made less severe by the creation of faster and cheaper computers.

Law and Kelton formally define a system modelled by a simulation as a col-

lection of entities, such as people or equipment, that interact together toward

some logical end [47]. In practice, a system is defined based on the objectives

of a particular analysis. For example, imagine that the goal of an analysis is to

determine the number of checkout lines needed to provide adequate service in a

supermarket. Here, the system can be defined as the number of open checkout

lines and the number of customers waiting in line or being served. Additionally,

43



the state of the system is defined to be that collection of variables necessary to

describe the system at a particular time, relative to the goals of the analysis [47].

In a supermarket analysis, examples of possible state variables are the number of

busy checkout clerks, the number of customers in the store, and the arrival time

of each customer in the store.

We categorize systems that are simulated into two types: discrete-event and

continuous. A discrete-event system consists of state variables which change in-

stantaneously at distinct points in time [47]. A supermarket is an example of a

discrete-event system since state variables, i.e. the number of customers in the

store, change only when a customer arrives or completes service and departs.

However, a continuous system consists of state variables which change continu-

ously with respect to time. A train moving along a railroad line is an example of a

continuous system, since state variables such as position and velocity can change

continuously with respect to time. Note that the discrete-event or continuous

classification is not dependent on whether time itself is discrete or continuous,

but on the possible values of the state variables.

Discrete-event and continuous simulations can be defined analogously to the

way discrete and continuous systems were defined above. Note that a discrete

model is not always used to model a discrete system, and vice versa [47]. Rather,

the specific objectives of the analysis determines the type of simulation model.

For example, a model of traffic flow on a highway can be discrete-event, if the

movement of individual cars is important, or continuous, if the cars can be viewed

“in the aggregate.” Discrete-event simulation deals with modelling a system as it

evolves over time by a representation in which the state variables change instan-

taneously at separate points in time [47]. Mathematically speaking, the system

44



can change at only a countable number of points in time. Events, such as an

arrival into or departure out of the system, occur at these points in time. Such

events are defined as instantaneous occurrences that may change the state of the

system. Since we are interested in the movement of individual customers (i.e,

calls), we use discrete-event simulation to model our call center, which is defined

in Chapter 3.

2.3.1 Waiting-Time Computational Methods

A manager usually requires that eighty (80%) of the calls are answered within

twenty (20) seconds [8]. Thus, the probability that customers wait less than

twenty (20) seconds should be at least eighty (80) percent. Mathematically, this

is represented, in general, as P (W ≤ t) ≥ α, where t could be twenty seconds,

and α could be eighty percent. This quantity is the waiting time distribution and

is used to assess the customer service levels received in a call center. Sometimes,

this probability is written in terms of the“tail” distribution as P (W ≥ t) ≤ 1−α.

In other words, the probability that customers wait more than 20 seconds should

be less than 20 percent.

There exists a lot of research on customer waiting-times for different types of

queueing systems. Although early researchers focused on computing the mean

waiting-time, recent ones have derived methods for approximating the waiting-

time distribution. For the M/G/1, FCFS queue, the Laplace transform of the

waiting-time distribution is determined from the Pollacek-Khinchin (P − K)

transform equation for the number of customers in the system. This equation

was first published by Khinchin [38] in 1932 and studied by Pollaczek [59] in

1930. Kleinrock [41] and Wolff [73], among others, provide derivations of the
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waiting-time distribution Laplace transform using the P −K equations.

Customer waiting-times have been analyzed for the M/G/n, FCFS queue as

well. Kingman [40] derives bounds on the mean waiting-time. Newell [55] and

Halachmi and Franta [26] use diffusion approaches to compute the mean waiting-

time. Unlike the previous researchers, Hokstad [31] computes approximate results

for the distribution of the number of customers in the system and the distribution

of the waiting-time. Whitt [71] uses the Laplace transform of the waiting-time

distribution to predict queueing delays of customers before they enter service. In

this case, delay information based on the distribution is seen as more insight-

ful than delay information based on the mean. Finally, Kleinrock also derives

waiting-time distribution transform for the G/M/n, FCFS queue. He shows that

the distribution has an asymptotic exponential form. Although his transform is

computed for a conditional waiting-time distribution, given that a customer must

queue, the unconditional waiting-time distribution can also be computed.

The waiting-time distribution has also been studied under the priority queue

discipline. Jaiswal [33] derives the results for the Laplace transform of the waiting-

time distribution for the M/G/n, non-preemptive priority queue. He first com-

puted the Laplace transform for the busy period containing customers of higher

priority than the given customer. Then, the waiting-time distribution transform

can be written as a function of the busy period transform. Kleinrock, Wolff,

and Takagi [67] also describe similar results to Jaiswal’s for the M/G/n, non-

preemptive priority queue. Takagi inverts the waiting-time distribution for the

M/G/1 queue. However, his resulting formula involves evaluating an infinite se-

ries. Thus, obtaining useful values for the waiting-time distribution in queueing

applications can be rather complex.
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One of the earliest results for the waiting-time distribution for a priority

queue was published by Cobham [13] and Kesten and Runnenburg [37]. Shortly

after, Takacs [66] expanded on their techniques and provided a simple method

to determine the waiting-time distribution for a customer in any class p. For

the stationary M/G/1, preemptive and non-preemptive priority, queues, he com-

puted the waiting-distribution as a function of the moments of the service time

distribution. Another early result was published by Davis [16]. He gives an ex-

plicit formula for the waiting-time distribution for an arbitrary customer in the

M/M/n, non-preemptive priority queue. He not only derived the Laplace trans-

form, but also inverted this transform using contour integration. However, his

subsequent waiting-time distribution formula was somewhat complex, like Tak-

agi’s. Thus, computing values of the waiting-time distribution is as easy as other

methods, when applied to real-world problems, such as call centers. Williams [72]

expands on Hokstad’s earlier work on the M/G/n, FCFS queue. He computes the

waiting-time distribution transform for high and low priority customers in a two-

customer, non-preemptive priority setting. Also, for the M/M/n, non-preemptive

priority queue, Kella and Yechiali [36] derives a waiting time distribution trans-

form result similar to Davis’s. They use a less elaborate method that uses the

probabilistic equivalence of the waiting times in the M/G/1 queue with server

vacations to those in their queue setting.

Finally, there are other types of priority queues that have been studied. Wolff

derives the waiting-time distribution transform for high and low priority cus-

tomers in the M/G/1, preemptive-resume priority queue. He first computed

an ordinary and exceptional-first-service busy period duration transform for his

work. Also, Kleinrock [42] derives only the mean waiting-time for M/G/1, dy-
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namic priority queue. He uses a dynamic priority service discipline that uses a

time-dependent priority structure where priorities increase or decrease linearly

over time. Finally, Jackson [32] gives further results for other dynamic priority

queues. His results were some of the earliest on dynamic priority queues.

2.3.2 Waiting-Time Distribution

The Laplace transform of the waiting-time distribution has been derived for sev-

eral different types of queues. As discussed previously, this transform depends on

the transform of the duration of the busy period. The waiting-time transform will

be stated for the general M/G/n queue under the first-come-first-serve (FCFS),

non-preemptive priority, and preemptive-resume priority queue discipline. Since

our call center model assumes that service time distribution, G̃(s), is the expo-

nential distribution, the transforms derived can be simplified by substituting the

following for G̃(s):

G̃(s) =
µ

s + µ
.

The transform results will be stated first for the single-server case, and then

expanded to the multi-server case.

2.3.3 FCFS Queueing Models

For the M/G/1, first-come-first-serve, single-customer class case, the waiting-

time transform follows directly from the well-known Pollaczek-Khinchin(P-K)

transform equation for the number of customers in the system. The P − K

transform was first proven by Pollaczek [59] and Khinchin [38]. Next, we give

a summary of Kleinrock’s [41] derivation of the waiting-time P − K transform

equation.
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First, let qn be the number of customers left in the system after the departure

of the nth customer. Note that z-transform is defined as Q(z) =
∑∞

k=0 P [qn = k]zk =

E [zqn ] , 0 ≤ z ≤ 1. Then, P −K transform for qn is:

Q(z) = G̃(λ− λz)
(1− ρ)(1− z)

G̃(λ− λz)− z
. (2.44)

Now, let vn be the number of arrivals during the service time, xn, of the nth

customer. The z-transform of vn is:

V (z) = G̃(λ− λz).

Also, define sn as the total time spent in the system by the nth customer, with

service time distribution S(s) and z-transform S̃(s). Note that sn = wn + xn

where wn is the waiting-time of the nth customer. Then Kleinrock [41] shows

that vn, V (z), and G̃(z) are each equivalent to qn, Q(z), and S̃(s). Thus, Q(z)

satisfies the same equation as V (z), namely Q(z) = S̃(λ− λz).

Next, by substituting the value for Q(z) from equation 2.44, we have:

S̃(λ− λz) = G̃(λ− λz)
(1− ρ)(1− z)

G̃(λ− λz)− z
. (2.45)

By making the change of variable s = λ − λz ⇒ z = 1 − s
λ
, the above equation

becomes:

S̃(s) = G̃(s)
s(1− ρ)

s− λ + λG̃(s)
, (2.46)

which is the explicit expression for the P-K equation for the Laplace transform

of the time-in-system distribution.

Finally, assuming the system is ergodic, we note that sn, xn, and wn have

limiting values s̃, x̃, w̃ with probability 1 as the system reaches equilibrium.

Since a customer’s service time is independent from its waiting time, we also
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have that s̃ is the sum of two independent random variables x̃, and w̃. Thus, the

Laplace transform of s̃ is:

S̃(s) = W̃ (s)G̃(s). (2.47)

Thus, by substituting the Laplace transform value of S̃(s) from 2.45, the waiting-

time distribution Laplace transform is given by:

W̃ (s) =
s(1− ρ)

s− λ + λG̃(s)
, (2.48)

where ρ = λ
µ
, and G̃(s) is the service-time distribution Laplace transform. There-

fore, we have the M/G/1, single customer class, FCFS P-K formula for the wait-

ing time Laplace transform.

2.3.4 Priority Queueing Models

Under complex settings, such as time-varying rates and priority service disci-

plines, the usual Markovian models might become intractable. In other words,

for these models, no closed-form may exist for the mean waiting time or waiting-

time distribution. In those cases, the Laplace transform is too complex to invert

analytically. However, values for the waiting-time distribution can still be ob-

tained through numerical inversion, as discussed in Chapter 2. Now, for these

models, the calls will have different levels of priorities. Although the waiting-time

distribution is known under the first-come-first-serve queue discipline, those re-

sults are not valid in the priority discipline. Thus, more complex priority service

models must be considered. Some analysis of the models under a priority ser-

vice discipline has been done. However, the expected system performance, such

as queue length and waiting-time distributions, have not been determined in

closed-form for models beyond the M/M/1 queue. For some models, the Laplace
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transforms for the queue length and waiting time distributions are known. For

example, for the M/G/n non-preemptive priority queue, the Laplace transform

for the waiting-time distribution is the following:

W ∗
k (s) = (1− π) + π

nµ(1− σk)(1−G∗(s))
s− λk + λkG∗(s)

, (2.49)

where W ∗
k (s) is the waiting-time Laplace transform of the kth class and π is

probability all servers are busy. However, similar results for the M/G/n, pre-

emptive priority queue are not well-known. Although the distributions can be

obtained from inverting the transform, this process is often very complex. Also,

these distributions usually can not be written in closed-form, or, if they can, are

not practical for deriving probabilities.

Preemptive-Resume Priority Discipline

The transform for multiple-customer class, priority queue scenario is not as well-

known as the FCFS, single-class transform. However, some results do exist for the

single-server queue. Takacs [66] proved some of the early stationary results for

the Laplace transforms of the M/G/1, preemptive-resume priority, multi-class

queue. He derived the transform, distribution, and moments for the waiting-

time of a customer of priority p. Wolff’s results are similar to those of Takacs.

Wolff [73] derives the transforms for the M/G/1, two-class, preemptive-resume

priority queue using the exceptional-first-service busy period concept discussed

in his book. The high priority, class-1 waiting-time distribution transform is:

W̃1(s) =
s(1− ρ1)

s− λ1 + λ1G̃1(s)
, (2.50)

where ρ1 = λ1

µ1
, λ1 and µ1 are the inter-arrival and service rates for class-1 cus-

tomers, and G̃1(s) is the service-time distribution Laplace transform for class-1
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customers.

Now, the low priority, class-2 Laplace transform is the product of two trans-

forms, B̃D2f
(s) and B̃C(s), where D2f is the delay of a class-2 customer prior

to entering service for the first time, and C is the completion time of a class-2

customer from the time service begins until service is completed. D2f and C are

exceptional first-service busy periods initiated by the arrival of class-1, i.e., high

priority, customers. Thus, the class-2 waiting-time distribution transform is:

W̃2(s) = B̃D2f
(s)B̃C(s), (2.51)

where

B̃D2f
(s) =

λ1µ1

λ(µ1 + s + λ1 + λ1B̃(s))
+

λ2µ2

λ(µ2 + s + λ1 + λ1B̃(s))
,

and B̃C(s) =
µ2

µ2 + s + λ1 + λ1B̃(s)
.

Again, B̃(s) is the Laplace transform for the distribution of an ordinary busy

period duration.

Non-Preemptive Priority Discipline

There are results for the non-preemptive priority, multi-customer class transform

as well. Kella and Yechiali [36] computed the waiting time distribution transform

of a class-p customer for a M/G/n, non-preemptive priority, multi-class queue.

They use the probabilistic equivalence between the M/G/1 queue with multiple

server vacations and the M/M/n queue. As in the preemptive-resume case,

Takacs [66] proved some of the early stationary results for the Laplace transforms

of the M/G/n, non-preemptive priority, multi-class queue. Again, he derived

the transform, distribution, and moments for the waiting-time of a customer of
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priority p. For the M/G/m, non-preemptive priority, multi-class queue, Williams

[72] derived the waiting-time distributions for two classes of customers. His results

are similar to those of Takacs and Kella and Yechiali. He showed that the high

priority, class-1 waiting-time distribution Laplace transform is:

W̃1(s) = 1− Π +
λ1(1− G̃( s

n
))(1− ρ1)Π

ρ1(s− λ1(1− G̃( s
n
)))

, (2.52)

where ρ1 = λ1

nµ1
and:

Π =

{
1 + (1− ρ)

n−1∑

k=0

(mρ)k+1−m(n− 1)!/(k!ρ)

}
.

The class-2 transform is somewhat different, but similar in form. It is given

by:

W̃2(s) = 1− Π +
λ(1− B̃1(s))(1− ρ)Π

ρ(s− λ2(1− B̃1(s)))
, (2.53)

where ρ = ρ1 + ρ2, λ = λ1 +λ2, and B̃1(s) is the distribution of an ordinary busy

period duration initiated by class-1 customers.

2.3.5 Staffing Models

For a single-skill call center, the problem of determining the work hours of each

agent involves first determining the shifts, and then assigning the agents to shifts.

There are different approaches for determining the shifts. A heuristic approach

is advocated in Henderson and Berry [30], while Segal [63] uses a linear pro-

gramming one. Other aspects, such as shift break placements, are also studied

in detail by Aykin [6]. An overview of the area, though not necessary applied

to call centers, is discussed by Thompson [68]. However, in practice there are

many additional constraints to the above problem. A few of these problems are

union regulations on labor hours and unpredictable availability of agents because
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of weather or emergencies. These constraints make it necessary to use other

optimization techniques [19].

For a multiple-skill call center, the problem is even more complicated. Many

different agent combinations might be possible for fulfilling service requirements

and can potentially solve the staffing model, even if the shift durations are fixed

[19]. Thus, the integration of the performance and staffing model is necessary.

However, there is not a lot of research on so-called “skill-based routing” queueing

models.

2.4 Conclusions

The basic structure of call centers allow them to be easily modelled as queue-

ing systems. However, call centers can become very complex depending on their

applications to different types of businesses. Thus, the call center research is a

challenging and diverse area for the applications of queueing models. The impor-

tance of call centers has exploded over the last two decades in helping businesses

meet their increasing demand. Thus, managers require more complex and robust

call center models from researchers. The development of these complex models

will benefit customers and help businesses provide efficient service to their various

classes of customers through different forms of interaction.
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Chapter 3

Call Center Modelling

The basic structure of the call center can be described as a finite capacity, multi-

server system. Customer calls arrive at the call center at varying rates on a finite

number of trunks. These calls are terminated at the ACD/PBX switch and are

routed to a group of call agents. In a multimedia call center, these calls can be

voice, email, fax, or (eventually) video.

3.1 Problem Setting

We study a complex call center system for which simple Markovian queueing

models do not apply. Our goal is to develop alternative methods to estimate

the transient performance for our system, rather than approximating them with

steady-state M/M/N/L queueing systems. Specifically, we develop a fluid model

and a separate simulation model to approximate the mean number in system and

mean virtual waiting time for both high and low priority customers at different

points in time. We also measure the variance of the virtual waiting time for both

classes of customers. Our call center is a help desk with two-customer classes and

a preemptive-resume priority queue discipline. The high priority customer class
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consists of voice calls, while the low priority customer class consists of e-mails.

Here, we assume that the trunk capacity L, i.e, the number of telephone lines for

the high priority customers, is large enough to prevent any call blocking. Also,

we assumed that the service level for the high priority class is high enough that

no calls abandon the system. Note that in a general call center environment these

assumptions are not always valid.

In our model, the customers are served from two distinct virtual queues.

The customers from the lowest priority class, i.e., e-mail, will abandon the low

priority queue and enter the higher priority queue based on a specified service level

parameter. In this regard, the low priority calls will have dynamic priorities, i.e.,

be upgraded. Our goal is to show that the fluid approximations of the call center

performance are close to the actual performance, as measured by a discrete-event

simulation model.
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Figure 3.1: Two Class, Preemptive-Resume Model with Low Priority Abandon-

ments

A diagram of the model is shown in Figure 3.1. The variables listed in Figure

3.1 are defined as follows:
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• λi(t) represents the arrival rate for class i customers into queue i, (i = 1, 2);

• Qi(t) represents the number of class i customers in the system;

• β2 is the abandonment rate of low priority customers out of the low priority

queue;

• n is the number of servers, or CSRs, in the system, which remains constant over

time.

Two important system performance measures in modern call centers are the

mean waiting time and waiting-time distribution for customers. Call center man-

agers must verify the customer’s quality of service, which can be measured by the

mean waiting time being less than some target delay, and/or the probability that

a customer’s waiting time is less than some target delay. Although there is no

true industry standard, most managers aim to have at least 80 percent of their

customers waiting less than 30 seconds for service. It is becoming more com-

mon in modern call centers to inform customers of delay predictions. However,

providing only point-estimate predictions of delay, such as mean waiting time,

does not provide as much value as predictions of the distribution of the waiting

time. Therefore, the waiting-time distribution provides a better measure of the

call center’s quality of service, or service level, for the customer and the manager

than the mean waiting time.

3.2 Research Methodology

We will use two methods to determine the mean number in system, mean virtual

waiting-time, and the variance of the virtual waiting times performance measures
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for our call center. First, we will develop fluid approximations for the performance

measures. Also, we recommend an optimal staffing level to ensure that the mean

virtual waiting time for both customer classes simultaneously satisfy their given

service levels. In other words, given target delays of 30 seconds for high priority

customers and 8 hours for low priority customers, we compute the number of

agents required such that the mean virtual waiting-time for both classes is less

than their targets. These approximations are determined by using asymptotic

limit results based on scaling the inter-arrival rate and number of servers upwards

to infinity. Note that these models do not require the restrictive assumptions of

the standard Erlang models, such as stationary inter-arrival rates. Second, we

construct a discrete-event simulation of the real call center system. Here, the

mean number in system and the mean virtual waiting-time are computed for

each customer class.

3.2.1 Priority Models with Voice and E-mail Calls

In this two class model, e-mail messages will have a lower priority than voice calls.

There are two types of e-mail messages, or calls. The first type is the standard, or

unconstrained, ones many people use to communicate with friends or co-workers.

Typically, these messages are not limited by length or content. The second type

of messages are ones where a customer completes a standard form or application

on-line, and submits it to the call center. These constrained e-mail messages have

a higher priority than unconstrained e-mail. Online registration forms are one

example of this type of e-mail traffic.

The e-mail “abandonment”, or upgrade, process is the same for both types

of e-mail messages. When an e-mail has been in queue close to its abandonment
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time, it leaves the low priority queue. However, it does not leave the system.

Instead, it becomes a high priority call and is placed at the end of the voice call

queue. We set the abandonment time equal to its service level time, s, which is

used to set the maximum time a e-mail will wait to begin service in the low priority

queue. In practice, the service level, s, for e-mail messages usually varies from

2 to 8 to 24 hours, depending on the size and type of call center. For example,

a call center manager can strive to have 80 percent of the average waiting times

for e-mails to be less than or equal to 2 hours. Also, each e-mail message will

be modelled as having the same abandon time, equal to the service level, s. In

other words, no email message can abandon its queue before one that arrived at

an earlier time.

3.2.2 Priority Models with Voice and Fax Calls

If voice and fax calls are the classes in the call center, then the fax calls will

have the lower priority. Here, the “abandonment” process for the fax calls can

be modelled in two ways. The first way is the same as the e-mail abandonment

process. Thus, fax calls leave their queue after waiting close to their abandonment

time, which is equivalent to the target service level time, s.

The second way is much different from the e-mail process. The “abandon-

ment” time for each fax is the exactly the same. These calls are allowed to

queue. When the abandonment time is reached, all of the faxes in the queue

leave together, as opposed to each one leave leaving separately as in the first way

discussed above. They become high priority calls, and are placed at the end of

the voice call queue. In other words, the fax calls still in the queue are upgraded

in batches after a fixed period of time. For example, if they have a service level

60



of twenty-four (24) hours, then after each 24 hour period, all the faxes still in

the low priority queue move to the high priority voice queue at the same instant.

Afterwards, the fax calls will receive service in the high priority queue at the

same rate as a voice call. Any new fax calls that arrive during the next 24 hour

period either receive service immediately or wait for service (if necessary) at the

low priority queue.

3.3 Our Call Center Model

Call center queueing models may yield complex solutions for traditional Marko-

vian queueing systems. For example, for the stationary M/G/n, preemptive

priority queue, solutions for the performance measures of the waiting time distri-

bution are not well-known. Also, these distributions usually can not be written

in closed-form, or, if they can, are not practical for deriving distribution values.

Our call center queueing model is the Mt/M/n model with a preemptive-resume

priority service discipline. Since this model also yields complex solutions using

traditional solution methods, such as Markovian models, a fluid approximation

method will be used to compute estimates of the performance measures. Our fluid

method will provide accurate approximations to the queue length, mean virtual

waiting time, and the mean and variance of the virtual waiting times, as com-

pared with our simulation estimates of the actual call center performance. The

arrival process of the calls will be a Poisson process with time-varying inter-arrival

rates. In practice, the number of servers, or agents, varies over time, resembling

the shift scheduling of agents over the course of a day, week, or month in a call

center. However, we assume that the number of servers remains constant over

time. The service time distribution will be the exponential distribution, with the
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service times of each call type having the same service rate. Finally, we assume

that the number of trunk lines is infinite in our call center. Thus, there is no

limit on the queue size in our model.

In our model, we use two classes of customers, voice and e-mail. The voice

calls will always have the higher priority. We assume that the service level is high

enough such that the number of high priority calls that abandon is insignificant.

Thus, we do not allow the high priority customers to abandon the system. The

lower priority of calls are e-mails. In practice, customers currently access most

call centers through the use of e-mails over 50% of the time, compared with other

forms of Web access such as Web chat (27%), click-to-talk (11.5%), and voice-

over-the-Internet (2%). We choose e-mails as our low priority call type. The

preemptive-resume priority discipline will be implemented, where higher priority

voice calls will interrupt lower priority calls in service. However, if the lower

priority calls are not meeting their service level requirements, then they will be

allowed to upgrade their class and enter into the higher priority class. In other

words, the priority of the lower class of calls will be dynamic, i.e., change over

time. The abandonment process is the same as described above for e-mails. The

abandonment rate is β2 where β2 = 1/s. Now, the overall abandonment rate

out of the low priority queue will β2 · (Q2(t)− (nΛQ1(t))
+)+, where (Q2(t)− (n ·

ΛQ1(t))
+)+ is the number of e-mails waiting in the low priority queue. A simple

representation of our call center model is shown in Figure 3.2.
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Figure 3.2: Multi-Class, Preemptive Priority Call Center with Dynamic Priorities

Theoretically, there is also a limit on the number of calls that an ACD can

handle simultaneously. However, as discussed in Chapter 1, that limit has steadily

increased as the ACD technology has advanced over the years. Thus, for our

model, there will be no practical limit on the queue length.
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Chapter 4

Fluid and Diffusion Approximations

Service systems models, such as call center models, belong to the class of stochas-

tic service network models. These network models form a special family of non-

stationary Markov processes where parameters such as inter-arrival and service

rates are time-dependent. More importantly, these models have functional strong

laws of large numbers and functional central limit theorem results for the number

of customers in the system and the waiting time in queue [49]. The results are

developed using an asymptotic limiting process, where the number of servers are

scaled up in response to a scaling up of the arrival rates. The individual service

and abandonment rates are not scaled. The resulting limit theorems are diffusion,

and not heavy-traffic, limit results.

These limit theorems lead to a tractable set of network fluid and diffusion

approximations in the form of a system of ordinary differential equations (ODEs).

By numerically solving these differential equations, values for the distribution of

performance measures such as the waiting time in queue can be computed. More

importantly, we can approximate solutions of otherwise analytically intractable

models. Therefore, an alternative, robust, methodology can be developed and

applied to the performance analysis of service systems, such as call centers.
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4.1 Multiple Customer Class

We compute the fluid approximations for the mean number in the system and

mean virtual waiting time for the two customer class , preemptive-resume pri-

ority, Mt/M/n queue. Like Mandelbaum et al. [49], we use the Euler method

to compute the fluid approximations for our model. If the approximations com-

puted using Euler’s method are vastly different from the simulation estimates,

we will then use the Runge-Kutta method to improve the accuracy of our ap-

proximations. Since the high priority customers can preempt the lower priority

ones, these customers will essentially receive service as if no other type of cus-

tomer is present in the system. Thus, the high priority customer class results

will be almost the same as the results for the single customer class. The only

difference from the single customer class case is the dynamic priority process for

the low priority customers, where these customers can abandon their queue and

enter the high priority queue as a high priority customer. Each low priority cus-

tomer, or e-mail, will have a exponential abandonment rate β2 where β2 = 1/s,

and s is the service level time. The overall abandonment rate out of the low

priority queue will β2 · (Q2(t) − (nΛQ1(t))
+)+, where (Q2(t) − (n · ΛQ1(t))

+)+

is the number of e-mails waiting in the low priority queue. This abandonment

process adds the above abandonment rate term to the differential equations de-

scribing the mean number in system and waiting-time process for the high priority

customers (as shown will be shown below). Mandelbaum et al. [49] developed

fluid and diffusion approximations for the multiple customer class, preemptive-

priority, Mt/M/n queue. However, they only studied the mean number in system

distributions for each customer class and not the waiting-time distributions.

Now, the Mt/M/n mean number in system process Q ≡ {Q(t) | t ≥ 0},
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Figure 4.1: The Two-Customer Class Mt/M/n Queue with Abandonment

previously defined for the single customer class case, must be defined for two

customer classes.

The diagram of the new queueing model is shown in Figure 4.1.

4.1.1 Asymptotic Mean Number in System Results

Again, the results and theorems presented in this section are adapted from those

stated by Mandelbaum, Massey, and Reiman [51] and Mandelbaum, Massey,

Reiman, et al. [49]. However, customers are now grouped into two classes: high

priority and low priority. High priority customers are labelled as class-1 customers

while low priority customers are labelled as class-2 customers. Thus, all of the

random variables of the stochastic processes discussed earlier are now random

vectors. In other words, the random variables such as Q(t) and W (t) are now

defined as:

Q(t) = {Q1(t), Q2(t)} , and W(t) = {W1(t), W2(t)} . (4.1)
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for all t. Here, Q1(t), W1(t) and Q2(t), W2(t) are the corresponding quantities

for class-1 and class-2 customers, respectively.

Now, the limit theorem for the functional strong law of large numbers can

be restated for the new model. The initial conditions for the mean number in

system process satisfy the following asymptotic assumption:

lim
η→∞

1

η
Qη(0) = Q(0)(0) a.s., (4.2)

where Q(0)(0) =
{
Q

(0)
1 (0), Q

(0)
2 (0)

}
is constant. Note that Qη was defined in

Chapter 2, Section 2.2.3 as the number in system process scaled by a factor of η.

Thus, the functional strong law of large numbers theorem for the new model is:

Theorem 4.1

lim
η→∞

1

η
Qη = Q(0), a.s., (4.3)

where the convergence is uniform on compact sets of t. Moreover, Q(0) = {Q(0)(t) |
t ≥ 0} =

{
Q

(0)
1 (t), Q

(0)
2 (t) | t ≥ 0

}
is uniquely determined by Q(0)(0) and the dif-

ferential equation:

d

dt
Q

(0)
1 (t) = λ1(t)− µ1(Q

(0)
1 (t) ∧ n)− β[Q

(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+; (4.4)

d

dt
Q

(0)
2 (t) = λ2(t)− µ2[Q

(0)
2 (t) ∧ (n−Q

(0)
1 (t))+]+

−β[Q
(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+ (4.5)

where [Q
(0)
2 (t) − (n−Q

(0)
1 (t))

+
]+ represents the number of customers in the low

priority queue.

This theorem states rigorously that Qη ≈ ηQ(0) for large η, where Q(0) is called

the fluid approximation for Qη. The proof of the theorem is given in [49].

As discussed for the single customer class case, the fluid approximation in

Theorem 2.1 can be refined using the functional central limit theorem. Here, the
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initial conditions satisfy the following assumption:

lim
η→∞

√
η

(
1

η
Qη(0)−Q(0)(0)

)
d
=Q(1)(0), (4.6)

where Q(1) is a constant. Now, for the new model, the functional central limit

theorem is:

Theorem 4.2

lim
η→∞

√
η

(
1

η
Qη −Q(0)

)
d
=Q(1), (4.7)

where Q(1) =
{
Q(1)(t) | t ≥ 0

}
is a diffusion process. This is a convergence in

distribution of the stochastic processes in an appropriate functional space [49].

Moreover, if the set of time points
{
t ≥ 0 | Q(0)(t) = n

}
has measure zero for

the multi-server queue with abandonment model, then
{
Q(1)(t) | t ≥ 0

}
is a Gaus-

sian process. The mean for Q(1) then solves the following differential equations

for:

d

dt
E

[
Q

(1)
1 (t)

]
= (β1{Q(0)

1 (t)≤n} − µ11{Q
(0)
1 (t) ≤ n})E[Q

(1)
1 (t)]

= +βQ
(1)
2 (t)E[Q

(1)
2 (t)]; (4.8)

d

dt
E

[
Q

(1)
2 (t)

]
= (−β1{Q(0)

1 (t)≤n} + µ21{Q(0)
2 (t)≤(n−Q

(0)
1 (t))+})E[Q

(1)
1 (t)]

−(βQ
(0)
2 (t) + µ21{Q(0)

2 (t)≤(n−Q
(0)
1 (t))+})E[Q

(1)
2 (t)]. (4.9)

Similarly, the variance for Q(1) solves the following set of differential equation:

d

dt
Var

[
Q

(1)
1 (t)

]
= 2(β1{Q(0)

1 (t)≤n} − µ11{Q(0)
1 (t)≤n})Var[Q

(1)
1 (t)]; (4.10)

+βQ
(1)
2 (t)Cov[Q

(1)
1 (t), Q

(1)
2 (t)] + λ1(t)

+µ(Q
(0)
1 (t) ∧ n) + β[Q

(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+. (4.11)

d

dt
Var

[
Q

(1)
2 (t)

]
= −2β1{Q(0)

1 (t)≤n}Cov[Q
(1)
1 (t), Q

(1)
2 (t)]
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+2µ21{Q(0)
2 (t)≤(n−Q

(0)
1 (t))+}Cov[Q

(1)
1 (t), Q

(1)
2 (t)]

+(−βQ
(0)
2 (t)− µ21{Q(0)

2 (t)≤(n−Q
(0)
1 (t))+})Var[Q

(1)
2 (t)]

+λ2(t) + µ[Q
(0)
2 (t) ∧ (n−Q

(0)
1 (t))+]+

+β[Q
(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+. (4.12)

Finally, the covariance for Q(1) solves the following differential equation:

d

dt
Cov

[
Q

(1)
1 (t), Q

(1)
2 (t)

]
= −β1{Q(0)

1 (t)≤n}Var[Q
(1)
1 (t)]

+µ21{Q(0)
2 (t)≤(n−Q

(0)
1 (t))+}Var[Q

(1)
1 (t)]

+βQ
(1)
2 (t)Var[Q

(1)
2 (t)]

+β1{Q(0)
1 (t)≤n}Cov[Q

(1)
1 (t), Q

(1)
2 (t)]

−µ11{Q(0)
1 (t)≤n}Cov[Q

(1)
1 (t), Q

(1)
2 (t)]

−βQ
(0)
2 (t)Cov[Q

(1)
1 (t), Q

(1)
2 (t)]

−µ21{Q(0)
2 (t)≤(n−Q

(0)
1 (t))+}Cov[Q

(1)
1 (t), Q

(1)
2 (t)]

−β(Q
(0)
2 (t)− (n−Q

(0)
1 (t))+). (4.13)

Theorem 4.2 states rigorously that Qη ≈ ηQ(0)+
√

ηQ(1) for large η, where Q(1) is

called the diffusion approximation for Qη. We used Theorem 5.2 in Mandelbaum

et al. [51] applied to our model to derive the Equation (4.23), Equation (4.12),

and Equation (4.13). Specifically, from Theorem 5.2, we have:

d

dt
Var

[
Q

(1)
1 (t)

]
= 2a11Var

[
Q

(1)
1 (t)

]
+ 2a21Cov

[
Q

(1)
1 (t), Q

(1)
2 (t)

]
+ b11 (4.14)

d

dt
Var

[
Q

(1)
2 (t)

]
= 2a22Var

[
Q

(1)
2 (t)

]
+ 2a12Cov

[
Q

(1)
1 (t), Q

(1)
2 (t)

]
+ b22 (4.15)

d

dt
Cov

[
Q

(1)
1 (t), Q

(1)
2 (t)

]
= a12Var

[
Q

(1)
1 (t)

]
+ a21Var

[
Q

(1)
2 (t)

]

+(a11 + a22)Cov
[
Q

(1)
1 (t), Q

(1)
2 (t)

]
+ b12 (4.16)
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where

A =




a11 a12

a21 a22


 (4.17)

is the Jacobian of the right-hand side of Equation(7.1) for the high and low

priority customers. Additionally,

B =




b11 b12

b21 b22


 (4.18)

is the tensor product of the right-hand side of Equation (7.1) for the high and

low priority customers. Therefore, by computing the Jacobian matrix and tensor

product matrix, we determine the coefficients of our variance and covariance

differential equations.

4.1.2 Asymptotic Virtual Waiting-Time Results

The asymptotic results for the mean virtual waiting-time depend on the mean

number in system process approximations. As in the mean number in system

process section, the results and theorems presented here have been adapted and

summarized from those stated by Mandelbaum, Massey, and Reiman [51] and

Mandelbaum et al. [49]. To compute the waiting-time of virtual customer arriving

to the system at a fixed time τ ≥ 0, an additional assumption is required. The

original model will be modified as follows:

• There are no new exogenous arrivals into the system after time τi.

• In particular, the servers only process any remaining customers in the sys-

tem at time τi.
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Virtual Waiting Time Methodology

Finally, in the fluid and diffusion approximations, time, τi, is the time when the

arrival rate for the two class of customers is set to 0. This is analogous to turning

off the source of the fluid, and analyzing the fluid level as it drains out of its

container. The sequence of τi’s are evenly-spaced over the time interval [0, T ],

separated from each other by subintervals of width, h. Therefore, the number

of subintervals, nos, is defined as nos = T
h
, and the sequence {τi} has index i

where i = 1, . . . nos. Thus, after time τi, the waiting-time in queue for a high

priority customer is the time until the high priority queue empties, i.e., the length

is reduced to 0. The low priority customer’s waiting-time is similar, but more

complex, which will be discussed later in this chapter. Therefore, the virtual

waiting-time and the waiting-time distribution can be computed for a customer

arriving to the system at time τi.

High Priority Customers

We use Theorem 4.1 and 4.2 to derive the fluid and diffusion approximations for

the virtual waiting time of the high priority customers. After time τ1, we show

that certain terms in their equations, corresponding to the external arrivals to

the system, will become zero [51]. The asymptotic results for the virtual waiting

time require some new notation. We denote the arrival and departure processes

for the system by:

Aη = {Aη | t ≤ 0} , and ∆η = {∆η | t ≤ 0} (4.19)

respectively. By convention, let the arrival process include the customers in the

system at time 0. So, Aη(0) = Q̂η
1(0), ∆η(0) = 0, and Aη(t)−∆η(t) = Q̂η

1(t), t ≥ 0,

where Q̂η
1(t) is the mean number in system process for the modified queue.
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The previous assumptions and notations lead to the following fluid limit re-

sult:

Theorem 4.3 As a joint process,

lim
η→∞

1

η

(
Q̂η

1, A
η, ∆η

)
=

(
Q̂

(0)
1 , A(0), ∆(0)

)
, a.s. (4.20)

and this convergence is uniform on compact sets of t. The fluid limit Q̂
(0)
1 (t)

satisfies equation 7.1 for t < τ . For t ≥ τ , the following properties hold:

1. The future evolution of Q̂
(0)
1 (t) is determined by the differential equation:

d

dt
Q̂

(0)
1 (t) = −µ · (Q̂(0)

1 (t) ∧ n)− β · (Q̂(0)
1 (t)− n)

+
. (4.21)

2. There are no future arrivals, so that A(0)(t) = A(0)(τ).

3. The deterministic process ∆(0) is a continuously differential non-decreasing

function in [0,∞] .

Also, the additional assumption leads to the following diffusion limit result:

Theorem 4.4

lim
η→∞

√
η

(
1

η
Q̂η

1 − Q̂
(0)
1 ,

1

η
Aη − A(0),

1

η
∆η −∆(0)

)
d
=

(
Q̂

(1)
1 , A(1), ∆(1)

)
. (4.22)

Moreover, if the set of time points
{
t ≥ 0 | Q̂(0)

1 (t) = n
}

has measure zero for the

multi-server queue with abandonment model, then
{
Q̂

(1)
1 (t) | t ≥ 0

}
is a Gaussian

process. For t ≥ τ , Var
[
Q̂(1)(t)

]
solves the differential equation:

d

dt
Var

[
Q

(1)
1 (t)

]
= 2(β1{Q̂(0)

1 (t)≤n} − µ11{Q̂(0)
1 (t)≤n})Var[Q̂

(1)
1 (t)]

+βQ̂
(1)
2 (t)Cov[Q̂

(1)
1 (t), Q

(1)
2 (t)]

+µ(Q̂
(0)
1 (t) ∧ n) + β[Q̂

(0)
2 (t)− (n− Q̂

(0)
1 (t))

+
]+. (4.23)
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It follows from the above theorem and definitions that

Q̂
(1)
1 (t) = A(1)(t)−∆(1)(t). (4.24)

Before the asymptotic result for the virtual waiting time distribution can be

stated, a few more definitions and assumptions must be given. The potential

service initiation process Dη for the server is defined as:

Dη(t) = ∆η(t) + ηn, t ≥ 0. (4.25)

Recall that Aη(t)−∆η(t) = Q̂η(t), t ≥ 0. So, if Q̂η(t) < ηn, then Aη(t) < Dη(t).

Thus, by Theorem 4.3,

lim
η→∞

1

η
Dη(·) = D(0)(·) a.s., (4.26)

where the convergence is uniform on compact sets of t and D(0)(t) = ∆(0)(t) +

n, t ≥ 0. Note that D(0)(t) is continuously differentiable because ∆(0)(t) is con-

tinuously differentiable as the fluid limit of the departure process. Thus, the

derivative of D(0)(t) is denoted by d(0)(t). The following assumption for D(0)(t)

is important, but not too restrictive for the virtual waiting time result [51]:

lim
t→∞D(0)(t) > A(0)(τ), (4.27)

where D0)(t) is continuously differentiable with strictly positive derivative. Note

that, based on previous definitions, A(0)(·) and A(0)(τ) are constant on the interval

[τ,∞). Also, it is convenient to assume that all processes are defined on the

interval [−T,∞) where T = n/d(0)(0) instead of [0,∞). This interval extension

assumes that there are no arrivals or departures within the interval [−T, 0).

Now, Theorem 4.3 and Theorem 4.4 can be written in terms of D as follows:

lim
η→∞

1

η
(Qη, Aη, Dη) =

(
Q̂(0), A(0), D(0)

)
(4.28)
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and,

lim
η→∞

√
η

(
1

η
Q̂η

1 − Q̂
(0)
1 ,

1

η
Aη − A(0),

1

η
Dη −D(0)

)
d
=

(
Q̂(1), A(1), D(1)

)
, (4.29)

where D(1) = ∆(1) and t ≥ −T .

Note that A(0), D(0), A(1), D(1) are continuous and D(0)(−T ) = D(1)(−T ) = 0

[51]. Let the first attainment process, S
(η)
1 (t), be defined for all t ≥ −T as:

Sη
1 (t) = inf{s ≥ −T : D(η)(s) > Aη(t)}, (4.30)

and,

S
(0)
1 (t) = inf{s ≥ −T : D(0)(s) > A(0)(t)}. (4.31)

Similarly, define the attainment waiting time process as:

W η
1 (t) = Sη(t)− t, (4.32)

and,

W
(0)
1 (t) = S(0)(t)− t. (4.33)

The conventions and assumption defined above allow the previous processes to

be well-defined and finite with probability 1 for sufficiently large η.

Now, define the virtual waiting time at τi, Ŵ η
1 (τi), as the time a customer

arriving to the queueing service node at time τi would have to wait until its service

starts, assuming that customer does not leave the queue [51]. Thus, the virtual

waiting time, Ŵ η
1 (τi), and the attainment waiting time, W η

1 (t), are related as:

Ŵ η(τi) = W η(τi)
+. (4.34)

So, if Q̂η
1(τi) < ηn, then W η

1 (τi) (and W
(0)
1 (τi)) will be negative. Therefore, by

definition, Ŵ η
1 (τi) = 0. If W η

1 (τi) is non-negative, then Ŵ1η(τi) will have the

same value as W η
1 (τi).
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The next theorem follows directly from Equations (4.28), (4.29), and the

theorem in Puhalskii [60]. Those results yield the following convergence theorem:

Theorem 4.5

lim
η→∞

1

η

(
Q̂η, Aη, Dη,W η

1

)
=

(
Q̂(0), A(0), D(0),W

(0)
1

)
, a.s., (4.35)

and,

lim
η→∞

√
η

(
1
η
Q̂η

1 − Q̂(0),
1
η
Aη −A(0),

1
η
Dη −D(0),W η

1 −W
(0)
1

)
d=

(
Q̂(1), A(1), D(1),W

(1)
1

)
,

(4.36)

where

W
(1)
1 =

A(1)(t)−D(1)(S
(0)
1 (t))

d(0)(S
(0)
1 (t))

and S
(0)
1 (t) = inf{s ≥ −T : D(0)(s) > A(0)(t)}.

(4.37)

Since the processes A(1)(t), D(1)(t), Q̂
(1)
1 (t), W

(1)
1 (t) are continuous a.s., their

finite dimensional distributions converge [51]. In particular, consider the non-

trivial case S
(0)
1 (τi) ≥ τi, which is equivalent to Q̂

(0)
1 (τi) ≥ n. Moreover, assume

that the set of points
{
t | Q̂(0)

1 (t) = n
}

has measure zero on [0, τi]. Then:

lim
η→∞W η

1 (τi) = W
(0)
1 (τi) a.s. (4.38)

and

lim
η→∞

√
η(W η

1 (τi)−W
(0)
1 (τi))

d
= W

(1)
1 (τi) =

Q̂
(1)
1 (S

(0)
1 (τi))

d(0)(S
(0)
1 (τi))

(4.39)

where Q̂
(1)
1 (S

(0)
1 (τi)) is a Gaussian process with a mean and variance defined by

the following procedure below. First, solving Equation (4.21) for Q̂
(0)
1 (·) in the

interval [τi,∞] yields:

d

dt
Q̂

(0)
1 (t) = −µ1(Q

(0)
1 (t) ∧ n)− β[Q

(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+, t ≥ τi. (4.40)
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Now, by definition,

S
(0)
1 (τi) = min

{
t ≥ τi | Q̂(0)

1 (t) = n
}

. (4.41)

Second, the mean, E
[
Q̂

(1)
1 (S(0)(τi))

]
, and variance, Var

[
Q̂

(1)
1 (S(0)(τi))

]
, are com-

puted as the solutions to the following equations:

d

dt
E[Q̂

(1)
1 (t)] = βQ

(1)
2 (t)E[Q̂

(1)
2 (t)], t ≥ τi, (4.42)

and

d

dt
Var[Q̂

(1)
1 (t)] = 2βQ̂

(1)
2 (t)Cov[Q̂

(1)
1 (t), Q̂

(1)
2 (t)] + µ(Q̂

(0)
1 (t) ∧ n)

+β[Q̂
(0)
2 (t)− (n− Q̂

(0)
1 (t))

+
]+, t ≥ τi. (4.43)

Because zero is a solution to Equation (4.42), we assume the mean is zero. Finally,

since d(0)
(
S

(0)
1 (τi)

)
= nµ when S

(0)
1 (τi) ≥ τi, we can compute the following:

Var
[
W

(1)
1 (τi)

]
=

Var
[
Q̂

(1)
1 (S

(0)
1 (τi))

]

(nµ)2 . (4.44)

Low Priority Customers

The computation for the low priority customers’ waiting time is more complex

than for the high priority customers. Since these customers can be preempted

and abandon to the high priority queue, their waiting time before they complete

service is a combination of three processes. The first one is the waiting-time

process in the low priority queue for some random amount of time. The second

one is the partial-service process that customers receive before being preempted

by a high priority customer, if a server is idle and no high priority customer is

present in the system. This amount of time is also random. The last process is

the waiting-time process in the high priority queue, if the low priority customer
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abandons the low priority queue before completing service while waiting there or

being preempted. This time is a random period as well.

After some fixed time τi, we set the low priority arrival rate, λ2, equal to 0.

Next, we can only conjecture about the virtual waiting time distribution for the

low priority customers. The fact that some of these customers abandon their

queue, and complete service as a high priority customer complicates the limit

theorem results stated earlier as Theorem 4.3, Theorem 4.4, Theorem 4.28, and

Theorem 4.29. Thus, we can not state, presently, a true asymptotic limit theorem

for the low priority waiting-time distribution. But, for those customers that do

abandon, the asymptotic limit theorems do apply separately to their waiting-

time processes observed in both queues. In others words, the distribution of the

low priority customers’ virtual waiting time in the low priority queue (ignoring

preemption for the moment) would be a Gaussian distribution where the mean

and variance are solutions to a differential equation. Similarly, once the low

priority customers abandoned to the high priority queue, the distribution of the

low priority customers’ virtual waiting time in the high priority queue would

also be a Gaussian distribution. However, it is not the case that the virtual

waiting time processes in the low and high priority queues are independent. This

is true because the upgraded low priority customers in the high priority queue

will occupy all the servers, and thus, may increase the virtual waiting time of

the low priority customers in the low priority queue. Therefore, since the two

low priority waiting time processes are not independent, we cannot state that

their joint waiting time distribution is also Gaussian, which is opposite the limit

theorem results in Mandelbaum et al. [51].

In addition, the virtual waiting time process in the low priority queue might
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have an additional component due to possible preemption by high priority cus-

tomers (which we ignored in the above paragraph). If a preemption occurs, the

low priority customers service is incomplete and their waiting time in the low

priority increases based on their remaining service time. Since the service time

distribution is exponential, the remaining service time will be exponentially dis-

tributed. The additional waiting time component is this remaining service time

after each preemption. Thus, the complete virtual waiting time for low prior-

ity customers consists of their waiting time in the low priority customer, their

remaining service after being preempted, and their waiting time in the high pri-

ority queue. Therefore, we can conjecture that the joint virtual waiting-time

distribution for low priority customers is a composition of at most two Gaus-

sian distributions (if an “upgrade” occurs) and an exponential distribution (if a

preemption occurs).

Although we can not completely describe the virtual waiting time distribution,

we can determine the fluid approximation for the mean virtual waiting time of a

virtual low priority customer arriving at time τi using Theorem 4.5 above. First,

we compute the fluid approximations of the mean number in system at time τi,

which is used to determine the mean virtual waiting time fluid approximation.

We develop a “pseudo-deterministic” fluid approximation algorithm to compute

these performance estimates.

Our algorithm can be summarized in the following way. First, the low priority

arrival rate λ2 is set equal to 0, so that the arriving low priority customer at τi is

the last to enter the system. Second, the “abandonment” time (i.e., upgrade time)

and service time for this customer are generated. We model the abandonment

rate, β2, from the low priority queue as an exponential random variate with mean
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Update: Fluid_Q1, Fluid_Q2
Decrement: abandon_time

T < τ ?
YES

Update: Fluid_Q1, Fluid_Q2

NO λ2 = 0

Fluid_Q2 > (n – Fluid_Q1)?

YES

Update: Fluid_Q1, Fluid_Q2
Decrement: service_time

NO

service_time > 0 &
abandon_time < 0?

Increment: Time T

service_time > 0  
& abandon_time > 0?

YES

NO

service_time < 0 &
abandon_time > 0?

Time_abandoned = T
Update: Fluid_Q1 Fluid_Q1 < n ? Fluid_W2 = T - tau

YESYES

NO

Fluid_W2 = (T – tau) –
(beginning) service_time

YES

NO

Generate service_time &      
abandon_time

NO

Figure 4.2: Outline of Low Priority Fluid Approximation Algorithm

1/s, where s corresponds to the low priority service level time requirement. Since

we set the abandonment time equal to 1/β2, each low priority customer in the

queue will have a different abandonment time until time τi. We model the service

time also as an exponential random variate with rate µ2, where µ2 is the low

priority service rate. Since we must introduce random quantities into the usually

deterministic fluid method, our algorithm is actually a “pseudo-deterministic”

one.

We show the progression of the fluid computations in our algorithm in Figure

4.2.
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Third, our pseudo-deterministic algorithm models the rest of the low priority

waiting time process by ”tracking” this virtual customer as a discrete entity

through the system. (We realize, however, that a true deterministic fluid method

models only the average, or aggregate, movement of entities.) Thus, as long

as its abandonment time has not been attained, the customer waits in the low

priority queue for a server to become available. While he waits in queue, we

allow other high priority customers to enter the system, creating additional low

priority customer delay. If the number of high priority customers in the system

is less than the number of servers, n, and the low priority customer is at the

head of its queue, then the low priority customer enters service. Once at a

server, the customer must receive service for the duration of its service time

before completing service. Note that the low priority customer can not abandon

the server in order to be upgraded to the high priority queue. If the customer

is preempted while in service, the customer returns to the head of low priority

queue. It remains in queue until a server becomes available again, or it abandons

to the high priority queue if its abandonment time is achieved. The low priority

customer can not abandon the server while in service in order to be upgraded to

the high priority queue.

Fourth, if the abandonment time is attained before the customer completes

service, then the customer abandons its queue and enters the end of the high

priority queue. There, the customer waits for service in the same manner as any

other high priority customer. Then, the “high priority waiting-time” part for the

upgraded customer is computed in the following way. The high priority external

arrival rate is set equal to 0. When the high priority fluid level equals or drops

below the number of servers, the upgraded customer’s delay in the high priority
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queue is computed. Finally, the total waiting time in queue for the virtual low

priority customer arriving at τi is equal to the sum of their waiting time in the

both the high and low priority queues. Since we introduce some randomness into

the computation, we compute the mean waiting time estimate for a number of

independent replications. We use the average value of the mean virtual waiting

times over these replications as our low priority mean virtual waiting time fluid

approximation. Therefore, we can compute the fluid approximation to the virtual

waiting time using our algorithm.

Finally, we can summarize our “pseudo-deterministic” algorithm in the follow-

ing manner. We use a randomly generated abandonment time and service time

for a virtual low priority arriving at time τ to determine which of the following

“events” occurs next in time:

1. the customer waits in low priority queue until entering service, or

2. the customer is preempted from service by a high priority customer, or

3. the customer is upgraded to end of high priority queue and eventually

completes service, or

4. the customer completes service from the low priority queue.

Using our low priority algorithm and the fluid approximation of the virtual

waiting time, we compute the low priority variance of the virtual waiting time.

However, we must first derive equations similar to Equation (4.42), Equation

(4.43), and Equation (4.44) above for the high priority virtual waiting time. Thus,

we consider the case S
(0)
2 (τi) ≥ τi as before, which is equivalent to Q̂

(0)
2 (τi) ≥

(n − Q̂
(0)
1 (τi). First, solving Equation (4.21) for Q̂

(0)
2 (·) in the interval [τi,∞]
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yields:

d

dt
Q̂

(0)
2 (t) = −µ2[Q

(0)
2 (t) ∧ (n− Q̂

(0)
1 (t))+]+ − β[Q̂

(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+, t ≥ τi.

(4.45)

Now, by definition,

S
(0)
2 (τi) = min

{
t ≥ τi | hatQ

(0)
2 (τi) = (n− Q̂

(0)
1 (τi)

}
. (4.46)

The mean, E
[
Q̂

(1)
1 (S(0)(τi))

]
, and variance, Var

[
Q̂

(1)
1 (S(0)(τi))

]
, are computed as

the solutions to the following equations:

d

dt
E[Q̂

(1)
2 (t)] = (−βQ̂

(0)
2 (t))E[Q̂

(1)
2 (t)], t ≥ τi, (4.47)

and

d

dt
Var[Q̂

(1)
2 (t)] = −2βQ

(0)
2 (t)Var[Q

(1)
2 (t)] + µ[Q

(0)
2 (t) ∧ (n−Q

(0)
1 (t))+]+

+β[Q
(0)
2 (t)− (n−Q

(0)
1 (t))

+
]+, t ≥ τi. (4.48)

(4.49)

Since zero is a solution to Equation (4.47), we assume that the mean is zero.

Finally, we compute that the derivative of D(0)(t) is d(0)(t), where:

d(0)
(
S

(0)
2 (τi)

)
= µ2(Q

(0)
2 (t) ∧ (n−Q

(0)
1 (t))+) + β(Q

(0)
2 (t)− (n−Q

(0)
1 (t))+)

+µ1(Q
(0)
1 (t) ∧ n) (4.50)

(4.51)

when S
(0)
2 (τi) ≥ τi. Therefore, we have:

Var
[
W

(1)
2 (τi)

]
=

Var
[
Q̂

(1)
2 (S

(0)
2 (τi))

]

(
d(0)

(
S

(0)
2 (τi)

))2 (4.52)

In Figure 4.1.2, we show the pseudo-code used in implementing our algorithm

and computing the fluid approximations using the C-programming language.
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if (simulation time <= tau)
compute high and low priority fluid level;

else /* Simulation time > tau -- Virtual customer arrives. */
if (abandonment time > 0 AND service time > 0) {

if (low priority fluid level >= number servers - high priority fluid level)
AND (abandonment time > 0)
/* Low priority customer waits in queue (possibly preempted) until

either entering service or abandoning to high priority queue. */
Decrement abandonment time;
Update high and low priority fluid level (with low priority arrival rate = 0);

else if (abandonment time > 0)
/* Low priority customer enters and receives service until

high priority preempts that customer from service. */
Decrement service time;
Update high and low priority fluid level

(with low priority arrival rate =0);
else if (service time > 0 AND abandonment time < 0)

/* Low priority customer abandons queue2 and enters
end of queue1 as high priority customer. */

/*---------------------------------------------*/
/* Compute part1 of low priority waiting time. */
/*---------------------------------------------*/
Compute waiting time in low priority queue for

"abandoning" (i.e. upgraded) low priority customer;
/*----------------------------------------------------------------*/
/* Compute part2 of low priority waiting time: */
/* Begin high priority waiting time process for upgraded customer.*/
/*----------------------------------------------------------------*/
if (high priority fluid level < number of servers - 1);

Compute waiting time for upgraded low priority customer;
else if (service_time[i][j] < 0 && abandon_time1 > 0)

/* Low priority customer completed service from low priority
queue (without abandoning). */

Compute waiting time of low priority customer;

Figure 4.3: Pseudo-code for Low Priority Mean and Variance of Virtual Waiting
Time at Tau Computation.
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4.2 Staffing Algorithm

We use the fluid approximations for the mean virtual waiting time to predict an

actual staffing level for our call center model. Our criteria for changing the staffing

level, or number of servers, in our model uses a comparison of the mean virtual

waiting-time for each customer class to their corresponding target waiting-time.

The simple staffing algorithm is the following:

1. Choose an initial staffing level, or value for the number of servers, and

target service level for the high and low priority customers. These values

are determined from our actual call center data.

2. Compute the mean virtual waiting-time using the fluid and diffusion ap-

proximations for each customer class.

3. If the percentage of mean virtual waiting-times is greater than the target

service level for either class, then increment the number of servers by 1.

4. Repeat the second step until the target service level is satisfied for both

classes of customers.

This generates a staffing level, which we use as one of the inputs into our

simulation model. Then, we compute the percentage of mean virtual waiting-

times that are below the target waiting-time for each class. By comparing this

percentage with the corresponding one from the fluid approximations, we can

measure the accuracy of the fluid approximations estimate for the staffing level

in the real system.

It is important to note that this staffing level is an estimate for the minimum

staffing required to meet a target service level. In a real call center setting, a
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manager would use this estimate as a constraint in a larger business schedul-

ing optimization model. Such a model optimizes call center costs subject to

constraints such as the number of consecutive employee work shifts, scheduled

breaks, vacations, etc. Our predicted staffing level is basically an input into this

larger model. Therefore, the actual staffing level in a call center might be greater

than our estimated level to handle agents finishing their shifts or taking breaks

during the day.

4.3 Model Verification

The fluid and diffusion approximations model are verified using three methods.

The first method compares a well-known queue result with our estimate for the

same queue result. This method uses the stationary, M/M/1 preemptive-resume,

priority queue where the arrival rates are constant. The mean waiting-time times

for high and low priority customers of this queue are known results. Thus, we

can compute the mean virtual waiting-time at each τi for this queue using our

fluid and diffusion approximations. Therefore, our fluid model is verified by

matching the mean virtual waiting-time at each τi for each customer class with

the corresponding mean virtual waiting-time know result.

The second method uses the differential equations that model the change

in the fluid level, or mean number in system, for both high and low priority

customers in the non-stationary, Mt/Mt/n preemptive-priority queue. At the

maximum and minimum number in system values, the derivative of the number in

system with respect to time will be zero. We compute the number in system fluid

approximations over the entire time horizon, and determine the minimum and

maximum values. Then, we set the right-hand side of the differential equations in
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Section 4.1.1 equal to zero. Finally, we substitute, into the right-hand-side of the

equations, our mean number in system estimates and corresponding parameter

values. If the right-hand side of the differential equations are very close to zero,

then our mean number in system fluid approximations are accurate. Therefore,

our fluid approximations model are verified.

Finally, the last method is model validation, which involves convincing a

specific call center manager that our model is accurate. Since the arrival rates,

service rates, and number of agents in our model pertain to only one call center,

a manager of a different call center can test our model by inputting their own

parameters and data. Thus, they will run our model to generate approximations

for their call center operations. Then, they can compare our fluid and diffusion

approximations with estimates computed using their own approximating scheme.

If our model is accurate, then our approximations will be very close to (if not

better) than their estimates, upon comparison of both sets of estimates with those

from a discrete-event simulation model.

Consequently, we have three different methods for verifying the accuracy of

our fluid approximations model.
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Chapter 5

Simulation

5.1 Simulation Model

We use a discrete-event simulation to compute estimates for the mean number in

the system, mean virtual waiting time, and the variance of the number in system

and virtual waiting time, and waiting time tail distribution values for high and

low priority customers. The simulation models our call center defined in Chapter

3. The details of the simulation model are outlined below. Our C program code

for our non-stationary Mt/M/n model is an extension of Law and Kelton’s C

program code for the stationary M/M/1 queue model found in [47].

We estimate the performance measures, such as the number in system and

virtual waiting time, for both customer classes. To obtain these estimates, we

first compute the values of the performance measures at distinct time points τi,

where i = 1, 2, . . . , m. Here, m is the number of subintervals contained in the

overall time interval [0, T ] of the simulation. Second, we compute these values

again at each τi for a large number of independent replications. Note that for

each τi, we repeat a full simulation run, or replication, which causes the run time

of our simulation to increase significantly. Finally, we determine the performance
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estimates by averaging each value at τi over this set of replications.

5.2 Simulation Components

The computer program used to implement the simulation model consists of sev-

eral components. The simulation starts in the empty-and-idle state, where no

customers are present and all of the servers are idle. The basic inputs to the sim-

ulation are the arrival, service and abandonment rates for each customer class,

the number of servers, the stopping time, and the target waiting-times for each

customer class. One run of the simulation is repeated until a given stopping

criterion is reached. Here, one run of the simulation is stopped after a finite

horizon time is reached, corresponding, for example, to a 20 hour period of real-

world a call center operations. However, it can also be stopped after a certain

number of customer completions. Independent replications of the simulation are

performed until a certain precision of the performance measures is attained. In

our case, replications of the simulation are performed until the standard error of

the number in system and virtual waiting-time estimates reaches a small preci-

sion compared to the estimated values, usually three or four orders of magnitude.

Finally, the random numbers, which model the stochastic nature, are generated

using a pseudo-random number generator.

5.2.1 Random Number Generator

A simulation of any system, which operates in a random, or unpredictable, man-

ner, requires a method of generating random numbers. In our call center, the

arrival, service, abandonment, and priority assignment processes are the source
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of the randomness of the system. Thus, we discuss and employ a convenient and

efficient method to generate these parameters from their corresponding proba-

bility distribution. The samples generated from a specific distribution will be

described as random variates.

The methodology of generating random numbers has a long and interesting

history. The earliest methods were carried out by hand, by throwing dice or

dealing cards, for example [47]. As computers, and thus simulation, became more

widely used, research began focusing on random number generation methods

that were compatible with the way computers work [47]. In the 1940’s, the first

numerical, or arithmetic, generator was proposed from research by Von Neumann

and Metropolis. A carefully designed generator can produce numbers that appear

to be independent draws from the U(0, 1) distribution, in that the sequence of

numbers pass a series of statistical tests.

The last statement is a useful definition of random numbers. Additionally,

Law and Kelton state that a good arithmetic random number generator has the

following properties: [47]

1. The numbers produced should be uniformly distributed on [0, 1] and should

be independent of each other.

2. The generator should be fast and efficient storage-wise, in practice.

3. We should be able to reproduce a given stream of random numbers, which

aids in debugging and simulating different systems with identical random

numbers.

4. The generator should be able to easily produce separate streams of random

numbers, where a stream is a subsegment of numbers produced by the
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generator and where the next stream begins where the last one ended.

Linear Congruential Generators

Many random number generators today are linear congruential generators (LCGs)

introduced by Lehmer [48]. A sequence of integers Z1, Z2, . . . is defined by the

recursive formula:

Zi = (aZi + c) (mod m) (5.1)

where m, the modulus, a, the multiplier, c, the increment, and Z0, the seed or

starting value, are nonnegative integers. From equation 5.1, 0 ≤ Zi ≤ m − 1,

based on modulo arithmetic. To obtain the random numbers Ui, i = 1, 2, . . ., we

let Ui = Zi/m.

If c = 0 in equation 5.1, then the generator is a multiplicative linear congru-

ential generator. The majority of LCGs today are multiplicative, to avoid the

addition of c. However, this type of generator cannot have full period, m. A gen-

erator has full period m if the number of distinct Zi’s generated before any one

is repeated is m. Full-period generators are desirable for large-scale simulations

using hundreds of thousands of random numbers. However, if m is a prime num-

ber, then the period is m− 1 if a is a primitive element for modulo m. Note that

a is a prime element modulo m if the smallest integer l for which al−1 is divisible

by m is l = m − 1 [47]. With m prime and a a prime element modulo m, the

generator becomes a prime modulus multiplicative linear congruential generator

(PMMLCG).

We use a PMMLCG based on the portable FORTRAN code of Marse and

Roberts in our simulation, where m = 2, 147, 483, 647 and a = 630, 360, 016 with

period m−1 corresponding to the maximum number of variates used for a random
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variable. There are multiple (100) streams that are supported in the PMMLCG

where seeds are spaced 100, 000 numbers apart. In our simulation model, a few

thousand independent replications can be made, depending on the values of the

input parameters.

Generating Random Variates

There are many techniques that can be used for generating random variates from

a given distribution. The first part of every technique is finding a source of U(0, 1)

random numbers. The LCGs are designed to generate these random sequences

of U ′
is as described previously.

Once a random number generator is chosen, several algorithms for generating

random variates can be used. Some of these are the inverse transform method, the

composition method, and the acceptance-rejection method. We use the inverse

transform method to generate random variates for our arrival, service, abandon-

ment, and call type assignment processes. We use an exponential distribution

(with different rates) to model each of the four random processes.

The inverse transform method can be applied to continuous or discrete prob-

ability distributions. Since our distribution is exponential, we use the contin-

uous version of the method. Now, let X be a continuous random variate with

distribution function F . Assume that F is continuous and strictly increasing

when 0 < F (x) < 1. Thus, if x1 < x2 and 0 < F (x1) ≤ F (x2) < 1, then

F (x1) < F (x2). Also, let F−1 denote the inverse of the function F , where

F−1(y) = {x : F (x) = y}. Then, Law and Kelton [47] define the general in-

verse transform algorithm as the following:

1. Generate U ∼ U(0, 1).
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2. Return X = F−1(U).

Note that F−1(U) will always be defined, since 0 ≤ U ≤ 1 and the range of F

is [0, 1]. Now, to demonstrate that the X computed from the algorithm, we must

show that for all real numbers x, P (X ≤ x) = F (x). Thus, since F is invertible,

we have:

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (X)

where last equality follows since U ∼ U(0, 1) and 0 < F (x) < 1 [47].

Since we require exponential random variates for our random processes, F (x)

in our simulation has the form:

F (x) =





1− e−
x
β if x ≥ 0;

0 if x < 0.

Note, however, that in our simulation, we use 1/β ·ln(U) instead of 1/β ·ln(1−U)

to generate our exponential random variates.

5.2.2 Timing Process

The timing process is used to determine which event occurs next. The possible

events are an arrival to the system, an abandonment from the low priority queue

(queue 2), or a departure from one of the servers. A random arrival and departure

time are computed from the random number generator using different streams.

Also, a deterministic abandonment time is computed for all low priority customers

in the queue. The event with the corresponding minimum time, among all these

events, becomes the next event. Finally, the simulation clock time is advanced to

the time of this next event and any performance measure statistics are updated.
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5.2.3 Arrival Process

One of the main components of the stochastic simulation is the arrival process.

We choose to approximate the true arrival rate function as a piecewise linear

function over a set of disjoint 30-minute time subintervals, (ta, ta+1], which parti-

tion the overall finite-time horizon interval [0, T ], where a = 1, 2, . . . , m− 1 and

m represents the number of 30-minute subintervals. Thus, the arrival time of

the k-th customer with priority i, i = 1, 2, Aik, is used to advance the overall

simulation time, S, where S ≤ T , into the next time subinterval. We compute

the arrival time, Aik, by generating a random inter-arrival time, Xik, between

customer k − 1 and k, and adding Xik to the current simulation time S. Since

the arrival process for each priority class is Poisson, Xik has an exponential dis-

tribution with arrival rate(λi(t). Therefore, it can be generated using the inverse

transform method.

Since our model supports two types of customers, λt is the overall arrival rate

and is define as:

λt = λ1t + λ2t (5.2)

where the arrival rates for the high priority customers, λ1t, and the low priority

customers, λ2t, also vary with time t. Now, we randomly determine the call type

of each customer upon their arrival. Here, based on Poisson thinning, a customer

will have call type i with time-varying probability λit/λt ∀tε[0, T ].

Now, an arriving customer who finds at least one server idle enters service

immediately at some server, ni, i = 1, 2, . . . , n, where n is the total number

of servers. Server ni is chosen from all the other idle server using an ordered

search algorithm. In other words, if servers 1 and 2 are both idle, then server 1 is

chosen to provide service. In practice, calls are switched to agents in this manner,
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although more efficient methods exist depending on the type of call centers. Once

the customer enters service, we generate an exponentially distributed service time,

Yk, with mean service time 1/µ (independent of time), for the k-th customer using

the inverse transform method.

If all the servers are busy, the customer either enters the appropriate queue,

or preempts lower priority customers already in service. Now, if a low priority

customer enters the queue, then its “abandonment” time, or the time until it

leaves the low priority queue and enters the end of the high priority queue, is

computed. If the arriving customer preempts a lower priority customer at some

server, ni, then the preempted customer is placed at the head of the appropriate

queue. The preempted customer, and its server, is chosen in an ordered search

algorithm of all low priority customers in service at the time of the high priority

customer’s arrival. For example, if there are 3 low priority customers at servers,

n4, n7, and n10, respectively, then the low priority customer at server n4, will be

preempted. Next, the arriving high priority customer is sent to the now-vacant

server. In practice, this preemption approach is used; however, more complicated,

efficient algorithms can be implemented, especially when the skills sets of agents

vary. Finally, the departure time for the arriving customer, as well as the arrival

time of the next customer, is generated.

5.2.4 Abandonment Process

There is the “abandonment”, or upgrade, process from the low priority queues.

In the real-world system, a call center manager would allow the low priority

e-mails to be upgraded only after their waiting time has reached its limit, or

abandonment time. Consequently, in our simulation model, an e-mail cannot
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be upgraded before another e-mail that arrived previously to the system. Thus,

each low priority customer has the same abandonment time and its abandonment

rate, β, equals 1/s, where s is the target service level time for the low priority

customers, i.e., 2 hours. Thus, the abandonment rate is constant for all low

priority customers. These low priority customers would receive service If a low

priority customer abandons queue 2, then it is “upgraded” to the high priority

queue, i.e., queue 1. Note that the upgraded customer is placed at the end of

queue 1, and its priority changes from low to high. In this manner, the low

priority customer’s priority becomes dynamic. A customer that abandons queue

2 for queue 1 receives service as a high priority customer, but its performance,

such as virtual waiting time in queue, is measured as if it is still a low priority

customer. However, upgraded customers are added to the count for the number

of high priority customers in the system.

5.2.5 Departure Process

The other main component is the departure process. Here, a customer leaves the

system after completing service at some server, ni. Thus, the server ni is now

available, and the next customer to enter service at server ni is chosen based on

its priority. If there are any customers in the high priority queue (queue 1), then

the customer at the head of the queue will enter into service. If, however, there

are no customers in queue 1, then the customer at the head of the low priority

queue, queue 2, will enter into service. Of course, if there are no customers in

either queue, then server ni remains available, or idle, until a new customer enters

the system.

The total waiting time in queue, or delay, for the customer entering service at
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server ni is computed based on its priority. If it is a low priority customer, then a

high priority customer may preempt it from service. This low priority customer

might have entered service (not necessarily at server ni) several times before it

completed service and departed the system. Therefore, its class 2 delay, D2, is

defined as:

D2 =
p∑

i=1

Di
2 , (5.3)

where Di
2 is the i-th class 2 delay, and p is the total number of previous class

2 delays. Note that p varies for each low priority customer. However, a high

priority customer only enters the queue once (upon arrival). Thus, it has a single

delay term, D1.

Now, after a customer’s delay is computed, its value is compared to a target

delay for that customer class. If the customer’s delay is less than or equal to

the target delay, then for the appropriate customer class, the number of delays

meeting the target are incremented by one. This statistic is required to compute

the empirical delay, or waiting time in queue, distribution for each class.

5.2.6 Delay Process

Another main component of our simulation is the delay, or waiting time in queue,

computation process. For the high priority customers, the delay computation is

relatively straight-forward. If there is an idle server, or a server busy with a low

priority customer, available upon arrival to the system, then the customer’s delay

equals 0. However, the customer might have to enter the high priority queue

before an idle server becomes available and the customer can receive service.

Once the customer departs the high priority queue, its arrival time to the queue

is subtracted from its departure time from the queue. If all the servers were busy
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upon the customer’s arrival, then its arrival time to the queue is equivalent to its

arrival time to the system. Finally, the departure time from queue is actually the

current simulation, or system, time. Thus, the two quantities used to compute

the delay are relatively easy to determine.

For the low priority customers, the overall delay computation can have two

additional parts. One part is exactly as discussed above for the high priority

customers. However, if the low priority customer is preempted from service, then

it reenters the low priority queue. This new delay, or “preemption” delay, is

added to its previous delay. Now, if the customer is upgraded to the high priority

queue, before completing service, then its delay in the high priority queue is

added to its preemption delay, and any other previous delays before preemption

to accurately compute its overall delay. Although the overall delay process for

the low priority customers can be complicated, the quantities required to track

and update all the delay parts can be computed in our discrete-event simulation.

5.2.7 Virtual Waiting Time Methodology

The final main component in our simulation is the virtual waiting time in queue,

as defined in Chapter 4. The actual customer waiting time in queue is used to

compute the main performance estimator of the simulation, namely the virtual

waiting time in queue.

In the simulation, the actual waiting time is computed by tracking each cus-

tomer as it moves through the system. Once a customer arrives, it is assigned

a priority level and either receives service immediately, or waits in queue before

receiving service. Low priority customers are allowed to abandon their queue

and enter the high priority queue after waiting beyond a given amount of time.

97



Also, high priority customers, upon their arrival, are allowed to preempt a low

priority customer from service. Now, from the simulation, each customer’s arrival

time, queue time, queue abandonment time, service time, and departure time are

computed. Therefore, we can compute each customer’s waiting time in queue.

The virtual waiting time is computed for both high and low priority customers

at a fixed sequence of time points, τi where i = 1, 2, . . . , m that do not necessarily

correspond to the random arrival times of our simulation. Thus, for any given

simulated sample path, we compute the virtual waiting time, V (τi), at each τi

as a function of the actual waiting time, Ŵi, for the first customer arrival after

τi. Before we explain the virtual waiting time computation, we define some

variables. Let N1(t) and N(t) represent the number of high priority customers

and the total number of customers in the system, respectively. Also, let τ̂i be

the first arrival epoch after τi. Note that if N1(τi) < n, then V (τi) = 0 for a

high priority customer. Similarly, if N(τi) < n, then V (τi) = 0 for a low priority

customer. For both high and low priority customers, there are two other cases for

computing V (τi). These cases are basically identical, except that the term N1(t),

used for high priority customers, is replaced by N(t) for low priority customers.

Therefore, we define only the cases for high priority customers below:

Let τ ∗i = min{t ≥ τi : N1(t) < n}. Then:

1. Case 1: If τ ∗i < τ̂i, then V (τi) = τ ∗i − τi.

2. Case 2: If τ ∗i ≥ τ̂i, then V (τi) = Ŵi + τ̂i − τi.

We provide a graphical representation of the two cases for a generic customer

in Figure 5.1 and Figure 5.2.

Consequently, we can compute the virtual waiting time of a customer arriving

at τi by adjusting the actual waiting time for the first arrival after τi. In our
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Figure 5.1: Virtual Waiting Time Computation–Case 1
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Figure 5.2: Virtual Waiting Time Computation–Case 2
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simulation code, we check the number of customers in the system left after each

departure epoch greater than τi, and less than τ̂i. We mark τ ∗i as the first of

those departure epochs where the number in system drops below the number

of servers. Depending on whether any such epochs exist, we compute V (τi).

Consequently, we can compare these values with those from the fluid and diffusion

approximations.

5.2.8 Performance Estimation

In the report process, the estimates of the performance measures, such as the

mean customer delay and the probability that the mean delay is less than (or

equal to) some target probability, are computed. Here, the estimates are derived

from statistics computed in the timing, arrival, and departure processes. Some

of these statistics are the following:

1. Arrival time, Ajk, for k-th customer, Ck, with priority j.

2. Service time, Yjk, for k-th customer, Ck, with priority j.

3. Abandonment time, Bk, for k-th customer, Ck, with priority j.

4. Time k-th customer with priority j enters queue, QInjk, and exits queue,

QOutjk.

5. Time k-th customer with priority j departs system, Djk.

6. Number of class j arrivals during one simulation replication, NAj.

7. Number of class j virtual customer delays, NDj, j = 1, 2.

8. Number of class j virtual delays less than given class j target delay, NDBelowj,

j = 1, 2.
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9. Total number of class j customer delays, TDj, j = 1, 2.

We now define mathematically our two main estimators. The first one esti-

mates the expected mean delay of the customers with arrival priority j, j = 1, 2,

computed over R independent replications. Remember that low priority cus-

tomers have a dynamic priority. If they are upgraded, then they have a low

priority and high priority component to their expected mean delay estimator.

Note that the delay, Dk, of the first arrival after time τi is used to compute the

virtual delay, V (τi) at time τi as defined in Section 5.2.7. The second one esti-

mates the expected mean value of the probability that the mean delay at time τi

is less than a given target delay. In other words, it estimates the P (V (τi) < v∗)

where v∗ is the given target delay. Now, we define the high priority mean delay

estimator as the following:

W1 =
R∑

r=1

∑NA1
k=1

D1k

NA1

R
(5.4)

where W1 is the expected mean high priority delay, and D1k is the kth high

priority customer delay, where D1k = QOut1k−QIn1k, and R is the total number

of replications. Next, we define the low priority mean delay estimator as the

following:

W2 =
R∑

r=1

∑NA1
k=1

D2k

NA1

R
(5.5)

where W2 is the low priority delay, and D2k is the kth low priority customer delay,

where D2k =
∑
C QOut2k −QIn2k − Y2k, where C is total number of times the low

priority customer is preempted. Next, we use the general well-known formula to

compute the variance estimate, S2(n), of our two main performance estimators:

S2(n) =
n∑

i=1

(Xi − X̄)2

n− 1
(5.6)
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where Xi is the i-th of a general random variable and n is the number of observa-

tions. We use Equation 5.6 to estimate the variance of our number in system and

virtual waiting time estimators at time τi over the R replications. In addition,

we compute the standard error for our simulation estimates by taking the square

root of S2(n). Finally, we define the delay distribution estimator as:

EDj =
R∑

r=1

Pjr

R
. (5.7)

Here, EDj is the expected mean value of the empirical delay distribution for class

j customers, j = 1, 2, and Pjr is the probability that the mean virtual delay at

τi is below a given target for replication r, where Pjr = NDBelowjr

NDjr
. Note that, by

definition, NDjr and NDBelowjr are the number of class j customer delays and

number of class j delays less than the given class j target delay for replication j.

Also, NDjr and NDBelowjr are each bounded above by the total number of τi’s

in the simulation.

5.3 Model Verification

We use a M/M/n, two-class, preemptive-resume priority model to verify the ba-

sic operation of our simulation model, independent fluid approximations model.

Thus, using stationary results for the mean waiting time from Wolff [73], we com-

pared our mean waiting time estimates for high and low priority customers to

those of Wolff’s, after converting our non-stationary simulation model to a sta-

tionary one. In addition, we computed a log file tracking each customer through

the simulation model. For example, each customer’s arrival, waiting (queue), and

departure time is reported. Also, for each customer, the number of customers in

the system upon their arrival and after their departure is reported, as is the num-
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ber of the server which provided them service. Finally, low priority customers are

marked in the log file if they were preempted and/or upgraded to high priority

status. Using all of the above detailed data, we are able to verify the number

in system and virtual waiting time computations, and overall performance of the

simulation.

We also verify our simulation results with those from a different call center

simulation model developed by Rodney Wallace [69]. Wallace uses the method of

batch means to estimate his performance measures, whereas we use the method

of independent replications. His simulation models a stationary, skill-based rout-

ing, M/M/n/L call center, where each server can handle only certain types of

customers. However, our simulation models can be synchronized to compute com-

parable estimates of the mean waiting time in queue for a high priority and low

priority customer class. Mainly, he allows his servers to handle any type of cus-

tomer and we change our arrival process from a stationary one to a non-stationary

one. After increasing the run length in our models to reduce the impact of any

initial transient behavior, we obtain estimates very close to those from Wallace’s

simulation. Therefore, we verify our simulation model in several different ways.
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Chapter 6

Results of Model Comparison

6.1 Overview

We perform numerical computations to compare the performance measure esti-

mates from our fluid approximations model and simulation model. First, we show

the difference in performance among different service disciplines in our simulation

models. Next, we discuss our main comparison of our fluid approximations to

our simulation estimates for performance measures from the Mt/M/n, two-class,

preemptive-resume, dynamic priority queue model. Stochastic simulation results

require a number of independent replications, whereas the fluid approximations

require the numerical integration of a set of seven ordinary differential equations.

Although we also state the diffusion approximations and simulation estimates for

the variance of the number in system and virtual waiting time, we only present

the comparisons between the fluid approximations and simulation estimates for

the following group of performance measures:

• mean number in system for the high and low priority customers, and

• mean virtual waiting time for the high and low priority customers.
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We computed the numerical results by implementing both our fluid approx-

imations and discrete-event simulation estimates using the C programming lan-

guage code compiled on a Windows-based operating system. We use the Microsoft

Visual C++ package to edit and compile our C code.

6.1.1 Call Center Data

We begin our computations by defining the values of our queueing model arrival

rates, service rates, abandonment rates, number of servers, and time horizon. The

parameter values, such as the arrival rates for each customer class, were taken

from a real-world, help desk call center, in which calls represent requests for IT

support (e.g., network support, password resets, application support, etc.). We

simulated the help desk over a 12-hour, or 720-minute, day, starting at 6:00 AM

and ending at 6:00 PM, in our models. Thus, each independent replication in the

simulation and fluid approximations represents the performance of the help desk

over the course of a day. In the fluid and simulation methods, we modelled the

time-varying arrival rate function, λt as a piecewise constant function, and use

per-minute rates for all relevant parameters. Thus, if T is our 720 minute time

interval, then λt varies every 30 minutes of the time horizon, where t = 0, . . . , T .

The individual arrival rate functions, λi, i = 1, 2, for each customer class

are shown in Figure 6.1. In practice, arrival data is collected by recording the

number of customers who contact the call center during each 30-minute interval

of the day. The data we use was averaged over a period of a week, or 5 business

days. The high priority customer calls are telephone, or voice, calls, while the

low priority customer calls are e-mails. The arrival process of calls is modelled

as a non-stationary Poisson process, where the Poisson process is “thinned” into
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Figure 6.1: Arrival Rates for High (Voice) and Low (E-mail) Priority Customers

two streams for the high and low priority customers.

Many types of call centers today process both voice calls and e-mails. How-

ever, there are some challenges in gathering information about e-mail customer

interaction with call centers. For example, managers collect more detailed in-

formation on parameters for telephone calls than for e-mails. Thus, parameters,

such as service rates, are not often collected for each e-mail that arrives to a

call center. Some call center managers simply use a “best effort”, non-scientific

approach to respond to e-mails whenever agents have free time. Some separate

the group of agents that respond to e-mails from the group that respond to voice

calls in order to limit training and other costs. In our model, we assume that

a single group of agents has the necessary skills to respond to both voice calls
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and e-mails. Large call centers can usually afford to handle multiple types of

customer, i.e., blend their customer types, with a single group of multiple-skilled

agents.

We use a mean service time of 8.69 minutes, or 521.29 seconds, for high

priority calls. Since the service rate, µ1, is the reciprocal of the mean service

time, we have µ1 = 1/8.69 = 0.1151 customers per minute. In our help desk, the

mean service times are not reported for the low priority, or e-mail, customers.

Thus, we set the service rate, µ2, for the low priority customers equal to that of

the high priority customers, which is not an unreasonable assumption in practice.

Therefore, µ2 = µ1 = 0.1151 customers per minute.

Our abandonment time for low priority customers is based on the target ser-

vice level of the class. There is no industry standard for target service levels for

non-voice, or low priority, customers, such as e-mails. Some call center managers

assign a target service level of either 2, 8 or 24 hours to e-mails [61]. The chosen

service level depends on the individual manager’s commitment to satisfying low

priority customers. In our model, we used a target service level time of 2 hours.

Therefore, we allow low priority customers to abandon their queue after waiting

for 90 minutes, in an attempt to satisfy their service level requirement of 2 hours.

Finally, we set the number of agents, or servers, n = 20. Since we are using

asymptotic limits for the fluid approximations, we must scale both the arrival

rates and the number of agents towards infinity in order to compute accurate

fluid estimates. We use a scale factor of 35 to compare our fluid and simulation

estimates. Scale factors above 35 did not produce estimates that were appreciably

more accurate. We used server utilizations, ρt = λt/nµ, that vary over time

between 0.1302 and 1.245, where the maximum value occurs between 8:30 and
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9:00 AM and the minimum value occurs from 5:30 to 6:00 PM. Therefore, our

system progressed through over-loaded (ρt > 1, i.e., unstable) and under-loaded

(ρt < 1, i.e., stable) phases, as the arrival rates vary over time.

6.2 Numerical Results

We present several types numerical results in this chapter. First, for our Mt/M/n,

two-class, priority simulation model, we show a comparison of three different ser-

vice disciplines. Thus, we compare the non-preemptive, static priority service

discipline with both the preemptive-resume, static and preemptive-resume, dy-

namic priority service disciplines. Second, for our Mt/M/n, two-class, priority

fluid and diffusion model, we examine the importance of scaling and its impact

on the accuracy of our performance measure approximations. Next, we show

the main comparison of our fluid and diffusion approximations to our simulation

estimates after using am appropriately scaled system. Finally, we exhibit the

results of the staffing algorithm used to optimize the number of agents required

to satisfy the given service levels for both classes of customers.

6.2.1 Non-preemption vs. Preemption Priority

We compare four different types of service disciplines for our Mt/M/n, two-class

queue using our simulation model. The four service discipline types are:

• non-preemptive, static priority,

• non-preemptive, dynamic priority,

• preemptive-resume, static priority, and
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• preemptive-resume, dynamic priority.

The non-preemptive priority discipline is the simplest of the four priority disci-

plines to model. Kleinrock [41] and Wolff [73] both state analytical results for the

number in system and waiting time performance measures for non-preemptive pri-

ority queues. Kleinrock even provides some analytical results for non-preemptive,

dynamic priority queues.

Under the non-preemptive, static priority service discipline, high priority cus-

tomers are allowed to receive service before low priority ones, without being pre-

empted. Airlines, for example, use this type of system to seat passengers, with

first-class customers being seating before lower priority customers. The low pri-

ority customers receive service either when the number of high priority customers

in the system is less than the number of available servers, or all the high priority

have been serviced. If all available servers are busy with high priority customers,

then the low priority customers must wait in queue, i.e., line. Also, when a low

priority customer begins their service, the customer can not be preempted from

service by a high priority customer. Thus, a low priority customer is guaranteed

to complete service once service begins. However, if there is a constant presence

of a large number of high priority customers, then a low priority customer may

have to wait an extremely long time before beginning service. If this happens

too often, then customer satisfaction would suffer. Under the non-preemptive,

dynamic priority discipline, low priority customers can upgrade their status to

high priority, after waiting a fixed amount of time. Therefore, these customers

would not be subjected to extremely long waiting times.

Compared to the non-preemptive, priority disciplines, the preemptive-resume,

priority disciplines are more complex to model. The main difference between the
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two is that a low priority customer can be preempted from service by a high

priority customer. Again, if there is a large number of high priority customers in

the system over an extended period of time, then the low priority customer would

be preempted often. In such cases, under the preemptive-resume, static discipline,

low priority customers may have to wait an extremely long time to complete

service, which would lower customer satisfaction. In addition, the preempted

customer’s remaining service time must be tracked so that the customer may

resume service from the time at which their initial service ended. However, under

the preemptive-resume, dynamic priority discipline, the low priority customer is

upgraded to high priority status, when their waiting time has an exceeded a given

amount of time. Now, the customer is guaranteed to complete service at some

point on time. Thus, the preemptive-resume, dynamic priority discipline is the

most difficult of the four service disciplines to model.

Using our simulation model, we compute the mean number in system and

mean virtual waiting time under the four service disciplines. We then perform the

following comparisons of the performance estimates between service disciplines:

• non-preemptive, static priority vs. preemptive-resume, static priority,

• preemptive-resume, static priority vs preemptive-resume, dynamic priority,

• non-preemptive, static priority vs. non-preemptive, dynamic priority, and

• non-preemptive, dynamic priority vs. preemptive-resume, dynamic priority.

Our goal is to quantify how the non-preemption and preemptive-resume ser-

vice disciplines, and the static and dynamic priority types, affect the performance

estimates.
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Non-Preemption, Static vs. Preemptive-Resume, Static Priority
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Figure 6.2: Simulation Estimates of the Number in System at Time τi for High

and Low Priority Customers for the Non-preemptive, Static vs. Preemptive-

resume, Static Comparison
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We show the difference in the mean number in system for high and low priority

customers between the service disciplines in Figure 6.2. We report the estimates

at time points τi, i = 1, . . . , m, where m = 48 is the number of 15 minute

subintervals within our total time interval of 720 minutes. We use the arrival rate

function discussed in Figure 6.1 above. In this comparison, the mean number

in system for both priority classes is higher under the non-preemptive, static

discipline than the preemptive-resume, static discipline.
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Figure 6.3: Simulation Estimates of the Virtual Delay for High and Low Pri-

ority Customers for the Non-preemptive, Static vs. Preemptive-resume, Static

Comparison
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In Figure 6.3, we show the difference in the mean virtual waiting time for high

and low priority customers between the service disciplines. For this comparison,

the mean virtual waiting time for the high priority customers is shorter under

the preemptive-resume, static discipline than the non-preemptive, static disci-

pline. In addition, the mean virtual waiting time for the low priority customers

is basically the same for both disciplines. Thus, the higher priority customers re-

ceive better service under the preemptive-resume, static priority scheme, without

significantly affecting quality of service of the low priority customer service.

Preemptive-Resume, Static vs. Preemptive-Resume, Dynamic Prior-

ity
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Figure 6.4: Simulation Estimates of the Number in System at Time τi for High

and Low Priority Customers for the Preemptive-Resume, Static vs. Preemptive-

resume, Dynamic Comparison
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We show the difference in the mean number in system for high and low priority

customers between the service disciplines in Figure 6.4. Here, the mean number

in system is larger under the preemptive-resume, dynamic discipline for the high

priority customers. However, the mean number in system is smaller under the

preemptive-resume, static discipline for the low priority customers.
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Figure 6.5: Simulation Estimates of the Virtual Delay for High and Low Priority

Customers for the Preemptive-Resume, Static vs. Preemptive-resume, Dynamic

Comparison
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In Figure 6.5, we show the difference in the mean virtual waiting time for

high and low priority customers between the service disciplines. The mean vir-

tual waiting time is lower under the preemptive-resume, static discipline for the

high priority customers, while the mean virtual waiting time is lower under the

preemptive-resume, dynamic discipline for the low priority customers. Thus, the

higher priority customers receive better service under the preemptive-resume,

static priority scheme, while the low priority customers receive better service

under the preemptive-resume, dynamic service.

Non-Preemption, Dynamic vs Preemptive-Resume, Dynamic Priority
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Figure 6.6: Simulation Estimates of the Number in System at Time τi for High

and Low Priority Customers for the Non-preemptive, Dynamic vs. Preemptive-

resume, Dynamic Comparison
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We show the difference in the mean number in system for high and low priority

customers between the service disciplines in Figure 6.6. In this comparison, the

mean number in system is larger under the non-preemptive, dynamic discipline

for the high priority customers, while the mean number in system is smaller under

the same discipline for the low priority customers.
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Figure 6.7: Simulation Estimates of the Virtual Delay for High and Low Priority

Customers for the Non-preemptive, Dynamic vs. Preemptive-resume, Dynamic

Comparison
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In Figure 6.7, we show the difference in the mean virtual waiting time for

high and low priority customers between the service disciplines. For this compar-

ison, the mean virtual waiting time is shorter for both the high and low priority

customers under the preemptive, dynamic discipline. Thus, both classes of cus-

tomers receive a better quality of service under the preemptive-resume, dynamic

priority scheme.

Non-Preemption, Static vs Non-Preemption, Dynamic Priority
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Figure 6.8: Simulation Estimates of the Number in System at Time τi for High

and Low Priority Customers for the Non-preemptive, Static vs. Non-preemptive,

Dynamic Comparison
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We show the difference in the mean number in system for high and low priority

customers between the service disciplines in Figure 6.8. Here, the mean number in

system is slightly larger under the non-preemptive, dynamic discipline for the high

priority customers, and smaller under the non-preemptive, dynamic discipline for

the low priority customers.
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Figure 6.9: Simulation Estimates of the Virtual Delay for High and Low Pri-

ority Customers for the Non-preemptive, Static vs. Non-preemptive, Dynamic

Comparison
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In Figure 6.9, we show the difference in the mean virtual waiting time for

high and low priority customers between the service disciplines. In this com-

parison, the mean virtual waiting time is slightly longer for the non-preemptive,

dynamic discipline for the high priority customers. Also, the mean virtual wait-

ing time is shorter for the non-preemptive, dynamic discipline for the low priority

customers. Thus, the lower priority customers receive better service under the

non-preemptive, dynamic priority scheme, without significantly affecting the high

priority customer quality of service.

Finally, we summarize the effects of the non-preemption and preemption-

resume service disciplines, and the static and dynamic priority types. For our

model, the preemptive-resume discipline provides at least the same, and some-

times better, quality of service than the non-preemptive discipline for both cus-

tomer classes. Also, the dynamic priority type provides a better service for

both customer classes under the non-preemptive discipline. However, under the

preemptive-resume discipline, the dynamic priority type provides better service

only for the low priority customers, while the low priority type provides better

service for only the high priority customers. Therefore, both the preemptive-

resume discipline and dynamic priority type can provide a significant impact on

the quality of service of the two customer classes.

6.2.2 Importance of Scaling

Recall that the fluid and diffusion approximation method is an asymptotic method.

Thus, its estimates converge asymptotically to those of the simulation under the

Halfin-Whitt regime [27]. In this regime, the offered load ρ∗ remains fixed as λt

and n are increased by a factor η, where η approaches ∞. This maintains the

122



offered load ratio while creating an asymptotic limit. We use a scale factor of

η = 35. Without this scaling regime, our fluid estimates for the mean number in

system and mean virtual waiting time would not be accurate.
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Figure 6.10: Unscaled Estimates of the Number in System at Time τi for High

and Low Priority Customers for the Fluid vs. Simulation Comparison

In Figure 6.10 and Figure 6.11, we show the importance of scaling for the

mean number in system and mean virtual waiting time estimates for high and

low priority customers. We use the arrival rate function discussed in Figure

6.1. Without scaling, there is a significant gap between the fluid and simulation

estimates.
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Figure 6.11: Unscaled Estimates of the Virtual Delay for High and Low Priority

Customers for the Fluid vs. Simulation Comparison
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Figure 6.12: Relative Error for the Unscaled Estimates of the Number in System

at Time τi for High Priority Customers for the Fluid vs. Simulation Comparison
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Figure 6.13: Relative Error for the Unscaled Estimates of the Number in System

at Time τi for Low Priority Customers for the Fluid vs. Simulation Comparison
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Figure 6.14: Relative Error for the Unscaled Estimates of the Virtual Delay for

High Priority Customers for the Fluid vs. Simulation Comparison
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Figure 6.15: Relative Error for the Unscaled Estimates of the Virtual Delay for

Low Priority Customers for the Fluid vs. Simulation Comparison
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We show the relative error computations for the mean number in system

and mean virtual waiting time estimates for high and low priority customers in

Figure 6.12, Figure 6.13, Figure 6.14, and Figure 6.15. The relative error further

quantifies the gap between the fluid and simulation estimates without using any

scaling.

Next, we show the effects of increasing the level of scaling on the difference

between the fluid approximations and simulation estimates. As we increase our

scale factor η from 5 to 30 in increments of 5, the difference between the perfor-

mance measures becomes smaller.
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Figure 6.16: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 5
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Figure 6.17: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 5
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Figure 6.18: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 10
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Figure 6.19: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 10
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Figure 6.20: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 15
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Figure 6.21: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 15
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Figure 6.22: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 20
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Figure 6.23: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 20
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Figure 6.24: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 25
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Figure 6.25: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 25
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Figure 6.26: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 30

We show the importance of scaling for the mean number in system and mean

virtual waiting time estimates for high and low priority customers in Figure 6.16

through Figure 6.27. Without proper scaling, there is a significant difference

between the fluid approximations and simulation estimates. The difference does,

however, greatly decrease at η = 5 for both performance measures. For further

values of η, the difference continues to decrease, albeit slowly. After η = 30, there

is no appreciable difference in the difference between both performance measures.
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Figure 6.27: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 30
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6.2.3 Fluid and Diffusion vs. Simulation

Fluid Approximations vs Simulation

We compare the estimates of the mean number in the system and mean virtual

waiting time for each customer class between the fluid approximations and the

simulation methods. Here, we use a scale factor of η = 35 for our final compar-

isons. Beyond a factor of 35, the fluid approximation estimates were not much

closer to the simulation estimates, which suggested that 35 was a good stopping

point for our scaling process. As stated earlier, both methods model the Mt/M/n,

preemptive-resume, dynamic priority, two-class queue. Again, we use the arrival

rate function shown in Figure 6.1. The performance measures were estimated at

48 distinct time points, τi, which are spaced 15 minutes apart over the 12, or 720

minute time horizon.

In Figure 6.28 and Figure 6.29, we show the comparison of the mean number

in the system and mean virtual waiting time estimates between our fluid and

simulation models for the high and low priority customers. The fluid approxima-

tions are very close to the simulation estimates at all time points τi for the high

priority and low priority calls. In fact, as the offered load, which is a measure of

the arrival intensity of customers to the call center, varied with time, the accu-

racy of our fluid approximations remained good. For example, the largest loads

occurred from 6 : 30 to 9 : 00 AM and the smallest loads occurred after 3 : 30

PM. However, our approximations were very good in all time periods. As shown

above, without using a scaling regime, these estimates would not be as close.
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Figure 6.28: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.29: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.30: Relative Error for the Estimates of the Number in System at Time

τi for High Priority Customers for the Fluid vs. Simulation Comparison - Scale

Factor η = 35

We display the relative error in both performance measure estimates for the

high and low priority customers. The graphs show the relative error, or percent

difference between the fluid and simulation estimates in Figure 6.30, Figure 6.31),

Figure 6.32, and Figure 6.33. Thus, most of the fluid estimates are within 10

percent of the simulation estimates.
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Figure 6.31: Relative Error for the Estimates of the Number in System at Time

τi for Low Priority Customers for the Fluid vs. Simulation Comparison - Scale

Factor η = 35
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Figure 6.32: Relative Error for the Estimates of the Virtual Delay for High Pri-

ority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.33: Relative Error for the Estimates of the Virtual Delay for Low Priority

Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.34: Standard Error Band for the Estimates of the Number in System at

Time τi for High Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35

In Figures 6.34, 6.35, 6.36, and 6.37, we show the comparison of the standard

error in the performance measures between our fluid and simulation methods for

the high and low priority customers. We compute a simulation band by forming

an one standard error, i.e., one sample standard deviation, interval around the

simulation estimate. In the graph, we show whether the fluid estimate is within

the standard error band of the simulation estimate.

In Table 6.1, we display the computer run times for our scaled fluid approx-

imation and simulation C-programs. The unscaled run times for our simulation

C-program is 65 minutes for the desktop computer and 25 minutes for the laptop
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Figure 6.35: Standard Error Band for the Estimates of the Number in System at

Time τi for Low Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35

computer. As we increase the scale factor η from 1 to 35, the run time increases

greatly. (We do not show the progression of individual run times over each scale

factor though.) The run times are listed for two different computers using the

Windows operating system. The desktop computer has a 550 MHz processor and

320 MB of RAM, while the laptop computer has a 1.6 GHz processor and 512 MB

of RAM. There is a reduction in the run times for the scaled and unscaled pro-

grams on the laptop computer. Also, the scaled fluid program runs significantly

faster than the scaled simulation program on both computers. We also show that

there is a significant difference between the scaled and unscaled simulation run
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Figure 6.36: Standard Error Band for the Estimates of the Virtual Delay for

High Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35

times, which displays the affect of scaling. However, for each τi, we repeat a full

simulation run, or replication, which causes the run time of our scaled simulation

program to increase significantly. Therefore, a more efficient simulation program

would reduce the run time, but the fluid program would still run faster.

Finally, we test the importance of the choice of the probability distribution

function for the service times in our model. We use the exponential distribution

for the service times in the simulation model. Thus, the high priority service

times are exponentially distributed with mean µ1 = 0.1151, and the low priority
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Figure 6.37: Standard Error Band for the Final Estimates of the Virtual Delay

for Low Priority Customers for the Fluid vs. Simulation Comparison - Scale

Factor η = 35

service time distribution is also exponentially distributed with mean µ2 = 0.1151.

Since the fluid approximations only depend on the mean of the service times, we

change the service time distribution in our simulation model to a deterministic

one and repeat our fluid and simulation comparisons. Thus, the service times

are now constant with rate µ1 = µ2 = 0.1151 customers per minute. We attempt

to quantify any difference in the accuracy of our fluid approximations to our

simulation estimates after such a change in the service time distribution. Again,

we use a fully scaled (i.e., scale factor of η = 35) system for our comparisons.

In Figure 6.38 and Figure 6.39, we show that fluid approximations of mean
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C-Program Run Times (Minutes)

Computer Scaled Fluid and Diffusion Scaled Simulation

Windows Desktop PC 45 960

Windows Laptop PC 35 180

Table 6.1: C-Program code Run Times for Our Fully-Scaled Models

number in system and mean virtual waiting time are still close to the simulation

estimates for the high priority customers. However, the fluid approximations of

the same two performance measures are not as close to the simulation estimates

for the low priority customers. Therefore, the choice of service distribution in the

simulation model does affect the quality of the approximations of the low priority

customers’ service.
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Figure 6.38: Estimates of the Number in System at Time τi for High and Low

Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.39: Estimates of the Virtual Delay for High and Low Priority Customers

for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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6.2.4 Fluid vs. Simulation - Case 1 Arrival Rates

We compute the fluid and simulation estimates for the mean number in system

and mean virtual waiting time using a somewhat different set of inter-arrival

rates. These rates are also time-varying; however, the high and low priority

inter-arrival rates vary between only two values. For the first 6 hours of the time

horizon, the inter-arrival rates are chosen such that the system is under-loaded,

or stable, i.e. ρ < 1. Conversely, in the last 6 hours the inter-arrival rates are

such that the system is over-loaded, or unstable, i.e., ρ > 1.
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Figure 6.40: Piecewise Constant Arrival Function with Rates Varying at Time τi

- Case 1

We show these rates in Figure 6.40.

In Figure 6.41 and Figure 6.42, we show the comparison of the two perfor-
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Figure 6.41: Case 1 - Estimates of the Number in System at Time τi for High and

Low Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35

mance measure estimates for the high and low priority customers between our

fluid and simulation models. As the system passes through the under-loaded to

the over-loaded phase, the fluid estimates remain close to the simulation estimates

for the mean number in system and the mean virtual waiting time.
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Figure 6.42: Case 1 - Estimates of the Virtual Delay for High and Low Priority

Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.43: Case 1 - Relative Error for the Estimates of the Number in System

at Time τi for High Priority Customers for the Fluid vs. Simulation Comparison

- Scale Factor η = 35

In Figure 6.43, Figure 6.44, Figure 6.45, and Figure 6.46, we show the relative

error in the two performance measure estimates for the high and low priority

customers. As the system passes through the under-loaded to the over-loaded

phase, most of the relative error values remain relatively small, i.e. less than 10

percent.
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Figure 6.44: Case 1 - Relative Error for the Estimates of the Number in System

at Time τi for Low Priority Customers for the Fluid vs. Simulation Comparison

- Scale Factor η = 35
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Figure 6.45: Case 1 - Relative Error for the Estimates of the Virtual Delay for

High Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35
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Figure 6.46: Case 1 - Relative Error for the Estimates of the Virtual Delay for

Low Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35
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Figure 6.47: Case 1 - Standard Error Band for the Estimates of the Number

in System at Time τi for High Priority Customers for the Fluid vs. Simulation

Comparison - Scale Factor η = 35

In Figure 6.47, Figure 6.48, Figure 6.49, and Figure 6.50, we show the standard

error in the two performance measure estimates for the high and low priority cus-

tomers. As the system passes through the under-loaded to the over-loaded phase,

either the fluid estimate is within the standard error band of the simulation, or

relatively close to the simulation estimate itself.
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Figure 6.48: Case 1 - Standard Error Band for the Estimates of the Number

in System at Time τi for Low Priority Customers for the Fluid vs. Simulation

Comparison - Scale Factor η = 35
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Figure 6.49: Case 1 - Standard Error Band for the Estimates of the Virtual

Delay for High Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35
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Figure 6.50: Case 1 - Standard Error Band for the Estimates of the Virtual

Delay for Low Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35
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6.2.5 Fluid vs. Simulation - Case 2 Arrival Rates

We computed the fluid and simulation estimates for the mean number in system

and mean virtual waiting time using a somewhat different set of inter-arrival

rates. These rates are also time-varying; however, the high and low priority

inter-arrival rates vary between only two values. For the full 12 hours of the time

horizon, the inter-arrival rates are chosen such that the system is under-loaded,

or stable, i.e. ρ < 1. However, over the last 6 hours, the system remains close to

the under-loaded/over-loaded boundary , i.e., ρ ≈ 1.
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Figure 6.51: Piecewise Constant Arrival Function with Rates Varying at Time τi

- Case 2

We show these rates in Figure 6.51.

In Figure 6.52 and Figure 6.53, we show the comparison of the two perfor-
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Figure 6.52: Case 2 - Estimates of the Number in System at Time τi for High and

Low Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35

mance measure estimates for the high and low priority customers between our

fluid and simulation models. The fluid estimates remain close to the simulation

estimates for the mean number in system and the mean virtual waiting time over

the total time horizon.

167



0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

Tau Points ( 1 unit = 15 minutes)

V
irt

ua
l D

el
ay

Fluid and Simulation Virtual Delay Comparison−−High Priority

Fluid Approximation
Simulation         

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

Tau Points ( 1 unit = 15 minutes)

V
irt

ua
l D

el
ay

Fluid and Simulation Virtual Delay Comparison−−Low Priority

Fluid Approximation
Simulation         

Figure 6.53: Case 2 - Estimates of the Virtual Delay for High and Low Priority

Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.54: Case 2 - Relative Error for the Estimates of the Number in System

at Time τi for High Priority Customers for the Fluid vs. Simulation Comparison

- Scale Factor η = 35

In Figure 6.54, Figure 6.55, Figure 6.56, and Figure 6.57, we show the relative

error in the two performance measure estimates for the high and low priority

customers. Most of the relative error values remain relatively small, i.e. less than

10 percent throughout the total time horizon.
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Figure 6.55: Case 2 - Relative Error for the Estimates of the Number in System

at Time τi for Low Priority Customers for the Fluid vs. Simulation Comparison

- Scale Factor η = 35
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Figure 6.56: Case 2 - Relative Error for the Estimates of the Virtual Delay for

High Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35
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Figure 6.57: Case 2 - Relative Error for the Estimates of the Virtual Delay for

Low Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35
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Figure 6.58: Case 2 - Standard Error Band for the Estimates of the Number

in System at Time τi for High Priority Customers for the Fluid vs. Simulation

Comparison - Scale Factor η = 35

In Figure 6.58, Figure 6.59, Figure 6.60, and Figure 6.61, we show the standard

error in the two performance measure estimates for the high and low priority

customers. The fluid estimate remains close to the simulation estimate itself

throughout the total time horizon.
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Figure 6.59: Case 2 - Standard Error Band for the Estimates of the Number

in System at Time τi for Low Priority Customers for the Fluid vs. Simulation

Comparison - Scale Factor η = 35
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Figure 6.60: Case 2 - Standard Error Band for the Estimates of the Virtual

Delay for High Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35
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Figure 6.61: Case 2 - Standard Error Band for the Estimates of the Virtual

Delay for Low Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35
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6.2.6 Fluid vs. Simulation - Case 3 Arrival Rates

We computed the fluid and simulation estimates for the mean number in system

and mean virtual waiting time using a somewhat different set of inter-arrival

rates. These rates are also time-varying; however, the high and low priority

inter-arrival rates vary between only two values. For the full 12 hours of the time

horizon, the inter-arrival rates are chosen such that the system is under-loaded,

or stable, i.e. ρ < 1. Here, over the 12 hours, the system remains well-within the

under-loaded phase.
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Figure 6.62: Piecewise Constant Arrival Function with Rates Varying at Time τi

- Case 3

We provide these rates in Figure 6.62.

In Figures 6.63 and Figure 6.64, we show the comparison of the two perfor-
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Figure 6.63: Case 3 - Estimates of the Number in System at Time τi for High and

Low Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35

mance measure estimates, namely the number in system and virtual waiting time,

for the high and low priority customers between our fluid and simulation models.

The fluid estimates remain close to the simulation estimates for the mean number

in system and the mean virtual waiting time over the total time horizon.
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Figure 6.64: Case 3 - Estimates of the Virtual Delay for High and Low Priority

Customers for the Fluid vs. Simulation Comparison - Scale Factor η = 35
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Figure 6.65: Case 3 - Relative Error for the Estimates of the Number in System

at Time τi for High Priority Customers for the Fluid vs. Simulation Comparison

- Scale Factor η = 35

In Figure 6.65, Figure 6.66, Figure 6.67, and Figure 6.68, we show the relative

error in the two performance measure estimates for the high and low priority

customers. Most of the relative error values remain relatively small, i.e. less than

10 percent throughout the total time horizon.
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Figure 6.66: Case 3 - Relative Error for the Estimates of the Number in System

at Time τi for Low Priority Customers for the Fluid vs. Simulation Comparison

- Scale Factor η = 35
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Figure 6.67: Case 3 - Relative Error for the Estimates of the Virtual Delay for

High Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35
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Figure 6.68: Case 3 - Relative Error for the Estimates of the Virtual Delay for

Low Priority Customers for the Fluid vs. Simulation Comparison - Scale Factor

η = 35
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Figure 6.69: Case 3 - Standard Error Band for the Estimates of the Number

in System at Time τi for High Priority Customers for the Fluid vs. Simulation

Comparison - Scale Factor η = 35

In Figure 6.69, Figure 6.70, Figure 6.71, and Figure 6.72, we show the standard

error in the two performance measure estimates for the high and low priority

customers. The fluid estimate remains close to the simulation estimate itself

throughout the total time horizon.
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Figure 6.70: Case 3 - Standard Error Band for the Estimates of the Number

in System at Time τi for Low Priority Customers for the Fluid vs. Simulation

Comparison - Scale Factor η = 35
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Figure 6.71: Case 3 - Standard Error Band for the Estimates of the Virtual

Delay for High Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35
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Figure 6.72: Case 3 - Standard Error Band for the Estimates of the Virtual

Delay for Low Priority Customers for the Fluid vs. Simulation Comparison -

Scale Factor η = 35
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6.2.7 Optimal Staffing Level

With an initial number of servers of 700 servers, we estimate the optimal number

of servers required to satisfy both the high and low priority customers’ service

levels simultaneously using our fluid approximations. The service level for the

high priority customers is a waiting time of 30 seconds, while the service level

for the low priority customers is a waiting time of 90 minutes. Using the fluid

approximations, we computed the percentage of mean virtual waiting time esti-

mates at τi that were below the target waiting time for both high and low priority

customers. When 90 percent of the mean virtual waiting time estimates for each

customer class satisfy the service levels for the first time, then we use the cur-

rent number of servers as the optimal servers estimate. If not, we increment the

current number of servers by 1, and repeat the process.

Using the methodology above, we compute an optimal servers estimate of

730, which corresponds to an unscaled estimate of 20.85, or 21 servers. This

fluid estimate is substituted into the discrete-event simulation. We then use the

simulation to compute the percentage of mean virtual waiting time estimates at τi

that were below the target waiting time for both customer classes are computed.

For 730 servers, the percentages for both classes did not satisfy the service level.

Thus, we increased the number of servers by one, and repeated the computations

until the first time the service levels for both classes are satisfied. For 755, or

roughly 22 servers, the service levels for both classes of customers are satisfied

for the first time using the simulation.

In Table 6.2 and Table 6.3, we summarize some of the percentage computa-

tions for a given number of servers. The optimal number of servers estimate using

the fluid approximations is close to the optimal number using the simulation as
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Optimal Number of Servers - Fluid Estimate

Servers Percent High Priority Delays Percent Low Priority Delays

700 83.33 89.58

705 85.42 94.79

710 87.50 94.79

720 89.58 97.92

730 91.67 98.96

Table 6.2: Optimal Number of Servers Computations - Fluid

Optimal Number of Servers - Simulation Estimate

Servers Percent High Priority Delays Percent Low Priority Delays

730 80.18 95.50

735 83.25 96.54

740 87.58 97.25

745 90.50 99.04

Table 6.3: Optimal Number of Servers Computations - Simulation
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well.

The optimal search method for the number of servers dramatically increases

the computation time of our fluid approximations model. By continuing to in-

crease the number of servers based on the virtual waiting time meeting the ser-

vice level criteria, the run time of the fluid method is significantly increased. The

method normally runs in about 35 minutes. However, by checking if the high and

low priority waiting times meet their service levels, the optimal search method

now runs in about 2 hours, or 120 minutes.

The optimal scaled number of servers, 745, from our simulation model, cor-

responds to 21.3 or 22 “actual” servers, or agents. Using this actual number

of servers in our simulation model, we find that the percentage of high and low

priority customer delays that simultaneously meet both target service levels is

75.4 and 95.5, respectively. In our unscaled simulation model, both the high

and low priority service levels are satisfied simultaneously for 25 servers. Here,

the percentage values for the high and low priority customers are 90.2 and 98.2,

respectively. This true optimal number of actual servers is still relatively close to

our predicted optimal value of 22 from our fluid model.

6.3 Conclusions

We obtained fairly accurate fluid approximations to simulation estimates for mod-

elling the performance of a two-class Mt/M/n preemption-resume, dynamic pri-

ority queue. We demonstrated that our fluid estimates can be used to provide

an accurate optimal staffing level. Also, the fluid approximations of the mean

number in system and mean virtual waiting time at various time points τi were

close to the simulation estimates for the high and low priority customer classes.
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We measured the accuracy of our fluid estimates for time-varying inter-arrival

rates, and under-loaded and overloaded system conditions. In all cases, our fluid

estimates matched closely to the simulation ones. Lastly, we showed that the

preemption-resume, dynamic priority service discipline can provide better per-

formance for both customer classes.

Finally, the number of differential equations in our fluid approximations method

is independent of the number of servers in the call center. Thus, the complexity

of our fluid approximations method does not increase as the call center increases

in size, e.g., in the number of agents. However, the simulation estimates will

probably increase in complexity as the call center becomes larger. Therefore, our

fluid approximation is a much more scalable solution than the simulation.

191



Chapter 7

Future Research

7.1 Model Variations

For a two-customer class, preemptive-resume priority Mt/M/n queue, we mea-

sured the performance of a call center using fluid and simulation models to com-

pute the mean number in system and mean virtual waiting time. We could extend

our research by presenting a comparison of the diffusion approximations and sim-

ulation estimates for the variance of the number in system and virtual waiting

time for our current model. However, we could vary our model characteristics

in several ways to incorporate other aspects of a real-world call center. First,

we could use a Mt/M/n/L queueing model, where L denotes a finite limit on

the trunk capacity, or number of telephone lines, available to a call center our

model. Although such a model would restrict, or block, a number of incoming

calls, a manager can control the costs of the telephone lines, which is sometimes

important. With this model, we could optimize trunk capacity with respect to

meeting target service levels. Also, we would be able to measure the blocking

probability of arriving calls, which is another performance measure of interest to

call center mangers.
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Second, we could also vary our model to allow parameters, such as mean

service times and number of servers, to vary over time. This would allow us

to solve agent shift-scheduling problems more accurately, where managers some-

times vary the number of available agents in real-time to respond to varying

system performance levels. Third, we could expand our analysis to pi-classes of

customers, i = 1, . . . , m, m ≥ 3, where the pi-th customer has higher priority

than the pi+1-st customer. Fourth, we could vary the skill-levels of the agents.

Thus, specific call types would be routed to agents with the skill-level to handle

the call. An example of a real-world “skill-based routing” call center is one em-

ploying bilingual agents. Wallace [69] modelled a call center with multi-skilled

agents to measure the effects of resource pooling. Since he did not consider pri-

ority classes of customers, we could combine our research to model a preemptive

priority, multi-class call center with time-varying arrival rates and multi-skilled

agents. We would be able to research resource pooling problems concerning the

mixture of groups of agents with different skill-sets. Fifth, we could expand our

analysis to virtual, or networks of call centers, instead of a single call center. Fi-

nally, we could determine the asymptotic waiting time distributions for both the

high and low priority customer for our current model. We then could measure

the service level in terms of a certain percentage of waiting times being below

a target level using the tail of the waiting time distribution. Therefore, we can

extend our research in several ways to the study other kinds of call centers.

7.2 Alternate Fluid and Diffusion Model

In addition to extending our current research to other types of call centers, we

can also improve upon our current model. To better approximate the “abandon-
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Figure 7.1: The Two-Customer Class, three-queue Mt/M/n model with Aban-

donment

ment”, or upgrade, process of low priority customers from their queue, we propose

an alternate model. This alternate model allows low priority customers to aban-

donment to a third queue, completely separate from the high priority queue. The

customers in this new queue will have the highest priority of any customer in the

system. Thus, they will receive service before any high priority customers or low

priority customers remaining in the low priority queue. However, they are not

permitted to preempt any other customer from service.

We give a graphical representation of the model in Figure 7.1.
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The differential equations governing the change in fluid levels for this process

are similar to those of our current model. However, there is an additional equation

for the third queue. The assumptions for functional strong law of large numbers

theorem on the mean number in system fluid approximations remain the same,

but the corresponding differential equations are now:

d

dt
Q

(0)
1 (t) = λ1(t)− µ[Q

(0)
1 (t) ∧ (n−Q

(0)
3 (t))]; (7.1)

d

dt
Q

(0)
2 (t) = λ2(t)− µ[Q

(0)
2 (t) ∧ (n−Q

(0)
1 (t)−Q

(0)
3 (t))+]

−β[Q
(0)
2 (t)− (n−Q

(0)
1 (t)−Q

(0)
3 (t))

+
]+; (7.2)

d

dt
Q

(0)
3 (t) = β[Q

(0)
2 (t)− (n−Q

(0)
1 (t)−Q

(0)
3 (t))

+
]+ − µ(Q

(0)
3 (t) ∧ n), (7.3)

where we define λ3(t) = β[Q
(0)
1 (t)− (n−Q

(0)
1 (t)−Q

(0)
3 (t))

+
]+, representing the

arrival rate of abandoning customers from the low priority queue into the third

queue. The corresponding differential equations for the virtual waiting-time fluid

approximations must be changed accordingly.
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