3,451 research outputs found

    Unambiguous Turn Position and Rational Trace Languages

    Get PDF
    We show the existence of rational trace languages defined over direct products of free monoids that have inherent ambiguity of the order of log n and n 1/2 . This result is obtained by studying the relationship between trace languages and linear context-free grammars that satisfy a special unambiguity condition on the position of the last step of derivation

    New Analytic Techniques for Proving the Inherent Ambiguity of Context-Free Languages

    Get PDF
    International audienceThis article extends the work of Flajolet [Philippe Flajolet, 1987] on the relation between generating series and inherent ambiguity. We first propose an analytic criterion to prove the infinite inherent ambiguity of some context-free languages, and apply it to give a purely combinatorial proof of the infinite ambiguity of Shamir’s language. Then we show how Ginsburg and Ullian’s criterion on unambiguous bounded languages translates into a useful criterion on generating series, which generalises and simplifies the proof of the recent criterion of Makarov [Vladislav Makarov, 2021]. We then propose a new criterion based on generating series to prove the inherent ambiguity of languages with interlacing patterns, like {a^nb^ma^pb^q | n≠p or m≠q, with n,m,p,q ∈ ℕ^*}. We illustrate the applicability of these two criteria on many examples

    Constraint programming in computational linguistics

    Get PDF
    Constraint programming is a programming paradigm that was originally invented in computer science to deal with hard combinatorial problems. Recently, constraint programming has evolved into a technology which permits to solve hard industrial scheduling and optimization problems. We argue that existing constraint programming technology can be useful for applications in natural language processing. Some problems whose treatment with traditional methods requires great care to avoid combinatorial explosion of (potential) readings seem to be solvable in an efficient and elegant manner using constraint programming. We illustrate our claim by two recent examples, one from the area of underspecified semantics and one from parsing

    Japanese/English Cross-Language Information Retrieval: Exploration of Query Translation and Transliteration

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, has of late become one of the major topics within the information retrieval community. This paper proposes a Japanese/English CLIR system, where we combine a query translation and retrieval modules. We currently target the retrieval of technical documents, and therefore the performance of our system is highly dependent on the quality of the translation of technical terms. However, the technical term translation is still problematic in that technical terms are often compound words, and thus new terms are progressively created by combining existing base words. In addition, Japanese often represents loanwords based on its special phonogram. Consequently, existing dictionaries find it difficult to achieve sufficient coverage. To counter the first problem, we produce a Japanese/English dictionary for base words, and translate compound words on a word-by-word basis. We also use a probabilistic method to resolve translation ambiguity. For the second problem, we use a transliteration method, which corresponds words unlisted in the base word dictionary to their phonetic equivalents in the target language. We evaluate our system using a test collection for CLIR, and show that both the compound word translation and transliteration methods improve the system performance

    Implementing imperfect information in fuzzy databases

    Get PDF
    Information in real-world applications is often vague, imprecise and uncertain. Ignoring the inherent imperfect nature of real-world will undoubtedly introduce some deformation of human perception of real-world and may eliminate several substantial information, which may be very useful in several data-intensive applications. In database context, several fuzzy database models have been proposed. In these works, fuzziness is introduced at different levels. Common to all these proposals is the support of fuzziness at the attribute level. This paper proposes ïŹrst a rich set of data types devoted to model the different kinds of imperfect information. The paper then proposes a formal approach to implement these data types. The proposed approach was implemented within a relational object database model but it is generic enough to be incorporated into other database models.ou
    • 

    corecore