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Abstract
This article extends the work of Flajolet [10] on the relation between generating series and inherent
ambiguity. We first propose an analytic criterion to prove the infinite inherent ambiguity of
some context-free languages, and apply it to give a purely combinatorial proof of the infinite
ambiguity of Shamir’s language. Then we show how Ginsburg and Ullian’s criterion on unambiguous
bounded languages translates into a useful criterion on generating series, which generalises and
simplifies the proof of the recent criterion of Makarov [21]. We then propose a new criterion based
on generating series to prove the inherent ambiguity of languages with interlacing patterns, like
{anbmapbq | n ̸= p or m ̸= q, with n, m, p, q ∈ N∗}. We illustrate the applicability of these two
criteria on many examples.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages

Keywords and phrases Inherent ambiguity, Infinite ambiguity, Ambiguity, Generating series, Context-
free languages, Bounded languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2022.41

1 Introduction

A context-free grammar G is said to be unambiguous if for any word w recognized by G,
there exists exactly one derivation tree for w. A context-free language is called inherently
ambiguous if it can not be recognized by any unambiguous grammar. Proving that a language
is inherently ambiguous is a difficult question, as it is an impossibility notion, and it is
undecidable in general [14, 15]. In practice, three different methods have emerged to prove
the inherent ambiguity of some context-free languages: an approach based on iterations on
derivation trees [25, 26], an other based on iterations on semilinear sets [14, 16, 29], and
finally an approach based on generating series [10, 17, 21, 28]. The first two approaches are
best suited for (and for the second, limited to) bounded languages.

In this article, we provide new sufficient criteria to prove inherent (infinite) ambiguity,
answering two questions of Flajolet [10]. Our main result is an interpretation, in the world of
generating series of Ginsburg and Ullian’s criteria [14] on semilinear sets. It rediscovers and
generalises the criterion recently developped by Makarov [21], while opening the way to new
techniques to prove the inherent ambiguity of unbounded languages or bounded languages
with an interlacing pattern. In a different direction, we also provide a criterion for inherent
infinite ambiguity.

1.1 Motivation and background
Deciding if a grammar is ambiguous is undecidable [6], as well as deciding if a context-free
language is inherently ambiguous [14, 15]. However, detecting ambiguity in context-free
grammars has strong implications for compilers and parsers. Therefore, identifying inherently
ambiguous languages is an important step towards our understanding of the limits of the
model of context-free languages to describe natural or programming languages. Let us start
with some context on the methods developed so far to establish the inherent ambiguity of a
language.
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41:2 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

Bounded languages. The first techniques developed to prove inherent ambiguity dealt with
bounded languages. A language L is called bounded if there exist words w1, . . . , wd with d ≥ 1
such that L ⊆ w∗

1 . . . w∗
d. Despite its apparent simplicity, the class of bounded languages is

rich enough to provide a large variety of inherently ambiguous languages; furthermore it is
often possible to deduce the inherent ambiguity of a context-free language from the inherent
ambiguity of a bounded language, using the stability of unambiguous context-free languages
under intersection with a regular language [14].

Iteration on derivation trees. In 1961, Parikh was the first to exhibit an inherently
ambiguous context-free language, the bounded language L = {anbmapbq |n = p or m =
q, with n, m, p, q ∈ N>0} (see [26] and [27, Theorem 3]). Parikh’s proof relies on an iteration
argument over the derivation trees of any unambiguous grammar recognising L. A few years
later, Ogden generalised this method and published his famous lemma [25], which drastically
simplified the identification of iterating pairs in derivation trees. Since then, these iterations
techniques have been very popular to study several inherently ambiguous languages (see for
instance [7, 24, 30, 32]). However, they remain subtle and difficult to set up in general; hence
they are sometimes unsuitable to study complex context-free languages.

Iteration on semilinear sets. In 1966, after Parikh’s article but before Ogden’s lemma,
Ginsburg and Ullian succeeded in using strong iterations arguments on derivation trees to
characterise exactly the inherent ambiguity of bounded context-free languages in terms of
their associated semilinear sets [14]. Their result made it possible to prove the inherent
ambiguity of bounded languages using iterations on semilinear sets instead of derivation trees
[14, 16, 29]. Unfortunately, iterations on semilinear sets turned out to be almost as laborious
as on derivation trees. The simplicity of the proof and the strong applications of Ogden’s
lemma severely contrasted with Ginsburg and Ullian’s criterion1 that was complex to use
and required a lot of case analysis. It may explain why iterations on semilinear sets were
supplanted by iterations on derivation trees.

Generating series method. In 1987, Flajolet [10] proposed a conceptually new approach,
based on generating series and the contraposition of the Chomsky-Schützenberger theorem
[6]. The generating series of a language L is the formal series

∑
n ℓnxn where ℓn denotes

the number of words of length n in L. Flajolet’s idea consists in showing that a language is
inherently ambiguous by computing its generating series – which is a purely combinatorial
question, for which there are many techniques [11] – and showing that this series is not
algebraic – for which there are also several mathematical characterisations [10]. This method
turned out to be very successful, as Flajolet was able to easily prove the inherent ambiguity
of a dozen languages in his article. It complemented very well the previous techniques used
for proving ambiguity: whereas iterations arguments are rather efficient and fast for proving
the inherent ambiguity of languages with a simple structure, which tend to have an algebraic
generating series2, on the opposite side, the generating series approach allows to deal with
complex languages that have a transcendental (i.e. non-algebraic) generating series and seem
out of reach of iterations techniques.

1 In his book [12, p.211], Ginsburg wondered whether there was a simpler technique to prove the inherent
ambiguity of L := {anbmcp : n = m or m = p}, and in a sense Ogden answered in the positive.

2 For example, all bounded context-free languages have a rational generating series
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Limits. Nevertheless, the three presented approaches sometimes fail on very simple context-
free languages expected to be inherently ambiguous, like the language L′ := {anbmcp :
n ̸= m or m ̸= p}. It has a rational – hence algebraic – generating series, and iterations
arguments (whether on trees or semilinear sets) struggle to handle the inequality condition
that does not constrain anymore the form of iterating pairs. It is not very surprising that
those methods do no cover every language, as hinted by the fact that deciding inherent
ambiguity is undecidable.

1.2 Problem statement and contributions
At the end of his article [10], Flajolet raised several open questions about the relation
between inherent ambiguity and generating series: is it possible to capture the inherent
infinite ambiguity of some context-free languages using analytic tools on generating series?
Can rational generating series still be useful to prove the inherent ambiguity of languages like
L′ = {anbmcp : n ̸= m or m ̸= p}? Recently, Makarov [21] answered the second question by
using new ideas coming from the generating series of GF (2) grammars. He provided a simple
criterion on rational series to prove the inherent ambiguity of some bounded languages on
a∗

1 . . . a∗
d, where the ai’s are distinct letters, and proved the inherent ambiguity of L′.

In this article, we give new answers to the two open questions of Flajolet about inherent
ambiguity and infinite inherent ambiguity. We first propose an analytic technique to
prove the infinite inherent ambiguity of context-free languages (Theorem 4), and apply
it to give a purely combinatorial proof of the infinite ambiguity of Shamir’s language
(Corollary 7). Then we use Ginsburg and Ullian’s characterisation to derive a simple
criterion (Theorem 12) on generating series to prove the inherent ambiguity of some bounded
languages, which both generalises and simplifies the proof of an analogous criterion recently
found by [21]. We then propose a new criterion based on generating series to prove the
inherent ambiguity of languages with an interlacing pattern, that are not covered by [21],
like L′′ = {anbmapbq |n ̸= p or m ̸= q, with n, m, p, q ∈ N∗} (Theorem 21). To make them
amenable to the wider audience possible, these criteria only require a basic knowledge in
combinatorics and in polynomials in several variables.

1.3 Related work
To the author’s knowledge, since Flajolet’s article, and until Makarov’s new criterion [21],
no real new successful approach based on generating series has been proposed to prove
the inherent ambiguity of languages. Several years after Flajolet’s article, a subclass of
unambiguous context-free language (called slender languages) has been shown to be associated
to rational series [17], but their criterion can be in fact interpreted as a shortcut of Flajolet’s
technique3. More recently [1], the class of generating series associated to unambiguous
context-free grammars, called N-algebraic series, has been precisely described as well as
their asymptotic behaviour. This class of generating series does, however, enjoy less closure
properties than algebraic series, which makes them less applicable for proving inherent
ambiguity.

If the techniques developed in this article are based on generating series and hence lie
in the continuity of Flajolet’s method [10], they can also be seen as a nice alliance of the
three historical techniques presented in this introduction: we use Flajolet’s idea to study
ambiguity through generating series [10], in order to revisit from this point of view Ginsburg
and Ullian’s criteria [14], whose proof relies on iterations in derivation trees.

3 By [2], if the generating series of a slender language is not rational then it is also not algebraic
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41:4 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

2 Preliminaries

Context-free languages. A context-free grammar (CFG for short) is a tuple G =
(N, Σ, S, D), where Σ is a finite set of terminal symbols, N is a finite set of non-terminal
symbols, S ∈ N is the axiom, and D ⊆ N × (N ∪ Σ)∗ is the finite set of derivation rules. A
rule (A, w) ∈ D is usually written A→ w, with A ∈ N and w ∈ (N ∪ Σ)∗. The derivation
rules of D can be seen as rewriting rules affecting only non terminal symbols. Let w, w′ be
two words in (N ∪Σ)∗. The application of a rewriting rule of D to a non-terminal symbol of
w is called a derivation step of G from w. If w′ is derived from w after one derivation step,
we write w →G w′. A derivation from w to w′ is a (possibly empty if w = w′) sequence of
consecutive derivation steps w →G w1 →G . . .→G w′, denoted by w →∗

G w′. As the order of
the application of the derivation rules is not canonical, a derivation is rather described as a
tree, called a derivation tree. For instance, if D = {S → AB, A→ a, B → b}, the derivations

S → AB → aB → ab and S → AB → Ab→ ab have the same derivation tree
S

A B

a b

and can

be identified. A word is called terminal if it contains only terminal symbols. The language of
G, denoted by L(G) ⊆ Σ∗, is the set of terminal words that can be derived from the axiom
S. The grammar G is said to be unambiguous if for any word w ∈ L(G), there exists exactly
one derivation tree for w. A context-free language (CFL) is a language recognized by a CFG.
A CFL is called inherently ambiguous if it is not recognisable by any unambiguous CFG.

Univariate series. Let N = {0, 1, 2, . . .} be the set of non-negative integer, Q the set of
rational numbers, F2 the field with two elements, and K an arbitrary field (in practice, K = Q
or K = F2 in this article). The set of polynomials with coefficients in K and indeterminate
x is denoted by K[x]. We denote by K[[x]] the set of formal series with coefficients in K,
which is the set of infinite polynomials of the form

∑
n∈N anxn, with an ∈ K. We recall that

(K[[x]], +, ·) has a ring structure, with respect to the addition and the Cauchy product. The
series S(x) =

∑
n∈N xn satisfies the equation (1 − x)S(x) = 1, and is hence written 1

1−x .
The set K(x) denotes the set of rational fractions, which is formally the set of fractions of
the form p(x)/q(x) where p, q are both polynomials in K[x], with q(x) ̸= 0. A univariate
series f(x) ∈ K[[x]] is rational if it satisfies an equation of the form q(x)f(x) = p(x), where
p, q ∈ K[x], q ̸= 0. In this case f(x) is written p(x)/q(x). It is called algebraic over K if
there exists a non null polynomial P (x, Y ), with coefficients in K, such that P (x, f(x)) = 0.

Let n ∈ N. If L is a language, we define ℓn the number of words in L of length n. The
generating series L(x) of L is the formal series L(x) :=

∑
n∈N ℓnxn ∈ Q[[x]]. If G is a CFG

recognising L, we denote by gn the number of derivation trees of terminal words of length
n. If gn is finite for all n ∈ N, the generating series of the derivation trees of G, defined by
the formal series G(x) :=

∑
n∈N gnxn, is well-defined. In this case, the description of the

grammar G translates directly into a polynomial system satisfied by G(x), which implies
that G(x) is algebraic over Q. If G is unambiguous, then G(x) is well-defined and coincides
with L(x), so the generating series of an unambiguous CFL is algebraic over Q: this is the
Chomsky-Schützenberger theorem [6]. The subset of series that are the generating series
of the derivation trees of a CFG is called the set of N−algebraic series, and it is strictly
included in the set of algebraic series over Q [1].

Multivariate polynomials. For every d ∈ N>0, Nd denotes the set of vectors with d

coordinates in N. A vector (v1, . . . , vd) ∈ Nd will be freely written in a condensed notation
v. Similarly, the tuple of d variables (x1, . . . , xd) is written x. The notation K[x] denotes
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the ring of multivariate polynomials with indeterminates x = (x1, . . . , xd) and coefficients in
K. For v = (v1, . . . , vd) ∈ Nd, the monomial xv1

1 . . . xvd

d is written xv. The total degree of
xv1

1 . . . xvd

d is the number v1 + . . . + vd. A polynomial is called homogenous if its monomials
have the same total degree (for instance x2 + xy is homogenous but 1 + xy is not). A
polynomial is called irreducible if it is non constant and cannot be decomposed as the product
of two non constant polynomials. The set K(x) denotes the field of rational fractions of
K[x], that is the set of quotients p(x)/q(x) where p, q ∈ K[x] and q ̸= 0.

▶ Remark 1 (Arithmetic of K[x]). We chose to use as little mathematical notion of K[x]
as possible, to keep our criteria useful for people that are not familiar with multivariate
polynomials. To understand the proofs, it is useful to remember that K[x] is factorial (see for
instance [20, Corrolary 2.4 p 183]): any polynomial in K[x] admits a unique factorization as
a product of irreducible polynomials. However, K[x] is not principal in general (even when
K = Q), nor euclidian; in particular, the Bezout identity does not hold anymore. Hence
there is no canonical multivariate equivalent to the euclidian division, and similarly there is
no canonical partial fraction decomposition.

Multivariate series. We write K[[x]] for the ring of formal multivariate series with (com-
mutative) indeterminates x and coefficients in K, which is the set of infinite polynomials of
the form∑

v∈Nd

avxv :=
∑

v1,...,vd∈Nd

av1,...,vd
xv1

1 . . . xvd

d , with av ∈ K for all v ∈ Nd.

The series
∑

n,m xnym satisfies the equation (1− x)(1− y)S(x, y) = 1 and hence is written
1

(1−x)(1−y) . Similarly, for every monomial xv, the series
∑

n∈N xnv is written 1
1−xv ; for

instance, the series
∑

n,m xnyn is written 1
1−xy . A series f(x) is called algebraic over K if

there exists a non null multivariate polynomial P (x, Y ) ∈ K[x, Y ] such that P (x, f(x)) = 0.

Semilinear sets. Let d ∈ N. A set L ⊆ Nd is called linear if there exists a vector c ∈ Nd,
and a finite set of vectors P = {p1, . . . , ps}, called periods, such that

L = {c + λ1p1 + . . . + λsps : λ1, . . . , λs ∈ N} .

We will denote such a set under the condensed form c + P ∗. A semilinear set S ⊆ Nd is a
finite union of linear sets in Nd. The generating series of a semilinear set is defined by the
multivariate series S(x) =

∑
v∈S xv. In the particular case where S = c + P ∗ is a linear set,

with P = {p1, . . . , ps} a set of linearly independent periods over Q, then the decomposition
of a vector v ∈ S under the form v = c + λ1p1 + . . . + λsps is unique, hence:

S(x) =
∑

λ1,...,λr∈Nr

xc+λ1p1+...+λsps = xc
∑

λ1∈N
(xp1)λ1 . . .

∑
λs∈N

(xpr )λr = xc∏
p∈P (1− xp) .

Note that by [8, 18], it is always possible to find a representation of a semilinear S under the
form S =

⊎r
i=1(ci + P ∗

i ), where the union is disjoint, and the vectors are linearly independent
over Q in each Pi. Hence the generating series of a semilinear set is rational and can be

deduced from such a presentation by S(x) =
r∑

i=1

xci∏
p∈Pi

(1− xp) .

FSTTCS 2022



41:6 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

Computing generating series of semilinear sets. In practice, for the examples of this
article, we will not need a representation of S of the previous form, and can compute
the generating series of such sets by hand. For instance, the generating series of N2 is∑

n,m xnym = 1
(1−x)(1−y) , the generating series of S1 = {(n, m) : n = m} is

∑
n xnyn =

1
1−xy , the generating series of S2 = {(n, m) : n ̸= m} = N2 \ S1 is 1

(1−x)(1−y) −
1

1−xy . For a
union, we can add the generating series, but we need to be careful to subtract the intersection,
otherwise the vectors of the intersection would be counted twice. For instance, the generating
series of S3 = {(n, m, p) : n = m or n = p} is 1

(1−xy)(1−z) + 1
(1−yz)(1−x) −

1
1−xyz .

3 Infinite ambiguity

Let L be a context-free language. For n ∈ N, we recall that ℓn denotes the number of words
in L of length n. In this section, we show how the asymptotic behaviour of ℓn can sometimes
be sufficient to prove the inherent infinite ambiguity of L.

▶ Definition 2 (finite degree of ambiguity). Let k ∈ N. A context-free grammar G is said to
be k-ambiguous if every word w ∈ L(G) admits at most k different derivation trees. Similarly
a context-free language L is k-ambiguous if it can be recognized by a k-ambiguous CFG.

If such a finite k exists, then L is said to be of bounded ambiguity, or finitely ambiguous;
otherwise, L is said to be of unbounded ambiguity, or infinitely ambiguous.

Infinitely ambiguous languages can arise from the concatenation of simple unambiguous
languages; for instance, the language Pal of palindromes is unambiguous, but the language
Pal2 = {w1w2 : w1, w2 ∈ Pal} is infinitely ambiguous [7]. For infinitely ambiguous
grammars, the functions f(n) upper-bounding the number of different derivations of words
of length n have been well studied [31, 32, 33]. Note that deciding infinite ambiguity is also
undecidable [15]. The usual studies on finite or infinite ambiguity rely generally on iterations
with Ogden’s lemma or Ullian and Ginsburg’s criteria (see for instance [29] which gives
examples, for each k ∈ N, of arbitrary inherently k-ambiguous on a∗b∗c∗). In this section we
propose a novel approach based on generating series and their asymptotic behaviour.

3.1 An analytic criterion for infinite ambiguity
Let G be a context-free grammar such that every word w ∈ L(G) has a finite number of
derivation. We call G(x) =

∑
n∈N gnxn the generating series of the derivation trees of G,

where gn denotes the number of derivation trees for words of L(G) of length n. Then, by the
Chomsky-Schützenberger theorem [6], G(x) is algebraic. More precisely, G(x) belongs to a
more restrictive class of algebraic series, called N-algebraic series, for which the asymptotic
behaviour of the coefficient has been well studied:

▶ Proposition 3 (Critical exponents of N-algebraic series [1]). Let G(z) =
∑

n gnzn be an
N-algebraic series. If G has a unique singularity on its circle of convergence |z| = 1/β, then

gn ∼n→∞
C

Γ(1 + α)nαβn , (1)

where C, β are non negative algebraic constants, and α belongs to the following set:

D2 := {−1− 2−(k+1) : k ≥ 0} ∪
{
−1 + r

2k
: k ≥ 0, r ≥ 1

}
.

If G(z) has several dominant singularities, then there exists a non negative integer p such
that for every s ∈ [0, p − 1], either gs+np = 0 for all n sufficiently large, or gs+np has an
asymptotic behaviour of the form of (1), where each constant depends on s.
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We now derive the following criterion for infinite ambiguity, where we recall that D2 is
defined in Proposition 3, and n ≡ s[p] means that n is congruent to s modulo p:

▶ Theorem 4. Suppose that it is not possible to find an integer p ∈ N>0 such that for all
integer s ∈ {0, . . . , p − 1}, for all n ≡ s[p], ℓn = 0 or ℓn satisfies a relation of the form
ℓn = Θ(βn

s nαs) with βs > 0 algebraic, and α ∈ D2. Then L is infinitely ambiguous.

Proof. We prove the contraposition: assume that L is k-ambiguous for some k ∈ N>0, and
let us show that it is possible to find an integer p > 0 such that for all s ∈ [0, p− 1], for all
n ≡ s[p], ℓn = 0 or ℓn satisfies a relation of the form ℓn = Θ(βn

s nαs) with βs > 0 algebraic,
and α ∈ D2.

Let L(x) =
∑

n ℓnxn the generating series of L, and G(x) =
∑

n gnxn the generating series
of the derivations of G. Then by definition of k-ambiguity, for every n ∈ N, ℓn ≤ gn ≤ kℓn.
In other words, gn

k ≤ ℓn ≤ gn, which implies that ℓn = Θ(gn), where gn is the coefficient
of an N-algebraic series. By Proposition 3, there exists a non negative integer p such that
for every s ∈ {0, . . . , p − 1}, either gs+np = 0 for all n sufficiently large, or gs+np has an
asymptotic behaviour of the form of (1).

If gs+np = 0 for all n sufficiently large, then so is ℓs+np. If gs+np ≠ 0 for n sufficiently
large, then there exist C a constant, βs a non negative algebraic number, and αs ∈ D2 such
that gn ∼ C

Γ(1+αs) nαsβn
s when n→∞ with n ≡ s[p]. Hence ℓn = Θ(βn

s nαs). ◀

▶ Corollary 5. Let L be a context-free language such that, as n→ +∞, ℓn = Θ(βnnα log(n)s).
If β is not algebraic, or if s ̸= 0, or if α /∈ D2, then L is inherently infinitely ambiguous.

Proof. By hypothesis, there exist two constants b1, b2 > 0 such that for n large enough,

b1βnnα log(n)s ≤ ℓn ≤ b2βnnα log(n)s .

In particular, for n sufficiently large, ℓn > 0. Without loss of generality, we can modify
its first terms, and suppose that ℓn > 0 for every n ∈ N. Let us prove that the hypotheses of
Theorem 4 are satisfied in the case where β is not algebraic, or s ̸= 0, or α /∈ D2.

As ℓn > 0 for every n ∈ N, suppose by contradiction that there exists an integer p > 0 such
that for all n ≡ 0[p], ℓn can be expressed as ℓn = Θ(βn

0 nα0), with β0 a non negative algebraic
constant, and α0 ∈ D2. Hence there exists two constants c1, c2 > 0 such that, for every
n ≡ 0[p] sufficiently large, c1βn

0 nα0 ≤ ℓn ≤ c2βn
0 nα0 , and combining the two inequalities:

0 <
c1

b2
≤
(

β

β0

)n

nα−α0 log(n)s ≤ c2

b1
.

By predominance of the growth of the exponential, if β0 ̸= β, the term in the middle
either tends to 0 or +∞ and cannot be bounded by two strictly positive constants. Hence if
β is not algebraic, β0 ̸= β and we obtain a contradiction, so that L is infinitely ambiguous by
Theorem 4. Otherwise if β is algebraic, β = β0 and for all n sufficiently large with n ≡ 0[p]:

0 <
c1

b2
≤ nα−α0 log(n)s ≤ c2

b1
.

Similarly, the only way for nα−α0 log(n)s to be bounded by two strictly positive constants is
to have both α = α0 and s = 0, hence if s ̸= 0 or α /∈ D2, we obtain a contradiction, so that
L is infinitely ambiguous by Theorem 4. ◀
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41:8 Techniques for Proving the Inherent Ambiguity of Context-Free Languages

3.2 Application to Shamir’s language
Let us illustrate the method given in the previous section on Shamir’s language. Let
Σ = {#, a1, . . . , ak} be an alphabet of k + 1 letters, with k ≥ 2. We consider the extended
Shamir language Lk defined by :

Lk = {w ∈ Σ |w = s#usRv with s, u, v ∈ {a1, . . . , ak}∗ and s ̸= ε},

where the letter # serves only as a separator, and sR denotes the mirror4 of s. This language
is easily recognised by the ambiguous context-free grammar defined by the rules S → AB

and {A→ aAa|a#Ba, B → aB|ε : a ∈ Σ \ {#}}.
For k = 2, the language L2 is one of the languages showed to be infinitely ambiguous by

Shamir [30], using iterations on derivations similar to Ogden’s lemma (the author actually
shows the finer result that most words in the language of the form s#w have as many
derivation trees as there are instances of sR in w).

We propose here an analytic proof of the infinite ambiguity of the language Lk. In the
following, ℓn denotes the number of words of Lk of length n. The whole proof relies on the
following bounds:

▶ Proposition 6. There exist constants b1, b2 > 0 such that for n sufficiently large,

b1 logk n ≤ ℓn

kn−1 ≤ b2 logk n .

In other words, ℓn = Θ(kn−1 logk(n)).

Applying Corollary 5 provides an analytic proof of the infinite ambiguity of Shamir’s
language:

▶ Corollary 7. The Shamir language Lk is infinitely ambiguous.

▶ Remark 8. In [10], the series of a weaker version of Shamir’s language is shown to have
infinitely many singularities. We could wonder if the number of singularities of the generating
series of a language was correlated to its degree of ambiguity. This is not the case: Flajolet [10]
gave examples of 2-ambiguous languages with an infinite number of singularities; on the
other hand, the language L∗ with L = {anbmcp : n = m or n = p} has a rational generating
series, hence a finite number of singularities, but is infinitely ambiguous [24, Satz 4.2.1].

4 Two simple criteria on generating series for proving the inherent
ambiguity of bounded languages

In this section, we revisit Ginsburg and Ullian’s criteria with generating series. We develop
simple methods to prove the inherent ambiguity of bounded languages without any iteration
argument. Let us fix a dimension d ≥ 1, and Σ an alphabet5 of cardinality more than 2.

4.1 Bounded languages and Ullian and Ginsburg’s criteria
Let us fix a tuple of d words w1, . . . , wd ∈ Σ∗, denoted by ⟨w⟩ := ⟨w1, . . . , wd⟩. We use the
same notation and definition of [14]. A language L is called bounded with respect to ⟨w⟩ if
L ⊆ w∗

1 . . . w∗
d. The fonction f⟨w⟩ : Nd → w∗

1 . . . w∗
d is defined by f⟨w⟩(p1, . . . , pd) = wp1

1 . . . wpd

d

4 If s = s1s2 . . . sn−1sn, then sR = snsn−1 . . . s2s1.
5 Context-free languages on an alphabet of size 1 are regular languages by Parikh theorem [27].
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for every p ∈ Nd. Notice that if every wi is a distinct letter of Σ, then the function f⟨w⟩
is bijective, and its inverse is the Parikh image on w∗

1 . . . w∗
d. A bounded language L with

respect to ⟨w⟩ is called semilinear if f−1
⟨w⟩(L) is a semilinear set. By [14], every bounded

context-free language is semilinear. In practice, most bounded languages are defined by
giving explicitly their semilinear set f−1

⟨w⟩(L). For instance, if L = {aibjck : i = j or j = k},
then f−1

⟨a,b,c⟩(L) = {(i, j, k) ∈ N3 : i = j or j = k}.
The following definition introduces a crucial class of sets associated to bounded languages:

▶ Definition 9 (Stratified set, [13, 14]). A subset X ⊆ Nd is stratified if :
1. every element of X has at most two non-zero coordinates ;
2. it is not possible to find four integers 1 ≤ i < j < k < m ≤ d and two vectors x, x′ ∈ X

such that xix
′
jxkx′

m ≠ 0 . In other words, two distinct elements of X cannot have
“interlacing” nonzero coordinates.

We sometimes say abusively that a linear set is stratified if its set of periods is stratified.
Stratified sets of periods play a fundamental role in the form of the semilinear sets described
by context-free grammars. In [13], Ginsburg and Ullian show that a bounded language L

with respect to a∗
1 . . . a∗

d, where ⟨a⟩ = ⟨a1, . . . , ad⟩ are distinct letters, is context-free if and
only if f−1

⟨a⟩(L) is a finite union of linear sets, each with a stratified set of periods. They
specialized this result for unambiguous bounded languages:

▶ Theorem 10 (Ginsburg and Ullian criteria, [14]). Let L be a context-free language bounded
with respect to ⟨w⟩ = ⟨w1, . . . , wd⟩. Then L is inherently ambiguous if and only if f−1

⟨w⟩(L) is
not a finite union of disjoint linear sets, each with a stratified set of periods whose vectors
are linearly independent.

▶ Remark 11. Note that it is not necessary, in order to use this criterion, to impose the
decomposition of a word of L into w∗

1 . . . w∗
d to be unambiguous.

One direction of the equivalence can be easily understood in the case where every wi are
distinct symbols and the semilinear set associated to L is a disjoint union of linear sets with
linearly independent stratified set of periods. One can easily build an unambiguous grammar
recognising the language of each linear set (the non-interlacing condition makes it possible
to order the vectors of the periods according to their non-zero pairs of coordinates, in a way
that they are well nested). The other direction is the heart of Ginsburg and Ullian’s theorem,
and is based on deep arguments6 about derivation trees.

As we mentioned it in the introduction, these criteria are powerful as they succeeded in
leaving the world of grammars and derivation trees, to focus on the semilinear set behind
the language. However, this characterisation of inherent ambiguity does not provide any tool
to prove that a given semilinear set cannot be written as a finite union of disjoint stratified
linear sets with independent periods. Hence, most proofs based on this result (see for instance
[14, 16, 29]) mimicked on semilinear sets the iteration arguments that worked on derivation
trees, without taking fully advantage of the fact that Nd and its semilinear sets are much
more amenable to techniques of analysis or algebra than derivation trees.

The next sections are devoted to show how Ginsburg and Ullian’s theorem actually
translates nicely in the world of generating series, and thus allows to derive very simple
criteria to prove the inherent ambiguity of many bounded languages.

6 As one of the authors admits it in his book [12, p. 188], “The proof of the necessity is extremely
complicated”.
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4.2 The three variables criterion
The theorem of this section is a simple criterion to prove the inherent ambiguity of bounded
languages using generating series. The proof relies on the criteria of Ginsburg and Ullian,
and some arithmetic in K[x], including the unicity of the decomposition into irreducible
factors. Even if we only need K = Q to apply the theorem to the examples of this article,
we state it in the general case where K is an arbitrary field. In particular, with K = F2, it
generalises the criterion of [21], which only deals with bounded languages on distinct letters.

▶ Theorem 12 (Three variables criterion). Let L ⊆ w∗
1 . . . w∗

d be a context-free language
bounded with respect to ⟨w⟩. Let S = f−1

⟨w⟩(L) its associated semilinear set, and let

S(x1, . . . , xd) = P (x1, . . . , xd)
Q(x1, . . . , xd) ∈ K(x1, . . . , xd)

be the generating series of S, such that P and Q are polynomials of K[x1, . . . , xd] (that need
not to be coprime). Suppose that there exists an irreducible polynomial D ∈ K[x1, . . . , xd]
that divides Q, does not divide P , and depends on more than three variables (in other words
D ̸∈ K[xi, xj ] for all 1 ≤ i, j ≤ d). Then L is inherently ambiguous.

Proof. Suppose that L in unambiguous. By Ginsburg et Ullian’s criteria (Theorem 10), the
semilinear set S can be written under the form S =

⊎r
i=1(ci +P ∗

i ), where the union is disjoint,
each Pi is stratified, and the vectors in each set of periods Pi are linearly independent.

The disjoint union as well as the independent periods mean that this is an unambiguous
description of S, such that its generating series is given by:

P (x)
Q(x) = S(x) =

r∑
i=1

xci∏
p∈Pi

(1− xp) = P2(x)
Q2(x) , with Q2(x) =

r∏
i=1

∏
p∈Pi

(1− xp) ,

where P2, Q2 are obtained by writing the sum of fractions on the same denominator. Hence
PQ2 = P2Q. The irreducible polynomial D divides Q, so it divides P2Q, hence it divides
PQ2; as D is irreducible and does not divide P , it divides Q2.

However, as S is stratified, no period vector p in any Pi has more than two non zero
coordinates. This means that Q2 is a product of polynomials of the form (1 − t) where
t is a monomial with at most two variables. Each of these polynomials admits a unique
factorization in irreducible polynomials, each of them having at most two variables. By
the unicity of the irreducible factorization in K[x1, . . . , xd], D cannot divide Q2 since it is
irreducible with more than three variables. Contradiction. ◀

▶ Remark 13. As seen in the preliminaries, every semilinear set can be described unambigu-
ously [8, 18], so that it is always possible to compute its generating series.

▶ Proposition 14. The following context-free languages are inherently ambiguous:
1. L1 = {aibjck with i = j or j = k} and L′

1 = {aibajbakb with i = j or j = k}
2. L2 = {aibjck with i ̸= j or j ̸= k} and L′

2 = {aibajbakb with i ̸= j or j ̸= k}
3. L3 = {aibjck with i = j or j ̸= k} and L′

3 = {aibajbakb with i = j or j ̸= k}
4. C := {w1w2 : w1, w2 ∈ {a, b}∗ are palindromes}

Proof. We apply Theorem 12 (with K = Q) by exhibiting three-variables irreducible factors
in the denominator of the generating series of the semilinear sets under irreducible form.
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1. The generating series S(a, b, c) of the semilinear set associated to L1 is:
1

(1−ab)(1−c) + 1
(1−bc)(1−a) − 1

1−abc
= 1−3 a2b2c2+2 a2b2c+2 ab2c2+2 a2bc−ab2c+2 abc2−a2b+2 abc−bc2−ac

(1−a)(1−bc)(1−c)(1−ab)(1−abc)

The polynomial 1 − abc in the denominator is irreducible in Q[a, b, c], and has three
variables. Furthermore, 1− abc does not divide the numerator (it can be checked with
a computer algebra software, or by hand: in Q[a, b][c], the numerator is of degree 2 in
c, so if 1 − abc divided it, the numerator would be of the form (1 − abc)(λc + µ) with
λ, µ ∈ Q[a, b], so that each monomial in c2 in the numerator should have ab in factor,
which is not the case of the monomial −bc2). Hence L1 is inherently ambiguous by
Theorem 12. Notice that the generating series of the semilinear set associated to L′

1
is simply b1b2b3S(a1, a2, a3) where b1, b2, b3 are associated to the three letters b, and
a1, a2, a3 are associated to the groups of a′s. Hence L′

1 is also inherently ambiguous.
2. The associated generating series is 1

(1−a)(1−b)(1−c) −
1

1−abc = a+b+c−ab−ac−bc
(1−a)(1−b)(1−c)(1−abc) . The

irreducible polynomial 1− abc has three variables, and does not divide the numerator,
since its total degree is 3, whereas the numerator is of total degree 2. Hence L2, and
similarly L′

2 are inherently ambiguous.
▶ Remark 15. The languages L1 and L2 were already proved to be inherently ambiguous
in [21] with the same argument. Our criterion makes it possible to extend the criterion
on word-bounded languages, to prove that L′

1 and L′
2 are also inherently ambiguous.

3. The generating series of the semilinear set associated to L3 is
1

(1−a)(1−b)(1−c) −
(

1
(1−a)(1−bc) − 1

1−abc

)
= 3 ab2c2−2 ab2c−2 abc2−b2c2+b2c+bc2+ab+ac−2 bc−a+1

(1−a)(1−b)(1−c)(1−bc)(1−abc)

and the proof is similar as before for both L3 and L′
3.

4. This example illustrates why criteria on bounded languages on words are more useful
than on distinct letters. The language C is known to be infinitely ambiguous [7]. Let
us propose a new elementary proof of just its inherent ambiguity. Suppose that C is
unambiguous. Then C̃ := C ∩ ba+ba+abbaa+ba+b would be unambiguous, by stability of
unambiguous context-free languages under intersection with a regular language [14]. As

C̃ = {banbambbapbaqb : (n = q ∧m = p) or (n = m ∧ p = q), n, m, p, q ∈ N>0}

is bounded with respect to ⟨b, a, b, a, b, a, b, a, b⟩, we associate the variables x, y, z, t to
the a′s, and ui for i = 1 . . . 5 for the five b’s. The generating series associated to
S′ = {(n, m, p, q) ∈ N4

>0 : (n = q ∧ m = p) or (n = m ∧ p = q)} is S′(x, y, z, t) =
xyzt( 1

(1−xt)(1−yz) + 1
(1−xy)(1−zt) −

1
1−xyzt ). Then the generating series associated to C̃ is:

S(u1, x, u2, y, u3, z, u4, t, u5) = u1u2u2
3u4u5xyzt −3 x2z2t2y2+2 x2zt2y+2 xz2t2y+2 y2tx2z+2 y2txz2...

(1−xt)(1−yz)(1−xy)(1−zt)(1−xyzt)

where we truncated the numerator due to lack of space. We can verify that the irreducible
4-variables polynomial 1− xyzt does not divide the numerator, which proves that C̃ is
inherently ambiguous. Contradiction. So C in inherently ambiguous. ◀

▶ Remark 16. To check if a polynomial of the form π = 1− xv with v ∈ (N>0)d does not
divide the numerator P , we could also have introduced d− 1 new variables yi, and perform
the substitution x1 ← y−v2

1 , xd ← y
vd−1
d−1 and for 1 < i < d, xi ← y

vi−1
i−1 y

−vi+1
i . After this

substitution, π vanishes, so if after the substitution P is not the null fraction, then it is
not divisible by π. This chained substitution aims specifically at cancelling π, and it is not
difficult to show that if π′ = 1−xv′ vanishes after the substitution, then v′ and v are linearly
dependent over Q. This trick will be used with d = 2 for the second criterion of this article.
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The last language of the previous proposition shows that our criteria can also be useful to
prove the inherent ambiguity of non bounded languages. Here we give an other example. The
language of primitive words P , defined formally by P = {w ∈ Σ∗ | ∀u ∈ Σ∗, w ∈ u∗ ⇒ u = w},
is the set of words that are not the power of a smaller word. This language is challenging,
as it is still an open question to know if it is context-free. In 1994, [28] showed that the
generating series of P is not algebraic, and hence that if it was context-free, then it would be
inherently ambiguous. We propose a new proof of this fact.

▶ Proposition 17 ([28]). The language of primitive words in not an unambiguous context-free
language.

Proof. The language P ∩ a∗ba∗ba∗b = {anbambapb : n ̸= m or m ̸= p} = L′
2 is inherently

ambiguous by Proposition 14. ◀

Related work A special case of Theorem 12 has already been proved by [21], in the case
where each wi is a distinct letter and K = F2, using completely different techniques: the
author focused on GF (2) grammars, a class of context-free grammars for which union is
replaced by symmetric difference, and the concatenation of two languages K and L is replaced
by a special concatenation K ⊙ L which keeps only the words w of K · L which admit an
odd number of decompositions of the form w = wkwℓ with wk ∈ K and wℓ ∈ L. In [21], the
author studies the generating series associated to bounded languages in a∗

1 . . . a∗
d recognized

by a GF (2) grammar, and shows that the irreducible polynomials at their denominator can
only have at most two variables. The author proves with this criterion the inherent ambiguity
of the language {aibjck with i ̸= j or j ̸= k}. At the end of the article, the author mentions
Ginsburg and Ullian’s criteria, saying that it would be possible to use them to prove the
inherent ambiguity of the language L, but explains that the proof would not be simpler.
We showed in this section that the equivalence of Ginsburg and Ullian actually translates
directly into the criterion found by [21], while generalising it to bounded languages on words.

4.3 The interlacing criterion
The three variables criterion of Theorem 12 does not exploit the non interlacing condition of a
stratified set. In particular, it fails on the language L = {anbmapbq | n = p or m = q}, as the
denominator of the series of its semilinear set is (1− ac) (1− bd) (1− a) (1− b) (1− c) (1− d),
which only contains irreducible polynomials of at most two variables. But (1− ac) (1− bd)
presents two irreducible polynomials with interlaced variables, hence it is natural to wonder
if this could be a sign of inherent ambiguity. If so, we need however additional conditions, as
such a pattern can also occur in unambiguous languages, such as in the language {ancn :
n ≥ 0} ∪ {bndn : n ≥ 0} whose associated series is 1

1−ac + 1
1−bd = 2−ac−bd

(1−ac)(1−bd) .
In this section, we establish a second criterion dealing with the interlacing condition

(Theorem 21). We will use several technical lemmas: Lemmas 18 and 19 are classical
algebra lemmas on polynomials, while Lemma 20 studies precisely the shape of irreducible
polynomials dividing the denominators of series associated to stratified linear sets.

▶ Lemma 18 (Irreducibility of 1 − xnym). Let n, m ∈ N. The polynomial 1 − xnym is
irreducible in Q[x, y] if and only if n ∧m = 1.

▶ Lemma 19. Let n, m ∈ N>0. Then 1− xnym = (1− xαyβ)P (x, y) where α ∧ β = 1, and
P (x, y) is a non zero polynomial whose coefficients are in {0, 1} . Furthermore α = n/(n∧m)
and β = m/(n ∧m).
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▶ Lemma 20. Let S = c + P ∗ a stratified linear set with linearly independent periods. Let
k ≥ 1, n, m ≥ 1 be three integers such that n ∧m = 1, and i ̸= j be two indices of variables,
and y a fresh new variable. Then:

if (1− xn
i xm

j )k |
∏

p∈P (1− xp), then k = 1;
if (1− xn

i xm
j ) ∤

∏
p∈P (1−xp), then

∏
p∈P (1−xp)|xi=ym,xj=y−n ̸= 0, seen as en element

of Q(y)[x], the ring of polynomials over the field Q(y).

The following theorem is our second criterion for proving the inherent ambiguity of
bounded languages using the non-interlacing condition.

▶ Theorem 21 (Interlacing criterion). Let L ⊆ w∗
1 . . . w∗

d a context-free language bounded
with respect to ⟨w⟩. Let us denote by S = f−1

⟨w⟩(L) its semilinear set, and S(x1, . . . , xd) =
P (x1,...,xd)
Q(x1,...,xd) ∈ Q[x1, . . . , xd] its generating series, with P and Q two polynomials, non neces-
sarily coprime. Suppose that:
1. Q is divided by two non-univariate irreducible polynomials D(xj , xℓ) and π(xi, xk) with

interlaced indices j < ℓ and i < k (i.e. i < j < k < ℓ or j < i < ℓ < k);
2. π(xi, xk) is of the form π(xi, xk) = (1− xn

i xm
k ), with n, m ≥ 1 and n ∧m = 1 ;

3. finally, D ∤ P |xi=ym,xk=y−n in Q(y)[x], where y is a fresh new variable.
Then L is inherently ambiguous.

Proof. Toward a contradiction, suppose that L is unambiguous. By Theorem 10, S can be
written under the form S =

⊎r
s=1(cs + P ∗

s ), where the union is disjoint, the periods Pi are
stratified, and the vectors in each Pi are linearly independent. Its generating series is then:

P (x)
Q(x) = S(x) =

r∑
s=1

xcs∏
p∈Ps

(1− xp)

By hypothesis, P |xi=ym,xk=y−n ≠ 0 (as D always divides 0), so π(xi, xk) does not divide
P , and D does not divide P (otherwise D would divide P |xi=ym,xk=y−n as it is not affected
by the substitution). Hence both π and D are irreducible polynomials of Q, that stay in the
denominator after writing the fraction S(x) under irreducible form. Hence they divide the
least common multiple of every

∏
p∈Ps

(1−xp). Let us write Q = (1− xn
i xm

k )D(xj , xℓ)Q̃(x).
Note that by Lemma 20, no irreducible factor of Q̃(x) that stays after writing P/Q under
irreducible form cancels at xi = ym, xk = y−n. Hence if Q̃(x)|xi=ym,xk=y−n = 0, this means
that an irreducible factor common between Q̃ and P cancels with the substitution, but this
is not possible since P |xi=ym,xk=y−n ̸= 0. So Q̃(x)|xi=ym,xk=y−n ̸= 0.

Let us write I1 the set of indices s such that (1 − xn
i xm

k ) |
∏

p∈Ps
(1 − xp), and I2 its

complement. For every s ∈ I1, let us write
∏

p∈Ps
(1−xp) = (1−xn

i xm
k )Rs(x). By Lemma 20,

Rs|xi=ym,xk=y−n ̸= 0, and by the non interlacing condition, no irreducible factor of Rs is a
polynomial in exactly both variables xj , xℓ. Hence, no irreducible factor7 of Rs|xi=ym,xk=y−n

in Q(y)[x] is a polynomial in exactly both variables xj and xℓ.
By multiplying everything by π, we obtain the following equality in Q(x):∑
s∈I1

xcs

Rs(x) + (1− xn
i xm

k )
∑
s∈I2

xcs∏
p∈Ps

(1− xp) = P (x)
D(xj , xℓ)Q̃(x)

.

For every s ∈ I2,
∏

p∈Ps
(1−xp)|xi=ym,xk=y−n ̸= 0 since π ∤

∏
p∈Ps

(1−xp), by Lemma 20.

Consequently, for every s ∈ I2, xcs∏
p∈Ps

(1−xp)

∣∣∣∣
xi=ym,xk=y−n

is a well defined rational fraction

7 As Q(y) is a field, Q(y)[x] is also factorial.
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on x with coefficients in Q(y). Hence, by evaluating at xi = ym, xk = y−n, we obtain the
following equality on Q(y)(x):

∑
s∈I1

xcs |xi=ym,xk=y−n

Rs(x)|xi=ym,xk=y−n

=
P (x)|xi=ym,xk=y−n

D(xj , xℓ)Q̃(x)|xi=ym,xk=y−n

.

As D(xj , xℓ) has exactly two variables xj and xℓ, it is unchanged by the substitution.
Furthermore, it is easy to see that an irreducible polynomial of Q[x] remains irreducible in
Q(y)[x]. As D ∤ P |xi=ym,xk=y−n , D stays an irreducible factor in Q(y)[x] of the denominator
of the fraction

∑
s∈I1

xcs |xi=ym,xk=y−n

Rs|xi=ym,xk=y−n
once put under irreducible form.

However, none of the polynomials Rs|xi=ym,xk=y−n have irreducible factors that depend
on both variables xj , xℓ. We obtain a contradiction when reducing the sum on the same
denominator. So L is inherently ambiguous. ◀

▶ Remark 22. The last condition can be in practice replaced by the weaker condition that
there exists a rational number α ∈ Q>0 \ {1} such that D ∤ P |xi=αm,xk=α−n .
▶ Remark 23. If D is of the form 1−xp

j xq
ℓ , by Remark 16 the last condition can be in practice

replaced by the weaker condition that P |xi=ym,xj=zq,xk=y−n,xℓ=z−p is a non-null fraction,
with y, z two fresh variables.

We now use the interlacing criterion to prove the following proposition:

▶ Proposition 24. The following context-free languages are inherently ambiguous:
1. L1 = {aibjckdℓ : i = k or j = ℓ}
2. L2 = {aibjckdℓ : i ̸= k or j ̸= ℓ}
3. L3 = {aibjckdℓ : i = k or j ̸= ℓ} (and similarly L4 = {aibjckdℓ : i ̸= k or j = ℓ})
4. L′

2 = {aibjckdℓ : 3i ̸= 5k or 2j ̸= 3ℓ}
5. L4 = {aibjckdℓ : i < k or i + j < k + l}

Proof. We illustrate in the proofs several ways of verifying the hypotheses of our criterion.
1. The generating series of the semilinear set is:

1
(1−ac)(1−b)(1−d) + 1

(1−bd)(1−a)(1−c) −
1

(1−ac)(1−bd) = 1−ab−ac−ad−bc−bd−cd+2 abc+2 abd+2 acd+2 bcd−3 abcd
(1−ac)(1−bd)(1−a)(1−b)(1−c)(1−d)

Then define D(b, d) := 1− bd and π(a, c) := 1− ac, which are both irreducible and their
variables are interlaced. Let P be the numerator 1− ab− ac− ad− bc− bd− cd + 2 abc +
2 abd + 2 acd + 2 bcd− 3 abcd.
As P |a=y,c=1/y = 2 y2bd−4 ybd−y2b−y2d+2 bd+2 yb+2 yd−b−d

y , is of degree 1 in b, it is not
divisible by 1− bd in Q(y)[b, d]. By Theorem 21, L1 is inherently ambiguous.

2. The generating series of the semilinear set is:
1

(1−a)(1−b)(1−c)(1−d) −
1

(1−ac)(1−bd) = abc+abd+acd+bcd−ab−2 ac−ad−bc−2 bd−cd+a+b+c+d
(1−ac)(1−bd)(1−a)(1−b)(1−c)(1−d)

Still define π := 1− ac, D := 1− bd and P be the numerator. As (1− bd) ∤ P |a=2,c=1/2 =
1
2 (bd− b− d− 1), L2 is inherently ambiguous by Theorem 21 and Remark 22.

3. The generating series of the semilinear set is8:
1

(1−a)(1−b)(1−c)(1−d) −
1

1−bd ( 1
(1−a)(1−c) −

1
(1−ac) ) = 3 abcd−2 abc−abd−2 acd−bcd+ab+ac+ad+bc−bd+cd−a−c+1

(1−a)(1−b)(1−c)(1−d)(1−bd)(1−ac)

Still define π = (1 − ac), D = (1 − bd), and P be the numerator. For y, z two new
variables, let us compute P |a=y,b=z,c=y−1,d=z−1 = y2z2−2 y2z−2 yz2+y2+4 yz+z2−2 y−2 z+1

yz

which is a non null fraction. By Remark 23 and Theorem 21, L3 is inherently ambiguous.

8 Because i = k ∨ j ̸= ℓ is equivalent to ¬(¬(i = k) ∧ j = ℓ)
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4. The associated generating series is 1
(1−a)(1−b)(1−c)(1−d) −

1
(1−b3d2)(1−a5c3) , that is:

S(a, b, c, d) = a5b3c3d2−a5c3−b3d2−abcd+abc+abd+acd+bcd−ab−ac−ad−bc−bd−cd+a+b+c+d
(1−a)(1−b)(1−c)(1−d)(1−b3d2)(1−a5c3) .

Define π = (1 − a5c3) and D = (1 − b3d2), which are both irreducible with interlaced
variables. Let P be the numerator. Let us choose α = 2. As (1− b3d2) ∤ P |a=8,c=1/32 =
217
32 (bd− b− d + 1), L′

2 is inherently ambiguous9.
5. With a little more effort, we can check that the generating series associated to L4 is

abcd2−acd−bd−cd+c+d
(1−ac)(1−ad)(1−bd)(1−d)(1−c)(1−b) . Still define D = 1 − bd, π = 1 − ac and P be the
numerator. Let us choose α = 2. As P |a=2,c=1/2 = bd2 − bd− d/2 + 1/2 is not divisible
by D, by Theorem 21 and Remark 22, L4 is inherently ambiguous. ◀

▶ Remark 25. The previous proofs are based on the form of the semilinear set, and also work
for their word-variant, like {aibajbakbaℓb : i ̸= k or j ̸= ℓ}.

4.4 An application to the complement of walks in the quarter plane
We consider the quarter plane N2 immersed in Z2. We represent symbolically every vector of
infinite norm 1 by an arrow symbol: ← represents (−1, 0), ↘ represents (1,−1), etc. The
set of all these symbols S = {←,↙, ↓, ↘,→,↗, ↑,↖} is called the set of small steps of Z2.
A word in S∗ can be represented by a walk in the plane, starting from (0, 0), and following
the vector represented by each letter. It is confined in the quadrant if every point of the
path stays in the quarter plane N2. For Σ ⊆ S, we call WΣ the language of words that
are confined in the quarter plane. The study of such walks is an active domain of research
in combinatorics (see for instance [3, 4, 5, 19, 22, 23]), as they provide a large diversity of
generating series. Most of these walks are however not context-free languages, as there are
two degrees of liberty. However, for every Σ, the language Σ∗ \WΣ of walks on Σ that leave
the quadrant is context-free: a pushdown automaton non deterministically chooses one axis
and accepts the word if the walk leaves this axis. A walk is called singular if Σ is a subset of
one of the following sets10 [22]:

It is easy to see that singular walks are in fact unidimensional: their steps constrain the
walk so that it cannot cross one of the two axes (except at (0, 0)), so that both WΣ and
Σ∗ \WΣ are easily unambiguous context-free [22]. On the contrary, with the two criteria of
this section, we can prove the following proposition:

▶ Proposition 26. The complement of every non-singular walk on the quarter plane is an
inherently ambiguous context-free language.

5 Conclusion

In conclusion, generating series are a beautiful and useful tool to study the question of
inherent ambiguity on context-free languages. It would be interesting to find other criteria
to study the inherent infinite ambiguity of languages that have simple asymptotic behaviour.
Can we detect the infinite ambiguity of L∗, with L = {anbmcp : n = m or n = p} [24,
Satz 4.2.1] using generating series? One lead would be to start by proving the inherent
k-ambiguity of bounded languages, for a given k. For instance, if we can show that Lk is

9 We could also have checked that P |a=y3,b=z2,c=y−5,d=z−3 is not the null fraction.
10 The last set is not called singular nor considered in [22], since walks with such steps leave the quadrant

at the first step.
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inherently f(k)-ambiguous with f(k)→k→∞ ∞ using generating series, then we could prove
that L∗ is inherently infinitely ambiguous. Ginsburg and Ullian’s criteria (see [14, 29]) give
a characterisation of the degree of ambiguity of bounded languages: a bounded context-free
language is recognized by a k-ambiguous grammar if and only if its semilinear set can be
decomposed as a finite union of stratified linear set, each with independent sets of periods,
such that every intersection of l > k of these linear sets is empty. This implies that the
generating series of the semilinear set can be expressed by inclusion-exclusion as a sum of
generating series of linear stratified sets and their Hadamard’s product. It looks challenging to
find a pattern that can only occur in the intersection of k stratified linear sets, or equivalently
in the Hadamard’s product of k of their generating series.

As for inherent ambiguity of bounded languages, finding inherently ambiguous languages
that are not covered by Theorems 12 and 21 would be a nice challenge to improve them. We
hope that having a stronger understanding on their series would help to determinate whether
inherent ambiguity is decidable or not on bounded context-free languages.
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A Proofs of Section 3

A.1 Proof of Proposition 6
▶ Proposition 6. There exist constants b1, b2 > 0 such that for n sufficiently large,

b1 logk n ≤ ℓn

kn−1 ≤ b2 logk n .

In other words, ℓn = Θ(kn−1 logk(n)).
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Proof. For a given prefix s ∈ Σ∗, we denote ℓs
n the number of words of size n in Lk of the

form s#w, and for r ≥ 1, ℓr
n =

∑
|s|=r−1 ℓs

n denotes the number of words in Lk of the form
s#w, of length n, and such that |s| = r − 1 ≥ 1.

Upper bound. Let us fix a word s, of length r− 1. We recall that ℓs
n counts the number

of words of length n of the form s#w , such that w contains the factor sR. By removing this
last constraint on w, we easily obtain that ℓs

n ≤ kn−r.
Moreover, by partitioning according to the position j in the word w where the factor sR

appears, we also deduce ℓs
n ≤

∑n−2r+1
j=0 kjkn−2r+1−j = (n− 2r + 2)kn−2r+1 ≤ nkn−2r+1.

Hence ℓs
n ≤ min(kn−r, nkn−2r+1) .

Note that min(kn−r, nkn−2r+1) = kn−r if r ≤ logk n + 1. Finally, for all r ≥ 2, ℓr
n =∑

|s|=r−1 ℓs
n ≤ kr−1 min(kn−r, nkn−2r+1), and so we have:

ℓr
n ≤

{
kn−1 if r < logk n + 1

nkn−r if r ≥ logk n + 1
Majoring ℓn by the sum of all ℓr

n, and partitioning according to the position of r with
respect to logk n + 1, we obtain:

ℓn ≤
∑

2≤r<logk n+1
ℓr

n +
∑

r≥logk n

ℓr
n ≤ kn−1(logk n− 1) + nkn

∑
r≥logk n+1

k−r

≤ kn−1(logk n− 1) + nknk− logk n−1 k

k − 1

= kn−1(logk n− 1) + kn−1 k

k − 1 ∼n→∞ kn−1 logk n

So there exists a constant b2 > 0 such that for n large enough, ℓn ≤ b2kn−1 logk n.
Lower bound. We still look at a word of size n of Lk of the form s#w, with s of size

|s| = r − 1. We split w into t consecutive blocks of size r − 1, with t = ⌊n−r
r−1 ⌋. Note that the

last remaining block is of size r1 = (n− r)− (r − 1)t.
We want to lower-bound the number of words of Lk associated with a prefix s of size

r − 1 by looking only at the words w having sR as one of their t blocks. Thus:

ℓs
n ≥ card{w : sR appears in one of the t blocks of w, with |w| = n− r}

= kn−r − card{w : sR does not appear in any of the t blocks of w, with |w| = n− r}

= kn−r − kr1(kr−1 − 1)t = kn−r

(
1−

(
1− 1

kr−1

)t
)

since r1 − (n− r) = −t(r − 1). As this bound depends only on |s| = r, we deduce that

ℓr
n ≥ kn−1

(
1−

(
1− 1

kr−1

)t
)

.

Notice that
(
1− 1

kr−1

)t = exp
(
⌊n−r

r−1 ⌋ ln
(
1− 1

kr−1

))
≤ exp

(
−⌊n−r

r−1 ⌋
1

kr−1

)
.

Fix r such that r ≤ 1 + logk n
2 . Then − 1

kr−1 ≤ − 1√
n

. Besides, for n ≥ 4, n − r ≥ n
2

and n − logk n ≥ n
2 . Hence

⌊
n−r
r−1

⌋
≥ n−r

r−1 − 1 ≥ n
logk n − 1 ≥ n

2 logk n . Consequently for

r ≤ logk n
2 + 1:

1− (1− 1
kr−1 )t ≥ (1− exp(−

√
n

2 logk n )) ,

where the right side does not depend on r, and tends to 1 when n→∞. So for n sufficiently
large, we can lower-bound it by 1/2. Thus there exists a rank n0 > 0 independent of r such
that for every n ≥ n0 and r ≤ logk n

2 + 1, we have ℓr
n ≥ 1

2 kn−1.
Hence, for n ≥ n0, ℓn ≥

∑
r−1≤ 1

2 logk n ℓr
n ≥ 1

4 kn−1 logk n. ◀
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B Proofs of Section 4

B.1 Proof of Lemma 18
We need the following classical folklore lemma:

▶ Lemma 27. If f ∈ Q[x, y] is homogenous, so is any of its divisors.

Proof. Let us factorize f = gh, with g, h ∈ Q[x, y]. We can decompose g =
∑r

i=s gi and
h =

∑r′

i=s′ hi as a sum of homogenous polynomials where for every i, hi and gi are either zero
or of total degree i. Furthermore, let us suppose that gs, gr, hs′ and hr′ are non zero. Hence
f = (

∑r
i=s gi)(

∑r′

i=s′ hi), and the highest total degree term of f is grhr′ , of total degree
r + r′, and the lowest total degree term is gshs′ , of total degree s + s′. As f is homogenous,
r + r′ = s + s′, and as s ≤ r and s′ ≤ r′, we get that s = r and s′ = r′; this means that g

and h are homogenous. ◀

The following lemma is also folklore, the proof is given for completeness.

▶ Lemma 18 (Irreducibility of 1 − xnym). Let n, m ∈ N. The polynomial 1 − xnym is
irreducible in Q[x, y] if and only if n ∧m = 1.

Proof. If n and m are not coprime, let δ > 1 be a common divisor. Then 1 − xnym =
1− (xn/δym/δ)δ = (1− xn/δym/δ)

∑δ−1
k=1 xkn/δykm/δ is not irreducible.

If n and m are coprime, we adapt the nice proof of [9], by making it a little more
elementary and thus a little less elegant. Let us write f = 1− xnym, and decompose f = gh.

Without loss of generality, g = (a0 + . . . + ar′xryr′) with a0 ̸= 0, ar′ ̸= 0, r′ is the degree
of g in the variable y, and r is the degree in x of the polynomial that is the coefficient of
yr′ . Similarly, h = (a−1

0 + . . . +−a−1
r′ xsys′) with a0 ̸= 0, ar′ ̸= 0, s′ the degree of h in the

variable y, and s the degree in x of the coefficient of ys′ . Then r′ + s′ = m, and we can
suppose without loss of generality that r′ ̸= 0.

The polynomial Y nm −Xnm = Y nmf(Xm, Y −n) = Y nr′
g(Xm, Y −n)Y ns′

h(Xm, Y −n) is
homogenous. As Y nr′

g(Xm, Y −n) and Y ns′
h(Xm, Y −n) are both polynomials in K[X, Y ],

they are homogenous by Lemma 27.
Hence a0Y nr′ + . . . + ar′Xmr is homogenous, and mr = nr′. As m and n are coprime,

m divides r′, and as r′ ̸= 0, m ≤ r′, and consequently m = r′ and s′ = 0. So h(x, y) is a
polynomial h̃(x) in x only, but Y ns′

h(Xm, Y −n) = Y ns′
h̃(Xm) is homogenous, so h̃(Xm) is

homogenous too. As a0 ̸= 0, h is a constant. So f is irreducible. ◀

B.2 Proof of Lemma 19
▶ Lemma 19. Let n, m ∈ N>0. Then 1− xnym = (1− xαyβ)P (x, y) where α ∧ β = 1, and
P (x, y) is a non zero polynomial whose coefficients are in {0, 1} . Furthermore α = n/(n∧m)
and β = m/(n ∧m).

Proof. Let us write δ = n ∧m. Then 1− xnym = (1− xn/δym/δ)P (x, y), where P (x, y) =∑δ−1
k=1 xkn/δykm/δ is non zero polynomial whose coefficients are in {0, 1}. By definition of

gcd, (n/δ) ∧ (m/δ) = 1. ◀

B.3 Proof of Lemma 20
▶ Lemma 20. Let S = c + P ∗ a stratified linear set with linearly independent periods. Let
k ≥ 1, n, m ≥ 1 be three integers such that n ∧m = 1, and i ̸= j be two indices of variables,
and y a fresh new variable. Then:
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if (1− xn
i xm

j )k |
∏

p∈P (1− xp), then k = 1;
if (1− xn

i xm
j ) ∤

∏
p∈P (1−xp), then

∏
p∈P (1−xp)|xi=ym,xj=y−n ̸= 0, seen as en element

of Q(y)[x], the ring of polynomials over the field Q(y).

Proof. As the period vectors are linearly independent, there exist at most two vectors
p1, p2 ∈ P such that (1− xp1) and (1− xp2) are in Q[xi, xj ].

Let us write (1− xp1) = (1− xn1
i xm1

j ) = (1− x
n1/d1
i x

m1/d1)
j )P1(xi, xj), with n1, m1 ≥ 1,

P1(xi, xj) which is a non zero polynomial with coefficients in {0, 1}, and d1 = n1 ∧ m1.
In particular, P1(1, 1) ̸= 0. Similarly, let us write (1 − xp2) = (1 − xn2

i xm2
j ) = (1 −

x
n2/d2
i x

m2/d2
j )P2(xi, xj) with the same conditions and notations.

As P1(1, 1) can not be zero, P1 is not divisible by any polynomial of the form (1−xp) (and
the same holds for P2). Furthermore, the other factors in the denominator

∏
p∈P (1− xp)

are not divisible by the irreducible polynomials (1− x
n1/d1
i x

m1/d1
j ) et (1− x

n2/d2
i x

m2/d2
j ), as

they do not depend on simultaneously xi and xj .
Finally, (n1/d1, m1/d1) ̸= (n2/d2, m2/d2), as otherwise we would have d2p1 = d1p2,

implying that p1 and p2 would be linearly dependent.
Hence, every irreducible polynomial of the form (1−xn

i xm
j ) with n∧m = 1 has multiplicity

at most 1 in the unique irreducible factorization of
∏

p∈P (1− xp). The first point is
proved. Note that every other irreducible factor depending on both xi and xj are divisors of
polynomials with coefficients in {0, 1}.

The second point comes from the following additional observations:
a non null polynomial with coefficients in {0, 1}, and consequently its divisors, does not
become the null fraction by replacing some of its variables by ym or y−n. Indeed, when
we write the rational fraction after the substitution on irreducible form, the denominator
is a power of y, and the numerator is a sum of polynomials with positive coefficients.
for s /∈ {i, j}, 1−xps

s stays the same after the substitution, while (1−xpi

i )|xi=ym = 1−ympi

is a non null polynomial in y, and (1 − x
pj

j )|xj=y−n = ynpj −1
ynpj is a non null element of

Q(y).
similarly a polynomial of the form (1 − xpt

t xps
s ) with pt, ps ≥ 1 and {xt, xs} ̸= {xi, xj}

does not vanish by replacing xi by ym and xj by y−n. For instance, for s /∈ {i, j},
(1− x

pj

j xps
s )|xj=y−n = ynpj −xps

s

ynpj is a non null fraction.
By the previous observations, the only irreducible factors of

∏
p∈P (1−xp) that risk canceling

after the substitution xi = ym, xj = y−n are of the form (1 − xn1
i xm1

j ) with n1, n2 ≥ 1,
n1∧n2 = 1 and (n, m) ̸= (n1, n2). Then, the substitution replaces such a polynomial with the
fraction (1−ymn1−nm1) in Q(y), which becomes null if and only if mn1−nm1 = 0, if and only
if n = n1 et m = m1 (as n ∧m = 1 and n1 ∧ n2 = 1). Consequently, no irreducible factor of∏

p∈P (1−xp) becomes zero in Q(y)[x] after the substitution, so
∏

p∈P (1−xp)|xi=ym,xj=y−n

is a product of non-null polynomials in Q(y)[x], hence is non null. ◀

B.4 Computation of the last series of Proposition 24
Let us explain how we computed the series of the semilinear set associated to L4 = {aibjckdℓ :
i < k or i + j < k + l}. Let us notice that i < k or i + j < k + l⇔ ¬(i ≥ k and i + j ≥ k + l).

Hence S(a, b, c, d) = 1
(1−a)(1−b)(1−c)(1−d) −

∑
n≥p and n+m≥p+q anbmcpdq. Let us write

S2(a, b, c, d) =
∑

n≥p and n+m≥p+q

anbmcpdq =
+∞∑
n=0

an
n∑

p=0
cp

+∞∑
m=0

bm

(n−p)+m∑
q=0

dq .
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Then

S2(a, b, c, d) = 1
1− d

+∞∑
n=0

an
n∑

p=0
cp

+∞∑
m=0

bm(1− dn−p+m+1)

= 1
(1−b)(1−c)(1−d)

+∞∑
n=0

an(1− cn+1)− d
(1−d)(1−bd)

+∞∑
n=0

(ad)n
n∑

p=0
(c/d)p

= 1
(1−b)(1−c)(1−d) ( 1

1−a −
c

1−ac )− d
(1−d)(1−c/d) ( 1

1−ad −
c/d

1−ac )

Hence, we obtain after simplification that S(a, b, c, d) = abcd2−acd−bd−cd+c+d
(1−ac)(1−ad)(1−bd)(1−d)(1−c)(1−b) .

B.5 Extra properties
▶ Lemma 28 (Announced in Remark 16). Let π be polynomial of the form π = 1− xv1

1 . . . xvk

k

with v1, . . . , vd > 0 and vk+1 = . . . = vd = 0 (we can without loss of generality rename
the variables). We introduce k − 1 new variables yi, and perform the substitution x1 ←
y−v2

1 , xd ← y
vk−1
k−1 and for 1 < i < k, xi ← y

vi−1
i−1 y

−vi+1
i . Notice that after this substitution, π

vanishes. Suppose that a polynomial of the form π′ = 1− xv′ vanishes after the substitution.
Then v′ and v are linearly dependent over Q.

Proof. It is easy to see that in the case where π′ has a non null degree in xi for i > k,
then it does not vanish after the substitution. Hence π′ only depends on x1, . . . , xk, and
v′

k+1 = . . . = v′
d = 0. After performing the substitution on xv′ , we hence obtain:

F (y) =
(

1
yv2

1

)v′
1
(

yv1
1

yv3
2

)v′
2

. . .

(
y

vk−2
k−2

yvk

k−1

)v′
k−1 (

y
vk−1
k−1

)v′
k

For π′ to be zero, the valuation of every variable yi must be zero in F . For 1 ≤ i ≤ k − 1,
we notice that the valuation of yi is equal to viv

′
i+1 − vi+1v′

i, hence using a determinant

notation,
∣∣∣∣vi vi+1
v′

i v′
i+1

∣∣∣∣ = 0. This means that for all 1 ≤ i ≤ k − 1, there exists λi such that(
vi

v′
i

)
= λi

(
vi+1
v′

i+1

)
, with λi ̸= 0 since all the vi’s are non null. Hence every vector

(
vi

v′
i

)
is colinear to

(
v1
v′

1

)
, hence the matrix

(
v1 . . . vd

v′
1 . . . v′

d

)
has rank 1: v and v′ are linearly

dependent on Q. ◀

▶ Lemma 29. If D is an irreducible polynomial of Q[x], and y is a fresh new variable, then
D is also an irreducible polynomial of Q(y)[x].

Proof. By contradiction suppose that D = fg, with f, g two non constant polynomials of
Q(y)[x]. Each coefficient of f is a rational fraction of y, of the form p(y)/q(y), for which
both p and q has a finite set of roots in Q – and the same holds for g. Hence we can find a
rational number α ∈ Q that is not among these roots; when evaluating the equality D = fg

at y = α, then D stays the same, and f and g becomes non constant polynomials in Q[x],
contradicting the irreducibility of D. ◀

C Proof sketch of Proposition 26

▶ Proposition 26. The complement of every non-singular walk on the quarter plane is an
inherently ambiguous context-free language.
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Proof sketch. For Σ ⊆ P = {←,→, ↑, ↓,↗,↘,↖,↙}, let us denote by LΣ = Σ∗ \ WΣ
the language describing walks with steps in Σ that leave the quarter plane. Notice that if
Σ1 ⊆ Σ2 ⊆ P, as LΣ2 ∩ Σ∗

1 = LΣ1 , if LΣ1 is inherently ambiguous, so is LΣ2 .
Let us denote by σ the letter-morphism representing the axial symmetry of axis y = x

(for instance, σ(→) = ↑, σ(↗) =↗, and σ(↖) =↘). It is easy to see that for Σ ⊆ P and
w ∈ Σ∗, w ∈ LΣ if and only if σ(w) ∈ Lσ(Σ), so that LΣ is inherently ambiguous if and only
if Lσ(Σ) is.

We then enumerate all non-singular sets Σ ⊆ P , keep the minimal ones for inclusion, and
choose arbitrarily one set per symmetry class with respect to σ. Then only nine sets remain
to study:

We can divide those sets in three cases. In this sketched proof, we only detail the first case.

Case Σ = {←, ↓,↗}, Σ = {↖, ↓,↗} and Σ = {→, ↑,←, ↓}

If Σ = , notice that LΣ ∩ ↗∗↓∗←∗= {↗n↓m←p : n < m ∨ n < p}.

If Σ = , notice that LΣ ∩ ↗∗↓∗↖∗= {↗n↓m↖p : n < m ∨ n < p}.

If Σ = , notice that LΣ ∩ (↑→)∗ ↓∗←∗= {(↑→)n ↓m←p : n < m ∨ n < p}.

Let us call S = {(n, m, p) : n < m ∨ n < p}. As n < m ∨ n < p⇔ ¬(n ≥ m ∧ n ≥ p)⇔
¬(n ≥ m ≥ p ∨ n ≥ p > m), we have:

S(a, b, c) = 1
(1−a)(1−b)(1−c) −

1
(1−abc)(1−ab)(1−a) −

ac
(1−abc)(1−ac)(1−a)

= a2b2c2−2 abc−cb+b+c
(1−ac)(1−ab)(1−abc)(1−c)(1−b)

We can check that 1 − abc does not divide the numerator. Hence by Theorem 12, LΣ is
inherently ambiguous for every set Σ of this section.

The remaining two cases are similar: we can associate to Σ = {→, ↑,↙}, Σ = {→,↗,

←,↙} and Σ = {→,↖,↙} the semilinear set S = {(n, m, p) : n < p ∨ m < p}, of
generating series (1−ab)c

(1−c)(1−a)(1−b)(1−abc) ; and to Σ = {↓,→,↖}, Σ = {↘,→,↖} and Σ =
{↘,↗,↖} the semilinear set S = {(n, m, p) : n < m ∨ m < p}, of generating series

a2b2c−abc−ab−bc+b+c
(1−abc)(1−a)(1−ab)(1−b)(1−c) . ◀


