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Abstract— Information in real-world applications is often
vague, imprecise and uncertain. Ignoring the inherent imperfect
nature of real-world will undoubtedly introduce some deforma-
tion of human perception of real-world and may eliminate several
substantial information, which may be very useful in several
data-intensive applications. In database context, several fuzzy
database models have been proposed. In these works, fuzziness
is introduced at different levels. Common to all these proposals is
the support of fuzziness at the attribute level. This paper proposes
first a rich set of data types devoted to model the different kinds
of imperfect information. The paper then proposes a formal
approach to implement these data types. The proposed approach
was implemented within a relational object database model but it
is generic enough to be incorporated into other database models.

Index Terms— Fuzzy database, fuzzy set, imperfect informa-
tion, possibility distribution.

I. I NTRODUCTION

Information in real-world applications is often vague, im-
precise and uncertain. Ignoring the inherent imperfect nature
of real-world will undoubtedly introduce some deformation
of human perception of real-world and may eliminate several
substantial information, which may be very useful in several
data-intensive applications (e.g. CAD/CAM, geographicaland
environmental information systems, decision support systems).
In database context, there are several proposals to develop
database models that support fuzziness, uncertainty and im-
preciseness of real-world [23]. Most efforts have been oriented
towards the extension of the conventional relational database
models [4], [5], [11], [18] and towards the development of
tools that allow for imprecise querying most often in relational
database contexts [20]. We enumerate also some extensions
of object-oriented [2], [10], [15], [24] and semantic database
models [3], [7]–[9], [12], [14], [22].
In these different extended database models, vagueness, im-
precision and uncertainty are introduced at different levels.
Within object-oriented and semantic database models, we may
distinguish three levels as pointed by [25]. The first level

concerns classes, relationships and attributes domains which
may be fuzzy and may have degrees of membership (d.o.m)
in the model. The second level is related with the fuzzy
occurrences of objects/entities and relationships. This means
that entities/objects and instances of relationships belong to
their classes and relationships with a given d.o.m. The third
level concerns the attributes where these last ones are autho-
rized to take imprecise, uncertain and vague values. Works
within the relational database model propose the addition of
uncertainty essentially at the tuple level where tuples belong
to their relations with given degrees of membership, and at
the attribute level by authorizing values of attributes to be
imprecise, uncertain and/or vague.
Common to all these proposals is the support of imperfect
information (i.e. uncertain, imprecise, or fuzzy) at the attribute
level. This paper proposes first a rich set of data types devoted
to model the different kinds of imperfect information as well as
conventional crisp data types. To facilitate data manipulation
and for computing efficiency, the different types of attributes
values (crisp, imprecise, uncertain, fuzzy, unknown, unde-
fined or null) are uniformly represented through possibility
distribution. The paper then proposes a formal approach to
implement these data types. The proposed approach was
implemented within a relational object database model but it is
generic enough to be incorporated into other database models,
especially in non first-normal-form relational, object-oriented
and semantic database models.
The rest of the paper is as follows. Section II briefly describes
some proposals of fuzzy databases. Section III enumerates
the proposed data types devoted to represent different kinds
of imperfect information. Section IV provides our proposal
for implementing imperfect information at the attribute level.
Section V concludes the paper.

II. FUZZY DATABASES

Fuzzy information has been extensively investigated in
the context of relational database model. The earliest works
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focalize on the modelling of incomplete information (i.e.
null, undefined and unknown data types) within attributes
values. To support the modelling of imperfect information
and complex objects, it was necessary to relax the first-
normal-form assumption in relational database model by
authorizing attributes to be multi-valued. Accordingly, several
non first-normal-form relational database models have been
proposed.
Later models in fuzzy relational databases are based on the
use of similarity relation [4], proximity relation [11], [18],
or resemblance relation [17] defined on the domain of scalar
data types where each pair of scalars in the attribute domain
are mapped, through similarity, proximity or resemblance
relation, to the interval [0,1]. For instance, in [4] the authors
propose an extended fuzzy relational database model based on
similarity relations. In [18] the authors replace the similarity
relation used in [4] with a more general proximity relation.
This permits to remove the max-min transitivity restriction
associated with similarity relation and so gives more freedom
to the users for expressing their values structures. Another
extension of the relational data model basing on proximity
relation is provided in [11] by extending the proposals of [18]
through a higher characterization of the proximity relation
proposed in [18].
Another family of extended fuzzy relational models are based
on using fuzzy sets and possibility distributions associated
with either tuples or attributes values or with both. At the
tuple level, each tuple is associated with either a d.o.m
indicating to which extent the tuple belongs to its relation
or a possibility distribution measuring the possibility that
the tuple belongs to its relation. At the attribute level, the
attributes values are represented as possibility distribution of
the form {µ(u1)/u1, µ(u2)/u2, · · · , µ(un)/un} whereµ(ui)
measures the possibility that the attribute has the valueui.
More complex fuzzy relational database models are obtained
by incorporating proximity relation, possibility distribution
and fuzzy sets (see for example [6] for more details). For
example, in [13] the authors propose an extended fuzzy
relational model where possibility and proximity arise in a
relation simultaneously.
On the other hand, the relational database model is often used
for implementing other databases models, essentially semantic
and object-oriented ones. For instance, in [8] the authors
propose a methodology for the design and development
of fuzzy relational databases. This methodology was used
for mapping a fuzzy ER into a relational one. In [22], the
IFO model was extended to the ExIFO (Extended IFO) to
represent uncertainty as well as precise information. The
authors provide also an algorithm for mapping the schema
of the ExIFO model to an extended NF2 database model. In
[12], the IFO data model is extended to support fuzziness.
The obtained model, denoted IF2O, is then mapped into a
relational fuzzy database schema.
In semantic and object-oriented database models fuzzinessis
introduced with one or several of the three levels mentioned
in the introduction. These may concern all or a subset of
the constructs and relationships of the model. Generally,
the entity/class and subclass/superclass relationships are

associated with d.o.m that indicate the extent to which
entities are encapsuled in their classes or the extent to which
subclasses are specializations of their superclasses. These
works differ essentially on the ways the different d.o.m are
computed.
We enumerate several extensions of the semantic data models.
An extension of the graph-based IFO database model for
supporting uncertainty and imprecision is provided in [19].
In this paper the authors introduce proposals for handling ill-
defined values including values with semantic representation,
values with semantic representation and conjunctive meaning,
values with semantic representation and disjunctive meaning,
representation of uncertainty. The uncertainty is supported at
attribute, object and class levels.
Basing on fuzzy set theory, extension of the major constructs
and relationships of the well-known ER/EER models—
including generalization/specialization, superclass/subclass,
and shared subclass and category—to support uncertainty
and imprecision of real-world at model/type (i.e. entities,
relationships and attributes domains have d.o.m in the model),
type/value (i.e. values of entities and relationships haved.o.m
in their corresponding entities and relationships types) and
attributes levels are introduced in [9].
Another proposal for extending the ER data model to support
fuzziness is reported in [8]. The possibility-based Fuzzy ER
data model supports fuzziness and uncertainty at attribute,
entity, relationships and instance/entity relationshipslevels.
In [22], based on similarity relations, the IFO model
was extended to the ExIFO (Extended IFO) to represent
uncertainty as well as precise information. ExIFO support
uncertainty at the attribute, entity, and instance/class levels.
The authors in [14] use fuzzy set theory and possibility
distribution to extend the EER model into a fuzzy EER
(FEER) one to cope with imperfect as well as complex
objects at and model/tytpe, type values and attributes levels.
Based on fuzzy set theory and possibility distribution, the
author in [12] introduces fuzziness in the different constructs
of the semantic IFO data model, including printable type,
abstract type, free type, grouping, aggregation, fragmentand
ISA relationship.
The Fuzzy Semantic Model (FSM) is a recently proposed
fuzzy semantic data model [3], [7]. FSM uses basic concepts
of classification, association, specialization, generalization,
composition, aggregation and grouping that are commonly
used in semantic modelling and supports the fuzziness of
real-world at attribute, entity, class and intra and inter-classes
relationships levels.
There are also several recent extensions to object-oriented
database models. The FOOD (Fuzzy Object-Oriented
Database) model in [24] is a similarity-based fuzzy object-
oriented data model. FOOD supports fuzziness at attribute,
object/class as well as subclass/superclass relations levels.
One important aspect of FOOD is that it supports the AND,
OR and XOR semantics to handle the multi-valued attributes
values.
The UFO (Uncertainty and Fuzziness in Object-oriented) in
[10] is another object-oriented database model that supports
fuzziness and uncertainty at attribute, object, class, and
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entity/class and subclass/superclass relations levels. The
authors also extend fuzziness to the methods level. In UFO,
imprecision and uncertainty are expressed by means of
normalized possibility distribution and non-zero plinth within
a possibility distribution, respectively; and they are modelled
by means of the “role objects” which is a new concept
introduced by the authors. As mentioned by the authors,
the role objects model uncertain, tentative information about
objects and thus the uncertain roles that the objects may play.
A fuzzy object-oriented data model that is a follow-on of
the IFO graph-based object model was proposed in [2]. In
this paper, the authors use linguistic qualifiers to represent
the notion of the strength and associate it with instance and
object-class relationships.
In [15], based on possibility distribution and semantic measure
method of fuzzy data, the authors extend some basic concepts
in object-oriented databases, including attributes, objects,
classes, objects-classes relationships, subclass/super-class and
multiple inheritances in order to support fuzzy information.
Which is common in all these database models is the
fuzziness at the attribute level. Basically, attributes may have
one of the following natures:

• Single-valued: means that the attribute cannot have more
then one value at a given time.

• Unknown: means that we cannot decide which is the value
of the attribute among several plausible values.

• Undefined: means that there is not any defined value that
can be assigned to the attribute.

• Null: means that we cannot even know whether the
attribute’s value is unknown or undefined.

• Multi-valued: means that the attribute can have several
values at a given time.

The null, unknownandundefineddata types permit to model
incompleteness in databases. Several other data types devoted
to model imperfect information will be introduced later in
section III.
Note finally that the values of a multi-valued attribute are
often related with different logical connectors (i.e. AND,OR
or XOR) but this is not dealt with here.

III. I MPERFECT INFORMATION REPRESENTATION

The objective of fuzzy databases is primarily to handle
imperfect information in databases. In [12], the author dis-
tinguishes five types of imperfect information:

• Inconsistency: is a kind of semantic conflict that holds
when some aspects of real-world is irreconcilably repre-
sented more than once in the database (e.g. when theage
of a person is stored as 34 and 37);

• Imprecision: is relevant to the content of an attribute value
and means that a choice must be made from a given range
(interval or set) values (e.g. theage of a person is the
set{17, 18, 19, 20} or theheight is in the interval [1.00-
1.95]);

• Vagueness: is like imprecision but which is generally
represented with linguistic terms (e.g. theageof a person
is the linguistic “young”);

• Uncertainty: is related to the degree of truth of attribute
value, and it means that we can apportion some, but not
all, of our belief to a given value or groups of values. It
results from a lack of information and is that related to the
designer and not to the object/concept being modelled.
(e.g. the possibility that theage of a person is 35 right
now should be about 90%);

• Ambiguity: it means that some elements of the model lack
complete semantics leading to several possible interpre-
tations.

The same author adds that imprecision, vagueness and uncer-
tainty are the main types of imperfect information. Fuzziness
comes from the impossibility to define sharp or precise bor-
ders, and therefore it is often associated with vagueness. In
fuzzy database literature, uncertainty and imprecision are often
represented through fuzzy sets and possibility distribution.
In turn, vagueness is often represented through fuzzy set
theory, similarity, proximity and/or resemblance relations. The
combination of several approaches is also frequent.
In addition to fuzzy, imprecise and uncertain, values of
attributes may be unknown, undefined or null-valued. To
facilitate data manipulation and for computing efficiency while
giving the maximum flexibility to the users, the different
types of attributes values (crisp, imprecise, uncertain, fuzzy,
unknown, undefined or null) will be uniformly represented
through possibility distribution.
The following list enumerates the different data types which
we think permit to model almost all kinds of imperfect
information. Note that these types are extensions of the ones
proposed in [16]. We also added several new ones. Especially,
linguistic labels defined on sinusoidal possibility distributions
and the “more than” and “less than” data types are not defined
in [16].

• Fuzzy range. This data type handles the “more or less”
information between two numeric values. The graphical
representation of possibility distribution of this data type
is shown through Model I.1 in Table I and may be written
as {µ(z)/z : z ∈ D}. D is the domain of the attribute
values andµ(z) is the d.o.m ofz in the fuzzy set on
which the attribute is defined. This set is denotedA in
Table I. As it is shown in Table I, four parameters are
required to define the possibility distribution of this data
type: α, β, γ and λ. The parametersβ and γ represent
the support of the fuzzy set associated with the attribute
values andα andλ represent the limits of the transition
zones;

• Approximate value. This data type handles the “about”
some numeric value information. The graphical repre-
sentation of possibility distribution of this data type is
shown through Model I.2 in Table I and may be written as
{µ(z)/z : z ∈ D}. Here, three parameters are required:
the central value of the conceptc, the limit of left
transition zonec− and the limit of right transition zone
c+;

• Interval. Model I.3 in Table I shows the graphical rep-
resentation of the possibility distribution of a classical
crisp range. Mathematically, this possibility distribution
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TABLE I

DIFFERENT DATA TYPES

Data typeA Model Representation Parameters µA(z)

Fuzzy range label e.g.age= more or less
between 20 and 30

I.1

6

-
�
�

L
L

α β γ λ z

1

α, β, γ, λ
µA(z) =

8>>>><>>>>: 1, if β ≤ z ≤ γ;
λ−z
λ−γ

, if γ < z < λ;
z−α
β−α

, if α < z < β;

0, Otherwise.

Approximate value e.g.age=about 35

I.2

6

-
�

�
T
T

cc− c+ z

1

c, c−, c+

µA(z) =

8>>>>>><>>>>>>: 1, if z = c;

c+−z

c+−c
, c < z < c+ ;

z−c−

c−c−
, c− < z < c;

0, Otherwise.

Interval e.g.age∈ [25, 35]

I.3

6

-
α β z

1

α, β
µA(z) =

�
1, if α ≤ z ≤ β;
0, Otherwise.

Less than value e.g. age= less than 35

I.4

6

-
L
L

γ λ z

1

γ, λ
µA(z) =

8><>: 1, if z ≤ γ;
0, if z < λ;
λ−z
λ−γ

, if γ ≤ z ≤ λ.

More than value e.g. age= more than 35

I.5

6

-
�
�

α β z

1

α, β
µA(z) =

8><>: 1, if z ≥ β;
0, if z ≤ α;
z−α
β−α

, if α < z < β.

Unknown

I.6

6

-
z

1

µA(z) = 1 ; z ≥ 0

Undefined

I.7

6

-
z

1

µA(z) = 0 ; z ≥ 0

Real number e.g.age=30

I.8

6

-
c z

1

c
µA(z) =

�
1, if z = c;
0, Otherwise.

Linguistic label e.g.age=young

II.1 z

1

c

a a, c
µA(z) = 1

(1+(a(z−c)2
; z ≥ 0

Linguistic label e.g.age=young

II.2 z

1

.5

b2

a2

b1

a1

a1, a2, b1, b2
µA(z) =

8>>>>><>>>>>: 1

1+
z−a1−b1

b1

, if z < a1 + b1 ;

1, if a1 + b1 ≤ z ≤ a2 − b2 ;
1

1+
z−a2+b2

b2

, if z > a2 − b2 .

Linguistic labelage=very old

II.3 z

1

.5

b1

a1

a1, b1
µA(z) =

8><>: 1

1+
z−a1−b1

b1

, if z < a1 + b1 ;

1, if a1 + b1 ≤ z;

Linguistic label e.g.age=very young

II.4 z

1

.5

b2

a2

a2, b2
µA(z) =

8><>: 1, if z ≤ a2 − b2 ;
1

1+
z−a2+b2

b2

, if z > a2 − b2 .

may be written as{µ(z)/z : z ∈ D}. The parameters
required here are the limits of the rangeα andβ;

• Less/More than value. These data types focalize only on
one side of a value. The graphical representations of the
possibility distributions of “less than” and “more than”
data types are shown in Models I.4 and I.5 in Table I,

respectively. Mathematically, the possibility distribution
associated with both of them may be written as{µ(z)/z :
z ∈ D}. Two parameters are required to define this data
type: the value of interest (γ or β) and the limit of the
transition range (λ or α);
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• Set of possible scalar assignments. This permits to han-
dle attributes defined on a set of scalars. For exam-
ple, the height of a person may be defined as the set
height={tall,very tall}, which is represented through pos-
sibility distribution as{1.0/tall,1.0/very tall}. A proximity
relation is often defined on the domain of this data type.
We denote this data type with Model III.1;

• Set of possible numeric assignments. This data type
is similar to the previous one. It differs only on the
fact that it is defined on a set of numeric values. For
example, the height of a person may be defined as
the setheight={1.85,1.95}, which is represented through
possibility distribution as{1.0/1.85,1.0/1.95}. This data
type will be designed as Model III.2;

• Possibility distribution over discrete domain. This data
type is represented through standard possibility distri-
bution where possibility degrees in [0,1] are associated
with each of the domain values. More formally, we have
{p1/d1, · · · , pn/dn}; where pi and di for i trough 1
to n are the possibility degrees and the domain values,
respectively. Note that the domain values may be numbers
as well as scalars. A proximity relation is often associ-
ated with scalar-based domains. This data type will be
designed as Model III.3;

• Possibility distribution over a numeric ordered domain.
In this data type, the possibility distribution is defined
on an ordered set of numeric values as for exam-
ple age={0.7/25,0.8/26,1.0/27,0.8/28,0.8/30}. More gen-
erally, we have{p1/d1, · · · , pn/dn} with pi ≤ pi+1. This
data type will be designed as Model III.4.

• Simple number. This is a crisp data type which is handled
as in conventional databases. The possibilistic representa-
tion of a simple numbern is {1.0/n}. Model I.8 in Table
I shows the graphical representation of the possibility
distribution of this data type;

• Simple scalar. This is a crisp data which is handled as
in conventional databases. The possibilistic representation
of a simple scalars is {1.0/s}. A proximity relation is
often associated with this data type. We denote this data
type with Model III.5;

• Matching degree. This is a real number in [0,1] that
refers to the degree to which a concept is achieved
(e.g. Quality=0.7). The possibilistic representation of a
matching degreem is {1.0/m}. This data type will be
designed as Model III.6;

• Unknown. This data type means that we cannot decide
which is the value of the attribute among several plausible
values. But the attribute may take any value from its
domain. Accordingly, the possibilistic representation of
the unknown data type is{1.0/z : z ∈ D}. Model
I.6 in Table I shows the graphical representation of the
possibility distribution of this data type;

• Undefined. This data type means that there is not any
defined value that can be assigned to the attribute. This
means that no one of the domain values is authorized.
Accordingly, the possibilistic representation of undefined
data type is{0/z : z ∈ D}. Model I.7 in Table I shows
the graphical representation of the possibility distribution

of this data type;
• Null. This data type means that we cannot even know

whether the attribute’s value is unknown or undefined.
Accordingly, the possibilsitic representation of undefined
data type is{1.0/Unknown,1.0/Undefined}. This data
type will be designed as Model III.7;

• Symbolic. This is a crisp data type which takes its
values on a set of symbolic values related with the XOR
operator. The possibility representation of this data type
is {0/s1, · · · , 1.0/si, · · · , 0/sr}, which means that the
attribute value issi. This data type will be designed as
Model III.8;

• Linguistic label. Models II.1-II.4 in Table I are the
graphical representation of the possibility distribution
of the linguistic label data types. Model II.1 represents
the sinusoidal model. The parameters required here are
the central value of the attributec and the parameter
that governs the shape of the d.o.ma. Model II.2 is
an extension of the previous one that applies when the
central value of the concept may take a range of values
instead of only one value. Four parameters are required
here: the limits of the central rangea1 and a2; and the
left and right transition zonesb1 and b2, respectively.
Note that a1 and a2 are thecrossover(or transition)
points defined such thatµ(a1) = µ(a2) = 0.5. Models
II.3 and II.4 are the asymmetric extensions of Model
II.1 that apply when only the left or right side of the
concept is of interest. The required parameters area1

and b1 for Model II.3; and a2 and b2 for Model II.4.
The mathematical representation of all these data types
is {µ(z)/z : z ∈ D}. Attributes defined as linguistic
labels need also to be associated with proximity relations
defined on their domains.

IV. I MPERFECT INFORMATION IMPLEMENTATION

The authors in [16] enumerate three levels for implementing
imperfect information in databases: database system level,
database level and metaknowledge base level. Here, we adopt
these three levels and we add a new one:

• Database system level: this level is associated with ex-
tended data manipulation languages devoted to handle
different fuzzy operations that the database system should
support. This level is not the scope of this paper.

• Database level: here we are concerned with the way the
imperfect information is internally stored. This concerns
both attributes values and extent definition of different
fuzzy relations/classes. Our solution to handle imperfect
information at the attribute level is provided in the rest
of this section.

• Metadata level: this level concerns the intent definition
of fuzzy relations/classes. Note that this level is called
metaknowledge in [16]. This will be introduced in this
section.

• Model base level: this level groups the definition of all (i)
the functions used to compute membership degrees, and
(ii) the functions associated with different data types that
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are used to generate their possibility distributions. This
level is not discussed in this article but it is detailed in
[3].

As underlined above, the approach detailed hereafter was
implemented within a relational object database model but it is
generic enough to be implemented in other database models,
especially for non first-normal-form relational, object-oriented
and semantic database models. For the two last ones, the
meta-relations will be replaced with specific classes. In the
following text, the term “meta-relation” should be replaced
with “specific class” when the implementing is within object-
oriented or semantic database models.
In order to store the specificity of all the attributes, we define
a meta-relation, called ATTRIBUTES, at the metadata level
with the following attributes:

• attribute-id: it uniquely identifies each attribute defined
at the database level. It constitutes also the primary key
of the ATTRIBUTES meta-relation. Note that the key
attribute(s) in this relation and in the other ones are
underlined.

• attribute-name: it stores the name of the attribute. As
for classical databases, the same fuzzy relation/class
can not have two attributes with the same name but
the same attribute name may appear in different fuzzy
relations/classes.

• defined-in: denotes the fuzzy relation/class to which the
attribute belongs.

• data-type: which is a multi-valued attribute that stores the
attribute type which may take any one of the list of§III.
For crisp attributes, this attribute works as in conventional
databases (it may take the values of integer, real, float,
etc.). For fuzzy attributes, thedata-typeattribute stores
the fuzzy data type itself and the basic crisp data type on
which the fuzzy data type is based.

An example of ATTRIBUTES meta-relation is as follows:

attribute-id attribute-name defined-in data-type

attr-15 star-name STAR {string}
attr-16 type-of-star STAR {symbolic}
attr-17 age STAR {linguistic label, integer}
attr-18 luminosity STAR {linguistic label, real}
attr-19 location STAR {linguistic label, real}
attr-20 weight STAR {interval, real}
attr-77 field-of-research SCIENTIST {scalar}
attr-80 age SCIENTIST {linguistic label, integer}

These are some attributes associated with the fuzzy class
STAR and the class SCIENTIST taken from an example
provided in [1].
The parameters associated with different linguistic termsthat
appear in the domain of any linguistic data type are stored at
the metadata level. They will be used to compute the different
d.o.m and for query processing. The number of parameters
needed is different from one linguistic data type to another
and it may vary from zero to four parameters. Thus, several
solutions are possible to store these parameters. We can, for
example, use one common meta-relation with four attributes
devoted to store the different parameters. In that time, we
may have “null” values any time the number of parameters
associated with one linguistic value is less than four. Another
solution is to group data types along the number of required

parameters. After that, four relations are needed for data types
with one, two, three or four parameters, respectively (we do
not have to define a relation for unknown and undefined
attribute data and other data types that need no parameters).
An ameliorated version of this solution is adopted in [16]. The
authors use a common meta-relation similar to ATTRIBUTES
and a specific attribute serves as a pointer to two meta-
relations. One meta-relation is used to store the “margin”
parameter needed for approximately data type (Model I.2 in
Table I). The second meta-relation contains a list of fuzzy
objects defined in the database columns. This meta-relation
contains two specific attributes: one used to store the data
type and the other points out to three new meta-relations
devoted to store the parameters of qualifier labels defined
over the matching of a query, proximity relations associated
with scalar data types (Models II.1-II.4 in Table I and Model
III.5 in the list of §III), and trapezoidal-based possibility
distribution (Models I.1-I3 in Table I) of linguistic labels and
query quantifiers, respectively. In the last meta-relation, four
attributes (Alpha, Beta, Gamma, Delta) are used to store the
trapezoidal-based possibility distributions parameters. In the
special case of interval data type, the attributesAlphaandBeta
store the same value. This is also true for attributesGamma
and Delta. The same meta-relation with the four parameters
is also used to store undefined, unknown and null data types,
which generate an excessive storage space since these data
types require no parameters and the different parameters will
be “null”-valued.
One drawback of the solutions cited above is that any time we
need to add a new linguistic data type or to change the adopted
linguistic data types, we may have to update the meta-relations
structures. Here, we propose a straightforward solution that
does not depend on the parameters number and can be used
with any fuzzy model. In fact, we define a common meta-
relation with a multi-valued attribute that stores all needed
parameters. This meta-relation, denoted by PARAMETERS,
contains one line for each linguistic value that appears in the
domain of any linguistic data type attribute (or the list of the
authorized values for symbolic data type). Its attributes are:

• attribute-id: references one attribute that appears in the
meta-relation ATTRIBUTES.

• label: stores a linguistic term belonging to the attribute
domain. For symbolic data types this attribute takes a
“nil” value.

• parameters: is a multi-valued attribute used to store
the parameters required for generating the possibility
distribution of the linguistic term. Attributes with no
parameters, will not be included in PARAMETERS meta-
relation.

An example of a PARAMETERS meta-relation is as follows:

attribute-id label parameters

attr-16 nil {nova, supernova}
attr-17 very young {0.0, 0.0, 0.5, 1}
attr-17 young {0.8, 1.7, 2, 2.5}
attr-17 old {2.3, 5, 10, 15}
attr-17 very old {12, 17, 50, 60}
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The meta-relation PARAMETERS permits also to generate
the domain of linguistic or symbolic data types. This needs
only to group together all the linguistic labels having the same
attribute-id in the meta-relation PARAMETERS. For example,
the domain of attributeattr-17 above is{very young, young,
old, very old}. The domain of a symbolic data type is the list
of the terms in theparametersattribute.
The attribute values are stored at the database level along with
the extent definition of their relations/classes. As mentioned
above, to facilitate data manipulation and for computing effi-
ciency, the different types of attributes values are uniformly
represented through possibility distribution. However, these
distributions are not explicitly stored in the database but
generated automatically during data manipulation and query
processing by means of specific functions associated with
different data types.
Attributes values may be crisp, fuzzy or both. This need
only to be indicated in the intent definition of the fuzzy
relations/classes the attributes belong to. The database system
should allow users to insert values of any data type that
is consistent with the formal definition of the attribute. At
the extent definition of the fuzzy relation/class, each fuzzy
attribute is mapped into a new composite one composed of
three component attributes:

• attr-value: stores the value of the attribute as provided by
the user.

• data-type: stores the data type of the value being inserted.
• parameters: is a multi-valued attribute used to store

parameters associated with the attribute value that are
used to generate its possibility distribution.

Thedata-typeattribute is used both at the extent definition and
in the intent definition to allow users insert values of different
data types, which may have different number of parameters.
This will offer more flexibility to the user. Nevertheless, the
different data types defined at the extent level should be
consistent with the formal definition of the attribute at the
intent level. For instance, the formal definition of the attribute
may be a trapezoidal-based possibility distribution with four
paraments but the user may introduce a crisp value (with no
parameter at all), an interval (with two parameters only) oran
approximate value (with three parameters only). Remark that
attributedata-typeat the extent definition is not a multi-valued
one.
The extent definitions of two attributes taken from an example
in [1] are as follows:

luminosity
attr-value|data-type|parameters

{high, linguistic label model II.1,{25,5}}
{0.1Ls, real,{nil}}

{more than 10Ls, more than linguistic label,{7.5Ls,10}}

weight
attr-value|data-type|parameters

{10Ws, real,{nil}}
{[12Ws-15Ws], interval, {12,15}}

{about 17Ws, approximate value,{15,17,18}}

The symbolsLs and Ws are the luminosity and the weight
of the Sun, respectively; they are often used as measurement
units.
Some data types (Models II.1-II.4, III.1, III.3 and III.5) require
also to define the proximity relation between the elements of
their respective domains. Proximity relations are stored at the
metadata level through the meta-relation PROXIMITY which
has the following attributes:

• attribute-id: references the attribute for which the prox-
imity relation is defined.

• label-1andlabel-2: denote two linguistic terms belonging
to the attribute domain.

• degree: stores the similarity degree between two linguistic
terms denoted bylabel-1 and label-2.

The following is an example of a meta-relation PROXIMITY:

attribute-id label-1 label-2 degree

attr-17 very young young 0.7
attr-17 very young old 0.1
attr-17 very young very old 0.0
attr-17 young old 0.1
attr-17 young very old 0.0
attr-17 old very old 0.8

Proximity relations are reflexive and symmetric. Thus, there
is no need to handle the proximity degrees for pairs of the
type (x, x) and only one pair from(x, y) and(y, x) should be
stored for any two linguistic labelsx andy.

V. CONCLUSION

Information in real-world applications is often vague, impre-
cise and uncertain. In database context, several fuzzy database
models have been proposed. In these works, fuzziness is
introduced at different levels. Common to all these proposals
is the support of fuzziness at the attribute level. This paper
proposes first a rich set of data types devoted to model the
different kinds of imperfect information. To facilitate data
manipulation and for computing efficiency, the different types
of attributes values are uniformly represented through possi-
bility distribution. The paper then proposes a formal approach
to implement these data types. The proposed approach was
implemented within a relational object database model but it
is generic enough to be implemented in other database models,
especially for non first-normal-form relational, object-oriented
and semantic database models.
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