116 research outputs found

    Iterative solution of elliptic problems by approximate factorization

    Get PDF
    AbstractAn iterative method for the numerical solution of singularly perturbed second-order linear elliptic problems is presented. It is a defect correction iteration in which the approximate operator is the product of two first-order operators, which is readily inverted numerically. The approximate operator is generated by formal asymptotic factorization of the original operator. Hence this is a QUasi Analytic Defect correction iteration (QUAD). Both its continuous and discrete versions are analyzed in one dimension. The scheme is extended to a variety of two dimensional operators and it is analyzed for a model advection-diffusion equation. Numerical calculations show the effectiveness of the scheme over a wide range of values of the small parameter

    Finite Difference Method and Laplace Transform for Boundary Value Problems

    Get PDF
    This article presents the solution of boundary value problems using finite difference scheme and Laplace transform method. Some examples are solved to illustrate the methods; Laplace transforms gives a closed form solution while in finite difference scheme the extended interval enhances the convergence of the solutio

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    On Stability and Stabilization of Hybrid Systems

    Get PDF
    The thesis addresses the stability, input-to-state stability (ISS), and stabilization problems for deterministic and stochastic hybrid systems with and without time delay. The stabilization problem is achieved by reliable, state feedback controllers, i.e., controllers experience possible faulty in actuators and/or sensors. The contribution of this thesis is presented in three main parts. Firstly, a class of switched systems with time-varying norm-bounded parametric uncertainties in the system states and an external time-varying, bounded input is addressed. The problems of ISS and stabilization by a robust reliable H∞H_{\infty} control are established by using multiple Lyapunov function technique along with the average dwell-time approach. Then, these results are further extended to include time delay in the system states, and delay systems subject to impulsive effects. In the latter two results, Razumikhin technique in which Lyapunov function, but not functional, is used to investigate the qualitative properties. Secondly, the problem of designing a decentralized, robust reliable control for deterministic impulsive large-scale systems with admissible uncertainties in the system states to guarantee exponential stability is investigated. Then, reliable observers are also considered to estimate the states of the same system. Furthermore, a time-delayed large-scale impulsive system undergoing stochastic noise is addressed and the problems of stability and stabilization are investigated. The stabilization is achieved by two approaches, namely a set of decentralized reliable controllers, and impulses. Thirdly, a class of switched singularly perturbed systems (or systems with different time scales) is also considered. Due to the dominant behaviour of the slow subsystem, the stabilization of the full system is achieved through the slow subsystem. This approach results in reducing some unnecessary sufficient conditions on the fast subsystem. In fact, the singular system is viewed as a large-scale system that is decomposed into isolated, low order subsystems, slow and fast, and the rest is treated as interconnection. Multiple Lyapunov functions and average dwell-time switching signal approach are used to establish the stability and stabilization. Moreover, switched singularly perturbed systems with time-delay in the slow system are considered

    Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-1982

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424U.S. Air Force / AFOSR 78-363
    • …
    corecore