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Abstract 

An iterative method for the numerical solution of singularly perturbed second-order linear elliptic problems is presented. 
It is a defect correction iteration in which the approximate operator is the product of two first-order operators, which is 
readily inverted numerically. The approximate operator is generated by formal asymptotic factorization of the original 
operator. Hence this is a Quasi Analytic Defect correction iteration (QUAD). Both its continuous and discrete versions 
are analyzed in one dimension. The scheme is extended to a variety of two dimensional operators and it is analyzed for 
a model advection-diffusion equation. Numerical calculations show the effectiveness of the scheme over a wide range of 
values of the small parameter. 
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1. Introduction 

We develop an iterative method for the numerical solution of singularly perturbed linear elliptic 
problems of second order. It was originally designed for the computation of smooth solutions to 
amplitude equations [6, 71. Our goal was to devise a stable numerical scheme which incorporates 
as much analytic information as possible. 

The basis of the method is a defect correction iteration [9, 211. This is a general technique for 
solving iteratively an equation Lu = f by means of an operator L which “approximates” L but is 
much easier to invert. In the present work, L is generated by a formal asymptotic factorization 
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of the original operator into two first-order operators. The approximate operator is readily inverted 
numerically by solving a sequence of initial value problems. Hence the scheme can be classified as 
a Quasi Analytic Defect correction method (QUAD). 

The algorithm combines the best of the asymptotic and the numerical approaches. On the one 
hand the use of asymptotic methods yields an approximate operator which is tailored to the prob- 
lem. This yields a fast rate of convergence. On the other hand, the numerical implementation of 
the scheme eliminates the calculational burden associated with the derivation of a large number of 
terms in an asymptotic series. QUAD is a stable and convergent algorithm, in contrast to a stan- 
dard asymptotic scheme which is unstable and ill-suited for numerical implementation, in general. 
Moreover, in the one-dimensional case the approximate operator can be inverted analytically and 
the scheme yields power series solutions to linear second-order singularly perturbed boundary value 
problems. 

The present results are discussed in detail in [6]. Other papers that combine numerical and 
asymptotic methods include [3-5, 8, 15-201 and the collections [ 10, 111. A third-order approxi- 
mate factorization of the convection diffusion equation was presented in [ 141. 

In Section 2 we motivate our work by presenting a one-dimensional model problem. Then in 
Section 3 we introduce the method in one dimension and we demonstrate it numerically on the 
model problem. The convergence analysis of both the continuous and the discrete iteration, in 
one dimension, is presented in Section 4. Variations on the themes of QUAD are presented in 
Section 5. In Section 6 we extend the scheme to a class of two-dimensional singularly perturbed 
elliptic problems. We analyze it for a model advection-diffusion equation and we present numerical 
calculations. We conclude with future directions in Section 7. 

2. A model problem 

We first introduce a one-dimensional model problem which arises in the hybrid numerical-asymp- 
totic method for solving singularly perturbed equations in [6, 71. We consider the propagation of 
a time harmonic wave of unit amplitude, traveling along the x axis to the right. Its motion is 
described by the one-dimensional Helmholtz equation 

E2U” + n(x)2u = 0, 

subject to the conditions 

u(0) = 1, u outgoing at x = +CCL (2) 

Here, E = l/k and k is the wave number. The index of refraction, n(x), is assumed positive in [0, cc). 
The solution to (1) is highly oscillatory as e -+ 0 and requires a very refined mesh for its numerical 

solution. Here, we seek solutions for u(x) in (1) of the form 

u(x) = K(x)eiS(x)lE, 

where S(x) and K(x) are called the phase and the amplitude, respectively. Both functions are slowly 
varying and they can be resolved numerically on a grid which is substantially coarser than the one 
required for u. 
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In order to obtain equations for K and S we introduce expression (3) for u into ( 1) and we 
divide the resulting expression by eiS(x)/E/a2 to obtain 

K(n’ - S,‘) + ie(2K,S, + K&,) + .z2KYX = 0. (4) 

Upon equating the coefficient of the leading order term in (4) to zero we obtain the eiconal equation 
of geometrical optics 

s,(x)2 = n(x)*. (5) 
Hence, S(X) = Ji n(s) d S, in view of the outgoing condition at 00. We substitute this expression for 
S(X) into (4) to obtain 

EK, + i(2nK, + n,K) = 0. (6) 

Now we assume that n(x) is constant for x > 2 - 6 with 6 small. Then in view of the representation 
(3) and the outgoing condition we require K,(2)=0. 

Our model problem is Eq. (6) for K subject to the conditions 

K(O)= 1 and K,(2)=0. (7) 

In ray theory, for E < 1, its solution is approximated by an asymptotic series. Instead we develop a 
convergent iteration to solve it numerically. 

In summary, our approach to solving (1) numerically has two steps. First, we represent the 
solution as the product of a highly oscillatory factor and a smooth amplitude K. This step reduces 
dramatically the numerical complexity of solving the original problem because the number of grid 
points required to resolve K and S accurately is much smaller than the number of points required 
to resolve the original problem. The savings increase as c -+ 0. The second step is to develop 
a specialized numerical algorithm for solving the equation for K. Here, we focus on this aspect and 
we develop QUAD. Later [7] we shall discuss the first step, which is usually more complicated 
than in this one-dimensional example. 

3. The QUAD algorithm 

Let the operator L be defined by 

L = k$ + a,(x)-& + Q(X), (8) 

where O-=CF< 1, so(x), a,(x), are continuous functions in [a,b], Re[a,(x)]<O and al(x)#O for 
x E [a, b]. In this section we present the QUAD iteration for the problem 

Lu= f, (9) 

u(a) = 1, [rX (-& -A) +(l --a)] u(b)=P. 

The case a = 0 and a = 1 in (10) corresponds to Dirichlet and robin boundary conditions at x = b, 
respectively. We assume that this problem has a unique solution. 
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3.1. The basic iteration 

Suppose that there exists a sequence of functions {&(x,E)}~~, such that the associated operators 

L,=& &+ 
( 

a&4 
- + &(X,E) 

E >( 
& - WJ)) , m= 1,2,... (11) 

satisfy 

and 

L - L, = E”rm(X, E), 

that 

lii&(x,c)=&(x,O): 

hnJ&,c)=T,(x,O). 

(12) 

(13) 

(14) 

The operators L, possess two important properties. First they approximate L for E << 1, as indicated 
by (12) and (14). Second, they are in factored form. Therefore the differential equation 

L,d = r, 

can be solved explicitly, as we shall see in Section 
a defect correction iteration [9] to solve the problem 
to an arbitrary tolerance q. 

3.2. In view of these 
(9), (10). It computes 

(15) 

properties we develop 
an approximation of u 

Algorithm 1 (QUAD) 

Compute the initial iterate u. by solving 
JLnuo=f 
240(a)= 1, [a(& -A) + (1 - a)]uo(b)=j?. 

For i= 1,2,... 
Compute the residual 

Y;_] = f - LUi_l. 

If IlGi Il24& <I;r 
STOP 

Else solve the following problem for the defect dj 

Lmdi=ri_1 

di(a) = [a( & - A) + (1 - a)]di(b) = 0. 
Compute the next iterate 

Ui = pi-1 + di. 
End 

In the next section we present Algorithm 3 for the explicit solution of Eq. (15) for di, at each 
step of Algorithm 1. The existence and uniqueness of the solution di for all 0 <EC so is guaranteed 
under a mild condition, as is discussed in Appendix A. 
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3.2. Solution of the approximate equation 

Eq. (15) is readily solved with Algorithm 2 below when the boundary conditions are the following 
special case of (10): 

( ; - S,(b,E) 1 d(b;y)=y, d(a;y)= 1. 

Algorithm 2 

?? Solve the initial value problem (17) for w: 

( L+ a&> -y + s&x, e) 
> 

r(x) w(x; y) = - 
& ’ 

w(b; y) = y. 

?? Solve the initial value problem (18) for d: 

& -S&,E) 
> 

d(x;y)=wky), d(a; y) = 1. 

(16) 

(17) 

(18) 

Since the problem (15) and (16) is linear, and y enters linearly in ( 16), it follows that 

d(x; y > = U(x) + Y Y(x). (19) 

In order to solve Eq. (15) subject to the general condition (lo), we use a technique analogous to 
the “shooting” method for first-order systems of differential equations (see [12, 13, 221). We replace 
(10) by (16), where y is to be determined so that (10) is satisfied. It follows that (10) will be 
satisfied if y is a root of 

ry - p + [X(‘S, -A) + (1 - cr)]d(b; y) = 0. 

To determine y we use (19) in (20) to obtain 

(20) 

{U + [a(S,, -A) + (1 - cc)]V(b)}y = /I - [‘X(S, -A) + (1 - a)]U(b). (21) 

If c( + [r(S, -A) + (1 - a)] V(b) # 0 there is a unique solution to this equation; otherwise there is no 
solution, unless the right-hand side is zero in which case there is an infinite number of solutions. 

We summarize the scheme for the solution of problem (15), (10) in Algorithm 3 below. 

Algorithm 3 

(1) Evaluate d(x; 0) = U(x) using Algorithm 2. 
(2) Evaluate d(x; 1) = U(x) + V(x) using Algorithm 2. 
(3) Determine y(p) from 

?(fi) = P - [~(%I -A) + (1 - a)lU(b> 
a+[a(S,-A)+(1 -a>]V(b>’ 

(4) Determine d [x; y(p)] 

(22) 

d[x; ,iO>1=4x; 0) + y(P)[O; 1) - 4x; 011. (23) 
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3.3. Approximate factorization of L 

We now present a scheme for obtaining the approximate factorization of L. The approximation 
of order m 2 0 requires that a0 and al have m - I derivatives. 

In analogy with the exact factorization of second-order operators (see [l, p. 22]), we write 

d2 
ED +a,(x)& +a0(x)=c 

&+ 
ad4 
F + S(%E) 

d 
& -S(x,a) 

> 
9 

where the function S(x, a) is to be determined. We expand the right-hand side of this equation and 
subtract it from the left-hand side to obtain the following Riccati equation for S: 

R(S,x) = 0, (25) 

where 

R(s,x) = &S2 + ES, + al(x)S + a0(x). (26) 

Since we do not know how to solve (25)explicitly, we seek an asymptotic approximation to S of 
the form 

S(X, &) N ’ g SjE’ as E+O. 
s j=O 

(27) 

To determine the functions Sj we substitute (27) into (25), collect coefficients of equal powers of E 
and equate the resulting coefficients of each power of E to zero. This yields the following recursive 
system of algebraic equations for Sj: 

also + si = 0, (28) 

alsl + 2~0.~1 + s~,~ + a0 = 0, (29) 

m-l 
als, + ~&IS, + %-1,x + c s&,-k = 0, m 3 2. (30) 

k=l 

This system is solved readily and yields 

so=0 or so=-a,(x), 

s1 =- 
~0,~ + a0 

al +2s0’ 

s, =- 
sin-1,x + c;=;’ sksm-k 

a* +2so ’ 
m 2 2. 

(31) 

(32) 

(33) 

Now we define S,,,(X,E) by 

Sm(X, E) = i $ Sj(X)&j. 
J=o 

(34) 
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Upon substituting S,,, for S in (25), we find that 

R(&l,x) = c”G& a), 

where 

(35) 

&(X,&) = 2 &j-I 2 sksm+j-k + Sm,x, m 2 1. (36) 
/=I k=j 

It follows that the family of operators 

L,=& &+ 
( 

al(x) 
E + Sm(x,E) 

>( 
& -S&,E) 

1 
3 m 2 1, (37) 

where S&x, e) is defined by (34) with a0 = 0 satisfy the conditions (12)-( 14). 

3.4. Numerical calculations 

We now present a few numerical calculations with QUAD for Eq. (6) of Section 2. Hence, we 
shall solve (9) in [0,2]. The operator L is defined in (8) with 

and 

The 

al = i2n(x), a0 = inX, 

the index of refraction n(x) is chosen to be 

n(x) = e-20(x-‘)2 + 1. 

boundary conditions are (16) with y = 0. 

(38) 

(39) 

In our calculations the mesh parameter h = l/1000 and the order of the approximate operator is 
m = 1. The approximate operator is inverted with the trapezoidal method and the exact operator is 
discretized with second-order central differences. The small parameter E is varied from one calculation 
to the other. Fig. 1 indicates the infinity norm of the error, i.e., the difference between the exact 
solution of the central difference discretization of problem (6), (7) and the QUAD iterate. We note 
that even for E = 1 the algorithm converges. As E becomes smaller, the rate of convergence increases. 
The algorithm works well for E > h and E <h. To demonstrate further the stability of the scheme, we 
performed additional calculations in which 2500 iterations of QUAD where performed. The results 
are displayed in Fig. 2. 

4. Convergence analysis 

4. I. The continuous iteration 

We shall first show that the continuous version of QUAD converges. We present the analysis of 
Algorithm 1 for problem (9), (10) with a = 0. The analysis for other values of LX is analogous. 

Theorem 1. Suppose that problem (9), (10) with a = 0 has a unique solution. Moreover suppose 
that L, satisfies conditions (12)-( 14) and that one of the existence conditions of Lemma I in 
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Appendix A is satisjied. Then there is an Ed > 0 such that if E <E 0, Algorithm 1 converges and the 
error is reduced at each iteration by a factor which is O(P). 

Proof. In order to determine the error ei = u - ui at step i, we substitute di = ui - Ui- 1 and Yi_ 1 = LU - 
Lui-, in the equation for the defect di. Then we add and subtract L,u from the left of that equation 
to obtain after some manipulation 

Lmei = (L, - L)e,_ ,, (40) 

ei(a) = 0, ei( b) = 0. (41) 

Upon substituting ( 12) in (40) we obtain 

Lmej(x) =- Emrm(X, &)ei_l (X). (42) 

We compute the solution to (42) and (41) with Algorithm 3 to obtain 

ei(x) = cm Gi(X, E) - Gi(b, E) ~ 

where the homogeneous and particular solutions, H and Gi, are given by 

J 
b + ) 

z 

x 

J (J x 

H(x, E) = exp Ut, 8) dt 
Cl i 

Gi(x, E) = - f exp [I x Ut, E) dt a ] [ exp [-[ y +2S,,,(t,c)dt] 

r,(u, s)ei-r(y) dY dz. 

We will show that there exist constants C,, C, and y such that for all E > 0 

IGi(x, &)I d Cl Ile;-lIIo3, 

and for all O<e<y 

IH(x, s)/H(b, &)I < Cz. 

We use these bounds in (43) to obtain 

l/e,Il, d cm Cl(l + G)llei-1 IIw. 

It follows that the iteration converges if E < so where 

co = min{~,(l/Cr(l + C2))‘lm}. 

In order to derive the bound (46) we divide and multiply (45) by 

al(z) + a2Sn(z, s), 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 
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and then we integrate by parts to obtain 

G;(x, E) = 
exp[ J,” SAC 8) dtl 

u,(z) + 2e&(z, s) 
r,(y,E)ei-l(y)dy 

where 

-.I’ exp [lx $n(i,E)dt] v(z)dz, (50) 

v(z) = 
G,a)ei-l(z) al,&) + 2G&) 

a,(z) + 2cS&,s) - (al(z) + 2s&?(Z,s))2 

x[exp[S’y ] + &(t, a) dt rm(y, E)ei-l(Y) dy. (51) 

The expression exp[LV (ar(t)/a)dt] in (50) and (51) is uniformly bounded by 1 for all E > 0, because 
z < y and Re[a,] < 0. We use this fact and relations (14) and (13) to obtain after some manipulation 
the bound (46). 

In order to derive (47) we use (A.15) of Appendix A: 

f(a7 xl e”(n),c H(X,&)N& ~ ( ada) 
f(x, x 1 e&)/f: - ~ 

> al(x) ’ 
E -+ 0, 

where f is defined in (A.16). Therefore 

f(a,x) exp(J;b y dt)/ul(a) - f(x,x) exp(Jz y dt)lal(x) 

f(a,b)exp(Ji y dt)/al(a) - l/al(b) ’ 
& + 0. 

(52) 

(53) 

The numerator in this expression is uniformly bounded for all F because Re [a,] 6 0. For E sufficiently 
small the denominator is uniformly bounded away from 0 as indicated in Remark A.3 of Appendix A. 
Thus the right-hand side of (53) is bounded for E sufficiently small. Then (53) yields the bound 
(47) and this completes the proof of Theorem 1. 0 

For future reference we introduce the error ampl$cation operator 

III, =L,‘(L, -L), 

which determines the evolution of the error via the relation 

(54) 

ej =M,ei_j, 

e;(a) = 0, e;(b) = 0, 

in view of (40). Eq. (48) yields the bound 

IlKI 1103 < Cc”, 

where C = CI (1 + C,). An explicit formula for C can be found in [6]. 

(55) 

(56) 

(57) 
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4.2. The discrete iteration 

4.2.1. Discretization 
We next analyze the numerical implementation of Algorithm 1. We consider a mesh of N + 1 

points: x1 = jh, j = 0,. . . , N, h = (b - a)/N. We discretize the operator L in (8), with second-order 
finite difference schemes and we denote the discrete operator by Lh 

Lh = &D+D- + ul(xj)Do + uo(X,), (58) 

D+D_Kj = 
Kj+, - 2Kj + Kj_1 Kj+I - K,-I 

h* 
) DoKj= 

2h ’ 
(59) 

The boundary conditions are incorporated in a standard fashion. At each step of Algorithm 1, we 
solve the first-order equations in Algorithm 2 using the trapezoidal or the backward Euler method 
[22]. Here we analyze the algorithm for an implementation with the trapezoidal method. The results 
for backward Euler are similar and may be found in [6]. 

The error in the discrete iteration evolves according to the relation 

(60) 

where M,,,h is the discretization of M,,, in (54). This relation follows from the continuous relation 
(55). To analyze relation (60) we introduce the modal representation 

eh,,, = 5 ;oei2aomlCN+l 1, 
a,=0 

into that equation and we study the expression 

~~~12n0mi@v’+I ) 
> 

(61) 

(62) 

for each mode of the grid o = 0,. . . , n, separately. 
Standard numerical analysis arguments show that Mhe’2nwm’(N+1) is a good approximation to 

Mei2nom!(N+‘) for modes o of the error satisfying the low frequency condition 

co/N<v<l, 

where v is a small parameter. Hence the low frequency modes are damped by 
in view of Theorem 1. 

In the remainder of this section we evaluate (62) for the high-frequency 

(63) 

the discrete iteration 

modes. To simplify 
the analysis and assume that the coefficients of Lh and of Lh,, are constant, and that the boundary 
conditions are the homogeneous version of (16). Hence in the remainder of this section S,,,, al and 

p=u1 +es,, (64) 

are constants. 

4.2.2. Numerical stability 
To evaluate (62) we first apply Lh to mode o and obtain that for all interior points of the grid 

Lhei2nwm/(N+1) _ _ p~W)ei2~04W+1), (65) 
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where 

,u(co) = &W) + a, Il(0.l) cos(w7c/(N + 1)) + a(), (66) 

and 

0 ( > iv 
~(o)=irro sine - - 

N+l N+l’ (67) 

Then, we apply Lk ’ to the right-hand side of (65). We perform this calculation explicitly using the 
discrete version of Algorithm 2. Indeed, the discretization of a differential equation by the trapezoidal 
method yields a first-order recurrence equation, which can be solved explicitly. We find that 

Mhei2rrmwl(N+1) = 1 _ ( ~~~~~~~~~~~~~~~~~ - ,LQ~;” + j~(c, + c,)@r, (68) 

where 

Cl(U) = 
cos2(rto/(N + 1)) 

&P(O) + a*I(o) cos(rc:co/(N + 1)) - ps cos2(7Ko/(N + 1))’ 

c2(w) = 

1+;y7 N 

i ) 

ee’2awi(N+‘) cos(rcw/(N + 1)) 

1 - lb!- (a, + 2&S)~(co) + ($ + Sp)cos(mo/(N + 1))’ 
(70) 

2 i: 

The values of 8, and 02 are 

(71) 

and p is defined in (64). 
Expression (68) is a linear combination of three functions: mode CD, 0;” and @, the solutions 

to the discretized homogeneous form of (17) and (IS), respectively. We analyze the magnitude of 
this linear combination for the high-frequency modes of the grid, for which the discrete iteration is 
not a good approximation to the continuous one. Specifically we consider this expression under two 
limits 
?? Limit I: h --+ 0 with e fixed. This is the “standard” numerical analysis limit. 
?? Limit II: h---f 0 and h/c -+ co. Here we assume that the solution to the equation is smooth and 

that it is well resolved with a mesh parameter h >> E. 
In both limits we keep o/(N + 1) fixed and therefore 

INcG + 0. (72) 

Here 1(o) is defined in (67). 
We use (69), (70) and (66) for c,(co), c*(w) and ,~(a), respectively, in (68) to obtain for the 

trapezoidal method 

1 - /Kl = 
(c/F + a,Lcos(C())(l - cos*(a)) - (a0 + pS)cos2(a) 

&A2 + a*;l cos(a) - ps cosya> 
> (73) 

where 

a=7w/(N+ 1). (74) 
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In the limit h + 0, we find that 

Fi 1 - /LCl = 1 - COS2(7cO/(N + l)), 

in view of relation (72). Hence, the coefficient of e’2rrm”‘(N+‘) in (68) satisfies 

11 - /LCll < 1. 

We now analyze the remaining terms in (68): 19; and (3; where Bi are defined in (71). 
Limit 1: With e fixed, 

lim ~lnr = e-P”‘“, 
h-0 

lim 0; = es”. 
h-0 

299 

(75) 

(76) 

(77) 

(78) 

Both of these terms are smooth in the sense that they are resolved by the numerical scheme and 
will be damped by additional iterations, in view of Theorem 1. 

Limit 2: The term 0; converges to the limit (78) which is smooth and therefore is of no concern. 
We evaluate the coefficient of 0;“’ using (66) and (70) to obtain after some manipulation 

PC2 = w- i2nw’w+‘) cos(m/(N + l))&L(&L + a] cos(7to/(W + 1)) + so/L) 

(a, + 2dqel+ (p2 + ESp) cos(xo/(N + 1)) . (79) 

If cos(rto/(N + 1)) = 0, then 11~2 = 0. Otherwise, we use the relations 

al cos(rcw/(N + 1)) >> C&)/k, 1, -+ co, (80) 

al >> 2~s and p2 + &Sp-a:, E + 0 (81) 

in the numerator and denominator of (79) to obtain that for large 1 and small F 

0: cos( rco/(N + 1 ))&A 
lc4 a, 1. (82) 

This expression is arbitrarily small because EL + 0 as h + 0. We also note that for the highest modes 
of the grid, co = (N + 1)/2, cos(~w/(N + 1)) M 0. 

In summary, under the first limit, expression (73) consists of mode co with a coefficient smaller 
than one and an additional term which is smooth and therefore is damped by additional iterations 
of the scheme, in view of Theorem 1. Under the second limit, (73) consists of mode cu with a 
coefficient smaller than one, a smooth term which is damped by additional iterations of the scheme, 
and a high-frequency term. The high-frequency term is of small magnitude and will be damped by 
additional iterations, in view of the analysis above. Hence the numerical implementation of QUAD 
is a stable numerical algorithm. 

5. Exact factorization of an approximate operator 

In Section 3.3 we derived L, by approximately factoring L. Here we choose L, such that it can 
be factored exactly. We do this to solve problems locally, in the neighborhood of singular points or 
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singular lines, such as turning points or caustics. This approach also works when there is no small 
parameter in the equation. 

In order to illustrate the scheme we return to the model equation of Section 2: 

EU” + n(x)u = 0, (83) 

in [-S,&J subject to 

u( -6) = a, U(6) = p. (84) 

We denote the operator in this equation by L and we assume that n(0) = 0 is the only zero of n in 
[-a, 61. Moreover we assume that the solution 

*i ( [!!$]“3x) 

to the Airy equation 

EU” + n’( 0)xu = 0, (85) 

is nonzero in [-6,&J. 
The representation (3) for u is not valid in a neighborhood of 0 because the nature of u changes 

from oscillatory to exponentially decaying there (see [ 11). Hence in a small neighborhood of 0 we 
solve (83) directly by iteration. Indeed, the operator in (85) can be factored exactly as follows (see 
discussion in [ 1, p. 221) 

d2 
E- + n’(O)x = & 

dx2 
(_L+ [?I”‘$) (& [$L)]‘i’$ 

We denote this operator by i and we note that Algorithm 1 with i substituted for L, converges to 
the solution of (83), provided 6 is sufficiently small. This can be shown with an analysis analogous 
to the one used in the proof of Theorem 1, in view of the fact that 

L -L=n(x) - n’(0)x=n”(5)X2/2, &XE[-C&C?]. 

The convergence factor is O(S2) and it does not depend on E. 

6. Generalization to higher dimensions 

6.1. A formal factorization scheme 

We now describe a formal scheme for the approximate factorization of a class of singularly 
perturbed partial differential operators. This scheme is a natural generalization of the one-dimensional 
scheme of Section 3.3. We consider operators of the form 

L=& g+b,_ 
( 

a2 a2 a 
aDaa +bo- +c,- +cod ap2 do ag ) 

+a C1+ao, 'aa (87) 
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in a domain D E [w2. The coefficients in (87) are functions of c and j and may be complex valued, 
and a, # 0. To formally factor (87) we rewrite this operator emphasizing the c direction 

L=e g+ T+c,+b,A 2+ ;+boz+co2_ 
( ( ) ( ap da ap2 ab )I 

. (88) 

Now in analogy with the one-dimensional case we seek an approximate factorization of L of the 
form 

(89) 

In (89) we have introduced the unknown operator S(o, /?, E, a/a/?). 
We expand the right-hand side of (89) and find that it is equal to 

L - FR, (90) 

were the residual R is given by 

(91) 

The expressions S, and S, in (91) represent the operators obtained by differentiating the coefficients 
of S by c and p, respectively. We now equate R to 0 and obtain an equation for S. This equation is 
a quadratic in S with first-order derivatives and it is similar to the Riccati equation for the function 
S of Section 3.3. 

We construct a formal asymptotic expansion in powers of E for S of the form 

The operators sj(o, fi, a/afi) are linear operators in P/a/P. Upon substituting 
collecting terms with equal powers of E and multiplying by c2 we obtain 

R=E2 (bog +co$) +rao 

(92) 

(92) for S into (91), 

(93) 

Then we equate the coefficient of each power of E to 0 and obtain the following recursive system 
of equations for s,: 

aiS0 + s; = 0, (94) 

a 
alsl + S@sl + SlSO = - ao + so,ci + blso,p + b,so@ + ~1x0 

> 
, (95) 
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( a2 a a 
QlS2 + SOS2 + S2So = - S:+~o-+co- +S,,,+b,S,,~+b,S,- +c,s, ) 

w2 ab ap ) 

(96) 

j-1 

U]Sj + SOSj + SjSO = - Sj-l,a + b,Sj_f,p + b,Sj-1 a + ClSj_1 + CSkSj-k @ k=l 

Eq. (94) is readily solved and yields 

so = 0 or so= -a,. (98) 

Therefore, as in the one-dimensional case, there are two possible solutions and we denote them by 
Case 1 and 2, respectively. We shall base our factorization on the solution with SO = 0. However, 
for the sake of completeness we shall also obtain the second solution in Appendix B. A solution of 
(94)-(97) is 

Case 1 

so =o, 

where d(a, p) is defined by 

d(a, B) = (a,aO,o - aOqg + h(a,ao,p - aoa,,g) + ~a04 - ui)/a:, 

1 
s/ = - - Sj-,,g + b,sj-l,b + blsj_1; f C,Sj_, f ‘2 SkSj-k . 

a1 k=l 

(99) 

(100) 

(101) 

(102) 

6.2. Application to the steady-state convection d$Gusion equation 

We now apply (99)-( 102) to the steady-state convection diffusion equation with sub-characteristics 
parallel to the x axis 

& g+” u-u(x,y)~=f.. ( ) w (103) 

To make (103) agree with (87), we identify x with B and y with /?. We find that 

a0 = 0, b, = 0, Cl =o, co = 0, a~ = -a@, ~1, bo= 1. 

We introduce these coefficients in (99)-( 102) to obtain 

(104) 

so = 0, s, =o, 
I a2 a, a2 

s2=--, 
a aY 

s3 = ---_ 
a3 ay2 (105) 
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Then 

For m 3 2 we find that 

L,-L=-R,, 

where 

& = _E2 aX a2 1 E3 a2 1 a2 
a2 ay= a dy2aay2’ 

303 

(107) 

(108) 

(109) 

(110) 

(111) 

The results ( 107), ( 111) agree with a third-order approximate factorization of the convection 
diffusion operator, described in [ 141. That factorization is obtained by modifying one for the con- 
stant case by a method designed for the convection diffusion operator. The present method gives 
factorizations of all orders. 

6.3. Convergence analysis 

We now analyze the convergence of QUAD applied to (103) in [0, l] x [0, l] with L2 given by 
the second-order approximation (106). Here we consider the special case in which the coefficient 
a(x, y) in (103) depends on x alone and is continuously differentiable. We also assume Dirichlet 
boundary conditions at x = 0, y = 0 and y = 1 and the special condition 

at x= 1. 
The evolution of the error is determined by the relation 

L2ej+l =(L2 -L>ej, 

(112) 

(113) 
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ej+i(X, 0) = 0, ej+i(X, 1) = 0, (114) 

(115) 

Relation (113) is derived in the same way as relation (40). 
We now use (108) in (113) and we solve the resulting problem (113)-( 115) in two steps. First 

we solve 

E g - f + ’ 2T- ( a ay2 ) 
W(X, Y) = -Rzf?j(X, Y), (116) 

w(1, y) = w(x,O) = w(x, 1) = 0, 

for w and then we solve 

(117) 

(:-:g) ej+iCG Y> = W(X, Y>, (118) 

ej+~(O,Y)=ej+i(X,O)=ej+~(X,l)=O, 

for ej+l. 

(119) 

We use ( 110) for R2 in problem (116), ( 117) which we then solve to obtain 

w(x, y) = 5 G(x, w)Jz sin(orcy), 
W=l 

where 

(120) 

;(x,~)=~e,p(-~p(s,o)ds)~dt, 

a(s) 
A%~) = 7 + --&be 

qt, co) = - [ax(t) + E(on)21ij(t, O), 

and f?j(x, c.~) is the o Fourier coefficient of ej(x, y) 

t?j(X, Y) = 2 &j(X, o)Jz sin(o7cy). 
w=l 

We now define Y*, p*, xp, and x, as 

(121) 

(122) 

(123) 

(124) 

(125) 

(126) 
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Then we manipulate ( 121) to obtain 

I$x,o)l < -$[I - exp(p*(x - l))]. 

We now solve the problem (118), ( 119) to obtain 

fj+,(X,Y)=~~j+,(X,O)~Sin(OxY), 

w=l 

4(s, 0) = -&kd2. 

305 

(127) 

(128) 

(129) 

(130) 

We note that the series ( 120), (124) and ( 128) are uniformly convergent in view of the homogeneous 
conditions at y = 0 and y = 1 that w, ej and ej+r satisfy. 

We define q* and xq as 

q* = mrl, q(x7 0) = - u(:J I on 2, 

and we manipulate ( 129) to obtain 

Isj+r (x3 m)l G IX exp(q*(t - x)))$(G a)1 dt. 

Then we use (127) in (132) and manipulate the resulting expression to obtain 

lzj+1(x3 w)l G & [l - exp(-q*x)l. 

We use the definitions of r*, p*, and q* in (125)-(131) to obtain 

II~j+l(x~o)lIcc < u(xq)u(xp) IEuAxr) + (E0n)2l 
~\~j(4°)llm ’ 4xr)2 a(xp)2 + (Econ)2 ’ 

We now define the convergence factor of mode o, pm, by 

IIEj+ICx, w)llm 
Pa’ = IIi?j(X,CD)ll~ ’ 

and we note from (134) that 

pa)GA 
2 M-G) + (Eco7+ 

a(xp)2 + (&cm)2 ’ 

(131) 

(132) 

(133) 

(134) 

(135) 

(136) 

where 

A= mak[0,114X) 

mb[0, II 4X) ’ 
(137) 
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Mode 

Fig. 3. The bound for pm as a function of w for E = &, $ and 6, from left to right. 

Fig. 3 shows the bound ( 136) normalized by A*, as a function of o for E = &, $ and A. 
The bound is evaluated with a(~,) = a,(~,) = 1. We see that modes w << E-’ are rapidly damped 
and that pw is uniformly bounded for all modes. It follows that the numerical implementation of 
QUAD is particularly effective when the mesh parameter required to accurately resolve the prob- 
lem satisfies h > E. Then all the modes of the grid are in the rapid convergence range. This occurs 
for the amplitude equations generated by the hybrid numerical asymptotic method described in 
Section 2. 

In order to enhance the rate of decay of the high frequency modes of the grid, an additional 
smoothing step [2] can be used at each iteration. Moreover, we are currently seeking an approximate 
factorization scheme which generates operators that effectively damp modes in intervals [o,, &j, with 
01 > l/&. 

The formal factorization scheme of Section 6.1 does not always yield a useful approximate oper- 
ator for QUAD. Indeed, if we substitute a(~,) = ib with b real in (136), we find that the resulting 
expression has a pole at o = b/(m). Hence we expect that pa, > 1 for modes o M b/( En) and QUAD 
is highly unstable in this case. We have observed this instability in numerical calculations for 
Eq. (103) in which ib(x, JJ) was substituted for a(x, u), with b real. 

6.4. Numerical calculations 

We now apply QUAD to solve (103) in [0, l] x [0, 11. The forcing function f is chosen such 
that the solution to the problem is 

u(x, y) = (x - 1 )2 sin( 1 Ony ) cos( 107~~). (138) 
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l/epsilon = 8 l/epsilon = 16 
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+++ 1 
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i/epsilon=32 

0 5 10 15 20 

0 5 10 15 20 

l/epsilon = 64 
0 ++ 

-5. ++++ 

++ El ++ 
++ 

_,o- ,. ++ ++.. 
+++ 

-15 
0 5 10 15 20 

Fig. 4. The magnitude of the residual (141) for the QUAD iterates. In each graph the ordinate is log,, ljresidualll, for 
the value of E shown at the top. The abscissa is the number of iterations. 

We impose Dirichlet conditions at y = 0, y = 1 and x = 0 which are compatible with the solution 
(138). At x = 1, we impose the boundary condition 

(;-+=o. 
The coefficient a(x, y) in (103) is 

(139) 

a(n, y) = 0.5 x (3 - c0s(207+ + y2)). (140) 

We use the second-order factorization (106) and the factors are inverted with the Crank Nicholson 
methods. In our calculation the mesh parameter is h = &. The magnitude of the residual 

fh - LhUk, (141) 

is shown in Fig. 4 for several values of a. The rate of convergence increases as E decreases and the 
iteration is stable in all cases. 

6.5. Other applications 

We now consider operators of the form 

L=e g,,- ( a2 a2 +B-+C;+d +Ed+Fg+G, 
axay ay2 i ay ay (142) 
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in s2 c R* where the functions A-G may be complex valued, and [E,F] # 0. The operators (142) 
can be formally factored using the scheme of Section 6.1, once they are transformed into the form 
(87). This is possible by first representing (142) in a characteristic coordinate system determined 
by curves (X(a, r), Y(o, z)) [23] satisfying 

(143) 

and then normalizing the resulting operator by the coefficient of a2/&r2. 
This transformation is possible only when the equations 

X = X(fJ, r), y= Y(o,z), (144) 

can be uniquely inverted for 0 and z in CL Moreover, the transformation of variables requires 
derivatives of &, y) and r(x, y) which in some cases can only be approximated numerically. 

7. Future direction 

The treatment of general boundary conditions in more than one dimension is possible with a 
“shooting method” for second order systems in factored form, analogous to the method of Sec- 
tion 3.2. We shall present this method in a future paper. We are also interested in the use of the 
factored operators as preconditioners for Krylov accelerators and the combination of QUAD with 
a smoothing step. Approximate operators that would complement the operators of Section 6.1 and 
enable QUAD to effectively damp modes of the error in other frequency ranges are desirable. 

Appendix A. Existence and uniqueness of solution 

We now study the existence and uniqueness of the solution to the boundary value problem 

d 
dx -&(X,&) =f, 

subject to either of the boundary conditions 

u(b) = A u(a) = 1, 

( > -$ -A u(b) = 8, u(a) = 1. 

Here we assume that 

&(b, 0) #A, 

al # 0 and Re[ar] < 0. We will now prove 

(A.1) 

(A-2) 

(A.3) 

(A.41 

Lemma A.l. (1) The problem (A.l)-(A.3) has a unique solution for E sufJiciently small. 
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(2) The problem (A.l), (A.2) has a unique solution for E sujficiently small provided 
not identically 0 in [a,b]. 

(3) The problem (A.l), (A.2) has a unique solution for E sufjciently small provided 
identically 0 in [a, b] and 

/r*p (2 [ S& 0) dt)i f lal(a)ia2Cb)l. 

Proof. We first rewrite (A. 1) as the first-order system 

(:i=(“n -(;+&))(:)+(:). 
subject to 

where 

B, = 

and Bb is given for conditions (A.2) and (A.3) respectively by 

309 

Re[a,] is 

Re[al] is 

(A-5) 

(A.6) 

(A.7) 

(A.81 

(A.9) 

respectively. The existence theory for linear boundary value problems (see [13, Theorem 3.261) 
guarantees a unique solution to these equations provided the matrix 

Q(&)=B,Y(a,&)+BbY(b,&), (A.lO) 

is nonsingular. Here Y is a fundamental solution matrix for the system (A.6) and we choose 

The determinant of Q(E) is nonzero provided that 

exp(J,” S, dt)J,” exp(JZb [2&(t, c) + yldt)h exp(Ja” G dt) 
Y(X,&) = 

exp(JXb[& + y]dt) 0 

ff(b, &I# P> 

where 

x 

s 

b 

S,( t, E) dt + 
z 

(A.1 1) 

(A.12) 

(A.13) 
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and the constant ,u is given by 

P = 0, 
1 

P=A -&(b,&) 
(A. 14) 

for conditions (A.2) and (A.3), respectively. In order to verify when condition (A.12) holds, we 
first determine the asymptotic expansion of H as E + 0. 

Remark A.2. H defined in (A. 13) satisfies 

H(X,&)NE ~ ( fWe$‘a”” 
44 

fkx) eqb(x).!E - ~ ) 4(x) ’ 
c -+ 0. (A.15) 

Here we have introduced the functions 

f(z,x)= exp 
( 

/Xs,(t,L:)dt + Ibb,(t,c)dt 
2 Z 

), W>= lalCf)dt. 

To prove (A.15) we rewrite H as the Laplace integral 

(A.16) 

H(x, E) = I f(z,x)e9(‘)” dz. (A.17) 

In view of the relation 4’(z) = - a,(z) # 0, and the differentiability of f and aI, we integrate (A. 17) 
by parts to obtain 

H(x,&)=& ~ ( fWe&),E _ f(x,x) q5(X)/& 

4(a) 
UIoe ) +c.l,” k [s] e@@)/"dz. (A.18) 

The integral in (A. 18) is o( 1) as E + 0. Indeed, let 

xO=max{xIxE[a,b], Re[ar]<O}. (A.19) 

Then for all x E [a,~~), Re[&z)] ~0, and the integrand 

4 1 d f(z>x) e$(z)i,: 
dz a,(z) ’ 

tends to zero as E --+ 0. Hence, the integral in (A. 18) is o( 1) as E + 0, for all x E [a,~~]. If x0 <b 
then for all x E [x0, b], Re[a,] = 0 and Im[a,] # 0. Hence $(z) is purely imaginary, continuously 
differentiable and -i4 is monotone, because 4’(z) = - a,(z) # 0. The change of variables u = +(z)/i 
yields a Fourier integral which is o( 1) as F + 0, in view of the Riemann Lebesgue Lemma. Thus 
(A. 15) is proved. 

We now complete the proof of the lemma by verifying when condition (A.12) holds in each of 
the two cases given in (A.14). 

Case I: ,u#O 
In view of the expansion (A. 15), H --+ 0 as E + 0 and therefore condition (A. 12) holds for all 
sufficiently small 8. 
Case II: p=O 
If both al and S, are real then H in (A.13) is positive for b >a and (A.12) holds for all E > 0. 
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?? If Re[a,] is not identically zero in [a, b], then &a) has a negative real part and H - - c/a,(b) 
as E -+ 0, in view of (A.18). Hence, (A. 12) holds for all sufficiently small E. 

?? If al is purely imaginary so is 4(a) and (A.12) holds for all sufficiently small E provided (A.5) 
holds, in view of (A.18). 
It follows from the above discussion that 

Remark A.3. When one of the conditions of Lemma A.1 is satisfied, the function H/E is uniformly 
bounded away from 0 for all sufficiently small E. 

Appendix B. Case 2 of the asymptotic factorization 

We now solve (95)-(97) when so = --al. Specifically, we solve (95) in detail and describe how 
to extend the solution procedure to (96) and (97). 

In order to solve (95) we substitute --al for so into that equation to obtain 

a 
SlUl = a0 - ul,o - hq/3 - blw@ - CIQI. 03.1) 

The right-hand side of (B.l) is a first-order differential operator and we conclude that sl has the 
form 

(B.2) 

The coefficients CI~ and a1 in (B.2) are to be determined so that sl satisfies (B.l). Upon substituting 
(B.2) into (B.l), we obtain 

a a 
alao + .lw@ + cclal,p=ao - aI,, - hqg - blw@ - ClUl. 

We equate the coefficient of ajag on each side of (B.3) to obtain 

a] = -b,. 

Then, we introduce the value of CI~ back into (B.3) and find that 

CGJ = 
a0 - al,, - ClQl 

aI 

Combining (B.2), (B.4) and (B.5) we obtain 

a0 - aI,0 - ClUl a s1 = 
aI -hp. 

(B.3) 

(B.4) 

(B.5) 

(B-6) 

The procedure we used to solve (95) can be generalized to solve (96) and (97). We now describe 
this extension to (97). In order to do so, we first show by induction that the right-hand side of that 
equation is a linear differential operator of order j. We denote this operator by 

a a’ 
Bo+Bl-@+-~+D/ag,. (B.7) 
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The coefficients fij in (B.7) depend on the coefficients of the operators SO,. . . Sj_1. The left-hand side 
Of (97) is -Sja]. Hence in order for sj to satisfy (97), it has to be a linear differential operator of 
order j 

a a’ 
sJ=aO+ccl@+"'+Uj,pi. 03.8) 

The unknown coefficients al in (B.8) are to be determined so that Sj satisfies (97). Upon introducing 
the right-hand side of (B.8) into the left-hand side of (97) and then replacing the right-hand side 
of (97) with (B.7) we find that 

a a j a j 
al ( ~1% + ."+ajw 1 +%a, +Mla, (‘)+...cc,ajj)=p,+~,~+ 

ab ’ ’ ’ + Pj,,i, (B-9) 

where a\‘) denotes &/a/i-'a, . Upon equating coefficients of derivatives of the same order we find 
that 

LXj = /3j/al for j 3 1, (B.lO) 

and 

1 11) 
a0 = _ PI al j?,a(,j’ PO - - - . . - - . 

4 al 4 
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