81 research outputs found

    The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

    Get PDF
    The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of exponential decay of a damped membrane and an approximate controllability result for the bilinear Schr\"odinger equation

    On the Genericity of the Observability for Controlled Discrete-time Systems

    Get PDF
    In this paper, we prove that observability is a generic property for discrete-time systems with more outputs than inputs

    Regelungstheorie

    Get PDF
    The workshop “Regelungstheorie” (control theory) covered a broad variety of topics that were either concerned with fundamental mathematical aspects of control or with its strong impact in various fields of engineering

    Genericity of the strong observability for sampled

    Get PDF
    International audienceIn this paper we prove that, generically, a sampled data system is observable provided 4 that the number of outputs is greater than the number of inputs plus 1.

    Controllability Metrics, Limitations and Algorithms for Complex Networks

    Full text link
    This paper studies the problem of controlling complex networks, that is, the joint problem of selecting a set of control nodes and of designing a control input to steer a network to a target state. For this problem (i) we propose a metric to quantify the difficulty of the control problem as a function of the required control energy, (ii) we derive bounds based on the system dynamics (network topology and weights) to characterize the tradeoff between the control energy and the number of control nodes, and (iii) we propose an open-loop control strategy with performance guarantees. In our strategy we select control nodes by relying on network partitioning, and we design the control input by leveraging optimal and distributed control techniques. Our findings show several control limitations and properties. For instance, for Schur stable and symmetric networks: (i) if the number of control nodes is constant, then the control energy increases exponentially with the number of network nodes, (ii) if the number of control nodes is a fixed fraction of the network nodes, then certain networks can be controlled with constant energy independently of the network dimension, and (iii) clustered networks may be easier to control because, for sufficiently many control nodes, the control energy depends only on the controllability properties of the clusters and on their coupling strength. We validate our results with examples from power networks, social networks, and epidemics spreading

    Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems

    Full text link
    We show that, near periodic orbits, a class of hybrid models can be reduced to or approximated by smooth continuous-time dynamical systems. Specifically, near an exponentially stable periodic orbit undergoing isolated transitions in a hybrid dynamical system, nearby executions generically contract superexponentially to a constant-dimensional subsystem. Under a non-degeneracy condition on the rank deficiency of the associated Poincare map, the contraction occurs in finite time regardless of the stability properties of the orbit. Hybrid transitions may be removed from the resulting subsystem via a topological quotient that admits a smooth structure to yield an equivalent smooth dynamical system. We demonstrate reduction of a high-dimensional underactuated mechanical model for terrestrial locomotion, assess structural stability of deadbeat controllers for rhythmic locomotion and manipulation, and derive a normal form for the stability basin of a hybrid oscillator. These applications illustrate the utility of our theoretical results for synthesis and analysis of feedback control laws for rhythmic hybrid behavior

    Controllability of the discrete-spectrum Schrodinger equation driven by an external field

    Get PDF
    We prove approximate controllability of the bilinear Schr\"odinger equation in the case in which the uncontrolled Hamiltonian has discrete non-resonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented: the harmonic oscillator and the 3D well of potential, both controlled by suitable potentials

    Verification of system properties of polynomial systems using discrete-time approximations and set-based analysis

    Get PDF
    Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015von Philipp Rumschinsk
    corecore