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Sur la généricité de l’observabilité pour les systèmes

discrets

Résumé : Dans cet article, nous démontrons un résultat relatif à la généricité de
l’observabilité pour les systèmes discrets dont le nombre de sorties est supérieur au
nombre d’entrées.
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1 Introduction

In this paper, we study the genericity of the observability for discrete-time controlled
nonlinear systems such that:







xk+1 = f(xk, uk)
yk = h(xk, uk)
xk ∈ X, u ∈ U, yk ∈ R

p

(1)

where:

• X and U are C∞ compact connected second-countable manifold with dimen-
sions n and m respectively;

• f : X × U → X is a parametrized diffeomorphism: that is to say, for every
u ∈ U , the mapping f(·, u) is a C∞ diffeomorphism; we denote by DiffU the
set of all parametrized diffeomorphisms;

• h : X × U → R
p is a C∞ mapping.

To be more specific, we will introduce some notations; given f ∈ DiffU(X) and
h ∈ C∞(X ×U,Rp), we denote by uN the finite sequence (u0, . . . , uN−1) of elements
of U , and we define recursively f k(x, uk) by

f 1(x, u1) = f(x, u0)

fk+1(x, uk+1) = f(f k(x, uk), uk) for k ≥ 1

Let us recall the notion of observability investigated in this paper. An input
u = (uk)k≥0 being given, we say that system (1) is observable for u if there exists
an index k ≥ 0 such that h(xk, uk) 6= h(x̄k, uk). System (1) is said observable if it is
observable for each input. Below, we introduce a stronger notion of observability.

We consider the application Θf,h
2n+1 from X × U2n+1 to R

(2n+1)p × U2n+1 defined
by

Θf,h
2n+1(x, u2n+1) = (h(x, u0), h(f

1(x, u1), u1), . . . , h(f
2n(x, u2n), u2n), u2n+1)

Notice that this application is the discrete-time analogous of the application SΦΣ
k

defined in [5].

Definition 1. We will say that system (1) is strongly observable if the related
application Θf,h

2n+1 defined above is one-to-one.

In this article, we prove that system (1) is generically strongly observable as
long as p > dimU ; in other words any system such that (1) can be approximated
by another strongly observable system.

On this subject, one has to mention first the important work from J.-P. Gau-
thier and I. Kupka. In a first paper [3], the authors investigated the genericity of
observability for uncontrolled continuous-time systems. This work was generalized
by J.-P. Gauthier and I. Kupka in :[4, 5]: the authors proved the genericity of differ-
entiable observability for systems with more outputs than inputs. As far as we are
concerned by discrete-time systems, we have to cite several papers on the subject
of the genericity of the observability : first, a paper written by Aeyels [2] in which
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4 Sabeur Ammar , Jean-Claude Vivalda

the author considers uncontrolled continuous-time systems and their discretized, In
this paper, the author introduced the notion of P -observability. The system

{

ẋ = f(x)
y = h(x)

(2)

is said P -observable if, given a time T > 0 and a finite subset P of [0, T ], for every
pair (x, y) of distinct elements in X2, there exists a ti ∈ P such that h ◦ Φti(x) 6=
h ◦ Φti(y) where Φ denotes the flow of f . One of the results in this paper is the
proof of the existence of an open and dense set of vector fields such that, a vector
field f in this set being fixed, the subset of functions h belonging to Cr(X,R) such
that the system (f, h) is P -observable is open and dense in Cr(X,R). This is true
for almost any finite subset P of (2 dimX + 1) points in [0, T ].

To an uncontrolled discrete-time systems such that






xk+1 = f(xk)
yk = h(xk)

xk ∈M , compact manifold, yk ∈ R

(3)

is attached a map analogous to the map Θf,h
2n+1 defined above: consider

Φ : M −→ R
2n+1

x 7−→ (h(x), h ◦ f(x), . . . , h ◦ f 2n(x))

where n is the dimension of manifold M . In [9], the proof that, generically, Φ is an
embedding is sketched, in [7] and [10] is more detailed.

In the case of controlled discrete-time systems, in article [8], the authors investi-
gate controlled discrete-time systems and obtain some results which are similar (but
not identical) to the one presented here.

Before going straight to the point, we want to add some words about the fact
that the observation function h depends on u. This situation is not common in
automatic control theory, but the opposite assumption leads to clumsy statements.
Nevertheless, in the conclusion we roughly explain how the result of genericity can
be proven for systems where h does not depend on u. The paper is organized as
follows: in the next section, some facts from transversality theory are recalled, in
section 3, the main result is stated together with some definitions and lemmas; in
section 4, our result is proven through the demonstrations of three lemmas and,
finally, a conclusion is made in section 5.

2 Some facts from transversality theory

In this section we recall some theorems from differential topology which will be
intensively used in the proof of the main result of this paper. For details on the C∞

Whitney topology, the reader is referred to the book “Stable Mappings and their
Singularities” [6].

If X and Y are two smooth manifolds, Jk(X, Y ) will denote, as usual, the set of
k-jets from X to Y , α : Jk(X, Y ) → X is the source map and β : Jk(X, Y ) → Y
the target map. If f is in C∞(X, Y ) –the space of smooth maps from X to Y – jkf
denotes the k-jet of f . Recall that the set C∞(X, Y ) endowed with the Whitney
topology is a Baire space and so every residual set of C∞(X, Y ) (ie every countable
intersection of open dense subsets) is dense.

The notion of transversality is of paramount importance for our purpose and we
recall below its definition.

INRIA



On the Genericity of the Observability for Controlled Discrete-time Systems 5

Definition 2. Let f be a smooth mapping between two smooth manifolds X and
Y , W a submanifold of Y and x a point in X. We will say that f intersects W
transversely at x if either

• f(x) 6∈ W , or

• f(x) ∈ W and Tf(x)Y = Tf(x)W + dfx(TxX),

TxX denoting the tangent space to X at x and dfx the Jacobian of f at x. We will
say that f intersects W transversely if intersects W transversely at x for all x in W .
We will use of the symbol t to denote the transversality.

The following theorem states a result of genericity [6].

Theorem 1 (Thom Transversality Theorem). Let X and Y be smooth manifold
and W a submanifold of Jk(X, Y ) and let

TW = {f ∈ C∞(X, Y ) | jkf t W}

Then TW is a residual subset of C∞(X, Y ) in the C∞ topology. Moreover, if W is
closed, then TW is open.

The following result generalizes the above theorem to multijet spaces. We first
define the set X (s) = { (x1, . . . , xs) ∈ Xs xi 6= xj for 1 ≤ i < j ≤ s } and the map-
ping

αs :
(

Jk(X, Y )
)s

−→ Xs

(σ1, . . . , σs) 7−→
(

α(σ1), . . . , α(σs)
)

and we let Jk
s (X, Y ) = (αs)−1(X(s)), Jk

s (X, Y ) is a submanifold of
(

Jk(X, Y )
)s

.

For f ∈ C∞(X, Y ), we can define

jk
s f : X(s) −→ Jk

s (X, Y )
(x1, . . . , xs) 7−→

(

jkf(x1), . . . , j
kf(xs)

)

Theorem 2 (Multijet Transversality Theorem). Let W be a submanifold of
Jk

s (X, Y ) and let
TW = {f ∈ C∞(X, Y ) | jk

s f t W}.

Then TW is a residual subset of C∞(X, Y ) in the C∞ topology. Moreover, if W is
compact, then TW is open.

We will use also a transversality theorem due to Abraham [1]. Let A, X and Y
be Cr manifolds, Cr(X, Y ) the set of Cr maps from X to Y , and p : A → Cr(X, Y )
a map.

For a ∈ A, we write ρa, the Cr map:

ρa : X −→ Y
x 7−→ ρa(x) = ρ(a)(x)

and we say that ρ is a Cr representation if the evaluation map:

evρ : A×X −→ Y
(a, x) 7−→ ρa(x) = ρ(a)(x)

is a Cr map from A×X to Y .

RR n° 4991



6 Sabeur Ammar , Jean-Claude Vivalda

Theorem 3 (Abraham Transversal Density Theorem). Let A, X, Y be Cr

manifolds, ρ : A → Cr(X, Y ) a Cr representation, W ⊂ Y a submanifold (not
necessarily closed), and evρ : A×X → Y the evaluation map. Define AW ⊂ A by:

AW = {a ∈ A | ρa t W}

Assume that:

1. X has a finite dimension n and W has a finite codimension q in Y ;

2. A and X are second countable;

3. r > max(0, n− q);

4. evρ t W .

Then AW is residual in A.

Notice that manifold A is not necessarily finite dimensional; it may be a Banach
space or an open subset of a Banach space.

Finally, we will need the following theorem that can also be found in [1].

Theorem 4 (Openness of transversal intersection). Let A, X and Y be C r

manifolds with X finite dimensional, W ⊂ Y a closed Cr submanifold, K a compact
subset of X, and ρ : A → Cr(X, Y ) a Cr representation. Then the subset AKW ⊂ A
defined by

AKW = {a ∈ A | ρa tx W for x ∈ K }

is open.

3 Main result

We state here our main result and some lemmas used in the proof of our theorem.
Our framework is the set DiffU(X) × C∞(X × U,Rp) equipped with the Whitney
topology; obviously DiffU(X) is open in C∞(X × U,X) for this topology. In the
theorem below, we assume that dimU < p.

Theorem 5. The set of applications (f, h) ∈ DiffU(X) × C∞(X × U,Rp) such that
the mapping Θf,h

2n+1 is one to one, contains a set which is residual in DiffU(X) ×
C∞(X×,Rp) equipped with the Whitney topology.

For the proof, we need the Abraham’s theorem [1], notice however that in the
continuous-time case, the set of pairs (f, h) (with f a parametrized vector field)
is a Banach space for the Cr topology (r < +∞) but this is not the case for the
set of pairs (f, h) where f is a parametrized diffeomorphism. So our proof will
be somewhat awkward and will accomplished throughout some technical lemmas,
before stating these lemmas, we describe below our global strategy.

Suppose that P1(f, h) and P2(f, h) are two properties depending on (f, h) ∈
DiffU(X) × C∞(X × U,Rp) whose conjunction is equivalent to the injectivity of
Θf,h

2n+1. In Lemmas 1-2, we will prove that the set

E1 = { (f, h) ∈ DiffU(X) × C∞(X × U,Rp) | P1(f, h) is true }

contains residual set of DiffU(X)×C∞(X×U,Rp). In Lemma 3, we will prove that,
for a given f ∈ DiffU(X), a given integer r ≥ 1, and for every integer n, there exists

INRIA



On the Genericity of the Observability for Controlled Discrete-time Systems 7

a subset U r
n(f) of C∞(X × U,Rp), open and dense for the Cr topology, such that

if h belongs to the intersection
⋂

n≥0 U
r
n(f), the pair (f, h) satisfies property P2.

Moreover, we will prove that, for every integer n, the set

U
r

n =
⋃

f∈DiffU(X)

{f} × U r
n(f)

is open dense in DiffU(X)×C∞(X ×U,Rp) equipped with the Cr topology. Hence,
clearly, the set E1 ∩ (

⋂

n≥0
r≥1

U r
n ) contains a residual for the C∞ topology and a pair

(f, h) belonging to this set satisfies both properties P1 and P2. We will now these
properties throughout some definitions.

Definition 3. Let f ∈ DiffU(X), we will say that the point (x, u2n+1) ∈ X × U2n+1

is periodic for f if there exist two different integers k and k′ in {0, . . . , 2n} such that
fk(x, uk) = f k′

(x, uk′).

Notations. We denote by Pf the set of all periodic points of f and by Pf the subset
of X (2) × U2n+1 defined by :

Pf = { (x0, x̄0, u2n+1) ∈ X (2) × U2n+1 | (x0, u2n+1) and (x̄0, u2n+1)periodic }

We denote by P c
f the set complement of Pf in X(2) × U2n+1:

P c
f = X(2) × U2n+1

r Pf

We will divide P c
f into two parts.

Definition 4. We will say that the element (x0, x̄0, u2n+1) of P c
f is permutable if

there exist indices (i1, . . . , ir) and (j1, . . . , jr) in {0, . . . , 2n}, (the ij’s and the jk’s
all different) and a permutation σ of {0, . . . , 2n} such that

jk = σ(ik) for k = 1, . . . , r

and the equalities
(f ik(x0, uik), uik) = (f jk(x̄0, ujk

), ujk
)

are satisfied for all k = 1, . . . , r.

Notice that in this definition, one cannot have jk = ik because this would imply
that x0 = x̄0 (f being a parametrized diffeomorphism).

Notations. A parametrized diffeomorphism f being given, we denote by Sf the
subset of P c

f defined by

Sf = { (x0, x̄0, u2n+1) ∈ P c
f | (x0, x̄0, u2n+1) is permutable }

and by S
c
f the set complement of Sf in P c

f :

S
c
f = P c

f r Sf .

Clearly, for every f in DiffU(X), we have

X(2) × U2n+1 = Pf ∪ Sf ∪ S
c
f

the union being disjoint. The proof of our result is based on the three following
lemmas:

RR n° 4991



8 Sabeur Ammar , Jean-Claude Vivalda

Lemma 1. Let A1 be the set of mappings (f, h) ∈ DiffU(X) × C∞(X × U,Rp)
satisfying:

Θf,h
2n+1(x0, u2n+1) 6= Θf,h

2n+1(x̄0, u2n+1) for all (x0, x̄0, u2n+1) ∈ Pf . (4)

Set A1 contains a residual subset O1 of DiffU ×C∞(X × U,Rp).

Lemma 2. Let A2 be the set of mappings (f, h) ∈ DiffU(X) × C∞(X × U,Rp)
satisfying:

Θf,h
2n+1(x0, u2n+1) 6= Θf,h

2n+1(x̄0, u2n+1) for all (x0, x̄0, u2n+1) ∈ Sf . (5)

Set A2 contains a residual subset O2 of DiffU(X) × C∞(X × U,Rp).

In the third lemma p denotes the first projection from DiffU(X)×C∞(X×U,Rp)
to DiffU.

Lemma 3. Let f be a given diffeomorphism in DiffU(X). There exists a sequence
(Un(f))n≥1 of open dense sets included in C∞(X×U,Rp) such that for every mapping
h in

⋂

n≥1 Un(f), we have

Θf,h
2n+1(x0, u2n+1) 6= Θf,h

2n+1(x̄0, u2n+1)for all (x0, x̄0, u2n+1) ∈ S
c
f . (6)

Moreover for every integer n, the set
⋃

f∈DiffU(X)

{f} × Un(f)

is open dense in DiffU(X) × C∞(X × U,Rp).

Properties P1 and P2 We say that the pair (f, h) ∈ DiffU(X) × C∞(X ×
U,Rp) satisfies property P1 if it satisfies inequalities (4) and (5) and that it satisfies
property P2 if inequality (6) is satisfied. Obviously, the injectivity of Θf,h

2n+1 is
equivalent to P1 and P2 and so the proof of our main result reduces to proving
these three lemmas.

4 Proof of the main result

4.1 Proof of lemma 1

The demonstration of this lemma is very technical and is based on the use of the
multijet transversality theorem. We will introduce some new notations: f ∈ DiffU

being given, for an index s ∈ 1, . . . , 2n we denote by Ps
f the subset of elements

(x0, u2n+1) ∈ Pf defined by the two conditions :

• ∀i, j ∈ {0, . . . , s− 1}, f i(x0, ui) 6= f j(x0, uj)

• ∃s′ ∈ {0, . . . , s− 1} | f s′(x0, us′) = f s(x0, us)

Obviously, we have
⋃2n

s=1 Ps
f = Pf ; since a finite intersection of open dense sets is

an open dense set, we will prove lemma 1 for all elements (x0, x̄0, u2n+1) ∈ Pf such
that (x0, u2n+1) ∈ P

s1

f and (x̄0, u2n+1) ∈ P
s2

f , for all pair (s1, s2) in {1, . . . , 2n}.
Let (x0, u2n+1) ∈ P

s1

f and (x̄0, ū2n+1) ∈ P
s2

f , we can suppose without loss of
generality that s1 ≥ s2. There exists s′1 ∈ {0, . . . , s1 − 1} and s′2 ∈ {0, . . . , s2 − 1}
such that

INRIA



On the Genericity of the Observability for Controlled Discrete-time Systems 9

• f s1(x0, us1
) = f s′

1(x0, us′
1
) and f s2(x̄0, ūs2

) = f s′
2(x̄0, ūs′

2
);

• in addition f i(x0, ui) 6= f j(x0, uj) for all i, j ∈ {0, . . . , s1 − 1} and f i(x̄0, ūi) 6=

f j(x̄0, ūj), for all i, j ∈ {0, . . . , s2 − 1}.

We let

xi = f i(x0, ui) zi = f(xi, ui) yi = h(xi, ui)

x̄i = f i(x̄0, ūi) zi = f(x̄i, ūi) yi = h(x̄i, ūi)

In order to use multijet transversality theorem, we will study the equalities be-
tween the xi’s, zi’s, yi’s and the x̄i’s, z̄i’s, ȳi’s. Consider the two following lists
:

L1 (x0, u0, z0, y0), . . . , (xs1−1, us1−1, zs1−1, ys1−1)
L2 (x̄0, ū0, z̄0, ȳ0), . . . , (x̄s1−1, ūs1−1, z̄s1−1, ȳs1−1)

The elements of list L1 are all distinct, but the same is not necessarily true for
the elements of list L2, moreover it is possible that some elements of the first list
are equal to some elements of the second one. Let us notice that two elements
(xi, ui, zi, yi) and (x̄j, ūj, z̄j, ȳj), (resp. (x̄i, ūi, z̄i, ȳi) and (x̄j, ūj, z̄j, ȳj)) are equal if
and only if (xi, ui) is equal to (x̄j, ūj) (resp. (x̄i, ūi) is equal to (x̄j, ūj)).

Hereafter, if E is a finite set, cardE denotes the number of elements in E. Our
strategy is the following: from the lists L1 and L2 we will show that it is possible to
extract lists L1 and L2 such that

• the elements of the union L1

⋃

L2 are all distinct;

• there are card L1 + card L2 non redundant equalities between the elements
xi’s, zi’s, x̄i’s and z̄i’s of these two lists; there are card L1 non redundant
equalities between the ui’s and the ūi’s.

For each index k such that 0 ≤ k ≤ s1 − 1, consider the set of indices

I(k) = { i ∈ {0, . . . , s1 − 1} | (xk, uk) = (x̄i, ūi) }.

We notice that the sets I(k) are all disjoint (possibly empty) and that, under the
assumptions u2n+1 = ū2n+1 and x0 6= x̄0, we have k 6∈ I(k) because the equality

fk(x0, uk) = f k(x̄0, ūk) implies x0 = x̄0.

Definition 5. We will call division of {0, 1, . . . , s1 − 1} a sequence of s1 subsets
I(0), . . . , I(s1 − 1) of {0, . . . , s1 − 1} (possibly empty) all disjoint and such that
k 6∈ I(k) (for 0 ≤ k ≤ s1 − 1).

A division (I(0), . . . , I(s1−1)) being given, we will say that the elements (x0, u2n+1)
and (x̄0, ū2n+1) in P

s1

f and P
s2

f (s1 ≥ s2) respectively, are in the configuration
(I(0), . . . , I(s1 − 1)) if we have uk = ūk for k = 0, . . . , 2n and if the set of indices i
such that 0 ≤ i ≤ s1 − 1 and (xk, uk) = (x̄i, ūi) is equal to I(k) for k = 0, . . . , s1 − 1.

Now let (I(0), . . . , I(s1 − 1)) be a division of {0, 1, . . . , s1 − 1}, let (x0, u2n+1)
and (x̄0, ū2n+1) be in P

s1

f and P
s2

f (s1 ≥ s2) respectively, in the configuration
(I(0), . . . , I(s1 − 1)). By writing all the equalities between the elements of list L1

and the elements of list L2 we can have equalities between the ui’s and the ūj’s.
Under the assumption u2n+1 = ū2n+1, some equalities can be redundant; we will
examine this possibility.

RR n° 4991



10 Sabeur Ammar , Jean-Claude Vivalda

Definition 6. A division (I(0), . . . , I(s1− 1)) of {0, . . . , s1− 1} being given, we will
say that the sequence I(i1), . . . , I(ir) is a chain if:

i1 ∈ I(i2), i2 ∈ I(i3), . . . , ir−1 ∈ I(ir), ir ∈ I(i1)

Notice that a chain is defined up to a circular permutation. We will see that two
chains are disjoint or identical: let I(i1), . . . , I(ir) and I(j1), . . . , I(jt) be two chains
with r ≤ t. If these two chains are not disjoint, we can suppose that I(i1) = I(j1)
thus i1 = j1 and consequently i1 ∈ I(i2)∩ I(j2) which implies i2 = j2. Reasoning by
induction, we show the following equalities

i1 = j1, i2 = j2, . . . , ir = jr

Now, we cannot have r < t because this would imply ir = jr ∈ I(i1)
⋂

I(jr+1) and
so i1 = jr+1 which leads to jr+1 = j1 which is absurd.

Concerning the chains, we make another important remark. Let I(i1), . . . , I(ir)
be a chain, by definition we can write the equalities

ui2 = ūi1 ui3 = ūi2 . . . uir = ūir−1
ui1 = ūir .

Under the assumption u2n+1 = ū2n+1, we deduce from that

ui2 = ui1 ui3 = ui2 . . . uir = uir−1
ui1 = uir

but it is clear that the equality ui1 = uir results from the r−1 first ones. Conversely,
suppose that we can write the equalities

ui1 = uj1 . . . uir = ujr

with the jk’s all distinct and jk ∈ I(ik) for k = 1, . . . , r, then if one equality can
be deduced from the others, we can find a chain among the sets I(i1), . . . , I(ir).
Suppose indeed that the equality uir = ujr

can be deduced from the r− 1 preceding
equalities, then there exist two sequences (ik1

, . . . , iks
) and (jk1

, . . . , jks
) of elements

of the sets {i1, . . . , ir} and {j1, . . . , jr} respectively such that

ik1
= jr ik2

= jk1
. . . iks

= jks−1
ir = jks

and

uik1
= ujk1

. . . uiks
= ujks

.

Then we can write :

ik1
= jr ∈ I(ir) ir = jks

∈ I(iks
) iks

= jks−1
∈ I(iks−1

) . . . ik2
= jk1

∈ I(ik1
)

which proves that I(ik1
), I(ir), I(iks

), . . . , I(ik2
) is a chain.

Now we will count the number of non redundant equalities appearing between
the elements of lists L1 and L2; in what follows ` will denote the number of chains
in the sequence (I(0), . . . , I(s1 − 1)) and we put

q = s1 −

s1−1
∑

k=0

card I(k).

In the following, we will consider two cases.
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4.1.1 Case where ` = 0

We start by showing that, in this case, q > 0; to do that, we will show that q = 0
implies ` 6= 0. Suppose that q = 0, then we have

⋃s1−1
k=0 I(k) = {0, . . . , s1 − 1}. Let

i1 such that I(i1) 6= ∅, as i1 6∈ I(i1) there exists i2 6= i1 such as i1 ∈ I(i2), in the
same way there exists i3 such as i2 ∈ I(i3) and we can then write

i1 ∈ I(i2), i2 ∈ I(i3), . . . , ik ∈ I(ik+1), . . .

Now the sequence (ik)k≥1 is finite, so there exists k < l such that ik = il. Notice
that l 6= k + 1 (if not, we would have il ∈ I(l)), we can then write

ik ∈ I(ik+1), ik+1 ∈ I(ik+2), . . . , il−1 ∈ I(l) = I(ik)

which proves that I(k), . . . , I(l − 1) is a chain and so ` ≥ 1.
Consider now the lists L1 and the list L′

2 extracted from L2 by cancelling all the
terms whose indices belong to the union of the I(k)’s, let

L′
2 (x̄r1

, ūr1
, z̄r1

, ȳr1
), . . . , (x̄rq

, ūrq
, z̄rq

, ȳrq
)

with r1 < r2 < . . . < rq. In list L′
2, there can exist equalities between some terms.

In each equality class, we remove all terms but the one of highest index. We obtain
then the list L′′

2.

L′′
2 (x̄t1 , ūt1, z̄t1 , ȳt1), . . . , (x̄tq′

, ūtq′
, z̄tq′

, ȳtq′
)

We will exhibit s1 +q′ independent equalities between the xi’s, zi’s, x̄i’s and z̄i’s and
s1 independent equalities between the ui’s and ūi’s. First, we can write:

z0 = x1, z1 = x2, . . . , zs1−1 = xs′
1

which gives us s1 equalities.
We will now show that there are at least q′ equalities between the terms of L′′

2

and between the terms xj and x̄j. Let us examine two consecutive terms in L′′
2:

(x̄ti , ūti, z̄ti , ȳti), (x̄ti+1
, ūti+1

, z̄ti+1
, ȳti+1

) with i ∈ {1, . . . , q′ − 1}.

• Suppose that ti+1 = ti + 1, we have in this case z̄ti = x̄ti+1
.

• if ti+1 > ti + 1, the term (x̄ti+1, ūti+1, z̄ti+1, ȳti+1) was removed because

– it is equal to a term of L1 and consequently there exists j ∈ {0, . . . , s1−1}
with j 6= ti + 1 and x̄ti+1 = xj, from what it follows z̄ti = xj.

– or it is equal to a term of list L′′
2 and consequently there exists j ∈

{i + 1, . . . , q′} such that tj > ti + 1 and x̄ti+1 = x̄tj , so z̄ti = x̄tj with
tj > ti.

At this point we have obtained s1 + q′ − 1 equalities, in the following, we dis-
tinguish two situations. We start by examining the case where tq′ < s1 − 1: in this
case, the term (x̄tq′+1, ūtq′+1, x̄tq′+2, ȳtq′+1) was removed because it is equal to a term
of L1, hence there exists j ∈ {1, . . . , s1 − 1} with j 6= tq′ + 1 andx̄tq′+1 = xj and so
z̄tq′

= xj, which gives us an additional equality.
The second situation occurs when tq′ = s1−1, and it is subdivided into two cases

• if s1 = 1 or if (x̄j, ūj, z̄j, ȳj) ∈ L′′
2 for j = 0, . . . , s1 − 2, list L′′

2 has s1 terms
and, since s1 ≥ s2, we have the equality x̄s2

= x̄s′
2
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12 Sabeur Ammar , Jean-Claude Vivalda

• if s1 ≥ 2 and if there exists 0 ≤ j ≤ s1 − 2 such that (x̄j, ūj, z̄j, ȳj) 6∈ L′′
2, we

put
r = max{ j ∈ {0, . . . , s1 − 2} | (x̄j, ūj, z̄j, ȳj) 6∈ L′′

2 }.

Now, the term (x̄r, ūr, z̄r, ȳr) has been removed because

– it is equal to a term of list L1, hence there exists j ∈ {0, . . . , s1−1} (with
j 6= r) such that z̄r = zj and so x̄r+1 = zj which is an additional equality.

– or it is equal to a term of list L′
2, hence there exists ti such that r <

ti ≤ s1 − 1 and z̄r = z̄ti , and so x̄r+1 = z̄ti with r + 1 ≤ ti which is an
additional equality.

At this point of our reasoning, we can conclude to the existence of s1+q
′ equalities

between the terms xi’, zi, x̄i and z̄i in lists L1 and L′′
2; we examine now the relation

between the ui’s and the ūi’s.
For a given k such that I(k) is nonempty we let I(k) = {l1, . . . , lα} and we can

write the equalities
uk = ūl1, . . . , uk = ūlα

Under the assumption u2n+1 = ū2n+1, we deduce

uk = ul1, . . . , uk = ulβ

which are α equalities between the ui’s. Repeating the reasoning for each I(k) we
get

s1−1
∑

k=0

card I(k) = s1 − q

equalities between the ui’s (since there is no chain, there is no redundant equalities).
Let us examine now the list L′

2. We denote by C1, . . . , Cq′ the classes of equalities;
recall that, for the construction of list L′′

2, we kept the term of higher index in each
class. For each index ti, we can write cardCi − 1 equalities between ūti and terms
ūj with j < ti and j 6∈ {t1, . . . , tq′}, under the hypothesis u2n = ū2n, we deduce
cardCi − 1 equalities between ūti and terms uj with j < ti, we can write also the q′

equalities
ūt1 = ut1 , . . . , ūt′q

= ut′q

therefore, we have an amount of

q′
∑

i=1

(cardCi − 1) + q′ = q

equalities between the ūi’s and the ui’s in lists L1 and L′′
2.

Conclusion In this subsection, we have proved the existence of s1 + q′ equalities
between the xi’s, zi’s, x̄i’s and z̄i’s in lists L1 and L′′

2 and s1 equalities between the
ui’s and the ūi’s.
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4.1.2 Case where ` 6= 0

In this case there exist ` chains denoted by

C1 I(i11), . . . , I(i
1
n1

)
...

C` I(i`1), . . . , I(i
`
n`

)

a chain being defined up to a circular permutation, we can suppose that, for k =
1, . . . , `, ik1 6= 0.

We built the list L′
1 extracted from L1 by removing the elements of indices

i11, . . . , i
`
1. We consider also the list L′′′

2 extracted from L2 by taking the terms of
the list L′′

2 (possibly empty) which is obtained starting from L2 as explained in the
case ` = 0 and by adding the terms of indices i1n1

, . . . , i`n`
. Notice that, due to the

construction of L′′
2, the lists {i1n1

, . . . , i`n`
} and {t1, . . . , tq′} are disjoint, thus, the

number of elements in L′′′
2 is equal to `+ q′; we introduce the following notations:

{ i1, . . . , is1−` } = { 0, . . . , s1 − 1 } r { i11, . . . , i
`
1 } with i1 < . . . < is1−`

{j1, . . . , j`+q′} = {i1n1
, . . . , i`n`

, t1, . . . , tq′} with j1 < . . . < j`+q′

Notice that i1 is necessarily zero and that, with these notations, lists L′
1 and L′′′

2

can be written:

L′
1 (xi1 , ui1, zi1 , yi1), . . . , (xis1−`

, uis1−`
, zis1−`

, yis1−`
)

L′′′
2 (x̄j1, ūj1, z̄j1, ȳj1), . . . , (x̄j`+q′

, ūj`+q′
, z̄j`+q′

, ȳj`+q′
)

It can be easily seen that the terms of L′
1 ∪ L

′′′
2 are all distinct.

In the following, for the sake of readability, we will sometimes write τ(i) in place
of τi where τ is one of the symbols x, z, x̄,. . . and i is an expression representing an
index.

We start by showing that we have at least s1 + q′ equalities between the terms
xi, zi, x̄i and zi of the lists L′

1 and L′′′
2 . We put is1−`+1 = s1 and we examine first the

terms corresponding to two consecutive indices ir and ir+1 with r ∈ {1, . . . , s1 − `}.

• if ir+1 = ir + 1 < s1, we can write the equality

z(ir) = x(ir+1);

if ir+1 = ir + 1 = s1, we have x(s1) = x(s′1) if s′1 6∈ {i11, . . . , i
`
1}, we deduce the

equality
z(ir) = x(s′1)

between two terms of L′
1, if there exists 1 ≤ a ≤ ` such that s′1 = ia1, we have

x(ia1) = x̄(iana
) and we can write the equality:

z(ir) = x̄(iana
);

• if ir+1 = ir +d with 2 ≤ d ≤ i(s1 − `)− ir, the index ir +1 is equal to an index
ik1

1 , since ik1
nk1

∈ I(ik1

1 ), we have x(ik1

1 ) = x̄(ik1
nk1

), now x(ik1

1 ) = x(ir +1) = z(ir),
so we have the equality:

z(ir) = x̄(ik1

nk1
).
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14 Sabeur Ammar , Jean-Claude Vivalda

From the definition of L′
1, it follows that for each j = 1, . . . , d− 1, the index

ir+j belongs to the list (i11, . . . , i
`
1), so there exists kj such that ir+j = i

kj

1 . If

i
kj
nkj

+ 1 is the index of an element in the list L′′′
2 , we have the equality

z̄(ikj
nkj

) = x̄(ikj
nkj

+ 1).

Otherwise, the term of index i
kj
nkj

+ 1 was cancelled because it is equal to

– a term of L′
1, which implies the existence of an index ia such that x̄(i

kj
nkj

+

1) = x(ia) and since x̄(i
kj
nkj

+ 1) = z̄(i
kj
nkj

), we have

z̄(ikj
nkj

) = x(ia)

– a term of L1 r L′
1, which implies the existence of an index ib1 such that

x̄(i
kj
nkj

+ 1) = x(ib1) and since x̄(i
kj
nkj

+ 1) = z̄(i
kj
nkj

) and x(ib1) = x̄(ibnb
), we

can write the equality:
z̄(ikj

nkj
) = x̄(ibnb

)

– a term of list L′′
2, which implies the existence of an index ti such that

x̄(i
kj
nkj

+ 1) = x̄(ti) and we can write:

z̄(ikj
nkj

) = x̄(ti)

At this point, we have written

s1−
∑̀

r=1

(ir+1 − ir) = is1−`+1 − i1 = is1−`+1 = s1

equalities between the xi’s, zi’s, x̄i’s and z̄i’s of lists L′
1 and L′′′

2 .
Reasoning as in the case where ` = 0, the q′ terms of the list L′′

2 give q′ equalities;
notice that, since the sets of indices {i1n1

, . . . , i`n`
} and {t1, . . . , tq′} are disjoint, these

q′ equalities do not interfere with the s1 equalities written above.
We will now prove that we can write s1 − ` equalities between the terms ui and

ūj in lists L′
1 and L′′′

2 . Consider the chain C1 and let

I(i11) = {i1n1
, i11,2, . . . , i

1
1,m1

}

I(i12) = {i11, i
1
2,2, . . . , i

1
2,m2

}

...

I(i1n1
) = {i1n1−1, i

1
n1,2, . . . , i

1
n1,mn1

}

We can write the following equalities

u(i11) = ū(i1n1
) u(i11) = ū(i11,2) . . . u(i11) = ū(i11,m1

)

...
... . . .

... (7)

u(i1n1
) = ū(i1n1−1) u(i1n1

) = ū(i1n1,2) . . . u(i1n1
) = ū(i1n1,mn1

)
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Taking into account that the term u(i11) does not appear in list L′
1 and under the

assumption that u2n+1 = ū2n+1, we deduce the following equalities:

u(i12) = u(i12,2) . . . u(i12) = u(i12,m2
)

u(i13) = u(i12) u(i13) = u(i13,2) . . . u(i13) = u(i13,m3
)

...
... . . .

...

u(i1n1
) = u(i1n1−1) u(i1n1

) = u(i1n1,2) . . . u(i1n1
) = u(i1n1,mn1

)

The number of this equalities is equal to

n1
∑

j=1

card I(i1j) −m1 − 1.

From the first line of equalities (7) and under the assumption u2n+1 = ū2n+1, we can
write the m1 − 1 equalities:

ū(i1n1
) = u(i11,2) ū(i1n1

) = u(i11,3) . . . ū(i1n1
) = u(i11,m1

)

Reasoning in the same way for the other chains, we obtain

∑̀

i=1

ni
∑

j=1

card I(iij) − 2`

equalities between the ui’s and the ū(ijnj
)’s and the ui’s. Taking into account the

sets I(k) which are not components of chains and reasoning as in the case ` = 0, we
can write other equalities between the ui’s and we get an amount of

s1 − q − 2`

equalities between the ui’s and the ū(ijnj
)’s and the ui’s ; clearly, these equalities are

independent because, due to the absence of the terms of indices i11, . . . , i
`
1 from L′

1,
we cannot find a chain built with indices appearing in list L′

1.
Now reasoning as in the case ` = 0, we can write q − q ′ equalities between the

ū(ti)’s and some ūj (with j < ti and j /∈ {t1, . . . , tq′}), also we can write the following
q′ + ` equalities:

ū(it1) =u(it1) . . . ū(itq′ ) =u(itq′ )

ū(i1n1
) =u(i1n1

) . . . ū(i`n`
) =u(i`n`

)

Finally, we have an amount of s1 − ` equalities between the ui’s and the ūj’s and
s1 + q′ equalities between the xi’s, zi’s, x̄i’s and z̄i’s.

We are now ready to apply the multijet transversality theorem. For given s1

and s2, consider the set (X × U)(d1+d2) with 1 ≤ d1 ≤ s1 and d2 ≤ d1, let us denote
by α (= (x, u)) an element of X × U and, for (f, h) in DiffU(X) × C∞(X × U,Rp),
consider the mapping :

j0
d1+d2

(f, h) : (X × U)(d1+d2) −→ (X × U ×X × R
p)d1+d2

(α1, . . . , αd1
, ᾱ1, . . . , ᾱd2

) 7−→ (β1, . . . , βd1
, β̄1, . . . , β̄d2

)
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16 Sabeur Ammar , Jean-Claude Vivalda

where βi = (xi, ui, f(xi, ui), h(xi, ui)) if αi = (xi, ui) (analogous expression for the
β̄i’s). In the manifold (X × U ×X × R

p)d1+d2 , we consider a submanifold W defined
by d1 + d2 equalities between the xi’s, zi’s, x̄i’s and z̄i’s, d1 equalities between the
ui’s and the ūi’s and d2 equalities between the elements ȳ1, . . . , ȳd2

and d2 elements
chosen among the elements y1, . . . , yd1

. The number of submanifolds such that W is
finite, moreover these submanifolds are closed and their codimensions are equal to

(d1 + d2)n + d1m+ d2p

which is greater than the dimension of (X × U)(d1+d2), therefore transversality to W
means non membership and we can assert that the set of mappings (f, h) belonging
to DiffU(X) × C∞(X × U,Rp) such that

j0
d1+d2

(f, h)(α1, . . . , αd1
, ᾱ1, . . . , ᾱd2

) /∈ W

is residual. Now denote by Os1,s2
the residual set in DiffU ×C∞(X×U,Rp) obtained

as the finite intersection of all residual sets related to all possible values for d1

and d2 and all submanifolds such that W . Let (f, h) inOs1,s2
and assume that

(x0, u2n+1) ∈ P
s1

f and (x̄0, ū2n+1) ∈ P
s2

f . If u2n+1 = ū2n+1, as we saw above, we can
extract two lists L1 and L2 from L1 and L2 of length d1 and d2 respectively such
that:

• there exist d1 + d2 equalities between the xi’s, zi’s, x̄i’s and z̄i’s;

• there exist d1 equalities between the ui’s and the ūi’s.

If, in addition we suppose that the d2 elements ȳi in list L2 are equal to the corre-
sponding yi in list L1, the element

j0
f,h(α1, . . . , αd1

, ᾱ1, . . . , ᾱd2
)

belongs to a submanifold such as W (α1, . . . , αd1
(resp. ᾱ1, . . . , ᾱd2

) denotes the list
constituted by the projection of the elements of L1 (resp. L2) onto X × U). Such
a membership being impossible for a pair (f, h) in Os1,s2

, so there must exist a term
yi different from ȳi. Finally we see that by letting A1 to be the finite intersection of
all residual sets Os1,s2

, lemma 1 is proven.

4.2 Proof of lemma 2

The demonstration of this lemma is very similar to the one of lemma 1.
Let (x0, x̄0, u2n+1) be in Sf and suppose that (x0, u2n+1) /∈ Pf . There exist

indices i1 < · · · < ir and j1, . . . , jr ∈ {0, . . . , 2n} all distinct and a permutation σ
such that jk = σ(ik) for k = 1, . . . , r and

(f ik(x0, uik), uik) = (f jk(x̄0, ujk
), ujk

) for k = 1, . . . , r

Given a finite sequence ū2n+1, with the same notations than in the proof of
lemma 1, consider the two following lists constituted by the terms of indices i1, i1 +
1, . . . , ir−1 − 1, ir−1

L1 : (xi1 , ui1, zi1, yi1), . . . , (xir−1, uir−1, zir−1, yir−1)

L2 : (x̄i1 , ūi1, z̄i1, ȳi1), . . . , (x̄ir−1, ūir−1, z̄ir−1, ȳir−1)

Like in the proof of lemma 1, we will extract from them two lists L1 and L2 such
that, under the assumption u2n+1 = ū2n+1,
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• the elements of the union L1

⋃

L2 are all distinct;

• there are card L1 + card L2 non redundant equalities between the elements
xi’s, zi’s, x̄i’s and z̄i’s of these two lists; there are card L1 non redundant
equalities between the ui’s and the ūi’s.

From the definition of Sf , we can suppose, without loss of generality, that
(x0, u2n+1) /∈ Pf , so the elements of list L1 are all distinct but this is not nec-
essarily the case for the elements of list L2. Moreover, it can happen that some
elements of the first list are equal to elements of the second one.

Like in the demonstration of lemma 1, for each index k (i1 ≤ k ≤ ir − 1), we
consider the sets

I(k) = { i | i1 ≤ i ≤ ir − 1 and (xk, uk) = (x̄i, ūi) }

which obviously have the same properties than in the proof of lemma 1. We introduce
also the concepts of division and chains as in the demonstration of lemma 1. We
denote by ` the number of chains and by q the number

q = ir − i1 −

ir−1
∑

k=i1

card I(k)

Notice that jr ∈ {i1, i1 +1, . . . , ir−1} (the set of all integers between i1 and ir−1) be-
cause we cannot have jr = ir, which would imply x0 = x̄0; moreover (x̄jr

, ūjr
, z̄jr

, ȳjr
)

is different from all the elements of list L1, indeed an equality such that x̄jr
= xk

with i1 ≤ k ≤ ir − 1 would imply xir = xk which is in contradiction with the fact
that (x0, u2n+1) /∈ Pf .

Consider the list L′
2 extracted from L2 by removing every term whose index

belongs to the union of the Ik’s; notice that the term of index jr is present in list L′
2.

In this list , there can exist equalities between some terms, in each equality class, we
remove all terms but the one of highest index excepted for the equality class which
contains the term of index jr, for this class, we keep the term (x̄jr

, ūjr
, z̄jr

, ȳjr
). In

this way, we obtain a list denoted by L′′
2 :

L′′
2 : (x̄t1 , ūt1, z̄t1 , ȳt1), . . . , (x̄tq′

, ūtq′
, z̄tq′

, ȳtq′
) with t1 < · · · < tq′

In what follows, we will distinguish two cases.

4.2.1 Case where ` = 0

In the first list we find the ir − i1 − 1 following equalities

zk = xk+1 for k = i1, i1 + 1, . . . , ir − 2

Under the hypothesis, u2n+1 = ū2n+1, we will establish now that there exist at least
q′ + 1 equalities in L′′

2 between the terms x̄j and between the terms xj and x̄j. Let
us examine two consecutive terms of respective indices ti and ti+1 in L′′

2.

• Suppose that ti+1 = ti + 1, we have in this case x̄ti+1
= z̄ti ;

• if ti+1 > ti + 1, the term (x̄ti+1, ūti+1, z̄ti+1, ȳti+1) was removed because:

– it is is equal to an element of L1 and consequently there exists j ∈ {i1, i1+
1, . . . , ir − 1} with j 6= ti + 1 such that x̄ti+1 = xj, from where z̄ti = xj.
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– or it is equal to an element of list L′′
2 and consequently there exists j ∈

{ti+1, . . . , tq′} such that x̄ti+1 = x̄j and consequently z̄ti = x̄j.

To these q′ − 1 equalities, we add the equality x̄jr
= zir−1 and we will distinguish

two situations:

• first, suppose that tq′ < ir−1, in this case, the term of index tq′+1 was removed
because it is equal to an element of index j in list L1 and so x̄tq′+1 = xj from
which z̄tq′

= xj, which gives us a new equality;

• if tq′ = ir − 1, we have z̄tq′
= x̄ir = xσ−1(ir).

At this point we have ir − i1 + q′ equalities between the xj’s, zj’s, x̄j’s and z̄j’s.
Now by reasoning exactly in the same way than in the proof of lemma 1, we can
write ir − i1 equalities between the uj’s and the ūj’s.

4.2.2 Case where ` 6= 0:

In this case there exist ` chains denoted by

C1 I(j1
1), . . . , I(j

1
n1

)
...

C` I(j`
1), . . . , I(j

`
n`

)

a chain being defined up to a circular permutation, we can suppose that, for k =
1, . . . , `, jk

1 6= 0. As in the proof of lemma 1, we built the list L′
1 extracted from

L1 by removing the elements of indices j1
1 , . . . , j

`
1. We consider also the list L′′′

2

extracted from L2 by taking the terms of the list L′′
2 (possibly empty) which is

obtained starting from L2 as explained in the case ` = 0 and by adding the terms
of indices j1

n1
, . . . , j`

n`
.

Now as in the proof of lemma 1 section 4.1.2, we obtain, by the consideration of
consecutive elements in L′

1, cardL′
1 + `− 1 equalities between the xi’s, zi’s, x̄i’s and

z̄i’s. Notice that in this case we cannot have an equality like z(ir) = x(s′1) because
(x0, u2n+1) does not belong to P

s1

f but as compensation, we have the equality x̄jr
=

zir−1. Then we can obtain also cardL′′′
2 − ` equalities concerning the elements of list

L′′′
2 . Finally, as in the proof of lemma 1, we obtain cardL′

1 equalities between the
ui’s and the ūi’s.

We conclude by applying the multijet transversality theorem exactly in the same
way than in the conclusion of the proof of lemma1.

4.3 Proof of lemma 3

Let f be given in DiffU(X)), the set S
c
f is obviously an open subset of X×X×U 2n+1

and, since X and U are second countable, there exist a sequence (Kn(f))n≥1 of

compact sets such that S
c
f =

⋃

n≥1Kn(f) and Kn(f) is included in K̊n+1(f), the
interior ofKn+1(f). The vector space C∞(X×U,Rp), equipped with the Cr topology
with r < +∞, is a Banach space; in the following C∞(X ×U,Rp) is supposed to be
equipped with this topology. We define the representation ρ

ρ : C∞(X × U,Rp) −→ C∞(Sc
f , (R

p)2n+1)
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through the evaluation mapping :

evρ : C∞(X × U,Rp) × S
c
f −→ (Rp)2n+1

(h, x0, x̄0, u2n+1) 7−→
(

h(x0, u0) − h(x̄0, u0), . . . ,

h(f 2n(x0, u2n), u2n) − h(f 2n(x̄0, u2n), u2n)
)

(8)
Consider the submanifold W = {0} of (Rp)2n+1, its codimension is equal to p(2n+1)
which is greater than 2n +m(2n + 1) the dimension of S

c
f , hence to say that ρh is

transverse toW is equivalent to say that ρh(x0, x̄0, u2n+1) 6= 0 for every (x0, x̄0, u2n+1)

in S
c
f or, equivalently, that Θf,h

2n+1(x0, u2n+1) 6= Θf,h
2n+1(x̄0, u2n+1). We will first prove

the existence of a residual (for the Cr topology) set Er in C∞(X ×U,Rp) such that
if the mapping h is in Er, ρh is transverse to W .

In order to prove the existence of the sets Er we will apply the Abraham theorem
(Th. 3) with A = C∞(X × U,Rp), X = S

c
f and Y = (Rp)2n+1. Clearly the three

first hypotheses in the statement of this theorem are satisfied and we will just prove
that evρ t W , to this end it is sufficient to prove that evρ is a submersion. First,
we write the expression of devρ, the differential application of evρ at the point
a = (h, x0, x̄0, u2n+1) ∈ C∞(X × U,Rp) × S

c
f :

(devρ)a · (h, ξ0, ξ̄0, η0, . . . , η2n) = (ψ0, . . . , ψ2n)

with

ψi = h(f i(x0, ui), ui) − h(f i(x̄0, ui), ui) + d1h0(f
i(x0, ui), ui).ξ0 − d2h0(f

i(x̄0, ui), ui).ξ̄0

+ di
3h0(f

i(x0, ui), ui).(η0, . . . , ηi) − di
3h0(f

i(x̄0, ui), ui).(η0, . . . , ηi)

for i = 0, . . . , 2n, the notations d1, d2 and di
3 standing for the partial derivatives at

x0, x̄0 and u0, . . . , ui respectively. Putting ξ0 = 0, ξ̄0 = 0 and ηi = 0 for i = 0, . . . , 2n,
the expression of devρ at a becomes :

(devρ)a·(h, 0 . . . , 0) =
(

h(x0, u0)−h(x̄0, u0), . . . , h(f
2n(x1, u2n), u2n)−h(f 2n(x̄2, u2n), u2n)

)

To show that (devρ)a is onto, it is enough to show that, for every (W0, . . . ,W2n)
in (Rp)2n+1, there exists h in C∞(X × U,Rp) such that the following equations are
satisfied:











h(x0, u0) − h(x̄0, ū0)) = W0
...

...
h(f 2n(x0, u2n), u2n) − h(f 2n(x̄0, u2n), u2n) = W2n

(9)

Consider the two following lists

L1 : (x0, u0), . . . , (f
2n(x0, u2n), u2n)

and
L2 : (x̄0, u0), . . . , (f

2n(x̄0, u2n), u2n)

since (x0, x̄0, u2n+1) belongs to S
c
f , we can suppose without loss of generality that

(x0, u2n+1) is not a periodic point of f and so, the elements of list L1 are all distinct.
However, there can exist equalities between the terms of list L2 and between terms
of L1 and L2. If we do not take into account the order of the elements, list L2 can
be written as (a1, . . . , an′, b1, . . . , bn′′), with n′ + n′′ = 2n + 1, a1, . . . , an′ ∈ L1 and
b1, . . . , bn′′ 6∈ L1. We will show the existence of a function h taking given values at
points (xi, ui) and such that h(b1) = . . . = h(bn′′) = 0.
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Consider the following system with the p-dimensional unknowns α0, . . . , α2n given
in (Rp)2n+1



































α0 −

2n
∑

j=0

ε0,jαj = W0

...

α2n −
2n
∑

j=0

ε2n,jαj = W2n

(10)

where

εi,j =

{

1 if (x̄i, ui) = (xj, uj)

0 otherwise

Notice that, due to the fact that (x0, x̄0, u2n+1) is not permutable, if we take two
sets of indices {i1, . . . , ip}, all distinct, and {j1, . . . , jp} in {0, . . . , 2n} such that
σ(ik) = jk with σ a permutation of {0, . . . , 2n} and k = 1, . . . , p, we cannot have
(εi1,j1, . . . , εip,jp

) = (1, . . . , 1). Notice also that, since xi 6= x̄i, εi,i = 0.
We will consider the matrix A associated with this linear system (10)

A =









Ip −ε0,1 Ip −ε0,2 Ip . . . −ε0,2n Ip
−ε1,0 Ip Ip −ε1,2 Ip . . . −ε1,2n Ip
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−ε2n,0 Ip −ε2n,1 Ip −ε2n,2 Ip . . . Ip









where Ip denote the p-dimensional identity matrix. We will show that detA = 1, it
is well known that the determinant of A can be expressed as the pth power of the
determinant of the matrix

A′ =









1 −ε0,1 −ε0,2 . . . −ε0,2n

−ε1,0 1 −ε1,2 . . . −ε1,2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−ε2n,0 −ε2n,1 −ε2n,2 . . . 1









Now, we have

detA′ =
∑

σ∈S2n+1

εσaσ(0),0 . . . aσ(2n),2n

where S2n+1 denotes the set of permutations of {0, . . . , 2n}, εσ, the sign of permu-
tation σ and the ai,j’s are the terms of matrix A′. If σ is the identity permutation,
we have

εσaσ(0),0 . . . aσ(2n),2n = 1

If σ is different from identity let {k1, . . . , kp} be the set of fixed points of σ and
put {i1, . . . , iq} = {0, . . . , 2n} r {k1, . . . , kp}, this last set is non empty and, letting
jk = σ(ik), we have

εσaσ(0),0 . . . aσ(2n),2n = εσ(−1)qεj1,i1 . . . εjq,iq

which is zero because (εj1,i1 , . . . , εjq,iq) 6= (1, . . . , 1). So we proved that detA′ = 1.
The consequence of this computation is that system (10) has a solution (α0, . . . , α2n),

for these values, we can find a mapping h in C∞(X × U,Rp) such that h(xi) = αi

for i = 0, . . . , 2n and h(bi) = 0 for i = 1, . . . , n′′. Clearly Such a mapping h is a
solution of system (9).
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At this stage, we have a residual set Er included in C∞(X × U,Rp) such that
every mapping h in Er is such that the pair (f, h) satisfies property P2. Now, using
Theorem 4, we can see that the set

U r
n(f) = { h ∈ C∞(X × U,Rp) | ρh tx W for x ∈ Kn(f) }

is open, and, since Er is obviously included in U r
n(f), it is also dense. Proving that

the set U is open is a quite delicate task. First, we will be more specific about the
construction of the compact sets Kn(f): given a sequence of compact sets (Jn(f))n≥1

such that
S

c
f =

⋃

n≥1

Jn(f) and Jn(f) = J̊n+1(f)

we can write the set S
c
f as

Kn(f) = Jn(f) ∩ { v ∈ S
c
f | d(v, Pf ∪ Sf) ≥

1

n
}

where d is a distance compatible with the topology of X×X×U 2n+1; recall also
that Pf ∪ Sf is the set complement of S

c
f in M ×M × U .

Now if the parametrized diffeomorphism f is closed to f0, the set S
c
f is closed

to S
c
f0

and so are sets Kn(f) and Kn(f0) defined as above. The representation ρ
defined by equality (8) and set Er depend on diffeomorphism f , to avoid ambiguity,
in what follows, we will denote them ρf and Er(f). Take now (f0, h0) in U r

n , there
exists m > 0 such that for every (x0, x̄0, u2n+1) in Kn(f0),

‖ρf0

h0
(x0, x̄0, u2n+1)‖ ≥ m

if (f, h) is closed enough to (f0, h0), Kn(f0) is closed to Kn(f) and we have

‖ρf
h(x0, x̄0, u2n+1)‖ ≥

m

2

for every pair (f, h) in some neighborhood of (f0, h0); this proves the openness of
U r

n .

5 Conclusion

In this paper, we proved that, generically, a discrete-time nonlinear system is strongly
observable provided that the number of outputs is greater than the number of in-
puts. We made the assumption that the observation function h depends on the state
variable x and the input u, nevertheless the same result can be proven if function
h depends only on x, we will indicate briefly how this result could be proven. The
plan of the proof of Theorem 5 is the same, and we have just to make the following
slight modifications. If f is in DiffU(X) and h is in C∞(X,Rp), the notation (f, h)
stand for the mapping

(f, h) : X × U ×X −→ X × R
p

(x, u, w) 7−→ (f(x, u), h(w))

In the proofs of lemmas 1 and 2, the lists to be considered are modified as follows:

L1 (x0, u0, w0, z0, y0), . . . , (xs1−1, us1−1, ws1−1, zs1−1, ys1−1)
L2 (x̄0, ū0, w̄0, z̄0, ȳ0), . . . , (x̄s1−1, ūs1−1, w̄s1−1, z̄s1−1, ȳs1−1)
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and we work under the assumption w0 = x0, . . . , ws1−1 = xs1−1 and w̄0 = x̄0, . . . , w̄s1−1 =
x̄s1−1. These equalities have to be added to the equalities established in the first
parts of the proofs of Lemmas 1 and 2. Now, in the application of the multijet
transversality theorem, we consider mapping from (X × U ×X)(d1+d2) to X × U ×
X × X × R

p, thanks to these extra equalities, the codimension of submanifold W
in X ×U ×X ×X ×R

p is greater than the dimension of (X × U ×X)(d1+d2) which
allows us to conclude as in the proofs of Lemmas 1 and 2. Nothing has to be changed
in the proof of Lemma 3.
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