3,496 research outputs found

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods

    Get PDF
    Plug-in Electric Vehicle (PEV) user charging behavior has a significant influence on a distribution network and its reliability. Generally, monitoring energy consumption has become one of the most important factors in green and micro grids; therefore, predicting the charging demand of PEVs (the energy consumed during the charging session) could help to efficiently manage the electric grid. Consequently, three machine learning methods are applied in this research to predict the charging demand for the PEV user after a charging session starts. This approach is validated using a dataset consisting of seven years of charging events collected from public charging stations in the state of Nebraska, USA. The results show that the regression method, XGBoost, slightly outperforms the other methods in predicting the charging demand, with an RMSE equal to 6.68 kWh and R2 equal to 51.9%. The relative importance of input variables is also discussed, showing that the user’s historical average demand has the most predictive value. Accurate prediction of session charging demand, as opposed to the daily or hourly demand of multiple users, has many possible applications for utility companies and charging networks, including scheduling, grid stability, and smart grid integration

    Learning Opportunities and Challenges of Sensor-enabled Intelligent Tutoring Systems on Mobile Platforms: Benchmarking the Reliability of Mobile Sensors to Track Human Physiological Signals and Behaviors to Enhance Tablet-Based Intelligent Tutoring Systems

    Get PDF
    Desktop-based intelligent tutoring systems have existed for many decades, but the advancement of mobile computing technologies has sparked interest in developing mobile intelligent tutoring systems (mITS). Personalized mITS are applicable to not only stand-alone and client-server systems but also cloud systems possibly leveraging big data. Device-based sensors enable even greater personalization through capture of physiological signals during periods of student study. However, personalizing mITS to individual students faces challenges. The Achilles heel of personalization is the feasibility and reliability of these sensors to accurately capture physiological signals and behavior measures. This research reviews feasibility and benchmarks reliability of basic mobile platform sensors in various student postures. The research software and methodology are generalizable to a range of platforms and sensors. Incorporating the tile-based puzzle game 2048 as a substitute for a knowledge domain also enables a broad spectrum of test populations. Baseline sensors include the on-board camera to detect eyes/faces and the Bluetooth Empatica E4 wristband to capture heart rate, electrodermal activity (EDA), and skin temperature. The test population involved 100 collegiate students randomly assigned to one of three different ergonomic positions in a classroom: sitting at a table, standing at a counter, or reclining on a sofa. Well received by the students, EDA proved to be more reliable than heart rate or face detection in the three different ergonomic positions. Additional insights are provided on advancing learning personalization through future sensor feasibility and reliability studies

    Systematic predictive analysis of personalized life expectancy using smart devices

    Full text link
    With the emergence of technologies such as electronic health and mobile health (eHealth/mHealth), cloud computing, big data, and the Internet of Things (IoT), health related data are increasing and many applications such as smartphone apps and wearable devices that provide wellness and fitness tracking are entering the market. Some apps provide health related data such as sleep monitoring, heart rate measuring, and calorie expenditure collected and processed by the devices and servers in the cloud. These requirements can be extended to provide a personalized life expectancy (PLE) for the purpose of wellbeing and encouraging lifestyle improvement. No existing works provide this PLE information that is developed and customized for the individual. This article is based on the concurrent models and methodologies to calculate and predict life expectancy (LE) and proposes an idea of using multi-phased approaches to the solution as the project requires an immense and broad range of work to accomplish. As a result, the current prediction of LE, which was found to be up to a maximum of five years could potentially be extended to a lifetime prediction by utilizing generic health data. In this article, the novel idea of the solution proposing a PLE on an individual basis, which can be extended to lifetime is presented in addition to the existing works

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 197, September 1979

    Get PDF
    This bibliography lists 193 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1979

    Development of a Wireless Real-Time Productivity Measurement System for Rapid Bridge Replacement

    Get PDF
    Increased attention has been paid to rapid bridge replacement, one of the critical components of the nation’s transportation network, since the terrorist attacks on September 11, 2001. To enhance the capability of rapid replacement of damaged bridges after extreme events, a prototype wireless real-time productivity measurement system has been developed. The developed system has a potential not only to improve the accuracy of construction schedule but also to strengthen the communication and coordination among parties involved in the replacement process after extreme events by providing accurate productivity information in real time. To validate the developed system, field experiments were conducted at three construction sites. Results of data analyses indicate that it is feasible to use the developed system to measure on-site productivity in real time; and productivity measurements were accurate and could be shared among all parties involved in the replacement process
    • …
    corecore