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ABSTRACT 

Desktop-based intelligent tutoring systems have existed for many decades, but the 

advancement of mobile computing technologies has sparked interest in developing 

mobile intelligent tutoring systems (mITS).  Personalized mITS are applicable to not only 

stand-alone and client-server systems but also cloud systems possibly leveraging big data.  

Device-based sensors enable even greater personalization through capture of 

physiological signals during periods of student study.  However, personalizing mITS to 

individual students faces challenges.  The Achilles heel of personalization is the 

feasibility and reliability of these sensors to accurately capture physiological signals and 

behavior measures.   

This research reviews feasibility and benchmarks reliability of basic mobile platform 

sensors in various student postures.  The research software and methodology are 

generalizable to a range of platforms and sensors.  Incorporating the tile-based puzzle 

game 2048 as a substitute for a knowledge domain also enables a broad spectrum of test 

populations.  Baseline sensors include the on-board camera to detect eyes/faces and the 

Bluetooth Empatica E4 wristband to capture heart rate, electrodermal activity (EDA), and 

skin temperature.  The test population involved 100 collegiate students randomly 

assigned to one of three different ergonomic positions in a classroom: sitting at a table, 

standing at a counter, or reclining on a sofa.  Well received by the students, EDA proved 

to be more reliable than heart rate or face detection in the three different ergonomic 
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positions.  Additional insights are provided on advancing learning personalization 

through future sensor feasibility and reliability studies.
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“You aren’t going to find anybody that’s going to be successful without making a 
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CHAPTER ONE: INTRODUCTION 

Intelligent Tutoring Systems are effective instructional platforms that have primarily 

delivered instruction through desktop computer hardware augmented by a variety of 

sensors.  Increasingly, desktop computer users are migrating to mobile platforms 

(Gartner, 2018) and it is our goal to facilitate the migration of these intelligent tutoring 

systems to mobile platforms, such as tablets.  The research described herein examines 

sensor technologies and the efficacy of their transfer from desktop to mobile instructional 

platforms. 

Mobile Computing Platforms 

With the advancement of mobile computing technologies, communication networks, and 

social platforms, people have forged a relationship which seems impossible to imagine 

modern life without these additions.  From these tools and innovations, there is a strong 

motivation to automate and/or migrate everything into a ‘mobile’ package.  In a general 

sense, mobile is the concept where an individual is not constrained to one location and is 

free to move around.  This idea is then applied to computing hardware, software, and the 

necessary infrastructure which supports this unfettered lifestyle, such as phones, tablets, 

operating systems, software, and communication protocols.   

As a background, mobile phones are handheld devices that connects to a cellular network 

that is able to communicate with the Internet and run specialized applications.  Similarly, 

tablets also connect to the Internet and run specialized applications (via a cellular 

network and/or 802.11 wireless networks) but possess larger screens.  Even though tablet 
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computing has grown in popularity over the past few years, it isn’t a new idea.  

Moreover, early signs of tablets can be traced back to a patent submitted in 1888 which 

was a system that was used in handwriting recognition (386815, 1888).  However, from 

the early days of computing, tablets have been associated with the use of a digital pen or 

stylus, as it’s evident from patents published and systems developed in the early 1900s 

throughout the 1950s (1117184, 1914) (Dimond, 1957) and continues through today.   

Modern tablets (or tablet PCs) can be seen to have its origins in touch-input hardware 

development in the mid-1960s (Schedeen, 2010).  These tablets relied heavily on the use 

of a stylus in order to digitize input to be consumed by the system (Schedeen, 2010).  As 

computing technology improved, the tablet also became lighter, smaller, and more 

portable (Schedeen, 2010).  Over the past few years, hardware manufacturers have come 

up with combinations of devices that blends the tablet and laptop, commonly referred to 

as “convertibles”, “detachables”, and “sliders” (Spoonauer, 2013).  These terms stem 

from the action these devices possess any of the following qualities: convert between 

laptops and tablets or detachable/slidable keyboards.  With respect to this research, a 

tablet is a mobile device, with a touch-sensitive area with a diagonal size of at least seven 

inches.  The tablet definition will apply to devices such as the Nexus 7, Surface, and iPad. 

However, the audience for tablets did not materialize until the commercialization of 

multi-touch technology incorporated in products such as the iPhone and iPad (Schedeen, 

2010) between 2007 and 2010.  The iPad allows for a comfortable replacement for 

laptops and desktop computers for browsing web content such as news and social media 

sites and for casual gaming (Griffey, 2012).  With the popularization of the mobile tablet 
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for consumer use, the tablet has also been applied to various different fields with some 

examples in: education (Leonard, 2013), medicine (Glaser, Jain, & Kortum, 2013), and 

business (Dalenberg, 2012). 

In order to put into perspective how fast the mobile platform is expanding, annual sales 

for smartphones grew from 122.32 million units in 2007 to 1.536 billion units in 2017 

(Statista, 2018a).  Although not as dramatic, tablets grew annual sales from 76 million 

units in 2011 to 163.7 million units in 2017 (Statista, 2018b).  Although the sales of 

phones and tablets are growing at different rates, their sales are expected to continue to 

grow for the foreseeable future (Gartner, 2018).  Furthermore, these mobile computing 

technologies (smartphones and tablets) has even outpaced the sales of traditional desktop 

computers (Gartner, 2018).  Moreover, Statista (2018a, 2018b) presents data that laptops 

have been sold more than their desktop counterparts over the past decade and 

smartphones have exceeded them both.  According to Gartner in 2014, there is a direct 

correlation between the decline of desktops and the rise of mobile devices as users reduce 

their use of desktops and laptops in order to take advantage of the “flexibility” that a 

mobile computing device offers (Gartner, 2014).  With the growing sales of mobile 

computing products, the idea is reinforced that more people will have ample 

computational resources anywhere they go (Ba, Heinzelman, Janssen, & Shi, 2013). 

Nonetheless, having almost half a billion smartphones sold in one year (Ba et al., 2013) 

isn’t as significant, until we start to leverage the power of the internet and connect them 

all together.  This allows for these owners to harness the wealth of information that can 

be found on the internet, without the requirement of being chained to a stationary desktop 
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computer.  The demand imposed by these devices starts to bog down wireless 

telecommunication networks such as 2G, 3G and 4G across the globe (Cisco, 2013).   

According to a study conducted by the Cisco Visual Networking Index (VNI) team, data 

usage (or traffic) on mobile networks increased by 70% in 2012 (Cisco, 2013).  

Moreover, if it weren’t for the increased usage of Wi-Fi networks to divert mobile data 

traffic away from telecommunication networks, the bandwidth for the wireless 

telecommunication networks would be even worse (Cisco, 2013).  This study predicts 

mobile traffic will also continue to rise while the bandwidth and speeds of these mobile 

networks will similarly improve (Cisco, 2013).  Moreover, the Cisco VNI team points out 

the majority of the mobile traffic comes directly from the use of specialized software 

applications designed to be used on a mobile operating system, such as Android and iOS 

(Cisco, 2013).  These mobile platform applications, or “apps”, can be seen as the 

influential driver behind the growth in mobile computing sales and global mobile 

network data traffic, which in turn pushes telecommunication companies to upgrade their 

infrastructure to support this increasing demand. 

Learning applications have not been absent from the mobile computing platform and 

researchers have been investigating the benefits of using the mobile platform for 

educational purposes (Wu et al., 2012).  From the meta-analysis performed by Wu et al. 

in 2012, research on learning using a mobile platform is either trying to investigate the 

effectiveness and usefulness of mobile learning, and the actual act of putting together 

systems that incorporate this research.  Furthermore, from the 164 studies observed, 32% 

of them dealt exclusively with the design of some type of mobile learning system (Wu et 
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al., 2012).  For example, one study shows how an undergraduate engineering course 

included the use of a tablet pc to increase the level of student engagement (Koile & 

Singer, 2006).   

In the study performed by Koile and Singer, the specific hardware used was not 

explained, but the generic “Tablet PC” term in 2006 refers to a laptop computer that has 

an output that allows for touch input, primarily with a stylus (Block, 2007).  With this 

tablet PC, the instructor was able to annotate slides, and obtain digitized diagrams 

submitted from students’ tablet PCs (Koile & Singer, 2006).  From the students’ 

feedback, the instructor is then able to tailor the instruction specifically to the current 

needs of the students (Koile & Singer, 2006).  Another study conducted by Furió, Juan, 

Seguí, and Vivó (2015) showed that an iPhone educational game provided no statistical 

difference in knowledge retained versus those that were given traditional classroom 

instruction.  Their findings show that an effective mobile game with a goal to teach can 

support and be used interchangeably with traditional classroom instruction (Furió et al., 

2015).  Finally, based upon student feedback, there is statistical evidence of increased 

student motivation and engagement if traditional classroom instruction were 

supplemented with mobile technology (Benham, Carvalho, & Cassens, 2014). 

Cloud-Based Computing 

The pervasiveness of mobile computing has led to the popularization of the concept of 

clouds and cloud-based computing.  Cloud is the abstract concept of having data and 

services residing somewhere out in a network.  In 2011, the National Institute of 
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Standards and Technology formally defined cloud-based computing as a “model for 

enabling ubiquitous, convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g. networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction (Mell & Grance, 2011).”  Furthermore, the definition is 

expanded to describe that clouds can exist in different deployment domains: private, 

community, public, or a hybrid, and can provide software, a computing platform, or 

computing infrastructure (Mell & Grance, 2011). 

In other words, “cloud” can be private and be inaccessible from outside the private 

network, or it can be public and be accessible from just about anywhere.  A good 

example of a private cloud is a company intranet which only services the needs of that 

specific company.  The company intranet would be inaccessible from the public and 

would require a network connection within the organization. 

Cloud-based computing is the idea that both data and services are available whenever 

they are needed from anywhere.  The goal is to move the computation and storage away 

from the client device and into a group of powerful computers on the network (Leavitt, 

2009).  By offloading the processing and data from the client device, such as laptops, 

tablets, and mobile phones, these devices would not require advanced technical hardware.  

Hence, offloading processing would lead to these devices becoming almost disposable 

since even the information is being maintained in data repositories such as Google Drive, 

Dropbox, and Microsoft OneDrive.   
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With the growth of the cloud computing platform, numerous companies have found 

success in providing cloud-based platforms and infrastructures to others, such as 

Amazon, Oracle, Microsoft, Google, and IBM.  Amazon has focused on providing web 

services that allows companies to easily deploy their web-based applications and only 

pay for the amount of computing they use (Amazon, 2018).  Similarly, Oracle provides 

infrastructure as a service, that does away with requiring companies to make expensive 

upfront capital investments in Oracle hardware and simply pay a subscription for the 

computing services they consume (Oracle, 2018).  Table 1 illustrates how quickly the 

cloud computing business has grown and how it will continue to grow through 2021/2022 

as described by its compound annual growth rate (CAGR). 

Table 1: Forecasted Growth of Cloud Computing 

Cloud Computing Description Forecasted Value CAGR Source 

Worldwide Public Cloud 

Services 

2021 - $277 

billion 
21.9% 

(IDC, 2018b) 

Worldwide Private Cloud 

Services 
2021 - $99 billion 45.71% 

(Statista, 2017) 

Off-Premises Public cloud 

Enabling IT infrastructure 

2021 - $42.6 

billion 
12.1% 

(IDC, 2018a) 

Off-Premises Private cloud 

Enabling IT infrastructure 
2021 - $9.2 billion 11.7% 

(IDC, 2018a) 

Worldwide Enterprise Storage 

for Cloud Market 

2022 - $88.8 

billion 
23.7% 

(MarketsandMarkets, 

2018) 

Upon taking leadership of Microsoft as the new CEO in 2014, Satya Nadella, stressed the 

importance of mobility and clouds upon his employees, on his first day on the job, 

declaring it was their job that “Microsoft thrives in a mobile and cloud-first world 

(Nadella, 2014).”  Over the past few years, IBM has been making key acquisitions in 

various cloud-based companies (Barker, 2014) (IBM, 2013) (IBM, 2014) and has 
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integrated their existing tools and services with the acquisitions in order to develop 

cloud-based services and products to compete against similar products offered by 

companies such as Amazon and Oracle (Dignan, 2014). 

Even Google’s head of technical infrastructure team, Urs Hölzle, has changed the team’s 

priority from servicing internal company products such as Gmail and Google Maps and 

focusing the team’s resources on the expansion of Google cloud services (Metz, 2014).  

Similar to Microsoft, Oracle, IBM, Google is also offering cloud-based enterprise tools 

that rivals Amazon’s that allows companies to host and develop their software on 

Google’s architecture (Google, 2018).  Amazon was one of the initial pioneers in offering 

cloud computing services to companies, and thus, has a healthy lead in market share 

compared to its closest competitors (Relan, 2014).  Figure 1 shows how far ahead 

Amazon took advantage of their head start with its cloud-based products, and has more 

market share than three of its closest competitors (Smith, Liu, De Leon, Ball, & Stahnke, 

2018).  The remaining 42% of the market is scattered amongst smaller company offerings 

(Smith et al., 2018). 
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Figure 1: Worldwide Cloud Infrastructure Market Share Q4 2017 (Smith et al., 2018)  

By having cloud-based computing available to companies and individuals, it further 

strengthens the idea that anyone can possess a computing device powerful enough to run 

sophisticated applications from anywhere, given a strong enough network connection.  

Why not take advantage of the clouds for the advancement of intelligent tutoring 

systems?   

Intelligent Agents 

Before delving into intelligent tutoring systems, it is important to understand what 
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action for which it may perform in order to meet the agent’s goals (Wooldridge, 2000).  

The reason why the definition for an agent cannot be expanded upon further is that due to 

varying domains, the composition of an agent will change (Wooldridge, 2000).  

Wooldridge provided one example of varying agent composition as it deals with learning 

since some domains will require the agent to learn as it interacts with the environment, 

while other domains do not require the learning to take place (Wooldridge, 2000).   

An intelligent agent goes further by requiring the agent to possess three additional 

qualities: timely reactivity to the environment, proactive actions by taking the initiative to 

meet its goals, and the capability to interact with other agents (Wooldridge, 2000).  The 

difficulty in designing intelligent agents is that there must be a fine balance between 

performing actions which are simply reacting to the state of the environment and actions 

which allow the agent to better its chances at achieving its goal (Wooldridge, 2000).  

When discussing the social component of an intelligent agent, the interaction between 

agents isn’t simply an exchange of information, but a negotiation where the final actions 

are to the betterment of both agents and not a one-sided transaction (Wooldridge, 2000). 

Multi-agent systems incorporates agents (including intelligent agents) in order to develop 

a system that meets the intent of the system (Huhns & Stephens, 2000).  These agents 

would be responsible for different aspects of the system and allows system developers to 

apply the divide-and-conquer approach by focusing on individual autonomous agents 

(Huhns & Stephens, 2000).  The idea of multi-agent systems have generated proposals of 

E-Learning architectures on a single system (Sakthiyavathi & Palanivel, 2009) and later 

have been updated to incorporating cloud-based theories (Babu, Kulkarni, & Sekaran, 
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2014).  The evolution of the E-Learning architecture to cloud-based technologies allows 

for the system to benefit from cloud-specific features (Babu et al., 2014) such as 

scalability, simplicity, and affordable pricing (Grossman, 2009). 

Intelligent Tutoring Systems 

A classification of training systems, called Intelligent Tutoring Systems (ITS), can be 

composed of intelligent agents, such as an intelligent tutor (Giraffa & Viccari, 1998).  

Like intelligent agents, intelligent tutors have a set of teaching objectives and will react to 

student responses in order to meet those goals (Giraffa & Viccari, 1998).  Since there can 

be numerous specialized agents within an intelligent tutoring system, these agents must 

communicate with each other.  Through the coordination between these agents, 

intelligent tutoring systems provide the user some type of learning without requiring the 

need for an instructor (Corbett, Koedinger, & Anderson, 1997). 

From a historical perspective, computers have been used to teach mundane tasks starting 

from the 1960s, but it wasn’t until the early 1970s that the idea of having some 

intelligence behind the tutoring system would be formulated. (Corbett et al., 1997).  Since 

the 1970s, there has been an enormous amount of academic contributions to Intelligent 

Tutoring System research, but its architecture can be seen as possessing four distinct 

sections: domain model, student model, tutoring model, and the user-interface model 

(Sottilare, Graesser, Hu, & Holden, 2013, p. ii).  The domain model encompasses the 

specific data that the ITS will teach to the student (Sottilare et al., 2013, p. ii).   
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Likewise, the student model represent all aspects of what the student knows and how they 

feel with respect to the teaching (Sottilare et al., 2013, p. ii).  Using both the student and 

domain model, the tutoring model will use internal algorithms in order to determine how 

to improve learning efficiency (Sottilare et al., 2013, p. ii).  Between all these 

components and the user, sits the user interface model which receives input and displays 

output.  This piece of ITS functionality will monitor any sensory readings from the 

student and will provide feedback to the student that was generated by the tutoring model 

(Sottilare et al., 2013, p. ii).   

 

Figure 2: ITS Architecture (Sottilare et al., 2013) 

The purpose of the sensor data collection is to identify the state of the learner.  The state 

of the learner is an important input to the ITS’s decision process and adaptability to the 

new learner state (Sottilare et al., 2013, p. ii).  For example, students learning physics 

may use a physics tutor to solve problems which would obtain student facial marker 

sensor data to identify a confused learner state.  This confused learner state may force the 
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ITS to utilize a reflective prompt that walks the student through the process of solving the 

problem.  Student tracking isn’t new, as it has been utilized in a multitude of different 

learning management systems such as BlackBoard, WebCT, and TopClass (Romero, 

Ventura, & García, 2008).  With the data being collected, the ITS can better decide how 

to support the user with context-specific help or decide to move on to the next learning 

objective.  However, the reliability of sensors and accuracy of the classification 

algorithms are critical to the tutor being able to select optimal strategies tailored for that 

individual learner. 

Another benefit of having statistics is that the administrators or instructors can review the 

data in a report or graph to better analyze overall progress.  Depending on trends, the 

instructors can provide an extra layer of support and guidance to further improve any 

deficiencies.  Furthermore, by employing a web-based ITS, these reports can be accessed 

from anywhere, from a cloud-based web-service, or served up directly from the system 

on-the-fly.  The administrators do not need to be tied into a specific computer at a 

specific location but can leverage the internet for more flexibility. 

Many will believe that the motivation moving Intelligent Tutoring Systems research 

along is to move toward the success which one-to-one tutoring can have on a student’s 

learning.  For example, in 1984, Bloom showed that one-to-one tutoring by a human will 

allow a student to be two standard deviations better than an average student learning via 

conventional methods (Bloom, 1984).  A system– in virtual tutor - that would produce 

such results or even greater would reduce the strain of requiring a dedicated tutor for each 

student, allowing the tutor to be more efficient and manage multiple students at once.   
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An intelligent tutoring system may not be equivalent to a virtual tutor.  It isn’t sufficient 

to produce an ITS without taking the intended audience and his/her interaction and level 

of affect for the ITS into consideration.  There have been studies that have shown there 

are different audiences which may be more inclined to prefer one type of learning system 

versus others based upon different variables (Proctor, Lucario, & Wiley, 2008) (Proctor 

& Marks, 2013).  An example of an audience using age as a variable, Proctor and Marks 

have shown evidence that there are two different learning communities of school 

children, kindergarten through fifth grade, and sixth grade through twelfth grade (Proctor 

& Marks, 2013).   

Another example of audiences related to another variable such as college education, as 

explained by Proctor in the analysis of college-educated junior officers’ reluctance to 

accept serious-game training versus regular enlisted personnel (Proctor et al., 2008).  

Customer affect is not missed by the computer and mobile device industry (Rodriguez, 

2014) (Swayne, 2014).  Steve Jobs is well known for taking the reins of Apple and 

steering them in the right direction in the 1990’s (LaMonica, 2011).  In the 2000’s, Jobs 

was well known for iPods, iPhones, and iPads that consumers “loved” (Zachary, 2011).  

Competitors strive to capture a similar level of affect among their consumers as exhibited 

by “Life Companion” caption displayed on the log on screen for the Samsung Android 

smartphone (Gasior, 2013).  Therefore, it is imperative that the intelligent tutoring system 

account for affect in the audience during its design phase in order to increase its efficacy 

(Rodrigo et al., 2008). 
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In the same way students have varying levels of experience and expertise, tutors will also 

differ in effectiveness.  Another motivation for ITS advancement stems from the fact that 

studies have shown that tutors must also be trained in order to achieve their full potential 

(“Evidence That Tutoring Works,” 2001).  Training includes interpersonal skills to 

reduce impatience with students and in strategies to lead the students towards their 

learning goal (“Evidence That Tutoring Works,” 2001).  In order to achieve the benefits 

that Bloom has shown, we would require tutors that are highly trained.  Thus, if 

successful intelligent tutoring systems can be developed, which would operate at the 

efficiency of a well-trained tutor, the students would stand to reap the most benefit.  To 

be successful, the system does not necessarily need to be a comprehensive solution but 

may be assigned the task of tutoring students the mundane foundation-type material, and 

let the more experienced human tutors to focus on the advanced material (VanLEHN, 

2011). 

The goal of substituting a tutor with a sophisticated system, to increase tutoring 

efficiency, isn’t the only motivation for the advancement of ITS technology.  Another 

motivation is the accessibility of intelligent tutoring systems within formal educational 

environments, such as online courses.  In the past, traditional collegiate online courses 

consisted of Microsoft PowerPoint slides, online quizzes/tests, participation in message 

boards, recorded video, and assignments.  Now, there are instances where intelligent 

tutoring systems are integrated within the curriculum for the online course, such as the 

Bayesian intelligent tutoring system, or BITS (Butz, Hua, & Maguire, 2004) for short.  
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BITS provides the student gentle feedback and tries to determine when the student is 

having issues when suggesting learning objectives (Butz et al., 2004).  

Another example of a tutoring system is the system from textbook publisher McGraw-

Hill named LearnSmart, which is integrated with their Connect environment (McGraw-

Hill, 2013).  Similar to BITS, LearnSmart will also provide feedback with respect to the 

student’s progress, and LearnSmart will also adapt its teaching material depending on the 

student’s mastery of the material (McGraw-Hill, 2011).  Furthermore, one of the 

highlights of the LearnSmart system is how it caters to today’s student through its 

accessibility and engagement (McGraw-Hill, 2011).  Today’s college student isn’t 

content to study via one specific computing device, but would like to be able to access 

the class material such as their textbook, notes, and/or class slides from anywhere (Pierce, 

2013).  The students currently enrolling in college are accustomed to being able to access 

digital information whenever and wherever they see fit (Pierce, 2013) (Protalinski, 2011). 

Thus, the LearnSmart system not only provides access from traditional desktop and 

laptop computers, but also allows access to the study material from tablets and mobile 

phones.  The aspect of accessibility is important since this feature showcases the fact that 

people nowadays will possess a multitude of internet-connected devices, allowing them 

to learn anywhere and at any time. 

User Interface 

This study will focus on the use of multiple sensors in an intelligent tutoring system, 

which reside in the user interface section of the system architecture, visually depicted in 
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Figure 2.  A wide variety of research shows how various studies and implementations 

integrate various sensor technology and highlight their usefulness.  In addition to the use 

of sensor data, there is also research that tries to interpret the learner’s affect state using 

keystrokes and mouse movements (Zimmermann, Guttormsen, Danuser, & Gomez, 

2003), although how this would translate to tablet touch gestures remains a work in 

progress.   

One prime example of how sensory data can be used in an ITS is the work done by 

Sottilare and Proctor (Sottilare & Proctor, 2012), where the intelligent tutoring system 

attempts to interpret and predict the mood of the students in order to tailor the tutor 

specifically to that student at that given time.  Or when D’Mello et. al conducts a study 

where they gather sensory data while students interact with the AutoTutor software by 

tracking eye position, body posture and video recording  (D’Mello, Graesser, & Picard, 

2007).   

Intelligent tutoring systems have evolved into equipping one or more types of sensor 

which allows the system to detect the emotion and state the user is experiencing, shown 

in Figure 3.  There can be many types of sensors used with these systems such as: 

postures analysis seat, conductance bracelet, facial expression sensors, pressure mouse, 

blood pressure monitoring, and so forth (Frasson & Chalfoun, 2010).   
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Figure 3: Detailed User Interface ITS Architecture 

Table 2 presents a quick discussion on how a traditional desktop sensor can be used in a 

mobile environment. 
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Table 2: Sensor Table  

Sensor Type Mobility? 

Camera Studies by D’Mello et. al (2007) uses a camera that is mounted 

in a fixed position. Camera can be mobile if mounted as such. 

Posture Sensor (seat 

sensor) 

Research done by Woolf et. al (2007) uses a posture sensor 

which can detect the posture of the subject.  The sensor must be 

installed onto a chair which makes mobility an issue. 

Bluetooth Skin 

Conductance Sensor 

In the study performed by Woolf et. al (2007) shows the level 

of “arousal”.  By using Bluetooth, this sensor is mobile. 

Pressure Mouse Utilized by Arroyo et. al (2009), will detect the pressure the 

student will impose upon the mouse, detecting varying levels of 

frustration.  Since the mouse requires a tracking surface, and 

although it may be wireless, lends to be a non-mobile sensor. 

Pressure Keyboard Utilized by Graesser (2005), the pressure keyboard detects the 

force the student has on the keyboard, helping to detect 

emotional state.  Similar to the pressure mouse, the pressure 

keyboard could be wireless, but the keyboard must be resting 

on a surface, therefore, the keyboard leans toward stationary. 

The key takeaway here is that there have been contributions on how sensory information 

is obtained, processed, and utilized within the intelligent tutoring system in order to make 

the learning more effective.  However, these examples primarily revolve around systems 

in a traditional computer environment. 
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CHAPTER TWO: APPROACHES  

If one is to research the efficacy of a sensor driven intelligent tutoring in a mobile 

computing system to improve personalization, a technology approach to implement the 

ITS with sensors must be considered as well as a research approach for gathering user 

outcomes that relate learning efficacy. 

Technology 

Technologically, as previously discussed, there has been a growth in use and acceptance 

of the mobile computing platform, more noticeably, in tablets.  We have also discussed a 

few examples how mobile technology was used for learning.  However, I would like to 

review existing mobile-related ITS concepts and systems which have been discussed in 

academia. I will start off by reviewing tablet PCs using traditional interfaces that utilize 

windows, icons, menus and pointers (WIMP) (Baecker, 2008), and then provide an 

overview of mobile application user interface design.   Subsequently, I will review the 

use of sensor technology within mobile applications and various reporting and 

monitoring methodologies used. 

Tablet PCs and WIMP 

The use of the stylus or pen instruments to interface with a tablet computer is a pointer 

like a mouse though it is considerably different from fingers.  Finger interfaces will be 

discussed after this section.  Mouse, stylus, and pen pointers are a categorization within 

human computer interaction commonly known as WIMP, which is short for: windows, 
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icons, menus, and pointers.  When the computing platform from a desktop is transformed 

into a tablet, the mouse is no longer practical and is replaced with the stylus.  Although 

modern tablets feature the capability to use finger control, a stylus is used when high 

accuracy navigation is required (Pogue, 2012), because the stylus allows the tablet to 

retain the same WIMP software design principles prevalent on a desktop computer. 

For example, some tablets such as those developed by Getac or Panasonic running 

WIMP-based operating systems (e.g. Windows 7), absolutely require an accurate pointer.   

Thus, stylus and pen-based user interfaces still remain popular due to the finer control 

they provide (Pogue, 2012).  The area where pen-based interfaces truly shine is when the 

user is allowed to freewrite directly into the application, such as handwritten text 

(Anthony, Yang, & Koedinger, 2012).  However, handwriting recognition is still a work 

in progress and systems must take account of this when designing a system (Anthony et 

al., 2012).  Therefore, it is important to determine the best application in which this type 

of interface is used, such as in Anthony et al’s algebra equation solving ITS.  In Anthony 

et al’s handwriting ITS implementation, it is shown that the learner finds entering 

equations into the system to be more intuitive than by traditional means (Anthony et al., 

2012). 

Another pen-based ITS is one named Newtons Pen, which was developed for an 

undergraduate statics course (C. Lee, Jordan, Stahovich, & Herold, 2012).  Newtons Pen 

utilizes commercial off-the-shelf (COTS) hardware, LeapFrog’s FLY Pentop Computer, 

as the interface to their ITS.  The FLY Pentop is a wide pen that will recognize what is 

being drawn on special paper and this information is processed and communicated back 
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to a computer (McHugh, 2005).  In Lee et al’s study, they combined the pen with a tablet 

PC, although the documentation didn’t mention specifics on the computing hardware 

used.  This pen allows the user to draw diagrams and highlight the concepts which are 

important in the statics course, such as “free body diagrams and deriving equations”  

The common trend in these two pen-based systems is they are trying to break the mold 

imposed by WIMP-based design methodologies.  Lee et al achieved their goal of 

receiving ‘favorable’ response to the system from its students.  Anthony et. al achieved 

data entry of algebraic equations into the system at a rate which was twice as fast 

compared to traditional keyboard/mouse entry (Anthony et al., 2012).  There is a benefit 

of breaking from a WIMP interface design, if the intended use case can justify it. 

Finger-Based GUI Design 

When Steve Jobs introduced the original iPhone at MacWorld 2007, he amazed the 

crowd with finger-based navigational gestures such as touchscreen “pinch-to-zoom,” 

“one-finger scrolling,” and “sliding” to interact with on-screen elements without the need 

for pointing and clicking with a stylus (Honan, 2007).  The audience members simply 

were not familiar with the long history of multi-touch technology and were presented 

with what appeared to be new technology in a well-designed package.  Bill Buxton 

(2008) defines the concept of the “Long Nose of Innovation” where the latest gadget, 

which utilizes the ‘big idea,’ has been around for a considerable amount of time before it 

becomes popular. 
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Before the sale of iPhones in 2007, finger-based (or hand-based) touchscreen 

navigational gestures could have seen its origins in projects from the late 1970s through 

the early 2000s, such as VIDEOPLACE in 1983, Fingerworks in 1998, and Diamond 

Touch in 2001 (Buxton, 2013).  However, since these works were not highly popularized 

outside the Human Computer Interaction community, credit for the research tends to be 

directed solely at the Apple Corporation with the iPhone.  Furthermore, although not tied 

to touchscreens, touchpads, invented by George Gerpheide (5305017, 1994) have been 

incorporated into laptops and other computing devices which have played an important 

role with finger-based navigation (Ryan, 1999).   

Since the release of the original version of the iPhone, companies such as Samsung, 

HTC, and Motorola have released phones and tablets that feature touchscreens that 

feature similar functionality.  Moreover, there have been numerous patent trials where 

Apple has sued other companies for the attempted infringement of their patents with 

mixed results (Patel, 2012).  Three examples of technologies which have been accused of 

infringement include: performing an action from a computer structure (5946647, 1996), 

universal interface for retrieval of data (6847959, 2000), and unlocking device with slide 

gestures (US8046721, 2009).  

Marketplace competition aside, the astronomical rate of tablet adoption can be attributed 

to its easy to use touch screen interface design, especially via a finger (D. Lee, 2011).  

Thus, finger-friendly operating systems would need to be developed, such as Windows 8, 

iOS, Android, etc.  For this reason, Microsoft elected to design Windows 8 to support a 
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user interface that did not require an accurate pointer, i.e. mouse or stylus, but allowed 

for the comfortable navigation via fingers (Microsoft, 2014).   

Mobile App UI Design 

An important aspect to consider is the user interface design when the tablet platform is 

targeted, especially when we are moving away from a WIMP-based paradigm.  When 

designing applications for a platform, such as iOS, Android, and so forth, there are 

avenues the developer may take: developing the application as a web-based application or 

implementing the application as a native app (Stark, 2010). 

Web-based applications can be designed and developed with common web-based 

standards, such as HTML 5.0, CSS, and JavaScript (Gavalas & Economou, 2011).  The 

idea behind a web-based application is that as long as the device has the appropriate web-

browser that supports all these technologies, the user will be able to immediately interact 

with the service via the browser (Stark, 2010).  This will allow developers to learn and 

master only one set of technologies and develop across many platforms (Wasserman, 

2010).  Furthermore, software updates, such as bug fixes and newly developed 

functionality, can be deployed instantly without any required user action (Stark, 2010).   

The other method of developing mobile applications is to develop them specifically for 

the native platform.  These mobile applications follow the recommended look-and-feel of 

that specific operating system and can better interact with the resources on the device 

(Heitkötter, Hanschke, & Majchrzak, 2013).  Native apps need to be written using 
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specific development environments including different language requirements and have 

specific (or recommended) guidelines that developers must follow.  Depending on the 

operating system, publishing the application to an audience may require to get 

certification or an approval in order to be included on that platform’s store (Stark, 2010). 

Therefore, unlike web-based applications, it takes a considerable amount of effort to learn 

the intricacies of development, and developing a native app across multiple platforms 

which requires an extensive amount of rework (Wasserman, 2010).  Large companies 

will maintain separate product teams that maintain a specific version tied to a specific 

platform, and each team will push out updates and functionality at different product 

cycles (Wasserman, 2010). 

When native apps are compared to their web-based counterparts, it may seem difficult to 

justify the extra expense and overhead, but there are inherent advantages in choosing 

native apps.  Since native apps are developed specifically for a platform, designers can 

lay out a user interface that is functional and aesthetically comfortable to use (Heitkötter 

et al., 2013).  These apps will match the ‘look-and-feel’ of other apps on the device and 

thus, will allow for a cohesive user experience (Heitkötter et al., 2013).  Furthermore, 

since native apps are directly communicating with the operating system, the app can take 

advantage of platform-specific functionality such as creating shortcuts, use of the 

notification center, providing customized widgets, and so forth (Heitkötter et al., 2013). 

Moreover, native apps can directly access hardware resources that are currently available 

on the device as soon as the device is released (Mahemoff, 2011).  Web-based 
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applications are at the mercy of the standardization of Application Programming 

Interfaces (API) that allow for the web-based application to interact with the hardware 

resources via HTML5.  The organization responsible for setting the standards is the 

World Wide Web Consortium (W3C), although the standardization process is extremely 

slow (Shankland, 2011).  For a standard to be recommended for implementation, it must 

go through four different stages: Working Draft, Candidate Recommendation, Proposed 

Recommendation, and W3C Recommendation (“World Wide Web Consortium Process 

Document,” 2005).  With so many stages and testing, if the latest technology is to be 

used, developers may be forced to use native apps versus web-based apps (Mahemoff, 

2011). 

However, there is plenty of effort being spent in order to increase the performance of 

web-based technology, such as JavaScript, by the big players in internet computing, e.g. 

Microsoft, Google, Apple, Opera and Mozilla (Charland & Leroux, 2011).  It can be said 

that a few years later that the performance between native apps versus web-based apps 

would be the same, but for now, native apps tend to be quicker (Charland & Leroux, 

2011), sport better user interfaces (Charland & Leroux, 2011), and employ hardware 

resources (Charland & Leroux, 2011).  For example, the US Army has been performing 

trials where soldiers have been equipped with customized mobile devices (smartphones 

and tablets) which run a mixture of platform-independent web mobile applications and 

platform-specific native applications (Protalinski, 2011). 

With respect to examples of current implementation of ITS, any web-based 

implementation will function on mobile devices, since latest generation devices have 
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sophisticated web browsers.  However, due to the small form-factor of these devices, if 

the ITS is not optimized for the screen, the user will be forced to pinch and zoom in order 

to navigate through the interface.  This will impose an extra barrier in terms of ease of 

learning upon the user.  Furthermore, by integrating the ITS with a native mobile 

application, the application can get direct access to any attached hardware easier than a 

web application (Charland & Leroux, 2011). 

Conversely, one example of an ITS being designed explicitly for a mobile device is the 

ITS that teaches users how to play Sudoku.  This system runs on an Android smartphone, 

and interfaces with a database via a web server (Zhuang & Cheung, 2013).  The reason 

why the authors decided to go with a native app development effort was due to the fact 

that this system requires a clean and exact user interface.  It wouldn’t be possible to get 

the exact layout rendered correctly if HTML5 was used (Zhuang & Cheung, 2013).   

Sensors in Mobile Applications 

The proliferation of mobile devices has forced hardware manufacturers to add features 

and capabilities in attempts to differentiate themselves from the others (ATKearney, 

2013).  Once a device manufacture introduces a feature, other manufacturers quickly 

implement similar feature sets (Ekekwe, 2012) until it becomes standard in all devices 

such as front-facing cameras, near field communication (NFC), infrared blasters, and 

front-facing speakers.  These new hardware capabilities allow for the development of 

software which takes advantage of data and environment which wasn’t previously 

possible.  For example, mobile applications that utilize NFC capabilities can now 
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automate actions based upon what the NFC chip instructs the phone to do, such as change 

phone settings, report into social media websites, or download a business’ contact 

information (McFerran, 2012). 

Moreover, with the spread of mobile devices, comes the opportunity to incorporate 

accessories which could monitor the student without becoming a major distraction to the 

student.  With devices running Android 4.3, iOS 5, or Windows 8, there is support for 

Bluetooth SMART (or LE for Low Energy) which allows for communication to a variety 

of different pulse and heart rate monitors that do not consume battery power excessively 

(Casserly, 2014).  There also exist phones which will detect user fingers which are almost 

touching the screen, commonly referred to as a finger hover, which can add another 

dimension to user interactivity (Moghaddam, 2014).  Coupled with decent front facing 

cameras built into the devices, proposed intelligent tutoring systems can monitor the heart 

rate, eye retinas, and facial expressions of the student and incorporate this data to better 

tailor their learning strategy. 

The Sudoku ITS, which utilizes an Android device, does not explicitly take advantage of 

any sensor technologies (Zhuang & Cheung, 2013).  Instead, the only direct mechanism 

for which the application can get actual metrics on the student is to determine how long it 

has been between user actions (Zhuang & Cheung, 2013).  In addition to this time metric, 

the application keeps track of the current difficulty of the puzzle and a “user profile”, 

which is simply a history of how many games the student has played.  Once the time 

since last action has grown too large, hints are automatically displayed for the user 
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(Zhuang & Cheung, 2013).  The Sudoku ITS could have taken advantage of the sensor 

technology available and incorporated them into the study. 

Student Affect and Engagement 

However, even with the incorporation of the latest technology being applied to tutoring 

systems, the emotional state of the student is an aspect of learning that shouldn’t be 

ignored (Woolf et al., 2009).  At a fundamental level, human instructors are able to pick 

up on emotional cues of their student, and will adapt their teaching strategies accordingly 

(Porayska-Pomsta, Mavrikis, & Pain, 2008).  Thus, it’s not surprising that studies have 

shown that there is a strong relationship between affect and learning (Woolf et al., 2009). 

When Forbes-Riley and Rotaru conducted their student affect study on a spoken dialog 

tutoring system, they proposed the idea that when there was an absence of affect, the 

student did not experience any learning and were disengaged (Forbes-Riley, Rotaru, & 

Litman, 2008).  A popular definition for computer engagement was provided by Laurel 

where she referred to engagement as, “a desirable, even essential, human response to 

computer-mediated activities” (Laurel, 1993).  An interesting breakdown of engagement 

was presented by O’Brien and Toms which broke down engagement into a series of 

attributes: attention, novelty, interest, control, feedback and challenge just to name a few 

(O’Brien & Toms, 2008). 

The use of affect to improve ITS learning effectiveness has already been approached by 

numerous researchers, such as D’Mello’s study where they integrated the use of affect-

specific sensors into AutoTutor (D’Mello et al., 2007) (D’Mello, Olney, Williams, & 
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Hays, 2012).  The conclusion of these studies indicate that the use of sensors to detect 

student’s affect state could improve the effectiveness for the tutoring (D’Mello et al., 

2012).  Therefore, student affect and their engagement must be taken into account in 

order to design a successful tutoring system (Picard et al., 2004). 

Research Approach 

As indicated above there is currently a lack of research on tailored use of sensors 

available on a mobile tablet for use in intelligent tutoring systems designed to run 

specifically on a tablet.  Existing web-based and native applications on tablets are simply 

tutors that rely on textual input and  are aimed at a specific audience, teaching a specific 

topic, such as the development of “ExploreIT!” (Blessing, Skowronek, & Quintana, 

2013) or “Math Tutor” (Masood & Hoda, 2014).  Although these applications have 

limited success within their intended scope, they do not have the capability to monitor the 

progress of the student nor dynamically change their tutoring strategies.  The only ITS 

that runs on a mobile device, Sudoku ITS, simply does not go far enough by not 

incorporating sensor technology.  Sensor technology would allow the system to respond 

dynamically to the user without simply keeping track of time and a user profile.   

The opportunity exists to take advantage of actual sensors and incorporate them into a 

mobile tablet.  The potential of sensors, available on tablets such as Bluetooth heart rate 

monitors and the on-board camera to detect face and eye gazes, to enhance tablet-based 

intelligent tutoring systems is not currently discussed in the literature. 
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In order to advance understanding the potential of sensors to enhance tablet-based 

intelligent tutoring systems, a native Android app is required to be designed and 

implemented.  Since the application will be native, it will have access to onboard 

hardware such as the camera and be able to access paired Bluetooth devices via Android 

calls.  This Android app would then have to communicate with an Intelligent Tutoring 

System via its wireless connection which will serve up the relevant content.  This content 

would need to be authored and a study to be performed targeting an introductory college 

level course.  In order to realize this study, the Generalized Intelligent Framework for 

Tutoring (GIFT) framework, an existing open source intelligent tutoring framework 

system (Sottilare, 2012), would be employed to facilitate the use of an existing ITS that 

allows modifications in order to communicate with the newly developed Android 

application. 
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CHAPTER THREE: RESEARCH METHODS 

Introduction 

Mobility introduces new opportunities and challenges particularly in terms of utilizing 

sensors to enhance the mobile tutoring experience for the student.   This research 

proposes to explore the potential opportunities and challenges of an ITS on a mobile-

computing platform.  Exploration topics include methodology for user input, design of 

the graphical user interfaces, effectiveness of sensor types, and potential design of 

intelligent tutors which makes use of cloud computing and mobile sensors.  This research 

will quantify the performance of students using an Android application on a tablet, based 

upon a prototype, which interfaces with the Generalized Intelligent Framework for 

Tutoring (GIFT).  We wish to explore the impact of using mobile sensors on tablet-based 

intelligent tutoring systems in various settings and measuring their engagement to 

improve personalized learning.   

Resources limit the exploration of the experimental hypotheses discussed below 

to a single successfully-tested mobile ITS prototype system.  The mobile ITS prototype 

may be generalized in that it is an android tablet with a GIFT-based tutor interface 

integrated with a Bluetooth heart rate monitor and camera.  The heart rate monitor on the 

fore mentioned mobile prototype may be replaced prior to conduct of the formal 

experiment with a Q sensor, Empatica E4, or Microsoft Band 2 depending on reliability, 

availability, and capability to be integrated into the existing mobile prototype.  The 

strength of assumed equivalence of interest and skills among subjects constrains exercise 
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content.  Given the planned general population, the experiment proposes use of a simple 

puzzle game described at 

https://play.google.com/store/apps/details?id=com.uberspot.a2048.  Past literature 

indicates controversy about whether a test vehicle should focus on numbers, historically 

biased by interest and/or skills toward males, or words, historically biased by interest 

and/or skills toward females.  Due to resource limitations, this research chose to accept 

potential bias to engagement due to interest or skill differences and proceeds with a 

numbers puzzle as the test vehicle.  None the less, the research experiment may be 

performed in future research on various audiences whether it be with a word game or one 

of any number of academic or subject matter topics.  Test limitations will be noted in 

concluding analysis and/or publications.  This puzzle engages subjects to combine 

numbers to make a larger number rewarding larger numbers more than smaller numbers.  

Initial testing of the games indicates that subjects are expected to be engaged 

conceptually with that engagement manifest in gesture frequency.  If constrained by time 

and rewarded by scores, engagement is expected throughout a short game period.   

Another advantage of this particular game is that the source code is available and 

should be "fairly" trivial to insert into the prototype intelligent tutoring app and keep all 

the existing prototype Bluetooth Heartrate and camera data intact.  Since the subjects are 

volunteers, the research focuses primarily on data collection protocols with game 

performance as a side product.  Performance improvement between practice session and 

gaming session will be measured in terms of score.  

https://play.google.com/store/apps/details?id=com.uberspot.a2048
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When using a tablet or a mobile device, there are a few main postures a user can 

exhibit: sitting at a desk or table, lounging on a recliner or sofa, standing, and supine or 

lying flat on a bed.  Out of these four positions, the occasion of running into the supine 

position is less common than the other three.  Therefore, this study will focus on the three 

more common ergonomic positions, sitting, lounging, and standing. 

Research Questions and Hypotheses 

Given a game on a mobile ITS prototype system (e.g. tablet) as an interim substitute for 

an ITS, this research will attempt to answer the following research questions: 

1. Does the quality of the tablet’s camera provide an effective mechanism to track 

eye gaze for a given ergonomic position? (Descriptive statistics to be collected in 

each ergonomic position) 

2. Does the quality of the tablet’s camera provide an effective mechanism to track 

facial expression for a given ergonomic position? (Descriptive statistics to be 

collected in each ergonomic position) 

3. Does the ergonomic position of the user impact the effectiveness of the tablet 

camera’s face detection? 

H30: The tablet camera’s face detection capability is equally effective in all 

selected ergonomic position. 

H3A: The tablet camera’s face detection capability is NOT equally effective in 

all selected ergonomic position. 
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4. Is face detection (or camera gaze) rate correlated with touch gesture frequency 

rate by different ergonomic positions? 

H40: The tablet camera’s face detection rate and touch gesture frequency rate 

are equivalent for each ergonomic position. 

H4A: The tablet camera’s face detection rate and touch gesture frequency rate 

are NOT equivalent for each ergonomic position. 

5. Does the wrist monitor provide an effective mechanism to track heart rate activity 

when paired with a tablet? (Descriptive statistics to be collected in each 

ergonomic position) 

6. Does the wrist monitor provide an effective mechanism to track electrodermal 

activity when paired with a tablet? (Descriptive statistics to be collected in each 

ergonomic position) 

7. Does the wrist monitor provide an effective mechanism to track skin temperature 

when paired with a tablet? (Descriptive statistics to be collected in each 

ergonomic position) 

8. Does the user’s ergonomic position impact the electrodermal activity captured by 

the wristband? 

H80: The electrodermal activity captured by the wristband is equivalent for 

each ergonomic position. 

H8A: The electrodermal activity captured by the wristband is NOT equivalent 

for each ergonomic position. 
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9. Is the electrodermal activity captured by the wristband correlated with touch 

gesture frequency rate by different ergonomic positions? 

H90: The electrodermal activity captured by the wristband is correlated with 

touch gesture frequency rate for each ergonomic position. 

H9A: The electrodermal activity captured by the wristband is NOT correlated 

with touch gesture frequency rate for each ergonomic position. 

10. What is the relationship between the game score performance and the ergonomic 

position of the user? 

H100: The game score performance by ergonomic position of the user is 

equivalent. 

H10A: The game score performance by ergonomic position of the user is NOT 

equivalent. 

11. What is the relationship between the delay between game moves and the 

ergonomic position of the user? 

H110: The delay between game moves and the ergonomic position of the user 

is equivalent. 

H11A: The delay between game moves and the ergonomic position of the user 

is NOT equivalent. 

12. Can a pressure sensitive stylus be used in conjunction with the ITS in order to 

determine the level of student engagement? 
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Although a stylus that is equipped with a pressure sensitive sensor offers 

interesting research opportunities, manufacturers have not developed enough 

options for the Android platform.  Therefore, this research question is beyond the 

scope and not considered in this dissertation research. 

13. Can a pressure sensitive touch screen be used in conjunction with the ITS in order 

to determine the level of student engagement? 

In order to fully explore this question, a pressure sensitive screen is required.  

Unfortunately, there isn’t a wide availability of Android pressure-sensitive tablets 

in the marketplace.  Thus, this research question is beyond the scope and not 

considered in this dissertation research.  

Research Design 

The study will employ a hybrid of user-reported and system observed approaches to data 

gathering and hypothesis testing for each indoor physical setting as shown in Table 3: 

Sequence of Activities, Data Collected, and Data Collection Protocols, which also 

includes the recording rate (if applicable). 
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Table 3: Sequence of Activities, Data Collected, and Data Collection Protocols 

Activity Sequence / Data 

Collection Protocol 

(Rate) 

Pre-

Session 

Data 

Collection 

Practice 

Session 
Play Session 

Post Session 

Data 

Collection 

Demographic 

Questionnaire 
X    

Skin Temperature (1 Hz) X X X X 

Puzzle Game Scores  X X  

Heart Rate (1 Hz) 
Monitor 

Attached 
X X 

Monitor 

Detached 

Eye Gazes (1 Hz)  X X  

EDA (5 Hz) 
Monitor 

Attached 
X X 

Monitor 

Detached 

Gesture Data (On-

demand) 
 X X  

Time Elapsed  X X  

Affective Slider X   X 

User Satisfaction Survey    X 

External Camera 

Recording Study 
X X X X 

 

System observed data will be obtained from sensors monitoring users while they interact 

with the mobile application, whereas self-reported data is gathered via user surveys and 

feedback.  Together, the data will be used to answer the research questions and 

hypotheses proposed by the study.  The study uses an experimental design where the 

participants will self-select one of three settings that will affect their posture.  Subject 

numbers will be such that setting treatment will be balanced for statistical purposes but 

study discipline, gender and posture will not be controlled but simply recorded for 

descriptive statistics and emergent correlation or association outcomes.  In each of these 

settings, the mobile ITS prototype – tablet - employs the use of the two sensors (a camera 
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to monitor the user’s eye gazes or face orientation and a Bluetooth physiological wrist 

monitor data). 

The wrist-worn Bluetooth heart rate monitor captures electrodermal activity (EDA) and 

heart beats per minute data via newly researched optical technology (WO2013042070 

A1, 2013) without the need for an intrusive chest strap.  The camera will monitor the 

user’s eye gazes and face orientation towards the tablet utilizing onboard functionality 

offered by the Qualcomm CPU’s and the Snapdragon SDK for Android (Qualcomm, 

2017).  

The research will be validated through the use of triangulation.  Triangulation allows the 

results of a study to be validated using distinct data sources (Hussein, 2009).   

Triangulation of the multiple sources including: 

• Sources taken throughout the two sessions: 

o Puzzle game scores 

o Face detection 

o Heart rate captured 

o Electrodermal Activity 

o Skin Temperature 

o External camera recording the sessions. 

• User Satisfaction Survey taken at the conclusion of the session 

• Self-reported assessments during the play session 
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In our study, our distinct data sources would include automated measurements gathered 

from the tablet, user surveys throughout the process, and researcher observation.  The 

study will ascertain the quality of eye gaze (Nakano & Ishii, 2010) measurements and 

heart rate (Galán & Beal, 2012) readings as it correlates with user engagement.  

Additionally, learning effectiveness can possibly be measured from user questionnaires, 

user feedback, and differences in scores throughout the session. 

Test Subjects 

Test subjects would be individuals on a university campus.  These subjects would include 

typical demographic of the university, such as, study discipline (e.g. engineering, art, 

business, etc.) age, gender, and ethnicity but volunteers resulting in a nonprobability 

sampling as described at: 

• http://www.socialresearchmethods.net/kb/sampnon.php 

• http://dissertation.laerd.com/non-probability-sampling.php#step4 

• https://explorable.com/convenience-sampling 

• http://www.statisticsconsultant.com/dissertation-advice/what-is-the-smallest-

sample-size-i-can-use-for-my-study/ 

There may be an underrepresented bias for those who are either too busy, or do not care 

to participate in the study. 

http://www.socialresearchmethods.net/kb/sampnon.php
http://dissertation.laerd.com/non-probability-sampling.php%23step4
https://explorable.com/convenience-sampling
http://www.statisticsconsultant.com/dissertation-advice/what-is-the-smallest-sample-size-i-can-use-for-my-study/
http://www.statisticsconsultant.com/dissertation-advice/what-is-the-smallest-sample-size-i-can-use-for-my-study/
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Factors 

For this study, we have decided to enable mobile sensors for all participants, leaving the 

ergonomic position as the independent variable that differentiates the different groups.  

Table 4 introduces the different experiment groups which will be studied.  The groups 

will be defined by how the users will be using the tablet application.  The control group 

would be a group of users that used a similar application in a traditional desktop 

computing environment.  Due to limitation of 100 student participants, in order to have 

enough statistical power and resolution, the traditional desktop computing group was 

removed (closely resembling the sitting group 1) and the study was focused into three 

tablet application groups: on a task chair, reclined on a sofa, or left standing.  In order to 

reduce the number of factors, all three groups would be located within a classroom.    

Table 4: Research Group Categorization 

Group Description Group Number Notes 

Seated on a Task Chair Group 1 
Resembling a traditional control group, 

but with a tablet. 

Reclined on Sofa Group 2 
Similar to how people would use a 

tablet. 

Standing Group 3 
Similar to how a user might interact 

with a tablet in a store or museum. 

Use of a camera sensor 

Studies such as the one conducted by D’Mello et al. (2012), has shown that cameras and 

gaze detection is important in ITS’s and student engagement.  By using the onboard 

camera found on tablets, the idea is to see if the passive mobile sensor (the camera) can 

be used effectively to increase the level of engagement of the user.  This is opposed to the 

use of traditional cameras that are in the face of the user, as those used in the study by 
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Arroyo et. al (2009).  Cameras may or may not make people nervous, and by using a 

camera that is not so inconspicuous, may allow people to act more natural. 

Use of a Bluetooth heart rate monitor 

Literature review conducted by McQuiggan, Mott, and Lester (2008) has shown that 

heart rate has already been used to adjust difficulty levels in games, “detect frustration 

and stress”, and “monitor anxiety”.  Likewise, their review has collected different studies 

that use EDA to “sense user affective states, student frustration for learning companion 

adaptation, frustration for life-like character adaptation in a mathematical game, and 

multiple user emotions in an education game” (Mcquiggan et al., 2008).  Although not 

directly related to learning, skin temperature has been shown to illustrate the difference 

between a user’s relaxed and stressed state (Zhai & Barreto, 2006). 

Recently, the technology that was used most often in heart rate monitors required the user 

to strap the monitor across their chest, making sure the contact touches the skin and 

doesn’t completely dry out.  This type of technology may prove to be an inconvenience 

for athletes and uncomfortable for non-physical activities.  However, by moving from the 

chest-strap monitoring technology to an optical monitoring technology, the heart rate 

monitor can be fashioned into a wristband that closely resembles a digital watch.  If the 

user is already accustomed to wearing a wristwatch, the wristband form factor lets people 

feel comfortable as opposed to wearing the sensor technology underneath their clothes.  

Similarly, with the increased sophistication of these devices, it’s also possible to extract 

EDA and skin temperature data at the same time. 
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Location/Environment of User 

The research effort will also vary the posture of the user, which allows us to determine 

the effectiveness of mobile sensors in different settings.  In the study, the user will either 

be seated in an armless task chair without a desk, reclined on a sofa, or left standing.  

This allows us to explore the possibilities that mobility offers by studying different use 

case scenarios. 

Dependent Variables 

By changing the posture of the test subjects, we will obtain the dependent variables for 

the level of engagement of the participant, and the change in scores throughout the course 

of the study. 

Delay between game moves by the participant 

The intent of this research is to determine how various passive mobile sensors can be 

possibly used to gauge the level of the participant’s engagement on a mobile platform.  

One goal would be to determine when a user begins to lose interest and provides this 

information to an ITS, so it can adjust its tutoring strategy.  Future research can study the 

correlation between the frequency of touch screen gestures and user engagement as they 

interact with the application, if such a correlation exists. 

Difference in high scores taken during the session 

As the user begins to use the mobile application, it is expected there will be a learning 

curve as they understand the interface and rules.  From this understanding, the user will 

be able to start to develop effective strategies which will help them grow their score.  
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However, what is the impact on the scores if the user has begun to lose interest?  By 

measuring the changes in scores, we can obtain a different perspective on their 

engagement.  Scores are important in puzzle games (and thus, in this study) since this is 

one of the primary mechanisms that the game has to provide feedback to the user on their 

performance (Marshall, Coyle, Wilson, & Callaghan, 2013). 

Instrumentation 

The research study will use numerous instruments to collect statistical data.  Each 

instrument captures a different perspective of the study and the synergy between all 

instruments provides an overall picture. 

Demographic Questionnaire 

The demographic questionnaire provides general background information on the study 

participant, such as age, gender, study discipline, technological background, and any 

preference to specific genres of video games and puzzles.  In order to protect the user’s 

identity, each user is assigned a randomly generated participant code.  The participant 

code will be used to identify the data throughout the study.  However, if the need arises to 

tie the participant codes with personally identifiable information, this index file will be 

kept on a separate system, not accessible from any network and encrypted with a 128-bit 

encryption algorithm. 

Usage data from the Mobile Application 

The mobile application is the main vehicle of interaction between the system and the 

user.  Thus, there are many different metrics that can be captured here, such as: when 
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touch interactions happen, the delay between interactions and the frequency of gestures 

the user has made.  The usage data helps paint the picture as to the user’s level of 

confidence.    

Engagement Scores 

The application will keep track of the scores over time to try to determine how effective 

the user is in developing successful strategies.  When these scores are combined with 

other data, we can infer a level of engagement and generate engagement scores. 

Satisfaction Survey from Users 

At the conclusion of the session, the user is presented with a survey where they can 

express what they felt about various aspects of the study, such as: perceived effectiveness 

of the training, sense of comfort, and how engaged they felt during the session. 

Affective Slider 

Before the practice session and after the conclusion of the live session, the subject will be 

presented the Affective Slider (AS) developed by Betella and Verschure (2016).  The 

Affective Slider was developed as an evolution to the popular Self-Assessment Manikin 

(SAM) developed by Bradley and Lang (1994).  However, since SAM is made up of 

graphics that are more than twenty years old, the graphics are not easily understood by 

the study participants (Betella & Verschure, 2016, p. 2).  Thus, the AS utilizes two sliders 

that tracks arousal and pleasure, and eschews a third slider which SAM captures against 

the dominance emotion (Betella & Verschure, 2016, p. 4).   
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External Camera Observations 

By keeping the researcher actively observing the session, obvious anomalies with the 

participants could be noted and captured as part of the study’s collected data.  Since the 

researcher isn’t actively interacting with the user, there is very little risk of introducing 

researcher bias.  However, it has been suggested that an external camera should be used 

which will provide another data point to validate the study. 

Research Procedures 

The students participating in the study will be given access to a tablet with the mobile 

application.  After the student has used the application, they are provided with a 

satisfaction survey where they rate how they feel about the experience.  Using the scores 

obtained from the mobile application, the high scores are correlated with the other 

statistics obtained from the mobile application and from the satisfaction survey.   

The mobile application utilizes the onboard camera and a paired Bluetooth heart rate 

monitor as sensory inputs from the student.  It also interacts with an application server 

which currently serves as a repository for data obtained via the tablet during the session.   

Figure 4 shows the component diagram for the mobile application.  From this diagram, 

all of the interactions from external sources and various internal subcomponents are 

depicted.  Libraries for the camera and Bluetooth sensor are libraries that are already part 

of the Android operating system, or part of the onboard driver that manages the hardware, 

such as the camera manufactured by Qualcomm (Qualcomm, 2017).  Furthermore, while 

various sensor data is being captured, this information is saved and can be reported back 
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to a server for safe keeping.  The application server could host other applications, such as 

an Intelligent Tutoring System that could send information back to the mobile application 

if the functionality was supported. 

User

C

Camera Heart Rate
Monitor

Application Server

Qualcomm SW

 

Figure 4: Mobile Application Component Diagram 

In order to provide the functionality required, the mobile application is made up of 

various sub-components: 

1. Camera Manager – Manages all interactions with the camera library and provides 

eye and gaze sensor information to the Sensor Data Reporter. 

2. Heart Rate Monitor Manager – Manages all interactions with the heart rate 

monitor and provides the information to the Sensor Data Reporter. 

3. Sensor Data Reporter – Receives various types of sensor information and reports 

this data to the application server for recording and further processing. 
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4. Game – Component responsible for the interaction logic with the user.  This 

component sends information to the Sensor Data Reporter and communicates with 

the user via physical interaction. 

Figure 5 details the composition of the application server, and its external interactions.  

As evident from Figure 5, the application server will be running the sensor data processor 

and database.  The intent of the application server is to be a repository of metrics to be 

analyzed at the conclusion of the study. 

Mobile App

 

Figure 5: Computer Component Diagram 

In order to reduce the risk of any unknowns, an early prototype (or proof-of-concept) has 

been developed of the mobile application as it communicates with a Bluetooth heartrate 

sensor (Scosche Rhythm+), on-board hardware camera, and with the GIFT server.  The 

hardware running the mobile application is the Nexus 7 tablet.  As Figure 6 depicts, the 

mobile Intelligent Tutoring System, or mITS for short, has successfully detected the 

user’s face and eyes, monitoring their heart rate, and sending and receiving messages 

from the GIFT server. 
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Figure 6: Screenshot of the mobile Intelligent Tutoring System 

Before the study can commence, we would need to change the interface of the mITS and 

insert a game in lieu of an ITS.  Inserting a game simplifies the aspect of the study which 

would require the generation of a curriculum and its appropriate multimedia.  Therefore, 

we can proceed to answer the research questions proposed in an earlier section.  This 

interface would also minimize the camera preview and hide the diagnostic information 
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that is currently exposed to the user.  Ultimately, mITS will be showing only UI elements 

that are user-centric. 

Data Collection 

The collection of the data required to answer the research question and to support the 

hypothesis proposed, the data must be collected by a specific methodology.  The 

methodology employed follows the research design that has been discussed earlier in 

various stages.  Afterwards, specific aspects of the data types, self-reported versus 

system-observed are discussed. 

Study Procedure 

Obtaining Participants and Consent 

Using the UCF Psychology SONA participant pool, the researcher will offer timeslots 

where the participants can schedule themselves.  Upon arriving at the designated study 

location, the researcher will explain the details of the study and what they can expect.  

The researcher will explain that there will not be any uniquely identifying personal 

information taken from the participant, and they will be assigned a random generated id, 

within the application, to be solely used for record keeping.  At this point, the participant 

will acknowledge the informed consent and be provided with a study overview 

paperwork for their records. 

Participant Setup and Research Group Assignment 

Upon providing consent, the participant is set up with the wrist worn monitoring strap in 

an indoor physical setting.  The application on the tablet will be set up for a new 
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participant, which will be configured to a specific ergonomic position, per the research 

study design.  While the application and participant are setting up, the sensors are 

actively monitoring the participant to determine that individual’s baseline reading, along 

with room temperature and ambient noise level readings. 

Have participant use application on tablet 

Once the participant is ready to begin, the application will present the game UI to the 

participant and be allowed to interact with the game.  The game will pay close attention 

to the scores in the beginning of the session versus those near the end.  Throughout the 

session, sensor readings, researcher observations, and other metrics will be stored for 

later analysis. 

Wrapping up study 

After the session, the participant is allowed to remove their wrist-worn monitoring strap 

and is provided a chance to give feedback on their experience via paperwork or via the 

tablet application.  The application will capture the responses as part of an additional 

section of the tablet application and associate it with the training session.   

Self-Reported Measures 

For self-reported measures, the study will make use of user feedback surveys from before 

and after the sessions that will reflect general background information, how they feel 

about the system, and if they feel if it was engaging.  The surveys will be set up using a 

Likert-scale for the responses.   
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System Observed Measures 

This study will employ more system-observed measures through the use of sensors and 

other instrumentation.  Face detection measurements will be determined by the system 

whenever it detects that the user is actively looking at the screen.  The study will 

determine if there is any correlation between when the user is engaged with the system 

and the time elapsed looking away from the screen. 

Furthermore, while using the system, heart beat and electrodermal activity measurements 

will be taken every second (as the device will allow).  With such a high frequency, this 

measurement could be analyzed for later conclusions.  There is also another set of 

measurements that can be inferred from the scores and gesture frequencies. 

Assumptions of Study 

In this study, the emphasis is upon the mobile device and the interactions between the 

application and user.  Therefore, the study assumes that there is a strong and stable 

wireless connection for metrics capture.  This removes any requirement of handling the 

case where the device must manage its loss of network connectivity. 

Summary 

This study will measure the feasibility of integrating mobile sensors with an Android 

application with an ITS.  By obtaining a variety of different physiological signals, eye 

gazes, and usage metrics, we can start to determine if this information can be used to 

drive ITS engagement on a mobile platform. 
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CHAPTER FOUR: DATA AND ANALYSIS 

After obtaining support from the dissertation committee to proceed with the study 

proposed in the third chapter, hardware was procured, and software was developed to 

support the study.  The study was then executed with participants followed by a phase of 

statistical analysis described later in this chapter. 

Equipment Used 

Figure 7 shows the specific equipment obtained in order to support the study: heart rate 

monitor Empatica E4 (A), camcorder Canon VIXIA HF R800 (B) with five-foot tripod 

(D), and the seven-inch tablet Nexus 7 (2013) (C) with supporting adjustable tablet stand 

(E).  The Empatica E4 was procured with assistance from UCF, and the camcorder/tripod 

was added based upon the recommendation of the committee during the proposal. 



54 

 

 

Figure 7: Equipment used in Study 

mITS to mITS2048 Development 

As discussed in chapter 3, the decision was made to replace the sample course in the 

prototype developed for the proposal (mITS), and to begin development on mITS2048 

which required the integration of the puzzle game 2048.  This was done in order to 

reduce the scope of the study to focus on the reliability of mobile sensors, and away from 

the development of a suitable and validated ITS course.  Furthermore, the inclusion of a 

cloud-hosted ITS would have required additional encrypting of personally identifiable 
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information (PII) and ensuring the cloud-hosted solution has an appropriate level of 

security.   

From a software perspective, the source code for 2048 (Cirulli, 2017) is freely available 

on GitHub which allows us to verify that malicious code is not introduced into the 

application.  Since the puzzle game is self-contained, for development purposes, it was 

best to view it as a separate module when inserting it into the mITS framework.  Once 

integrated, software code had to be modified to foster two-way communication to the 

Android app and to be able to extract events and tracking data while the game session 

was active, such as gestures, score, and session elapsed time.  Other modifications 

include the introduction of the different session, a running count-down timer, and spacing 

to fit the camera preview.  Thankfully, no extra work had to be performed in order to 

convert the game’s keyboard controls to a touch-friendly interface as the hardware 

naturally converted this input automatically. 

Since the focus of mITS2048 was on the feasibility and reliability of using sensors on a 

mobile platform, the connection to the server-side ITS, GIFT, was temporarily severed.  

The prototype GIFT connection code still exists within the application but is not 

accessible or active in mITS2048.  Furthermore, without this server-side connection, the 

captured metrics from the study had to remain on the tablet, until the data was moved to a 

secure location.  Establishing a new server connection for metrics capture provided 

additional technical logistics such as securing hardware computing resources which can 

protect the captured data.  Keeping the captured study data local alleviated any potential 
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concerns the IRB may have had about any personally identifiable information residing in 

the cloud. 

With respect to the Bluetooth heartrate monitor, the hardware was upgraded from the 

Scosche Rhythm+ to the Empatica E4.  The Empatica E4 offers better resolution and 

frequency of biometric data (Empatica, 2016).  Integration of the Empatica E4 required 

the use of vendor furnished Android API and after a short time, was properly integrated 

into mITS2048.   

The on-board camera functionality was unchanged between mITS and mITS2048 with 

the exception of writing to log files whenever the application detected and lost track of 

the participant’s eyes.  Due to technical limitations with mITS2048 and the tablet’s 

camera API, it was not feasible to track facial expressions, which rules out any 

descriptive statistics for research question 2. 

2048 Gameplay Overview 

The tile-based puzzle game 2048 (Cirulli, 2017) was chosen due to its simple gameplay 

controls and easy-to-understand rules.  Upon the start of a new game, the player is 

presented with two tiles assigned values of 2 or 4.  The player will now select a cardinal 

direction which will affect the entire board, and all tiles are moved along that direction, 

removing any empty spaces as the tiles are stacked upon other tiles.  If any tiles are 

assigned the same value as they are stacked along that chosen cardinal direction, the two 

tiles are combined as the sum of the tiles.   
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Since tiles can only start with 2 or 4 and can only be combined with tiles with values that 

are equal to each other, only tiles with base 2 numbers can be generated (2, 4, 8, 16, etc.).  

Once a direction has been chosen, the tile combination phase is complete, a newly 

generated tile (assigned a value of 2 or 4) is placed on an empty tile.  Each move can 

have multiple tile combination, and per each successful tile combination, the value of the 

new tile is added to the player score.  The game is complete when there aren’t any empty 

places remaining on the board. 

Overview of the Participation Study with mITS2048 Walkthrough 

With the approval of the UCF IRB, the study was conducted utilizing participants from 

the UCF Psychology Sona System.  The UCF Psychology Sona System allows students 

enrolled in Psychology courses to sign up for online and in person studies in exchange for 

credits which reduces the amount of written assignments required by the student.  The 

participants committed to specific timeslots over the course of a few weeks between June 

and July of 2017 where they met with a researcher.  As they arrived, the researcher 

discussed the informed consent per IRB instructions and provided a brief explanation of 

the study and its rationale. 

While the participant was being equipped with the Empatica E4 wrist-worn heartrate 

monitor on their dominant hand, the researcher started up the tablet application in order 

to determine which group the participant will be assigned, as shown in Figure 8: standing 

(behind podium (A)), lounging (on sofa (B)), or sitting (at a desk (C)).   
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Figure 8: Locations Exhibiting Different Ergonomic Positions in the Study 

As the participant moves to their randomly assigned location, a video camera (Canon 

VIXIA HF R800 with 5’ tripod) is positioned to record the study.  The sitting group 

comes equipped with a tabletop stand (AmazonBasics Adjustable Tablet Stand) that 

maintains the tablet in a sturdy and stationary position.  The lounging group were 

directed to a sofa which allows the participant to sit while they held onto the tablet.  

Whereas the podium requires the participant to remain standing throughout the study 

while they interact with the tablet application.  In Figure 8, the standing group faced the 

external camera so that the podium stand was behind them on their left-hand side.   

The first thing each participant was required to do was fill out a short questionnaire on 

the tablet as depicted by Figure 9.  The questionnaire consisted of demographic questions 
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such as age, gender, and study discipline (major).  Using a five-point Likert scale, the 

questionnaire also asked for familiarity of computers, tablets, and fitness bands.  Lastly, 

with a seven-point Likert scale, the participant was asked about their level of enjoyment 

when playing the following video game genres: action (Donkey Kong), adventure 

(Zelda), puzzle (Tetris), roleplaying (Final Fantasy), simulation (Flight Simulator), sports 

(Madden), and strategy games (Civilization).   

 

Figure 9: Pre-experiment Questionnaire Screenshot 

Once the demographic questionnaire has been completed, a self-assessment survey was 

displayed to the user as shown in Figure 10.  The self-assessment consists of a slider 
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between bored and excited, and another slider between sad and happy.  With respect to 

the self-assessment survey, it makes use of the affective slider (Betella & Verschure, 

2016) which is licensed under the Creative Commons license CC BY-SA 4.0.  The 

license requires us to provide attribution (done by citation) and a link to the license 

(Creative Commons, 2018).  The images were not changed when included in mITS2048, 

therefore the ShareAlike clause of the license would not apply to this study. 

 

Figure 10: Self-assessment Survey 
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After the self-assessment is complete, the practice session is presented to the user and 

will begin once the start button is pushed as shown in Figure 11.   

 

Figure 11: Start Practice 



62 

 

The participant will have up to seven minutes or until they run out of moves to get a feel 

for how the game is played as shown in Figure 12.   

 

Figure 12: Practice Session 
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Similarly, at the conclusion of the practice session, the live session is started once the 

start button is pushed as shown in Figure 13.   

 

Figure 13: Start Live Session 
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Again, the user will have at most seven minutes or until they run out of moves to try to 

achieve the highest score possible. 

Once the live session has completed, the user is once again presented with the same 

emotional self-assessment (like Figure 10), and finally with a satisfaction survey depicted 

by Figure 14.  The satisfaction survey is aimed to determine how comfortable the 

participant was with: the wrist-worn band, tablet, game, game controls, physical 

environment, and the overall experience using a seven-point Likert scale.   
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Figure 14: User Satisfaction Questionnaire 

Once all surveys are complete, the researcher closes the tablet application and helps the 

participant remove the wristband.  Per the agreement of the UCF Psychology Sona 

system, the researcher provides the participant with an anonymous survey regarding their 

experiences that would be delivered to the Psychology Department’s main office.  
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Shortly thereafter, the participant is credited with the Psychology Sona system with the 

appropriate participation credit. 

Study Data Processor 

At the conclusion of the study, due to the way mITS (and similarly mITS2048) was 

designed, each data source produced a comma-separated values (CSV) file consisting of 

two columns for self-reported data and three columns for system-observed data.  Self-

reported data simply has the data name and the data value in a numerical format.  During 

post processing, the numerical value is associated with the label that represents the value 

in the survey.  The bulk of the gathered data is system-reported data which consists of 

data name, data value, and the time that exact piece of information was recorded.  There 

are seven data files as described in Table 5. 
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Table 5: Raw Data Files 

Filename Data Description Data Type 

2048App.csv 
2048 events such as board state, score, 

game starts and ends. 

System 

Observed 

camera.csv 
The specific time when the camera as 

detected and lost the participant’s face. 

System 

Observed 

demoQuest.csv 
Participant responses to the demographic 

questionnaire. 
Self-Reported 

Empatica.csv 

Feed of physiological data from the 

Empatica E4 wrist-band including heart 

rate, EDA, skin temperature, and any 

detected acceleration on the device. 

System 

Observed 

selfAssessment.csv 
Participant responses to the self-assessment 

slider. 
Self-Reported 

TouchListener.csv 

The specific times when the tablet has 

detected the participant has started and 

finished their gesture. 

System 

Observed 

userSatisfaction.csv 
Participant responses to the user satisfaction 

questionnaire. 
Self-Reported 

The Study Data Processor (SDP) is a C# application tasked with processing every 

participant’s unique raw data files and combining them into one combined csv.  Figure 15 

shows the class diagram of the specific data processor for each type of file.  Each data 

processor has a specific implementation on how to obtain the study data, based upon the 

type of file.  For example, the touch data processor has to process a data range, whereas 

the camera data processor has to fill in data between the face detected and face lost 

entries.  Furthermore, a handful of processor also includes functionality to generate 

metrics such as average, mean, and so forth.  By running this application, it simplified the 

statistical analysis within JMP later and the generation of participant graphs, described 

later. 
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Figure 15: Study Data Processor: Data Processor Class Diagrams 

Once each participant has their own combined file, the unique data processor 

CombinedDataProcessor’s role is to read in all the participant’s combined files and make 

one large aggregated data csv file.  The large combined csv includes every participant’s 

qualitative responses to their questionnaires which puts the data in one place for JMP 

analysis.  For simplicity, the aggregated data file also includes generated metrics from 

each participant such as average score, average face detected time, and so forth. 

Demographic Data 

The study leveraged from the participant pool from the UCF Psychology Sona system 

during the Summer 2017 term at the University of Central Florida.  During the summer 

semester, the participant pool was entirely made up of undergraduate students taking 
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general psychology classes, thus providing a representative sample of the UCF 

undergraduate student body.  The study was able to maximize its participant allotment of 

100 students per the IRB’s approval.  With these 100 students, obtaining a large effect 

size f=0.4, α=0.05, and with 3 groups produces a post-hoc power of 95.08%. 

Per Figure 16, UCF’s undergraduate population is composed of 54.1% female and 45.8% 

male (UCF, 2017), and similarly, the study received more female participants than male 

participants. 

 

Figure 16: Gender Demographics Comparison 

Furthermore, Table 6 shows the ages of the participants and it shows that there are more 

18-year-old participants than any other group.  Although the exact course was not 

captured per participant, there’s a good chance that these students are enrolled in a 

general psychology course usually taken by first and second year students offered in the 

summer.  
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Table 6: Participant Age 

Participant Age Participant Number Percentage of Participants 

18 years old 82 82% 

19 years old 11 11% 

20 years old 3 3% 

21 years old or older 4 4% 

Figure 17 depicts the difference between the UCF undergraduate percentage by college 

versus the response received from the study.  From the figure, the number of students 

from the nursing college appear to be overrepresented in the study by 11%, but the other 

colleges tend to follow the UCF undergraduate percentage (UCF, 2017).  

 

Figure 17: Declared College Demographic Comparison (UCF, 2017) 

User Reported Questionnaire Findings 

All descriptive and inferential statistics and related symbols reported below are from SAS 

JMP Pro 13 (Goos & Meintrup, 2016; SAS Institute, 2016).  Table 7 indicates the self-

assessment by each participant for their familiarity with computer, tablet, and fitness 
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band interfaces.  Consistent with Likert scales prevalent in many medical/psychology 

surveys (Yates, Orgeta, Leung, Spector, & Orrell, 2016), the range of familiarity 

responses for computers, tablets, and fitness band interfaces are: “Not at all Familiar” = 

0, “Slightly Familiar” = 1, “Somewhat Familiar” = 2, “Moderately Familiar” = 3 and 

“Extremely Familiar” = 4.  The range of responses for level of enjoyment of a video 

game genre are: “Strongly Disagree” = -3, “Disagree” = -2, “Somewhat Disagree” = -1, 

“Neither Agree or Disagree” = 0, “Somewhat Agree” = 1, “Agree” = 2 and “Strongly 

Agree” = 3.  Responses indicating “Not Familiar with this Type” are recorded as 4.   

Shapiro-Wilk tests on their familiarity responses indicates that the data is not normally 

distributed: computers (w=0.86, p=<0.001), tablets (w=0.88, p=<0.001) and fitness bands 

(w=0.85, p=<0.001). 

Table 7: Technology Familiarity Responses 

Familiarity 
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Computer 3 10 20 37 30 2.81 Yes 

Tablet 3 13 28 44 12 2.49 Yes 

Fitness Band 37 27 16 17 3 1.22 Yes 

Furthermore, Wilcoxon signed rank tests reports statistical evidence (using JMP reported 

S test statistic) that participants are familiar with computers (S=2522, p=<0.0001), tablet 

(S=2522, p=<0.0001), and fitness band (S=2173.5, p=<0.0001).  Figure 18 indicates 

participants expressed different levels of familiarity with computers, tablets and fitness 

bands further corroborated by the Kruskal-Wallis test (H(2)=80.7, p<=0.0001).   
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Figure 18: Level of familiarity of subjects between Computers, Fitness Band, and Tablet 

“Nonparametric Comparisons for Each Pair Using Wilcoxon Method” and taking into 

account Bonferroni corrections for 3 groups (.0167) indicates levels of familiarity 

between pairs of technology statistically differ: tablet/fitness band (using a U estimation 

of normality, Z=7.05, p=<0.001), computer/fitness band (Z=-8, p=<.0001), and 

tablet/computer (Z=-2.46, p=0.0138).  To insure student assignment to posture groups 

was not biased by technology familiarity, an examination of familiarity levels by posture 

assignment treatments indicated no difference: computers (H(2)=5.02, p=0.081), tablets 

(H(2)=1.57, p=0.46), and fitness bands (H(2)=2.1, p=0.35).   

Table 8 indicates subject self-assessed familiarity (columns two and three) with video 

game genres and if familiar with a genre, the level of enjoyment of that genre (columns 

four through eleven).  In terms of familiarity with video game genres, there is statistical 

evidence that the vast majority of subjects are familiar with the seven different game 
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genres (H(6)=15.2, p=0.0187).  If familiar, the level of subject enjoyment is affected by 

the game genre (H(6)=19.9, p=0.0028).  If familiar with the genre, then Wilcoxon signed 

rank tests show the participants express enjoyment of that genre rather than express 

ambivalent at statistically significant levels (all genres present p=<.0001).  JMP reporting 

test statistic S values (action=1744, adventure=1392, puzzle=1933, RPG=817, 

simulation=1623, sports=848, and strategy=1252) indicate puzzle games being among the 

most enjoyed genre. 

Table 8: Enjoy Game Type Responses 

Enjoy 

Genre 
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Action 2 98 3 5 6 6 22 39 17 1.29 

Adventure 10 90 4 6 4 8 13 31 24 1.32 

Puzzle 3 97 2 3 4 9 19 41 19 1.46 

RPG 13 87 1 13 8 13 19 22 11 0.68 

Simulation 8 92 0 5 6 10 31 26 14 1.18 

Sports 4 96 7 13 11 10 12 19 24 0.67 

Strategy 7 93 3 7 9 9 21 36 8 0.91 

 

Figure 19 illustrates the difference in the Affective Slider self-reported emotions at the 

start and end of the study.  This data was obtained by utilizing the Affective Slider 

(shown in Appendix A), which is composed of two sliders between sleepiness versus 

awake and happiness versus sadness.  The five groups are identified as: “Large Negative 
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Change” [-200 to -75), “Moderate Negative Change” [-75 to -20), “Little to No Change” 

[-20 to 20), “Moderate Positive Change” [20 to 75), “Large Positive Change” [75 to 200).   

 

Figure 19: Self-Reported: Awake/Sleepy vs Happy/Sad 

Performing Wilcoxon signed rank tests on the levels of not normally distributed 

Awake/Sleepy pre-and-post state data (S=25, p=0.932) and Happy/Sad pre-and-post state 

data (S=118, p=0.6882) suggests there is no statistical evidence that the study affected the 

emotional state of the participant. 

Respondents indicated varying levels of satisfaction with the experiment components 

(Table 9 (H(5)=12.1, p=0.0334)) with participants expressing satisfaction rather than 

ambivalence at statistically significant levels using the Wilcoxon signed rank test (all 

components present p-values less than .0001, with JMP reporting values of: wrist band 

S=2292, tablet S=2410, game S=2284, Game Controls S=2405, Physical Environment 

S=2375, Overall S=2525).  
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Table 9: User Satisfaction Responses 

Satisfaction 
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Wrist Band 0 1 2 22 11 25 39 1.74 1.29 

Tablet 1 0 2 4 18 38 37 2.00 1.07 

Game 2 2 1 2 17 31 45 2.03 1.27 

Game Controls 1 0 2 6 15 35 41 2.03 1.11 

Environment 0 1 6 8 9 25 51 2.04 1.28 

Overall Experience 0 0 0 0 15 33 52 2.37 0.73 
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Figure 20 and Figure 21 segregates Table 9 responses on environment and overall 

experience, respectively, by posture.  Levels of satisfaction within physical environment 

and overall experience varied between posture condition (H(2)=22, p=<0.0001 and 

H(2)=8.87, p=0.0118 respectively).  Figure 20 reveals that all participants expressing 

dissatisfaction in the physical environment were from the standing posture.  Statistically, 

using Bonferroni correction of 0.0167, participants preferred sitting to standing (Z=-3.69, 

p=0.0002) and preferred lounging to standing (Z=-4.14, p=<0.0001).  Figure 21 reveals 

different levels of satisfaction with the overall experience by posture condition.  

Statistically, using Bonferroni correction of 0.0167, sitting respondents preferred the 

overall experience more than those standing (Z=-2.89, p=0.0039). 

 

Figure 20: Satisfaction: Physical Environment by Location 

0 0 0

3
2

8

22

0 0 0
1 1

8

21

0
1

6
4

6

9
8

0

5

10

15

20

25

Completely 
Dissatisfied

Mostly 
Dissatisfied

Somewhat 
Dissatisfied

Neither 
Satisfied or 
Dissatisfied

Somewhat 
Satisfied

Mostly 
Satisfied

Completely 
Satisfied

N
U

M
B

ER
 O

F 
P

A
R

TI
C

IP
A

N
TS

Satisfaction: Physical Environment by 
Ergonomic Position

Sitting Lounging Standing



77 

 

 

 

Figure 21: Satisfaction: Overall Experience by Location 

System Observed Data Analysis 

Most important to personalized learning is the reliability of sensors to gather data during 

game sessions given the above three mITS postures: sitting, standing, and lounging.  

Special scripts processed raw data obtained from the tablet sensor inputs and the 

Empatica E4 wrist band sensor inputs and fed them into the analytics tool SAS JMP Pro 

13.  JMP then produced a combined figure consisting of six graphs, for every participant, 

as illustrated in Figure 22.  These individual participant graphs are all stacked vertically 

to associate different metrics (face detection, heart rate, game score, EDA, skin 
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For clarification, each session is delineated by two vertical lines signaling the start time 

and end time of that particular session, practice and trial respectively.  The approximately 

eight-minute total span of time illustrated in Figure 22 highlights that although total 

practice and trial sessions could span fourteen minutes plus the break between sessions, 

some individuals finished in less time as no further valid game moves existed.   
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Figure 22: Example aggregate system-observed graphs for a Lounging Participant 

The first graph in Figure 22 depicts camera detection of the participant’s face with a 

value of one indicating the camera found the face and a value of zero represents a missing 
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face.  The second graph indicates the heart rate where JMP Pro fitted a line between 

readings.  The third graph indicates score within the practice and trials sessions.  The 

discontinuity in score between the 4:00 and 4:15 time scale depicts the break between 

practice and trial sessions.  The fourth graph shows EDA obtained by the wrist-worn 

monitor. The fifth graph shows the change of skin temperature throughout the sessions 

depicted in Celsius.  The last graph shows the time of the touch graphed against the 

elapsed time since the last touch.  For example, approximately at the 4:00 mark, there 

was a touch that happened 3 seconds since the last touch. 

Camera 

Analyzing the camera detection findings, camera detection of the face proved feasible but 

overall face detection reliability of 40.6% in practice and 44.9% in trial did not achieve 

50% (Table 10).  There is statistical evidence that the posture of the participant influences 

face detection in both sessions: practice (H(2)=7.21, p=0.0273) and trial (H(2)=13.1, 

p=0.0014).  Practice session face detection is not statistically different in any of three 

postures paired comparisons.  In contrast and indicating increased concentration of the 

students, the trial session face detection rates finally exceed 50% in sitting and lounging 

postures and are statistically different between lounging versus standing (Z=-3.32, 

p=0.0009) and sitting versus standing (Z=-2.78, p=0.0054).   
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Table 10: Percentage of Time Camera Has Detected Face by Session 

Camera Detected 

Face Time 

 

 

Ergonomic  

Position Participants 

Average 

Practice 

Session Face 

Detection 

Average Trial 

Session Face 

Detection 

Average Face 

Detection 

Difference 

Between 

Sessions 

Sitting 35 46.9% 51.3% 4.5% 

Standing 34 26.3% 27.2% 0.9% 

Lounging 31 49.1% 57.1% 7.9% 

Overall 100 40.6% 44.9% 4.3% 

 

Table 11 shows the correlation p-values between the rate of the tablet camera’s rate of 

face detection between the two sessions and overall versus the fitted line slope for the 

touch gesture by ergonomic position.  Although there were two slight correlations 

between the touch gesture rate and face detection for both practice and trial, these 

correlations (using Spearman’s ρ) do not match up for the right period of time (practice 

versus trial).  These correlations are more likely due to random chance since there were 9 

different measures by 3 different positions resulting in 27 different combinations. 
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Table 11: Face Detection and Touch Gesture Correlation by Position 

Measure 

Face Detection 

Overall Fitted 

Line Slope 

Face Detection 

Practice Fitted 

Line Slope 

Face Detection 

Trial Fitted Line 

Slope 

Gesture Overall 

Fitted Line Slope 
None None None 

Gesture Practice 

Fitted Line Slope 
None None Standing: 0.0299 

Gesture Trial 

Fitted Line Slope 
None Lounging: 0.0327 None 

Heart Rate with Wrist Band Monitor 

The wrist band heart rate monitor, where the students must place the wrist band on 

themselves as is the case in unsupervised learning, was feasible but eleven percent of all 

students did not record wrist-band data: heart rate, EDA, and temperature, as shown in 

Table 12.  Of the remaining 89 students registering heart rates, posture assignment 

distributions still met Cohen’s recommended 26 participants per group size to detect large 

differences at an alpha of .05 and beta of .2.  Fifty-one percent of these had large gaps in 

heart rate data and could not be used.  With the 11% lacking wrist-band data combined 

with 51% remaining with large gaps in the heart rate data, statistical analysis is 

unacceptable and raises doubts that personalized learning using an E4 unsupervised wrist 

band heart rate data is reliable for mITS use.   
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Table 12: Detailed Missing/Gaps in Heart Rate Data by Ergonomic Position 

Ergonomic 

Position Participants 

Missing  

HR Data 

Large Gaps 

in HR Data 

Gaps in HR Data 

% (excluding 

Missing HR 

Data) 

Sitting 35 1 15 44% 

Standing 34 5 19 66% 

Lounging 31 5 11 42% 

Total 100 11 45 51% 

EDA 

Eleven percent of improperly self-installed wrist band monitors undermines reliability of 

E4 Empatica EDA readings but the reliability of the remaining participants was 

statistically sufficient and proved useful.  Since the range of EDA values vary greatly 

from person to person and consistent with the notional of personalized learning, data in 

Table 13 and subsequent analysis uses normalized EDA values per participant over the 

span of the experiment.  Individually normalized EDA data in Table 13 reveal that 

standing and lounging participants were under the most stress, followed by the sitting 

participants.  Despite considerable noise, the EDA data appears normally distributed over 

the practice session (w=0.98, p=0.379), the trial session (w=0.99, p=0.454), and the 

combined session (w=0.99, p=0.606).   

Given unequal sizes, non-parametric analysis indicates ergonomic position influences 

EDA overall (h=6.34, p=0.042).  When considering the sessions separately, ergonomic 

position did not influence practice session EDA (H(2)=1.68, p=0.4324) but did influence 

trial session EDA (H(2)=10.4, p=0.0055).  Pairwise comparisons indicate trial sitting 

EDA < trial standing EDA (Z=3.17, p=0.0016).  Considering the differences between 
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practice EDA versus trial EDA, ergonomic position also influenced EDA (H(2)=9.6, 

p=0.0082), with pairwise comparison indicating the difference between standing and 

sitting (Z=3.28, p=0.0011) statistically significant. 

A line may be fitted to the EDA values. The line slope reveals the direction of stress (i.e. 

stationary, decreasing, or increasing) corresponding to the direction of the EDA values.  

An asterisk in Table 13 highlights slopes statistically different from zero with negative 

slopes indicating reduction in stress for students in the sitting and lounging postures over 

the practice, trial, and overall.  Stress of standing students increased in the practice and 

overall session.  Stress levels due to posture differ for the practice (H(2)=14.9, 

p=0.0006), trial (H(2)=6.53, p=0.0381), and combined sessions (H(2)=8.8, p=0.0123).  

The slope for standing differs from sitting for the practice session (Z=3.91, p<0.0001) 

and combined sessions (Z=2.99, p=0.0028). 
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Table 13: EDA by Ergonomic Position (Normalized 0 to 1) (* indicates p<.05) 
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Sitting 34 .486 -0.0007* .260 -0.0020 .370 -0.0017* -0.226 

Standing 29 .434 0.0020* .465 -0.00005 .458 0.0009* 0.030 

Lounging 26 .506 -0.0018 .389 -0.0032 .445 -0.0024 -0.118 
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Table 14 shows the correlation p-values between the slope of the fitted line for EDA 

correlated against the touch gesture by session.  There is one correlation between touch 

gesture practice fitted line slope and EDA trial fitted line slope that doesn’t make sense 

due to the difference in time (practice versus trial).  However, there is a correlation 

between overall EDA fitted line slope and overall touch gesture fitted line slope in the 

standing ergonomic position.  There are a pair of correlations that for touch gesture 

during the practice session, against the overall EDA fitted line slope for standing and 

lounging.  Since the overall session encompasses both practice and trial, this may be a 

finding that warrants further investigation in a future study. 

Table 14: EDA and Touch Gesture Correlation by Position 

Measure 

EDA Overall 

Fitted Line Slope 

EDA Practice 

Fitted Line Slope 

EDA Trial Fitted 

Line Slope 

Gesture Overall 

Fitted Line Slope 
Standing: 0.0188 None None 

Gesture Practice 

Fitted Line Slope 

Standing: 0.0385 

Lounging: 0.0317 
None Standing: 0.0258 

Gesture Trial 

Fitted Line Slope 
None None None 

Skin Temperature 

With respect to the temperature findings, there doesn’t appear any discoverable 

relationship or statistical evidence.  To put the temperature comparisons on equal footing 

with all the participants, these readings were normalized between 0 and 1 for the specific 

participant’s recorded minimum and maximum, as shown in Table 15.  Comparisons 

between ergonomic position groups proved to be inconclusive (practice: H(2)=1.47, 

p=0.4787; trial: H(2)=0.63, p=0.7286; combined: H(2)=1.06, p=0.5892).  Using a 

regression line technique to determine if the temperature values increase, decrease, or 
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remain stationary against ergonomic groups also proved to be inconclusive (practice: 

H(2)=1.05, p=0.5928; trial: H(2)=0.68, p=0.7117; combined: H(2)=0.23, p=0.8928).  

However, looking at the overall skin temperature difference between the two sessions 

shows that the median average temperature between practice and trial sessions is less 

than zero, implying a lower skin temperature in the trial session, regardless of ergonomic 

position (S=-714, p=0.0015). 

Table 15: Average Skin Temperature by Position 

Ergonomic 

Position 

Average 

Practice 

Temperature 

Average 

Trial 

Temperature 

Average 

Overall 

Temperature 

Average 

Session 

Difference 

Temperature 

Sitting 0.554 0.503 0.551 -0.051 

Standing 0.517 0.498 0.549 -0.020 

Lounging 0.548 0.478 0.577 -0.700 

Overall 0.540 0.494 0.558 -0.046 

Score Performance 

Student average game scores indicate levels of performance.  Table 16 show participants 

average scores and session time for all participants for both practice and trial.  Despite 

large negative outliers for standing and large positive outliers for lounging, the large 

standard deviations in game scores contribute to no statistical evidence that practice 

(H(2)=0.24, p=0.8849), trial (H(2)=1.98, p=0.3719), or difference in score between the 

two (H(2)=1.03, p=0.5987) is influenced by ergonomic position.  Furthermore, there is no 

statistical evidence that ergonomic position influences time elapsed for the practice 

(H(2)=0.13, p=0.938), trial (H(2)=2.5, p=0.2863), or difference in time between the two 

(H(2)=1.21, p=0.545).  However, a Wilcoxon-Signed Rank Test for the score differences 

between practice and trial sessions show that there is statistical evidence that the mean is 
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greater than zero (S=1079, p=<.0001), showing overall improvement between the two 

sessions. 
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Table 16: Detailed Score Statistics by Ergonomic Position 

Ergonomic 

Position Users 

Average 

Practice 

Score 

Average 

Practice 

Session 

Time (s) 

Average 

Trial 

Score 

Average 

Trial 

Session 

Time (s) 

Average 

Score 

Difference 

Standard 

Deviation 

Score 

Difference 

Sitting 35 2793.49 328.93 3290.97 336.61 497.49 886.89 

Standing 34 2638.59 338.63 2622.47 313.35 -16.12 1705.67 

Lounging 31 2931.10 336.40 3690.32 337.60 759.23 1621.06 
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As discussed earlier, upon a participant move, the game will generate either a 2 or a 4.  

These game generated tiles will not produce any changes to the participant’s score.  

Therefore, for any given tile, the combined tile score value is composed of game-

generated tiles of all 2’s, all 4’s, or a mixture of the two.  Combined tiles composed of 

game-generated 2’s will have a greater value than those combined tiles composed of 

game-generated 4’s due to missing out on the “2+2” combination.  Thus, for any given 

combined tile score, the upper score bound is when comprised of only 2-value tiles, and 

the lower score bound when comprised of only 4-value tiles.  Table 17 highlights the 

upper and lower bound tile score values and the number of tiles required for tiles 2 

through 2048. 

  



91 

 

Table 17: Upper and Lower Bound Tile Score Values 

Tile 

Upper 

Bound 

Score 

Value 

Upper 

Bound 

Tiles 

Required 

Lower 

Bound 

Score 

Value 

Lower 

Bound 

Tiles 

Require

d 

Lower 

Bound Score 

/ Upper 

Bound Score 

2 0 1 N/A N/A N/A 

4 4 2 0 1 0.00% 

8 16 4 8 2 50.00% 

16 48 8 32 4 66.67% 

32 128 16 96 8 75.00% 

64 320 32 256 16 80.00% 

128 768 64 640 32 83.33% 

256 1792 128 1536 64 85.71% 

512 4096 256 3584 128 87.50% 

1024 9216 512 8192 256 88.89% 

2048 20480 1024 18432 512 90.00% 

As evident in Table 17, as the tile number grows, the difference between the upper and 

lower bound score values continues to narrow.  To enumerate other tile scores, the upper 

and lower bound tile score values can be evaluated using the functions as follows: 

𝑓𝑈(𝑡) = 𝑡 + 2 ∗ 𝑓𝑈(𝑡
2⁄ ) 𝑤ℎ𝑒𝑟𝑒 𝑓𝑈(2) = 0 ( 1 ) 

𝑓𝐿(𝑡) = 𝑡 + 2 ∗ 𝑓𝐿(𝑡
2⁄ ) 𝑤ℎ𝑒𝑟𝑒 𝑓𝐿(4) = 0 ( 2 ) 

Delay Between Game Moves 

Moreover, another component to the participant’s score is how much time they took to 

make their moves, as described in Table 18.  When the move times are analyzed against 

the participant’s ergonomic position, there is no statistical evidence that ergonomic 

position influences average move time for the practice (H(2)=1.13, p=0.5687), trial 

(H(2)=0.93, p=0.6275), and combined sessions (H(2)=1.51, p=0.4689).  However, there 
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is statistical evidence that everyone achieved faster average move times between the two 

sessions (S=-1458, p=<.0001). 

Table 18: Detailed Time Between Moves 

Ergonomic 

Position Users 

Average 

Move 

Time (s) 

Average 

Practice 

Move 

Time (s) 

Average 

Trial 

Move 

Time (s) 

Sitting 35 1.391 1.478 1.321 

Standing 34 1.493 1.550 1.407 

Lounging 31 1.407 1.440 1.352 

 

However, when looking at score performance and the time it took the participants to 

make moves, an interesting relationship manifests itself as depicted in Figure 23.  Due to 

the nature of the timed game, the straight forward strategy is to make as many correct 

moves in the limited time provided.  Thus, the highest scores were from participants that 

made the quickest moves that produced points.  It stands to reason that for any given 

average touch time, there is a ceiling on the maximum score that can be attained since 

each session has a maximum of seven minutes.  The participants that did not attain the 

maximum amount of points with the average touch move time either did not fully 

understand the game or have not developed an adequate strategy to obtain points.  From 

Figure 23, it can also be assumed that a few participants made extremely quick moves 

(less than .75 seconds per move on average) and yet received a score less than 3000 were 

not participating in earnest. 
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Figure 23: Session Score versus Session Touch Time 

When considering the average delay between moves and the score, there must exist an 

upper-bounded maximum number of moves, assuming that every move generates a 

combination, which is not the case.  In an actual game, the player will receive a mix of 

generated 2-tiles and 4-tiles, but for the calculation of the upper and lower bounds, let’s 

assume each boundary receives either generated 2-tiles or generated 4-tiles.   

Table 19 shows the max number of moves one can make using the average delay between 

moves within a seven-minute session.  Once the maximum number of moves per session 

has been calculated, then a max score can be calculated.  If we assume only 4-tiles are 

generated by the game, the participant would no longer need to use moves to create 

combined 4-tiles from generated 2-tiles.  Therefore, Table 19 shows the lower-bound for 

generated 2-tiles and the upper-bound with generated 4-tiles.  However, in an actual 

game, 2048 will generate 2-tiles and 4-tiles, thus, the actual score will fall between these 
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two boundaries.  From our observed results, nobody had an average delay of more than 

3.5 seconds, hence, Table 19 only shows data with a maximum of 3.5 seconds delay 

between moves.  However, as the delay increases, intuitively, the max number of moves 

decreases and the score range also decreases.  

Table 19: Analysis of Moves Possible from Delay Between Moves in Seconds per 7-

minute Sessions 

Delay between  

moves (s) 

Max moves 

possible 

per session 

Max Score 

w/generated  

2-Tiles per 

session 

Max Score 

w/generated  

4-Tiles per 

session 

0.25 1680 31616 63232 

0.5 840 14128 28256 

0.75 560 9664 19328 

1 420 6224 12448 

1.25 336 4992 9984 

1.5 280 4272 8544 

1.75 240 3008 6016 

2 210 2692 5384 

2.25 ≈186 2292 4584 

2.5 168 2160 4320 

2.75 ≈152 1968 3936 

3 140 1856 3712 

3.25 ≈129 1792 3584 

3.5 120 1264 2528 
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CHAPTER FIVE: SUMMARIZE FINDINGS 

The above research seeks to advance personalized learning within unsupervised mITS 

stand-alone, client-server, cloud and big data applications by establishing initial 

benchmarks for the feasibility and reliability of basic mobile device sensors to track 

human physiological signals.  Fuad, Deb, Etim, & Gloster (2018), and Shadiev et al. 

(2018), underscore the emergence of mobile and autonomous educational technology.  

Use of sensors in desktop ITS (B.-G. Lee & Chung, 2012) and the use of sensors 

(including use of EDA) in mobile applications (Bahreini, Nadolski, & Westera, 2014; 

Benta, Cremene, & Vaida, 2015) is not unusual, but the idea of combining them to 

advance mITS is a novel and emerging idea.  Additionally, the research provides a 

technological approach (mITS2048) and methodology for follow-on research.   

Thesis Summary 

An Android tablet application, mITS, was initially developed as a prototype or a proof of 

concept that initially demonstrated how various sensors would interact with the 

application.  The prototype would initialize a connection to a Bluetooth wrist-band device 

and obtain specific data feeds that was supported by the wrist-band device.  Furthermore, 

mITS would take advantage of innate features of the on-board camera to detect faces and 

report to the user when the face was lost and log the events internally.  Although not used 

in the study described in Chapter 4, the prototype also communicated with the GIFT 

framework to provide course material. 
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Modifying the mITS prototype by incorporating the game 2048 lead to the development 

of mITS2048.  The new application, mITS2048, allowed mobile sensor data to be 

gathered for later analysis while the participants played 2048 after they were assigned to 

one of three ergonomic positions: sitting, lounging, and standing.  The study was driven 

by the idea of taking advantage of sensors already attached to the learning mobile device, 

along with any accessories that can also interact with the device.  These sensors produced 

data which can be used to empirically evaluate the effectiveness of these sensors.  Using 

these findings would allow the software to better predict the state of the user and 

personalize their learning accordingly. 

The 100 participants were obtained from the pool of students in the UCF Psychology 

SONA system that offers the students extra credit in their psychology courses in 

exchange to participate in real-world studies giving them first-hand experience.  Since 

General Psychology is one of the course choices within the “Social Foundation” of the 

required UCF General Education Program (UCF, 2018), a variety of majors elect to take 

this course providing a representative sample of the UCF undergraduate population.  This 

exchange benefits researchers since they can take advantage of a large pool of willing 

UCF undergraduate participants.  As described in Table 6, 82% of the participants were 

18 years old, 11% were 19, 3% were 20, and 4% were 21 or older, leading to the 

assumption that the bulk of the participants were fulfilling the UCF General Education 

Program.  Furthermore, Figure 17 shows the participant’s study discipline (or major) is 

varied. 
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Participants reserved an available timeslot within the UCF Psychology SONA system and 

arrived at the agreed upon location.  They were randomly assigned to one of three 

locations: desk (sitting), sofa (lounging), or behind a podium (standing).  They were 

outfitted with the Empatica E4 wristband on their dominant hand and the external camera 

was positioned and started.  Each participant filled out the demographic survey and 

reported their mood before they started the practice session.  After the practice session, 

they were notified that the trial session would begin upon their button push.  At the 

conclusion of the trial session, they were to fill out the satisfaction survey and report their 

mood one last time.  Finally, the external camera was turned off and the Empatica E4 

wrist-band was removed and turned off. 

The findings of the study, that support or reject the research questions identified in the 

third chapter, can be summarized within Table 20. 
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Table 20: Research Question, Data, and Analysis Summary 

Abbreviated Research Question & 

Null 

Statistical 

Inference 
Response Level Reference 

1. Does the tablet’s camera provide 

an effective mechanism to track eye 

gaze for a given ergonomic setting? 

H0: N/A, Descriptive Statistics 

Utilized for Analysis N/A 

Overall 40.6% 

detection in practice 

and 44.9% in trial 

sessions, but over 

50% camera 

detection while 

sitting and lounging 

during the trial 

session. 

Table 10 

2. Does the tablet’s camera provide 

an effective mechanism to track 

facial expression for a given 

ergonomic setting? 

H0: N/A, Descriptive Statistics 

Utilized for Analysis 

N/A 

Tablet camera 

software tracks eyes 

and faces, but API 

limitations does not 

track facial 

expression. 

N/A 

3. Does the ergonomic position of 

the user impact the effectiveness of 

the tablet camera’s face detection? 

H0: The tablet camera’s face 

detection capability is equally 

effective in all selected ergonomic 

settings. 

Reject 

Null 

Although neither 

ergonomic position 

approach 60%, both 

sitting and lounging 

fare better than 

standing. 

Table 10 

4. Is face detection rate correlated 

with touch gesture frequency rate by 

different ergonomic positions? 

H0: The tablet camera’s face 

detection rate and touch gesture 

frequency rate are equivalent for 

each ergonomic position. 

Reject 

Null 

There is no 

significant 

correlation between 

face detection rate 

and touch gesture 

frequency rate by 

ergonomic 

positions. 

Table 11 

5. Does the wrist monitor provide an 

effective mechanism to track heart 

rate activity when paired with a 

tablet? 

H0: N/A, Descriptive Statistics 

Utilized for Analysis 

N/A 

No, 11% completely 

missing heart rate 

data, and 51% 

remaining had large 

gaps in heart rate 

data. 

Table 12 
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Abbreviated Research Question & 

Null 

Statistical 

Inference 
Response Level Reference 

6. Does the wrist monitor provide an 

effective mechanism to track 

electrodermal activity when paired 

with a tablet? 

H0: N/A, Descriptive Statistics 

Utilized for Analysis 

N/A 

100% of the 

participants that had 

properly worn wrist-

band produced 

usable EDA data. 

Table 13  

7. Does the wrist monitor provide an 

effective mechanism to track skin 

temperature when paired with a 

tablet? 

H0: N/A, Descriptive Statistics 

Utilized for Analysis 

N/A 

100% of the 

participants that had 

properly worn wrist-

band produced 

usable skin 

temperature data. 

Table 15 

8: Does the user’s ergonomic 

position impact the electrodermal 

activity captured by the wristband? 

H0: The electrodermal activity 

captured by the wristband is 

equivalent for each ergonomic 

position. 

Reject 

Null 

There is a statistical 

difference in 

ergonomic positions 

for average practice, 

trial, and overall 

EDA. 

Table 13 

9: Is electrodermal activity captured 

by the wristband correlated with 

touch gesture frequency rate by 

different ergonomic positions? 

H0: The electrodermal activity 

captured by the wristband is 

correlated with touch gesture 

frequency rate for each ergonomic 

position. 

Reject 

Null 

There appears to be 

a correlation 

between EDA and 

touch gestures in the 

standing ergonomic 

position, but not for 

the other positions. 

Table 14 

10: What is the relationship between 

the game score performance and the 

ergonomic position of the user? 

H0: The game score performance by 

ergonomic position of the user is 

equivalent. 

Fail to 

Reject 

Null 

There is no 

statistical evidence 

that ergonomic 

position affects 

game score 

performance for any 

of the sessions. 

Table 16, 

Figure 23 

11: What is the relationship between 

the delay between game moves and 

the ergonomic position of the user? 

H0: The delay between game moves 

and the ergonomic position of the 

user is equivalent. 

Fail to 

Reject 

Null 

There is no 

statistical evidence 

that the ergonomic 

position affects the 

delay between game 

moves for any of the 

sessions. 

Table 18, 

Figure 23 
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Findings and Conclusions 

Survey Findings 

Statistical analysis of the three different postures groups did not indicate any difference in 

demographics, level of technology or game genre familiarization, or level of game 

enjoyment.  Additionally, pre and post experiment component user affect and satisfaction 

levels point to greater levels of sadness and dissatisfaction with the standing posture than 

either sitting or lounging.  That infers that students utilizing a mITS may assume a 

standing posture but that posture will likely evolve into either a lounging or sitting 

posture for the purposes of studying with an intelligent tutoring system. 

Camera Findings 

With respect to sensors, the standard camera tracks the student face at over 50% 

reliability in the two preferred postures, sitting or lounging, when concentrating on a task 

and aided by the student being alerted by the large red border indicating a lost detected 

face.  Camera tracking of the face for standing students never achieves 50% reliability in 

our experiment.  One may speculate that students lost interest and looked away from the 

tablet, but external camera footage does not support inferred disinterest.  Rather external 

camera footage of student facial orientation is toward the tablet.  In a camera detection 

lecturer/student study (Thepsoonthorn et al., 2015) the average percentage of time a 

camera detected that both parties were facing each other was 52.83%, which is similar to 

the results we observed.  In Thepsoonthorn’s study (2015), it was hypothesized the low 

rate of mutual gaze detection was due to alternating attention spans of the students, and 

the lecturer recalling information disrupting mutual gazes.  Another example is the effort 
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on the CarSafe Android app, which takes into consideration the mobile nature of the 

technology, reports the detection of face and eyes for drowsy driving at only 60% (You et 

al., 2013). 

Although the FOV specification was not available by the manufacturer, experimental 

tests estimate that when held in a portrait orientation, the Nexus 7 (2013) has a horizontal 

FOV of 40 degrees and a vertical field of view of 60 degrees.  The Nexus 7 (2013) can 

only capture a small fraction of the environment when compared to newer mobile devices 

that come equipped with camera technology that can comfortably obtain field of views at 

least between 80 and 120 degrees (“LG V10 vs Galaxy Note 5 vs Nexus 6P Camera 

Comparison,” 2015).  Realistically, increasing camera field of view would be performed 

by upgrading the tablet hardware which includes a feature-rich front facing camera 

technology.  External camera footage of student facial orientation during the experiment 

is consistently toward the tablet indicating the student’s intense interest in the 

experiment.  Camera detection of the face proved feasible but the likely wobble of the 

tablet and occasional movement of the student’s body out of the camera’s field of view 

(FOV) is the most probable cause of the overall camera detection of 40.6% in practice 

and 44.9% during the trial as shown in Table 10. 

Wrist-band Findings 

The Empatica E4 wrist band monitor provides EDA, skin temperature, and heart rate and 

accelerometer data (Empatica, 2016).  Under the assumption of unsupervised use of wrist 

band monitor in a mITS application, approximately 10% of the cases either improperly 

installed the wrist band or the monitor did not operate properly. Similar findings have 
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been observed in different studies attributed to participants not following directions (14-

28%) (Oppenheimer, Meyvis, & Davidenko, 2009), improper use or technical errors of 

the wrist-band (~20%) (Kinnunen, Tanskanen, Kyröläinen, & Westerterp, 2012; van 

Hees et al., 2011)  For the remaining properly installed bands, our observed unreliability 

of heart rate data appears to support the literature.  Parak and Korhonen (2014) indicate 

the pulse photopletysmography (PPG) can estimate heart rate between 76 and 78%, with 

different activities producing a different level of estimation.  Additionally, Spierer, 

Rosen, Litman, and Fujii (2015) questions the effectiveness of PPG heart rate monitors 

when dealing with different skin types.  From this study, student installed wrist-band 

heart rate data is inconsistent due to technical factors. 

While EDA and skin temperature data collection suffered from the same approximately 

10% improperly installed or working bands, the remaining EDA and skin temperature 

data proved reliable.  When EDA data is normalized to an individual, relative values 

appear to identify levels of stress as well as whether stress is increasing, decreasing, or 

staying the same.  Anusha, Joy, Preejith, Joseph, & Sivaprakasam, (2017); Quick et al. 

(2017); and Sarchiapone et al., (2018) all had similar findings.  Of the three wrist-band 

statistics, heart rate, EDA, and skin temperature, EDA data proved to be the most 

meaningful in terms of human physiology during the experiment.  From the EDA data, 

participants exhibited more stress when standing versus those that were standing.  

Skin temperature data did not reveal any insights other than the participant’s temperature 

cooled throughout the study.  This could be from the result of many factors such as: 

colder classroom temperature compared to outside environment temperature, less stress 
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driving skin temperature lower, or even a raised cardiovascular level from trying to arrive 

to the study on time.   

Score and Touch Gesture Findings 

Focusing on the delay between gestures and a participant’s highest score, there are 

multiple variables that are factored into the outcomes of the participant’s performance.  

From the analysis in Table 19, there is a theoretical maximum number of moves within 

the timed session, which produces a range depending on which tiles are generated by the 

game.  The score range grows as the number of moves are maximized when the delay 

between gestures is minimized.  While also minimizing the delay between gestures, 

maximizing the score is dependent on making the correct move that generates the best 

probability for a higher score in the long-term.  Figure 23 shows a number of participants 

that were able to increase their maximum score by also decreasing their average delay 

between game moves.  The green fitted curve shows that the average participant game 

score in the trial session stays higher than those from the practice session.  There is 

statistical evidence that the participants improved in the trial session, regardless of 

ergonomic position. 

The probabilistic nature of the game may result in slight variations of high scores 

between players with the exact level of proficiency.  However, just like in similar games 

of chance, such as online poker where skill dominates chance in the long-term (van Loon, 

van den Assem, & van Dolder, 2015), similar results should be present in the 2048 game. 
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Research Limitations 

During the development of the mITS prototype and proposal, the research moved forward 

under the clear assumption and limitation that it was going to narrow the focus of the 

research, and inherently lock down the hardware to the items accessible to the study.  In 

other words, developing the prototype lead the study into using the Nexus 7 with 

Qualcomm chipset that powers the front-facing camera and a heart-rate monitor that 

communicates with Bluetooth LE as the primary vehicle for its mobile sensors. 

It would have taken an extra effort to convert the mITS prototype to use another 

proprietary camera API associated with another tablet in order to modernize the 

equipment used in the study.  Therefore, the study was limited by the hardware used 

before the proposal phase. 

It was also proposed that limiting the scope of the study to focus on the mobile sensor 

would keep the study manageable.  The development of a suitable and validated course 

within an ITS Framework, such as GIFT would have added an extra layer of complexity, 

which would include the configuration of a server to manage the course data for all the 

participants.  Furthermore, the server would need to consider appropriate levels of 

security in order to protect the personally identifiable information from the participants, 

and make sure the UCF Wi-Fi maintains connectivity to the cloud-hosted ITS. 

Lessons Learned 

Although the study produced findings that can be used in future studies, it has also 

revealed lessons learned which could have been applied to this study.  If we were to 
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increase the number of participants available to the study, it is important to have more 

equipment.  By having only one complete set of equipment, the number of willing 

participants exceeded the number of timeslots they could reserve.  Even if the study 

design allowed at most one participant at a time in a particular randomized posture, 

oftentimes there is a downtime between the time when there were active participants in 

the study, and thus, the efficiency could have been better maximized.  Having a backup 

set of study equipment would’ve allowed for more slots even accounting for the worst 

case of the same posture location for the allotted reserved time. 

Whenever the participants arrived to the study location, an interesting observation was 

revealed when they arrived in varying levels of physical cardiovascular stress levels.  For 

example, some individuals had to run others even biked across campus in order to arrive 

on time.  Although the few minutes of setup before they can actually participate may 

have lessened this factor and allowed a rest period, increasing the setup time before the 

participation may help ensure physiological data starts at a baseline. 

With respect to mITS2048, at times, the participants had some questions with the survey, 

and with some of the screen flow.  If I were to perform the study again, I would 

incorporate some more tooltips and on-screen instructions to minimize the number of 

questions asked to the researcher.  This would increase the amount of independence the 

participants had in the study. 

Another lesson learned during the study is how much the participants enjoyed the 

experience.  Although evident from Figure 20 and Figure 21, parting verbal discussions 
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with numerous participants expressed that did not enjoy other Psychology SONA studies 

as much as they enjoyed interacting with mITS2048 and were surprised to find a study 

they enjoyed. 

Suggested Future Research 

The promise of expanding Intelligent Tutoring Systems into the mobile space is an 

endeavor worth investigating.  Limitations to our research point to possible areas of 

future research using the methodologies, GIFT ITS framework, and mITS2048 we 

demonstrated above.  For future researchers, our sample sizes only enabled identification 

of large differences in sensor feasibility and reliability on an Android tablet for 

personalizing learning using a standard front-facing camera with an E4 wrist band.  

Future research using large sample sizes may enable identification of medium and small 

differences.  Future research using tablets with cameras with larger fields of view may 

determine if increase field of view increases camera detection of the face.  In order to rule 

out the possibility that the quality of lighting is inappropriate in the study location, the 

ambient light sensor available in mobile devices can help the application better react to 

possible poor camera detection due to bad environment lighting. 

With the study rating positively by the participants, one can hypothesize if the results 

would be the same if they were forced to play more sessions, longer sessions, or a 

combination of the two.  Future research could explore this possibility, and it would be 

one assumption that Figure 20 and Figure 21 would show even more disparity.  

Furthermore, another consideration would be to change the study design to have all 
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participants try multiple postures and compare the different ergonomic metrics per 

individual. 

Although we did not consider smartphones as part of this study, it would be trivial to 

adapt most of the mITS2048 software to run on an Android smartphone.  Ergonomically, 

smartphones are gripped differently than tablets by users, hence are likely to have 

different levels of feasibility and reliability (Trudeau, Catalano, Jindrich, & Dennerlein, 

2013).  Another consideration for this study was the use of the Empatica E4 wrist band, 

but other wrist bands may be investigated, such as the Mio Slice and Biostrap just to 

name a few.  For future research, even more modern human physiological monitors exist 

that are embedded into the tablet itself and do not require the user to attached a wrist 

band, such as using the built-in camera to detect heart rate (Han, Xiao, Shi, Canny, & 

Wang, 2015; Poh, McDuff, & Picard, 2010).  Finally, while this research considers 

passive sensors, future research may consider active conversational intelligent tutors on 

mITS devices that detect human affect levels based on inflections in student voice 

patterns (Bahreini et al., 2014; Hart & Proctor, 2018).   

When considering the design of an ITS that would ultimately interact with mITS2048, 

one possible strategy for personalizing the participant’s learning is to use the current 

score with the current delay between touches.  If the participant is not falling within the 

range of the theoretical maximum as identified in Table 17 and Table 19, hints or tooltips 

can be displayed to the user in order to provide some level of assistance.  Inspecting 

Figure 23 shows that participants that are not at the maximum within that specific time 

delay can be encouraged to improve.  Once the participant is at the maximum for that 
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specific time delay, the ITS can start to encourage them to start decreasing their delay 

between gestures, in order to take advantage of more moves and thus, increasing their 

score performance.  In other words, if the region of the best score is plotted against the 

delay between moves, the system should get the participant to move within the region 

while increasing their speed. 

Any future research should include an increased number of participants to include a 

desktop-based group that does not use a tablet.  The game (or ITS course) should be 

ported to run on a desktop environment for future comparison to the mobile positions. 
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APPENDIX A: AFFECTIVE SLIDER 
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Figure 24: Affective Slider (Betella & Verschure, 2016) 

As already discussed in the fourth chapter, the Affective Slider is licensed under the 

Creative Commons license CC BY-SA 4.0.  The license requires us to provide attribution 

(done by citation) and a link to the license (Creative Commons, 2018).  The images were 

not changed when included in mITS2048, therefore the ShareAlike clause of the license 

would not apply to this study. 
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APPENDIX B: DEMOGRAPHIC QUESTIONNAIRE 
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Figure 25: Demographic Questionnaire 
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APPENDIX C: USER SATISFACTION SURVEY 
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Figure 26: User Satisfaction Survey 
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APPENDIX D: IRB APPROVAL LETTER 
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APPENDIX E: JMP JSL SCRIPT TO GENERATE PARTICIPANT 

GRAPHS  
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JMP JSL Script to generate participant graphs. 

directory = get default directory(); 
 
fileNames = Files In Directory( directory ); 
 
For( iFile = 1, iFile <= N Items( fileNames ), iFile++, 
  GSRNotFound = 1; 
  filename = fileNames[iFile]; 
  If( Ends With( filename, "combined.csv" ), 
 dt = Open( directory || filename ); 
  
 col_name_list = dt << get column names(string); 
  
 if (!(contains(col_name_list, "Camera")>0), 
      dt <<New Column("Camera", Numeric, "Continuous", 0) 
 ); 
  
 if (!(contains(col_name_list, "HeartRate")>0), 
      dt <<New Column("HeartRate") 
 );  
  
 if (!(contains(col_name_list, "GSR")>0), 
      dt <<New Column("GSR"), GSRNotFound = 0 
 ); 
  
 if (!(contains(col_name_list, "Temperature")>0), 
      dt <<New Column("Temperature") 
 ); 
  
 if (!(contains(col_name_list, "Score")>0), 
      dt <<New Column("Score") 
 ); 
  
 valuesList = :StudyLocation_Name << 
 Get Values( 
 ); 
 
 location = Empty(); 
 
 For ( iValue = 1, iValue <= N Items (valuesList), iValue++, 
  If(valuesList[iValue] != "", location = valuesList[iValue]; Break() ); 
 ); 
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 // Calculate offset time 
 // Code to find OffsetStart 
 x = col minimum(:"Restart Game_Practice"); 
 rmat = dt << get rows where(:"Restart Game_Practice" == x); 
 r = rmat[1]; 
 offsetTimeStart = :Time[r]; 
 offsetTime = dt:Time << getValues; 
  
 For (index = 1, index <= N items(offsetTime), index++, 
  offsetTime[index] = offsetTime[index]-offsetTimeStart; 
 ); 
  
 dt:Time << setValues(offsetTime); 
  
 PSs = 0; 
 PSe = 0; 
 TSs = 0; 
 TSe = 0; 
  
 // Code to find PSs 
 x = col minimum(:"Restart Game_Practice"); 
 rmat = dt << get rows where(:"Restart Game_Practice" == x); 
 r = rmat[1]; 
 PSs = :Time[r]; 
  
 // Code to find PSe 
 x = col minimum(:"Game Ended_Practice"); 
 rmat = dt << get rows where(:"Game Ended_Practice" == x); 
 r = rmat[1]; 
 PSe = :Time[r]; 
  
 // Code to find TSs 
 x = col minimum(:"Restart Game_Trial"); 
 rmat = dt << get rows where(:"Restart Game_Trial" == x); 
 r = rmat[1]; 
 TSs = :Time[r]; 
  
 // Code to find TSe 
 x = col minimum(:"Game Ended_Trial"); 
 rmat = dt << get rows where(:"Game Ended_Trial" == x); 
 r = rmat[1]; 
 TSe = :Time[r]; 
 
 // Rename GSR to EDA 
 columnReferenceList  = dt << get column reference(); 
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 position = contains(columnReferenceList, column("GSR")); 
 column(position)<<setName("EDA"); 
  
 gb = dt<<Graph Builder( 
  Size( 1065, 1240 ), 
  Show Control Panel(0), 
  Variables( 
   X( :Time ), 
   Y( :Camera ), 
   Y( :HeartRate ), 
   Y( :Score ), 
   Y( :EDA ), 
   Y( :Temperature ), 
   Y( :Touch) 
  ), 
  Elements( 
   Position( 1, 1 ), 
   Points( X, Y, Legend( 30 ) ), 
   Line( X, Y, Legend( 32 ) ) 
  ), 
  Elements( 
   Position( 1, 2 ), 
   Points( X, Y, Legend( 28 ) ), 
   Smoother( X, Y, Legend( 29 ), Lambda( 0.00001 ) ) 
  ), 
  Elements( Position( 1, 3 ), Points( X, Y, Legend( 10 ) ) ), 
  Elements( Position( 1, 4 ), Points( X, Y, Legend( 4 ) ) ), 
  Elements( Position( 1, 5 ), Points( X, Y, Legend( 21 ) ) ), 
  Elements( 
   Position( 1, 6 ), 
   Points( X, Y, Legend( 33 ) ) 
  ), 
  SendToReport( 
   Dispatch( {}, "Graph Builder", 
    OutlineBox, {Set Title( "")} 
   ), 
   Dispatch( 
    {}, 
    "Time", 
    ScaleBox, 
    {Format( "min:s", 11, 0 ), Min( 0 ), Max( TSe ), Interval( "Minute" ), Inc( 1 ), 
    Minor Ticks( 0 ), Label Row(Label Orientation( "Horizontal" )), 
    Add Ref Line( PSs, "Solid", {230,138,0}, "", 3 ), 
    Add Ref Line( PSe, "Solid", {230,138,0}, "", 3 ), 
    Add Ref Line( TSs, "Solid", "Black", "", 3 ), 
    Add Ref Line( TSe, "Solid", "Black", "", 3 )} 
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   ), 
   Dispatch( 
    {}, 
    "Camera", 
    ScaleBox, 
    {Format( "Fixed Dec", 12, 0 ), Min( -0.2 ), Max( 1.2 ), Inc( 1 ), 
    Minor Ticks( 0 )} 
   ), 
   Dispatch( 
    {}, 
    "graph title", 
    TextEditBox, 
    {Set Text( "Camera, HR, Score, EDA, Temperature and Touch vs. Time (" || location || ")" )} 
   ), 
   Dispatch( 
    {}, 
    "Graph Builder", 
    FrameBox, 
    {Marker Size( 1 ), Add Graphics Script( 
     3, 
     Description( "Script" ), 
     Text Size (16); 
     Text Color ({230,138,0}); 
     Text( 
      {PSs, 1.20, PSe, 1.05}, 
      "Practice Session" 
     ); 
     Text Color ("black"); 
     Text( {TSs, 1.20, TSe, 1.05}, "Trial Session" ); 
    )} 
   ), 
   Dispatch( {}, "Graph Builder", FrameBox( 2 ), {Marker Size( 1 )} ), 
   Dispatch( {}, "Graph Builder", FrameBox( 3 ), {Marker Size( 1 )} ), 
   Dispatch( {}, "Graph Builder", FrameBox( 4 ), {Marker Size( 1 )} ), 
   Dispatch( {}, "Graph Builder", FrameBox( 5 ), {Marker Size( 1 )} ), 
   Dispatch( {}, "Graph Builder", FrameBox( 6 ), {Marker Size( 1 )} ), 
   Dispatch( {}, "Y 3 title", TextEditBox, {Rotate Text( "Left" )} ) 
    
  ) 
 );  
  
 gb << Save Picture( directory || "graphs/" || filename || "." || location || ".png", "png"); 
  
 gb << Save Picture( directory || "graphs/" || location || "/" || filename || "." || location || ".png", "png"); 
  
    Close( dt, "nosave" ); 
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    Show(iFile); 
    Show(filename ); 
  ); 
); 
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APPENDIX F: MITS PROTOTYPE EVOLUTION 
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Figure 27: Early mITS Prototype Evolved to Final 
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Figure 28: mITS to mITS2048 Evolution 
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Figure 29: mITS Participant Log Structure 
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APPENDIX G: SYSTEM-OBSERVED PARTICIPANT DATA  
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