3 research outputs found

    Modeling the Effects of Maintenance on the degradation of a Water-feeding Turbo-pump of a Nuclear Power Plant

    No full text
    International audienceThis work addresses the modelling of the effects of maintenance on the degradation of an electric power plant component. This is done within a modelling framework previously proposed by the authors, of which the distinguishing feature is the characterization of the component living conditions by influencing factors (IFs), i.e. conditioning aspects of the component life that influence its degradation. The original fuzzy logic-based modelling framework includes maintenance as an IF; this requires one to jointly model its effects on the component degradation together with those of the other influencing factors. This may not come natural to the experts who are requested to provide the if-then linguistic rules at the basis of the fuzzy model linking the IFs with the component degradation state. An alternative modelling approach is proposed in this work, which does not consider maintenance as an IF that directly impacts on the degradation but as an external action that affects the state of the other IFs. By way of an example regarding the propagation of a crack in a water-feeding turbo-pump of a nuclear power plant, the approach is shown to properly model the maintenance actions based on information that can be more easily elicited from experts

    Resilience, Reliability, and Recoverability (3Rs)

    Get PDF
    Recent natural and human-made disasters, mortgage derivatives crises, and the need for stable systems in different areas have renewed interest in the concept of resilience, especially as it relates to complex industrial systems with mechanical failures. This concept in the engineering systems (infrastructure) domain could be interpreted as the probability that system conditions exceed an irrevocable tipping point. But the probability in this subject covers the different areas that different approaches and indicators can evaluate. In this context, reliability engineering is used the reliability (uptime) and recoverability (downtime) indicators (or performance indicators) as the most useful probabilistic tools for performance measurement. Therefore, our research penalty area is the resilience concept in combination with reliability and recoverability. It must be said that the resilience evaluators must be considering a diversity of knowledge sources. In this thesis, the literature review points to several important implications for understanding and applying resilience in the engineering area and The Arctic condition. Indeed, we try to understand the application and interaction of different performance-based resilience concepts. In this way, a collection of the most popular performance-based resilience analysis methods with an engineering perspective is added as a state-of-the-art review. The performance indicators studies reveal that operational conditions significantly affect the components, industry activities, and infrastructures performance in various ways. These influential factors (or heterogeneity) can broadly be studied into two groups: observable and unobservable risk factors in probability analysis of system performance. The covariate-based models (regression), such as proportional hazard models (PHM), and their extent are the most popular methods for quantifying observable and unobservable risk factors. The report is organized as follows: After a brief introduction of resilience, chapters 2,3 priorly provide a comprehensive statistical overview of the reliability and recoverability domain research by using large scientific databases such as Scopus and Web of Science. As the first subsection, a detailed review of publications in the reliability and recoverability assessment of the engineering systems in recent years (since 2015) is provided. The second subsection of these chapters focuses on research done in the Arctic region. The last subsection presents covariate-based reliability and recoverability models. Finally, in chapter 4, the first part presents the concept and definitions of resilience. The literature reviews four main perspectives: resilience in engineering systems, resilience in the Arctic area, the integration of “Resilience, Reliability, and Recoverability (3Rs)”, and performance-based resilience models

    Nonparametric approach to reliability and its applications

    Get PDF
    Reliability concepts are used by reliability engineers in the industry to perform systematic reliability studies for the identification and possible elimination of failure causes, quantification of failure occurrences and for the reduction of failure consequences. Apart from applications to mechanical, electronic systems and software, reliability concepts are heavily used in biomedicine to model and understand biological processes such as aging. The standard approach in estimating reliability measures is to assume that the underlying lifetime distribution is known, even if only approximately. When the assumed parametric model is valid, the accuracy of corresponding inferences made based on the estimated function is usually sufficient. However, when this is in doubt, use of a parametric approach could lead to inaccurate inferences. In the literature, this issue has been studied extensively. In such circumstances, estimating these reliability measures using nonparametric techniques has the advantage of flexibility as they generally impose less restriction on the underlying distribution of the life time variable. This thesis considers three popular reliability measures, namely, Reversed Hazard Rate (RHR), Expected Inactivity Time (EIT) and Mean Residual Life (MRL) functions and introduces new estimation methods based on a nonparametric technique called the fixed-design local polynomial regression method. Investigations were undertaken on the theoretical properties of these estimators such as their asymptotic bias, variance and distribution. Extensive simulations were carried out to investigate their performances. The thesis also introduces some novel hypothesis testing procedures for comparing between reliability measures based on samples from two populations using nonparametric techniques. Finally, these methods were applied to address various interesting problems in biomedicine and reliability engineering to demonstrate their practical utility
    corecore