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I 

 

Abstract 

Recent natural and human-made disasters, mortgage derivatives crises, and the need for stable 

systems in different areas have renewed interest in the concept of resilience, especially as it 

relates to complex industrial systems with mechanical failures. This concept in the engineering 

systems (infrastructure) domain could be interpreted as the probability that system conditions 

exceed an irrevocable tipping point. But the probability in this subject covers the different areas 

that different approaches and indicators can evaluate. In this context, reliability engineering is 

used the reliability (uptime) and recoverability (downtime) indicators (or performance 

indicators) as the most useful probabilistic tools for performance measurement. Therefore, our 

research penalty area is the resilience concept in combination with reliability and recoverability. 

It must be said that the resilience evaluators must be considering a diversity of knowledge 

sources. In this thesis, the literature review points to several important implications for 

understanding and applying resilience in the engineering area and The Arctic condition. Indeed, 

we try to understand the application and interaction of different performance-based resilience 

concepts. In this way, a collection of the most popular performance-based resilience analysis 

methods with an engineering perspective is added as a state-of-the-art review. The performance 

indicators studies reveal that operational conditions significantly affect the components, 

industry activities, and infrastructures performance in various ways. These influential factors 

(or heterogeneity) can broadly be studied into two groups: observable and unobservable risk 

factors in probability analysis of system performance. The covariate-based models (regression), 

such as proportional hazard models (PHM), and their extent are the most popular methods for 

quantifying observable and unobservable risk factors. 

The report is organized as follows: After a brief introduction of resilience, chapters 2,3 priorly 

provide a comprehensive statistical overview of the reliability and recoverability domain 

research by using large scientific databases such as Scopus and Web of Science. As the first 

subsection, a detailed review of publications in the reliability and recoverability assessment of 

the engineering systems in recent years (since 2015) is provided. The second subsection of these 

chapters focuses on research done in the Arctic region. The last subsection presents covariate-

based reliability and recoverability models. Finally, in chapter 4, the first part presents the 

concept and definitions of resilience. The literature reviews four main perspectives: resilience 

in engineering systems, resilience in the Arctic area, the integration of “Resilience, Reliability, 

and Recoverability (3Rs)”, and performance-based resilience models. 

 

Keywords: Resilience, Operation and maintenance, Performance indicators, Covariates-based 

models. 
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1- INTRODUCTION 

 

1.1. Background and problem statement 

 

Extensive analysis of engineering systems reveals that in many cases, “failure” is at best a 

statistical certainty or, at worst, a part of a “normal” operation. The dominant approach to 

preventing failure in engineering systems is performance analysis, which consists of key 

performance indicators assessment such as reliability, recoverability, availability, etc. However, 

in complex systems, performance analysis alone is inadequate to fully protect system functions 

and components. In this regard, resilience has been introduced as a new idea in the engineering 

domain. This concept can be considered a process that makes it possible to effectively respond 

to unanticipated changes and unexpected events, vulnerabilities, and opportunities lying outside 

the scope of formal procedures (Hosseini et al., 2016). A prerequisite to viable resilience metrics 

is an understanding of the resilience performance of the system. As Hollnagel (Hollnagel, 2011) 

said, resilient performance requires four system abilities: respond, monitor, learn, and anticipate. 

On the other hand, when engineers want to use any idea, they need to quantify them. In this 

view, a resilience assessment method requires these principles to be translated into some 

measurable items. Here reliability engineering addressed the key performance indicators (KPI) 

for measuring the system behavior in different conditions of a whole lifetime (Barabadi et al., 

2016; Lindberg et al., 2015; Parmenter, 2015). In making a connection between KPI and 

resilience concepts, the resilience attributes of the system can be characterized as (Yarveisy et 

al., 2020): 

• Absorptive capacity: The extent of the system's ability to reduce the adverse effects of 

disturbances and maintain higher residual performance 

• Adaptive capacity: the reaction to the stressor's effect, the system's ability to continue 

operations in the stable disturbed state, and the readiness to initiate the recovery after the 

failure. 

• Restorative: The system's capability to be rapidly repaired requires minimal support and 

higher performance levels than the disrupted state. 

These attributes evoke the most useful probabilistic and analytic indices such as reliability, 

recoverability in the mind that finding the connection between them and resilience is the main 

purpose of the present research. The idea of reliability, recoverability, and resilience integration 

is named “3R”. A prerequisite to 3R is to understand these performance-based resilience 

assessment approaches that a broad literature review can reach. When performance indices are 

measured in the Arctic region, the operating condition makes it more challenging for 

researchers. Therefore, the divergences of these indicators will also contain the same challenges. 

Accordingly, resilience assessment in the Arctic can be faced with new barriers. 
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1.2. Aims and Objectives 

 

The main aims of this master thesis are to evaluate and determine suitable methods and tools 

for performance measurement of engineering facilities and activities. More specifically, the 

objectives of this master thesis are: 

 

• To define and review the recent research and developments for 3Rs and their statistical 

approaches in the engineering field. 

 

• To determine suitable methods to quantify resilience using the performance indicators 

(reliability and recoverability). 

 

• To assess and evaluate how Arctic operational and environmental risk factors can affect 3Rs. 

 

 

1.3. Research Questions 

 

The following research questions are posed to achieve the research objectives of the thesis:  

 

RQ1. What are the available research and developments literature for 3Rs and their statistical 

approaches in the engineering field? 

 

RQ2. How can the performance indicators (reliability and recoverability) quantify the 

resilience? 

 

RQ3. How operational and environmental risk factors in the Arctic can affect 3Rs? 
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1.4. Outline of the master thesis 

I. At the first step in sections 1 and 2 of chapters 2 and 3, each chapter's literature 

distribution by domains, years of publication, and journals are evaluated. The Web of 

Science (WOS, 2020) and Scopus (Elsevier, 2020) database is the most comprehensive 

multidisciplinary content search platform for academic researchers to search and 

analyze related papers. In this stage, using keywords to search, we selected those papers 

only relevant to modeling and measuring each index in engineering systems and 

research done in the Arctic area. Recent research and developments for 3R and its 

approaches, mainly from 2015 to 2020, are reviewed in more detail. This literature 

review approach was applied to the papers published in WOS from 1978 to 2020 and 

Scopus from 1851 to 2020. Moreover, section 3 of chapter 4 is allocated for 

performance-based-resilience papers review. 

II. Secondly, in section 3 of chapters 2 and 3; and section 4 of chapter 4, we try to find 

how resilience can be quantified using the performance indices (reliability and 

recoverability). These indices could be shown the necessary and sufficient 

characterization of the infrastructure or system over its lifetime (Reliability covers the 

uptime and recoverability cover the downtime). The mentioned indices improvement 

has been the subject of many research and articles. The primary objective in this part is 

to study probabilistic methods that characterize infrastructure systems' resilience using 

performance indices such as reliability and recoverability metrics. These metrics can 

easily be influenced by operating environment conditions named “risk factors” or 

“covariates” in the reliability engineering. The covariate could be classified as 

observable and unobservable risk factors. Observable risk factors describe the recovery 

process characteristics. Environmental conditions such as wind speed, wind direction, 

temperature, and polar low must be described and quantified based on how they can 

affect the performance, update the safety procedure, and organizational management 

rules. Unobservable risk factors are independent variables that may significantly impact 

recovery and operating time. However, these are not reported or directly unquantifiable 

(and thus not available in databases) but cause heterogony. For example, external 

managerial advice might help the repair crew maintain the failures and recover the 

system (Gutierrez, 2002; Hougaard, 1995; Wienke, 2010). Thus, a comprehensive study 

of covariate-based models needs to consider the risk factor effect of performance indices 

and, finally, resilience. 

III. In this regard, the outline of section 3 of chapter 2 starts with the primary statistical 

definition of reliability. It will then provide a review of covariate-based methods used 

to describe environmental effects on reliability. Since basic theory and recoverability 

models are like reliability. Also, section 3 of chapter 3 presents a brief introduction and 

description of recoverability. The focus is on the mixture frailty model (MFM). Section 

4 of chapter 4 illustrates several models and frameworks to predict system resilience 

over time under various concepts. This chapter's main objective is to understand the 

subject with quantification vision and mathematics or statistics. 
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his chapter provides a comprehensive statistical overview of the research in the reliability 

domain. Then, a detailed review of publications in the reliability assessment of the 

engineering systems field is provided in recent years. Then, the focus is on research done in the 

Arctic systems. Ultimately, the statical theory of reliability will be presented as classical and 

covariate-based models. 

2- RELIABILITY 

Reliability is a general concept that can be applied freely to diverse subjects with needed 

adjustments: function, performance, and lifetime are concepts that will be discipline-specific. 

Reliability analysis is an important and often the most time-consuming step in design and 

performance assessment under uncertainty. However, the estimation ability of reliability and the 

probability of failure is critical to reducing maintenance costs, operation downtime, safety 

hazards and is an indispensable requirement tool in most engineering and management fields. 

Numerous methods have been proposed to analyze engineering product reliability while 

considering various uncertainty sources (e.g., loads, material properties, and geometric 

tolerances). Design parameters are usually considered random variables to formulate reliability 

analysis in a mathematical framework. The “International Electrotechnical Commission” (IEC) 

defined reliability as the ability of an item to perform a required function under given conditions 

for a given time interval (IEC, 2019). Traditionally, reliability analysis of an asset is done just 

based on failure event data that couldn't be applicable in real-life situations due to poor data 

management (Barabady, 2005, 2007; Barabady and Kumar, 2008; Gao et al., 2010a; Kumar, 

1990; Kumar and Huang, 1993; Kumar and Klefsjö, 1992; Rahimdel et al., 2013). In real 

situations, many parameters could be affected the system performance, which is defined as 

"Covariate" or "Risk factor" in performance analysis. Covariates are different indicators that 

influence and/or indicate the lifetime of a piece of equipment (Gorjian Jolfaei, 2012). Condition 

indicators and operating environment indicators are two types of risk factors that are normally 

obtained in addition to failure events and suspended data (or censored data). Risk factors contain 

important information about an asset's state and operating condition. They reflect the level of 

assets' degradation while operating environment indicators accelerate or decelerate the lifetime 

of assets and change the performance. For example, in the Arctic region, known to have a harsh 

climate and a sensitive environment in a remote location, the severe and complex operational 

conditions can significantly affect a system's lifetime, the repair processes, and the support 

activities. Hence, considering the operational conditions' effect on the production 

facility/systems/equipment and machines' performance, the related reliability and 

maintainability characteristics are essential. In this situation, if data are available and 

observable, an alternative approach to the traditional reliability analysis is modeling risk factors 

using a "Covariate-based hazard model". This approach considers risk factors an "Observable 

risk factor," and their development began in the 1970s to overcome the traditional one's 

deficiency. From the 1970s to 1990s, reliability models with covariates have been originated 

and then have been applied in the field of engineering assets (Ahmadi et al., 2010; Barabadi, 

2011; Barabadi et al., 2011a; Barabadi, 2014; Ghodrati, 2005; Ghodrati and Kumar, 2005a; 

T 

file:///D:/Friends/Dr.%20Rezgar%20Zaki/Thesis/3/Thesis-Final%203.docx%23_ENREF_53
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Giorgio et al., 2014; Gorjian, Ma, et al., 2010a, 2010b; Gorjian, Mittinty, et al., 2010). Some of 

the most used covariate-based hazard models, which have been applied to estimate the hazard 

of an asset using its age and covariates, is included as the semi-parametric Explicit Hazard 

Model(EHM) such as Weibull Proportional Hazard Model (WPHM) (Lakshmi and Sundari, 

2012), Accelerated Failure Time Model (AFTM) (Barabadi et al., 2010), Proportional Odds 

Model (POM) (Gorjian Jolfaei, 2012), Additive Hazard Model (AHM) (Pijnenburg, 1991), 

Aalen Linear Regression Model (ALRM) (Kumar and Westberg, 1996), Proportional Covariate 

Model (Ghodrati, 2005), Proportional Intensity Model (PIM) (Prasad and Rao, 2002), Extended 

Cox Regression Model (ECRM) (Barabadi et al., 2010), …. Sometimes, the evaluator couldn't 

foresee the risk factor or predict but couldn't be quantified it. These factors are defined as " Un-

observable risk factors" in reliability engineering, and the covariate-based hazard models need 

an improvement to consider them in performance analysis (Aalen, 1992; Gutierrez, 2002; 

Hougaard, 1995; Rod et al., 2020; Wienke, 2010; Zaki et al., 2019).  

The scientometrics1 of reliability subject could help understand citations' processes, map 

scientific fields, and use research policy and management indicators. It can be considered the 

study of the quantitative aspects of science and technology seen as communication. Its initial 

purpose was not research evaluation but rather to help researchers search the literature more 

effectively. Successful quantitative analysis needs a comprehensive and accurate source of data. 

Thomson Reuters ISI Web of Science (WoS) and Scopus as major data sources are studied in 

the present report. WoS is a specialized database covering journal papers, conference 

proceedings and is beginning to cover books. Since 2004, as a similar rival database, Scopus 

has been available from Elsevier. It also covers journals, conferences, and books. Scopus 

retrieves back until 1996, while WoS has been available for all years since 1900 (Elsevier, 2020; 

Falagas et al., 2008; WOS, 2020). In Figure 2-1, we can see the histograms of reliability 

application in different area that reaches from Scopus data source. 

 
Figure 2-1- Research areas histograms of reliability publications from Scopus database in 1997-2020 

 

1 - Scientometrics is the study of the quantitative aspects of the process of science as a communication system. 
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This figure shows the engineering field is the most highly applied area of reliability from 1997 

to 2020. Computer Science and Physics are the next priorities. The main categories of publications 

are shown in Figure 2-2 using a WoS data source. This chart shows that the large area belongs 

to engineering, especially the electrical field. 

 

 
Figure 2-2- Area chart of science categories for reliability publications from WoS database 

 

In Figure 2-3, the publication data source is clustering by year. The histogram's sharp increasing 

trend from 1997 to 2020 using the Scopus database shows the enormous attention to reliability 

subjects. Keep in mind that the frequencies for 2020 are most likely incomplete. 

 

 
Figure 2-3- Published year histograms of reliability publications from Scopus database in 1997-2020 

 

As a result, it can be concluded that one of the key problems facing scholarship today is the 

growth in the size of its literature. Researchers interested in scholarly communication quickly 

recognized that the Web is for scholars as a “nutrient-rich resource space. The scientometric 

perspective adds a quantitative focus on texts and communication to science and technology 
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studies' interdisciplinarity. Our data source studies show that the reliability subject, especially 

in the engineering area, is still one of the most interesting domains and new opportunities for 

the new application. The main reasons for keeping researchers interested in the reliability 

domain are the increasing complexity of new systems and infrastructures and the quality of 

customers’ demands in a different part of a supply chain in different industries and communities. 

Moreover, it can be concluded that integrating reliability with new concepts is another reason 

for the present condition. Of course, the statistical and mathematical aspects of reliability 

assessment also contribute to this concept's further engineering field growth. 

2-1- The state of reliability concept in engineering systems  

With the widespread manufacture and use of increasingly worldly engineering assets and 

systems, reliability engineering plays an important role in analyzing these systems' reliability 

performance. It is defined as an engineering discipline closely related to statistics and probability 

theory. This discipline applies scientific know-how to a component, product, plant, or process 

to guarantee intended function performance, without failure, for the required time duration under 

specified operating environment conditions (Kiran, 2016). The change in the number of 

scientific research results reflects, to a certain extent, the changes in the attention paid by 

international experts and scholars to a specific subject area. The increasing number of 

publications in Figure 2-4 based on scientific database information such as Scopus shows that 

engineering reliability still is one of the topics of interest. As seen in Figure 2 that the greatest 

number of articles was published last decade. We can see in this figure that the scientific 

production in the field of reliability in engineering has a slow increase from 1997 to 2007; 

however, in some year’s fluctuations can be observed in the trend. There is a significant increase 

in 2019. Keep in mind that the frequencies for 2020 are most likely incomplete. 

 
Figure 2-4- Published year histograms of reliability publications in an engineering field from Scopus 

database in 1997-2020 

Moreover, to determine the literature's growth rate, scientometrics aims to determine subject 

areas of the literature. In this regard, Figure 2-5 indicates that a major contribution of the total 

output came from five engineering fields: Civil, Electronic, Multidiscipline, Mechanical, and 

Industrial. According to the figure, most of the research was published in Civil and Electronic 
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science. The authors' next most popular research areas were Multidiscipline, Mechanical, and 

Industrial. 

 
Figure 2-5- Field of study in engineering categories for reliability publications from WoS database 

Thus, this section highlights the assessment approaches and works of reliability and reliability 

engineering in the engineering field. As mentioned, reliability analysis as a specific field of 

statistics studies the system failure times and their probability of occurrences. Identifying 

reliability as a specific field to engineering disciplines can be dated back to the 1930s (Dhillon, 

1999; Lawless, 1983; Zio, 2009). Probability assessments became more popular in the 1940s 

(Birolini, 2013; Dhillon, 1999). After that, the probability-based approaches were developed by 

U. Kumar, A. Ghodrati, A. Ahmadi, J. Barabady, and A. Barabdi's thesis and papers in different 

domains of engineering such as mining equipment, aviation industry, oil and gas production 

equipment, electrical instruments, etc.  (Barabadi et al., 2010, 2011b; Barabadi, 2014; Barabadi 

and Markeset, 2011; Barabady, 2005, 2007; Barabady et al., 2010; Barabady and Kumar, 2008; 

Ghodrati, 2005; Ghodrati et al., 2015; Ghodrati and Kumar, 2005a; Kumar, 1995; Kumar and 

Klefsjö, 1994a, 1994b; Kumar, 1989, 1990; Kumar and Klefsjö, 1992; Qarahasanlou et al., 

2017; Zaki et al., 2019). Even though reliability analysis is based on probability theory, which 

has been widely studied and used, it sometimes meets one main problem: the system may have 

only a few or even no samples; thus, we cannot estimate their probability distributions via 

statistics. The methods and concepts such as uncertainty and Bayesian theories have been 

proposed (Ait Mokhtar et al., 2017; Li and Liu, 2016; Wen and Kang, 2016). Nannapaneni and 

Mahadevan used a Bayesian probabilistic approach to model epistemic uncertainty about the 

random input variables (Nannapaneni and Mahadevan, 2016). In this context, Artificial Neural 

Network (ANN) algorithms are introduced as universal function approximators used for 

reliability assessment. It is based on the brain's neural structure to establish a functional 

relationship between two data spaces during a learning process and reproduce that connection 

during a recall process. Chojaczyk et al. presented the review of ANN models' development and 

used it in structural reliability analysis with the different ANNs methods (from 1989 to 2014). 

In the second part of this paper, the application of ANNs in the reliability analysis of a ship 

stiffened panel was shown (Chojaczyk et al., 2015). 
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The reliable performance of production processes is the other subject of engineering systems 

reliability analysis. The reliability of a production system depends on its configuration and how 

it is managed in operation. Chlebus and Werbińska-Wojciechowska presented a literature 

review in reliability engineering to compare well-known reliability models for production 

systems performance (Chlebus and Werbińska-Wojciechowska, 2016). Many different 

approaches and aspects of production process reliability can be found that are under 

investigation in the analyzed literature. An in-depth review of the relevant research literature in 

the context of mathematical methods of water distribution system reliability was presented by 

Gheisi et al. This research classified reliability measurement techniques into three major 

categories (Gheisi et al., 2016): 

1) Analytic or Reachability- or Connectivity-Based Approach breaks down a system 

into its rudimentary components and studies the interactions or connections among 

them. 

2) Systemic-Holistic or System-Performance or Simulation-Based Approaches are an 

event-based technique that studies a system as a unit containing several subunits or 

components (does not break down a system). Any disturbance in the system’s 

operation due to component failure is studied using discrete simulation.  

3) Heuristic or Surrogate-Measure-Based Approaches are an experienced-oriented 

technique using intuitive judgment. 

In modern engineering systems with complex characteristics such as multi-state properties, 

epistemic uncertainties, common cause failures (CCFs), reliability analysis is done by new 

approaches such as the multi-state system (MSS) with epistemic uncertainty and CCFs, and 

accelerated performance degradation information: Mi et al. used the Bayesian network (BN) 

method and the Dempster-Shafer (DS) evidence theory to express the epistemic uncertainty. 

The case study of the feeding control system for computer numerical control (CNC) heavy-duty 

horizontal lathes (HDHLs) confirmed the feasibility of this comprehensive method and realized 

a quantitative analysis of the system failure state (Mi et al., 2018). The reliability analysis 

method of accelerated performance degradation based on Bayesian strategy is proposed by Yuan 

et al. This introduced method combines historical degradation data and practical information 

illustrated by an engineering example of a CNC-machine tool function milling head (Yuan et 

al., 2019). 

All mentioned authors have taken possession of a common evolutionary path in reliability 

development. The reliability analysis approach in the works began using the classic models and 

continued with covariate-based models. This approach can be found because the engineers need 

a deep and easily understandable analysis process to use the reliability approach. On the other 

hand, making correct decisions in a dynamic environment is a major challenge for engineers and 

managers worldwide. The covariate-based models could be quantified these uncertainties with 

the various covariates (risk factor). Recently, in this regard, Thijssensa and Verhagen extended 

the Cox regression model by incorporating the operating environment and aging of components 

and fleet of components. Examination of the model is illustrated by aviation components 

(Thijssens and Verhagen, 2020). Like other engineering fields, in mining engineering with huge 

equipment, reliability analysis effectively monitors efficiency and performance and ensures that 
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performance goals and quality criteria are met. Mismanagement of equipment causes production 

target shortages and unfulfilled sales agreements. Recently, Ugurlu and Kumral proposed an 

approach for drilling equipment (Is a primary operation in open pit mining) reliability analysis 

and discrete event simulation under uncertainty (Ugurlu and Kumral, 2020). 

2-2- The state of reliability concept in the Arctic area 

This section describes several types of research investigating reliability in the Arctic area that 

focuses on this review. The Arctic is a region on the planet (Figure 2-6) north of the Arctic 

Circle and includes the Arctic Ocean, Greenland, Baffin Island, Russia, Alaska, and Canada. 

The Arctic circle is an imaginary line located at 66º, 30'N latitude. The Circle climate is very 

cold, and much of the area is always covered with ice. In the mid-winter months, the sun never 

rises, and in the summer months (further south), 24 hours of sunlight a day melts the seas and 

topsoil. It is the main cause of icebergs breaking off from the frozen north and floating south, 

destroying the North Atlantic's shipping lanes (Barabadi et al., 2016). 

 

 
Figure 2-6- The Arctic region (“SOFREP | Military Grade Content”, 2020) 

 

For engineering systems and infrastructures in the Arctic, engineers, and designers must deal 

with several unique environmental conditions not normally present in other world regions. 

These include cold, harsh climate; darkness; the remoteness of the location; the sensitivity of 

the environment; lack of suitable and insufficient infrastructure, long-distance from customer 

and suppliers’ markets, ice scour, permafrost thaw, and/or frost heave. In the Arctic region, the 

interaction between the operational environment, humans, and equipment is more severe than 

in other places. In the Arctic, as far as the climate and location are concerned, the Arctic 

condition is a big challenge to manufacturing and industries. It will not only affect human 

performance but the overall organizational performance. For example, machinery and 
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equipment are amongst the factors of making cost-effective organizational operation or decision 

making as to cost and time effectiveness of both is a crucial challenge to the managers that are 

characterized for the cold environment (Barabadi et al., 2010; Fu et al., 2018; Rahimi et al., 

2011). The existence of high-quality petroleum resources and the oil and gas industry in this 

area caused the pipeline to be raised as one of the top infrastructures in the Arctic. The 

assessment and analysis of pipeline performance require a good understanding of pipeline 

material behavior, soil loading conditions, ice loading mechanisms, and the consequences 

associated with product release. DeGeer and Nessim described some reliability-based and strain-

based design methods that address the challenges and lead to optimal design decisions for 

onshore and offshore Arctic pipelines. They also provide a brief history of pipeline 

developments in the North American Arctic, including some design issues and mitigating the 

environmental effects most significantly influencing pipeline structural integrity. (DeGeer and 

Nessim, 2008). On the other oil and gas industry work, Gao et al. presented a covariate-based 

reliability approach for considering the influence of mentioned Arctic conditions factors in 

system production performance analysis. The proportional repair model (PRM) was developed 

to predict repair rate in Arctic conditions (Gao et al., 2010b). Barabadi et al. was used "Offshore 

Reliability Data" (OREDA) from the oil and gas industry to develop a methodology to predict 

the reliability of equipment in the Arctic region using an accelerated failure time (AFT) model 

that is established by the oil and gas industry. The AFT can be considered a suitable alternative, 

where the proportional hazards family models display a significant lack of fit. Their work 

consists of three main parts: a brief review at the first stage and a proposed methodology. 

Finally, its application has been demonstrated by a simple numerical example of an electronic 

component used in the North Sea (Barabadi et al., 2010). A. Barabadi in Ph.D. Thesis and 

papers, a survey of technological and operational challenges in the Arctic region from a 

maintainability and reliability performance perspective. Besides, the literature consists of 

covariate-based reliability and maintainability performance statistical approaches (Barabadi, 

2011; Barabadi and Markeset, 2011). The OREDA as a valuable database was used again by 

Kayrbekova et al. for discussing operation and maintenance challenges under the Arctic 

conditions and propose a methodology to assess systems’ reliability, maintainability, and 

maintenance costs under the influence of the Arctic operational environment. The maintenance 

cost is important because, in the Arctic region, preventive maintenance can be increased the 

wear and failures of moving parts. Furthermore, maintenance tasks may become difficult with 

a longer time than normal (Kayrbekova et al., 2011). Rahimi et al. tried to outline and discuss 

important Arctic conditions that influence topside offshore oil and gas equipment's reliability 

by using the OREDA data source to integrate technical data, environmental data, regulations 

and standards, expert judgment, and test data. Also, they presented approaches to reliability 

prediction based on levels of data availability (Rahimi et al., 2011). Based on experience in the 

Arctic offshore oil and gas industry, the inspection reliability is rather pushy, especially for 

tubular joints in jackets. Dong et al. studied the fatigue reliability designed for a northern North 

Sea site in this field for wind turbines. The reliability analysis was based on fracture mechanics 

(FM) analysis of crack growth of a jacket's welded tubular joints. (Dong et al., 2012). More 

details about the reliability analysis of wind turbines can be found in Jiang et al.'s state-of-the-

art review paper that had been done on the domain of structural reliability analysis of wind 
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turbines between the 1990s and 2017 (Jiang et al., 2017). As said before, FTA is a systematic 

approach to estimate the safety and reliability of complex systems both qualitatively and 

quantitatively. In another oil and gas industry (a three-phase horizontal separator by OREDA 

database) in the Arctic, Naseri, and Barabadi presented a methodology for system-reliability 

assessment fuzzy FTA that can be used in the design phase for optimizing maintenance and 

spare parts provision plans. In trying to cover the lack of adequate reliability data in this region, 

they used the expert-judgement process to modify available life data gathered in normal climate 

regions to include the effects of Arctic operating conditions on the components' reliability 

performance systems. For this purpose, the expert’s judgments as Gaussian fuzzy numbers are 

combined with the exact values of mean time to failures (Naseri and Barabady, 2015). These 

researchers also assessed the reliability of an oil processing train in the Western Barents Sea by 

an expert-based model. In this study, the available life data model (which is derived in analogy 

with PHMs) of normal-climate locations was modified by expert opinions to account for the 

effects of operating conditions (Naseri and Barabady, 2016a). Recently, Bolvashenkov et al. 

present an approach to estimate the operational availability and performance of icebreaker gas 

tankers with a hybrid-electric (Diesel-Electric) propulsion system. For this propose, the 

availability of each operating modes (Loading and unloading, navigation in the ice-free water, 

autonomous movement, navigation in heavy ice supported, and maneuvering of a ship) is 

estimated, followed by calculating their total impact on the value of the ship’s operating speed 

and, accordingly, the amount of cargo transported per unit of time. The research results showed 

that the hybrid motor has a significant potential to improve operational availability, technical 

performance, and, consequently, economic efficiency (Bolvashenkov et al., 2019). 

2-3- The reliability analysis approaches 

Massive costs arising from Process system failure or unreliability features are hitting the 

productivity standards of companies. Thus, a reliable system configuration has a vital role in the 

system design (or redesign) while considering its reliability. Reliability analysis approaches 

linked to overall system performance include a clear understanding of equipment status, life-

cycle costs reduction, process performance optimization, and safety operation assurance. 

Correspondingly, it is considered a quality concept extension essential for technological systems 

and infrastructures. As well, high-reliability organizing is a vital concept to crisis inhibition and 

mitigation. Good reliability management will collect critical information about the system's 

performance throughout the operation phase used in improvement processes.  

This concept initiates in the mid-1980s with the discussion about culture, decision making, 

complexity, and technology. This metric is more suited for the existing operations and related 

to maintenance issues and equipment lives (Jardine et al., 1987; Kumar, 1990). Reliability is 

recently used as a useful tool in new concepts such as resilience (Asadzadeh et al., 2020; Gu et 

al., 2020). Several approaches can be used to evaluate the reliability, such as the reliability block 

diagram (Barabady and Kumar, 2008), fault tree analysis (Choi and Chang, 2016), Monte Carlo 

simulation (Naseri et al., 2016), and Markov chain (Cai et al., 2012). Mostly, the base of these 

models is the stochastic independence assumption (i.e., each component of the model is 

stochastically independent of the others), which sometimes is not satisfied. For example, a 
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system's dynamic behavior caused by a time-dependent covariate cannot be modeled. Thus the 

models such as dynamic reliability block diagram (DRBD), reliability phase diagram (RPD), 

dynamic fault tree (Distefano and Puliafito, 2007), and reliability graph with general gates (Kim 

and Seong, 2002) have been developed to solve drawbacks. Dynamic fault trees (DFTs) have 

been had the main disadvantage as assumptions of precise failure data and statistical 

independence among events, which are unrealistic assumptions. Recently, Kabir et al. proposed 

an improved approach to reliability analysis of dynamic systems that analyze uncertain failure 

data and statistical and stochastic dependencies among them (Kabir et al., 2018). Some 

researchers broadly categorize the traditional reliability performance analysis methods into two 

main groups as parametric and non-parametric methods. In parametric methods, the central 

assumption is that the data come from a type of probability distribution and that interferences 

are made about the distribution parameters, but in the non-parametric method no specified 

distribution is assumed for the lifetime of the system (Furuly et al., 2013, 2014).  

As a general conclusion, the most commonly used models for times between events datasets are 

renewable process (RP), non-homogeneous Poisson process (NHPP), and homogeneous Poisson 

process (HPP). The times between events are assumed to be independent and identically 

distributed in a renewal process. An HPP is a renewal process where it is assumed that the times 

between events are exponentially distributed. This means that the dataset indicates any trend 

due to its deterioration or improvement; these models are not appropriate. A model with time-

dependent failure intensity, such as a non-homogeneous Poisson process (NHPP) such as the 

power low process (PLP), may be a better choice. The models mentioned above consider the 

time between failures as the sole variable of interest, and this analysis requires the following 

process (Ahmadi et al., 2019; Gao et al., 2010b): 

• The life data gathering for the product 

• Lifetime distribution selection that will fit the data and model the life of the product 

• The parameters estimation that will fit the distribution to the data 

• Generation of plots and results that estimate the life characteristics of the product, such 

as the reliability or mean life 

Consequently, these models cannot be used to analyze the effect of operational conditions 

(covariates) on reliability evaluation. Thus, in this current work, the regression model (or 

covariates-based models) is proposed to calculate engineering systems' reliability and 

subsequent resilience by considering different environmental factors. Applicable models for 

analyzing the covariate effect on reliability performance (covariate-based approaches) can 

broadly be classified as the class of proportional hazards models and accelerated failure time 

models based on proportional hazards assumption (Furuly et al., 2013, 2014). Ph.D. thesis of 

N. Gorjian is a broad collective review of the existing literature on reliability approaches (i.e., 

traditional reliability approach, model-based approach, and data-driven approach). It also 

highlighted various models and algorithms and discussed their merits and limitations (Gorjian 

Jolfaei, 2012). The method used is a probabilistic model based on random variables, including 

their functional and operational condition. It is considered one of the most useful models in the 

field of probabilistic knowledge representation and reasoning. In the following, firstly a brief 
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description of basic reliability concept by time variable is presented and then covariate-based 

approaches and models is discussed. 

Reliability measures the probability of failure-free operation over a specific period. It depends 

on conditions of use and risk factors such as quality of components, materials, and dimensions. 

Simply put, reliability analysis uses the calculation of failure probability, which provides a 

convenient approach for many engineering and technology fields. The mathematical function of 

reliability includes the relationship between the time to failures (TBFs) of the system or 

components (T > 0) and the time interval of proper function (t). Then, reliability can be defined 

as Eq. (2-1) (Ascher and Feingold, 1984): 

𝑅(𝑡) = 𝑃[𝑇 ≥ 𝑡] = 1 − 𝐹(𝑡) = ∫𝑓(𝑥)𝑑𝑥

𝑡

0

 (2-1) 

where R(t) is the probability that the time to failure is greater or equal to t and has the boundary 

conditions of 𝑅(𝑡) ≥ 0, 𝑅(0) = 1 and lim
𝑡→∞

𝑅(𝑡) = 0. 𝑓(𝑥): probability density function (PDF) 

of random variables. “x”: is the vector of random variables. 𝐹(𝑡): cumulative distribution 

function (𝑓(𝑥) = 𝐹(𝑡)́ ). The failure characteristic of this item can be modeled by the hazard 

function, h(t), given the following relationship (Birolini, 2013; Stamatis, 2017): 

ℎ(𝑡) =
𝑓(𝑥)

1 − 𝐹(𝑡)
= −

𝑑

𝑑𝑡
𝑙𝑛(𝑅(𝑡)) (2-2) 

Using the cumulative hazard function (𝐻(𝑡)) the connection between hazard and reliability can 

be made. The cumulative hazard function looks like this: 

𝐻(𝑡) = ∫ℎ(𝑥)𝑑𝑥

𝑡

0

 (2-3) 

This results in the associated survival function (Birolini, 2013; Stamatis, 2017): 

𝑅(𝑡) = 𝑒𝑥𝑝(−𝐻(𝑡)) (2-4) 

The reliability metric in Eq. (2-1) depends on the time and type of configuration in a system it 

needs to develop for operating conditions. Because in general, the degradation process of an 

asset is influenced by various environmental and operational mechanisms that affect it along the 

chronological time since it is starting to work. 

The mean time to failure (MTTF) or mean time between failure (MTBF) are the expected value 

of T (Ma, 2008; Thijssens and Verhagen, 2020): 

𝑀𝑇𝐵𝐹 (𝑀𝑇𝑇𝐹) = 𝐸(𝑇) = ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞

0

= ∫ 𝑅(𝑥)𝑑𝑥

∞

0

 (2-5) 

The systems are often designed, built, and tested in an environment with moderate conditions 

such as a comfortable temperature and good lighting (Kumar et al., 2009). Thus, as mentioned 

before, various regression models have been suggested to obtain more realistic estimates of the 

reliability parameters, and the operating environment factors are included in the models as 

explanatory variables. The basic theory of covariate-based hazard models in Figure 2-7 is to 

build the baseline hazard (underlying hazard) function using historical failure time data and the 

covariate function using covariate data. The selection and formulation of risk factors in these 
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models are crucial as the statistical inference is based on their formulation. The failure 

mechanisms of equipment must be precisely studied for this purpose because they are influenced 

by various risk factors and/or indicated by different indicators. 
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Figure 2-7- Basic theory of covariate-based hazard models (Ghodrati, 2005; Ghodrati and Kumar, 2005a) 

The valuable information of covariates could be well covered with the difficulty and costly data 

gathering process of risk factors. But sometimes, this factor couldn't be easily identified. Some 

of them couldn't be viewed, and someone unquantifiable. Thus, they classify into two main 

classes: 

• Observable risk factors describe the recovery or operating process characteristics, 

and environmental conditions such as wind speed, wind direction, temperature, polar 

low must be explained. They must also be quantified based on how they can affect 

the maintenance works, system operation, the update of the safety procedure, and 

organizational management rules. These covariates can be combined in data 

processing and make new covariates (Barabadi and Aalipour, 2015). Observable risk 

factors generally classify as (Ghodrati, 2005; Ghodrati and Kumar, 2005a): 

✓ External covariates or operating environment indicators are not directly 

involved with the failure mechanism and are generated by a process 

independent of a system  (Kalbfleisch and Prentice, 2011). Such as loads, 

ambient temperature, humidity, dust, contaminations, etc. 

✓ Internal covariates or condition indicators are the output of stochastic 

processes generated by the system, such as vibration, the thickness of the 

shell, level of metal particles, etc. They are observed and measured as long 

as the system is operational and used as degradation level measurement 

(Finkelstein, 2004). 

• Unobserved risk factors are independent variables that may significantly impact the 

recovery time. However, these are not reported or directly unquantifiable and thus 

not available in recovery databases but cause heterogony. For example, external 

managerial advice might help the repair crew repair the failures and recover the 

system in some situations. However, it helps to reduce recovery time, but it is not 

recorded in the corresponding databases. In this regard, their effect on recovery time 

should be modeled using unobservable risk factors (Gutierrez, 2002; Rod et al., 

2020; Wienke, 2010; Zaki et al., 2019). 
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The proportional hazard model (PHM) is a base covariate-based hazard model introduced by 

Cox in 1972 in the medical field (Cox, 1972). It is general and flexible and a simple approach 

in the interpretation of the results. Thus, it was quickly and widely adopted in reliability fields 

from the 1970s to the early 1990s (Bendell, 1985). However, the popularity of PHM in the 

reliability field suffers from several drawbacks like (Caroni, 2004; Ciampi and Etezadi-Amoli, 

1985; Huber-Carol and Nikulin, 2008; Kleiner and Rajani, 2001): 

• Any deletion or change in covariates could be had a vulnerable effect on PHM results, 

and a new model must be fitted.  

• Precise estimation of PHM needs adequate data. 

• In PHM, the covariate influences assume as time-independent. It is named as 

proportionality assumption (PH assumption). PH assumption imposes a severe limitation 

in which the reliability (or log-log hazard) curves for assets with different covariates 

must never cross. Due to this drawback, PHM's baseline hazard is always altered 

proportionally to the absolute condition indicators or operating environment indicators 

observed and measured. 

• PHM considers condition indicators and operating environment indicators as 

homogeneous data. 

Due to the drawbacks mentioned above, several covariate-based hazard models such as stratified 

regression mode (SCRM), accelerated failure time model (AFTM), extended hazard regression 

model (EHRM), etc., were developed (Ciampi and Etezadi-Amoli, 1985; Kumar and Klefsjö, 

1994b). None of the existing hazard models have not explicitly and effectively integrated three 

available asset information, including failure event data (i.e., observed and/or suspended), 

observable, and unobservable risk factors. The methodology surrounding the development of 

different forms of the covariate-based hazard model and their related parameter estimation 

methods that fully utilize all three types of system data in modeling hazard and reliability has 

been recently addressed in the literature. (Aalen, 1992; Gutierrez, 2002; Hougaard, 1995; Rod 

et al., 2020; Wienke, 2010; Zaki et al., 2019). Thus, a novel covariate-based hazard model, the 

Mix Proportional Hazard Model (MFM) in semi-parametric forms proposed by R.Zaki and et 

al., has been used and tested in this research (Zaki et al., 2019). Usually, the semi-parametric 

model has fewer parameters than the nonparametric one to be estimated. Additional 

uncertainties introduce the prediction results by increasing the number of unknown parameters 

in the model. MFM jointly utilizes three types of the mentioned information. This model 

assumes that the baseline hazard is a function of time, and risk factors help update the model's 

baseline hazard according to the system's state under different operating conditions. Risk factors 

can increase or decrease the value of the hazard from the baseline hazard. Some of the most 

used covariate-based methods are briefly described below: 

 Proportional hazard model (PHM) 

As mentioned earlier, PHM assumes that failures occur independently, and the value of the 

covariate function for one system does not influence any other assets' survival time. Cox (1972). 

In general, PHM is influenced by time and the covariates under which it operates. This model 

is a distribution-free approach to the tools used in reliability analysis. In PHM, the failure rate 
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of a system is the product of a baseline failure rate, (ℎ0(𝑡)), that depends on time only, and a 

positive functional term, (𝜑(𝑧𝛽)) which describes the effect of covariates as a positive function. 

This function has a linear form (1 + 𝛼𝑧) , the log‐linear (exp (𝑧𝛼)) and the Logistic form 

(log (1 + exp (𝛼𝑧))) forms (Kumar and Klefsjö, 1994b). The PHM can be written as follows 

(Ghodrati and Kumar, 2005b): 

ℎ(𝑡, 𝑧) = ℎ0(𝑡)𝜑(𝑧𝛽) (2-6) 

The common form of PHM is log-linear that can be expressed as (Ghodrati, 2005): 

ℎ(𝑡, 𝑧) = ℎ0(𝑡)𝑒𝑥𝑝(𝑧𝛽) = ℎ0(𝑡)𝑒𝑥𝑝(∑𝑧𝑖𝛽𝑖

𝑛

𝑖=1

) (2-7) 

The component reliability influenced by covariates is expressed by Eq.(2-8) (Ghodrati et al., 

2003):  

𝑅(𝑡, 𝑧) = (𝑅0(𝑡))
𝑒𝑥𝑝(∑ 𝑧𝑖𝛽𝑖

𝑛
𝑖=1 )

 (2-8) 

Where z is a row vector consisting of the covariates and is associated with the system. 𝛽 is a 

column vector consisting of the regression parameters and is the unknown parameter (regression 

coefficient) of the model, defining the effects (weight) of the covariates. The baseline hazard 

rate and baseline reliability (𝑅0(𝑡)) represents the hazard rate with zero effectiveness of 

covariates (𝜑(𝑧𝛽) = 1): 

𝑅0(𝑡) = 𝑒𝑥𝑝(−∫ℎ0(𝑥)𝑑𝑥

𝑡

0

) (2-9) 

The baseline can be modeled as a parametric form by a suitable parametric distribution or 

nonparametric form by an unspecified distribution used frequently when there is no exact 

theoretical reason for positing a particular distribution (Barabadi, 2014). An estimate of the 𝛽 

parameters can be obtained by maximization of the partial likelihood function. In the PHM, the 

proportionality assumption (PH assumption) of the existing covariate-based hazard models 

imposes a severe restraint that the reliability curves for assets with different covariates must 

never cross. The PH assumption is that the covariates are time-independent variables; this means 

the ratio of any two hazard rates is constant over time (Barabadi et al., 2011a). Various 

approaches have been used to determine whether the PH assumption fits a given data set: a 

graphical procedure, a goodness-of-fit testing procedure, and a procedure involving the use of 

time-dependent variables (Kleinbaum, 2011). 

 Stratified Cox regression model (SCRM) 

In some cases, the PH assumption may be violated, and a stratified Cox regression model 

(SCRM) can be used. The “stratified Cox model” extends the PHM that allows for control by 

“stratification” of a predictor that does not satisfy the PH assumption. The system is stratified 

in s different strata based on one or more covariates. The system is presumed to have different 

hazard rates in different strata and baseline hazard rates. The system is assumed to have 

proportional hazard rates; this is not necessarily the case for a system with different strata. The 
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hazard of an asset in the 𝑠𝑡ℎ  stratum can be expressed as (Barabadi et al., 2011a; Ghodrati and 

Kumar, 2005b): 

ℎ𝑠(𝑡, 𝑧) = ℎ0𝑠(𝑡)𝑒𝑥𝑝(∑𝑧𝑖𝛽𝑖

𝑛

𝑖=1

)       𝑠 = 1,2, … , 𝑟 (2-10) 

As with the original SCRM, there are two unknown components in the model: the regression 

parameter 𝛽 and the baseline failure function ℎ0𝑠(𝑡) for each stratum. The baseline failure 

functions for r remain utterly unrelated in the different strata. 

 Extended Cox regression model (ECRM) 

The ECRM is an extension of the PHM for simultaneously analyzing time-dependent and time-

independent covariates. The hazard rate of ECRM for time-dependent covariates can be written 

as follows (Gorjian Jolfaei, 2012): 

ℎ(𝑡, 𝑧) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽𝑧(𝑡)) = ℎ0(𝑡)𝑒𝑥𝑝(∑𝑧𝑖(𝑡)𝛽𝑖

𝑛

𝑖=1

) (2-11) 

The expansion of Eq.(2-11) for time-dependent and time-independent covariates can be written 

as (Gorjian Jolfaei, 2012): 

ℎ(𝑡, 𝑧) = ℎ0(𝑡)𝑒𝑥𝑝(∑𝛽𝑖𝑧𝑖(𝑡)

𝑛

𝑖=1

+∑𝛿𝑗𝑧𝑗

𝑚

𝑗=1

) (2-12) 

where 𝛿𝑗 and 𝛽𝑖 are column vectors consisting of the regression coefficient for time-dependent 

and time-independent covariates, respectively, 𝑧𝑗 is a time-independent covariate, and 𝑧𝑖(𝑡) is 

a time-dependent covariate. “m” is the number of time-independent covariates, n is the number 

of time-dependent covariates. 

 Mixture frailty model (MFM) 

In the Mixture frailty model (MFM), the hazard rate of an item is the product of a baseline 

hazard rate multiplied by two positive functions: i) observed covariate function and ii) an 

unobserved covariate function (frailty function). Suppose we have a fleet of j items, the hazard 

function for an item at time t > 0 is: 

ℎ𝑗(𝑡; 𝑧; 𝛼) = 𝛼𝑗ℎ0(𝑡)𝜓(𝑧; 𝜂) (2-13) 

where 𝜆0(𝑡) is an arbitrary baseline hazard rate, dependent on time alone, z is a row vector 

consisting of the observed covariates associated with the item, 𝜂 is a column vector consisting 

of the regression parameters for identified observed covariates, and 𝛼𝑗 is a time-independent 

frailty function for item j and represents the cumulative effect of one or more unobserved 

covariates. In general, the baseline hazard rate (ℎ0(𝑡)) may either be left unspecified or modeled 

using a specific parametric form such as Weibull distribution or Non-Homogeneous Poisson 

Process (NHPP).  

According to the MFM, the fleet of items (the population) is represented as a mixture, in which 

the 𝜆0(𝑡) and 𝜓(𝑧; 𝜂) are common to all items, although each item has its frailty. The observed 

and unobserved covariates can affect the hazard rate so that the actual hazard rate (𝜆𝑗(𝑡; 𝑧; 𝛼)) is 
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either greater (e.g., in the case of higher vibration level or poor maintenance) or smaller (e.g., 

better training for operators, installation of a new ventilation system) than the baseline hazard 

rate. Moreover, the items with 𝛼𝑗 > 1 are said to be frailer, for reasons left unexplained by the 

observed covariates, and will have an increased risk of failure. The items for whom 𝛼𝑗  < 1 are 

less frail; hence, they tend to be more reliable given a particular observed covariate pattern.  

For MFM, given the relationship between the hazard rate and the reliability functions, it can be 

shown that the conditional (item) reliability function, 𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼), conditional on the frailty, 

𝛼, is (Gutierrez, 2002): 

𝑅(𝑡; 𝑧; 𝑧(𝑡)|𝛼) = {𝑅(𝑡; 𝑧; 𝑧(𝑡))}𝛼 (2-14) 

The unconditional (population) reliability function can then be estimated by integrating the 

unobserved 𝛼. If 𝛼 has probability density function g(α), then the population or unconditional 

reliability function is given by: 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = ∫ {𝑅(𝑡; 𝑧; 𝑧(𝑡))}𝛼𝑔(𝛼)𝑑𝛼
∞

0

 (2-15) 

We use the subscript θ to emphasize the dependence on the frailty variance θ. The relationship 

between the reliability function and the hazard function still holds unconditional on α, and, thus, 

we can obtain the population hazard function using (Gutierrez, 2002): 

ℎ𝜃(𝑡; 𝑧; 𝑧(𝑡)) = −
𝑑

𝑑𝑡
𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡))[𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡))]

−1 (2-16) 

Having the gamma distribution with unobserved covariates (Gutierrez, 2002): 

𝑅𝜃(𝑡; 𝑧; 𝑧(𝑡)) = [1 − 𝜃𝑙𝑛{𝑅(𝑡; 𝑧; 𝑧(𝑡))}]
−1

𝜃⁄  (2-17) 

Having the event times (𝑡0𝑖 , 𝑡𝑖 , 𝑑𝑖), for 𝑖 = 1,… , 𝑛 with the ith observation corresponding to the 

period (𝑡
0𝑖
,  𝑡𝑖] , with either failure occurring at a time 𝑡𝑖 (𝑑𝑖 = 1) or the failure time being right-

censored at time 𝑡𝑖 (𝑑𝑖 = 0), the likelihood function for survival data is given by: 

𝐿𝑛𝐿 = 𝑙𝑛∏
{𝑅𝜃𝑖(𝑡𝑖, 𝑧𝑖 , 𝑧𝑖(𝑡)}

1−𝑑𝑖{𝑓𝜃𝑖(𝑡𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡)}
𝑑𝑖

𝑅𝜃𝑖(𝑡𝑖 , 𝑧𝑖 , 𝑧𝑖(𝑡)

𝑛

𝑖=1

 (2-18) 

Where fθi is the probability density function. 

 Accelerated Failure Time Model (AFTM) 

Unlike PHM with proportionality assumption as the main limitation, AFTM could be evaluated 

on time-dependent and time-independent covariates. It can be written as (Barabadi et al., 2010): 

ℎ(𝑡, 𝑧(𝑡)) = ℎ0 (𝑡 × 𝑒𝑥𝑝(𝛽𝑧(𝑡))) 𝑒𝑥𝑝(𝛽𝑧(𝑡)) (2-19) 

According to whether (𝑒𝑥𝑝(𝛽𝑧(𝑡)) > 1) or (𝑒𝑥𝑝(𝛽𝑧(𝑡)) < 1), covariates could accelerate or 

decelerate the failure time relative to the baseline hazard, respectively. A. Barabadi and T. 

Markset research about performance indicators under Arctic conditions shows that some 

developments of AFT, that in addition to analyzing and exploring the available data, could be 

used for 1) redesigned or modified equipment performance estimation and 2) modeling some 

climate phenomena effects on reliability performance (Barabadi and Markeset, 2011). 
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his chapter provides a comprehensive statistical overview of the research in the 

recoverability (which is defined as maintainability in reliability engineering) domain. 

Then, a detailed review of publications in the recoverability assessment of the engineering 

systems field is provided in recent years. Also, the focus is on research done in the Arctic 

systems. Ultimately, it gives a short description of the recoverability index; it includes the 

definition, statical approaches for recoverability analysis, and regression models for 

considering operating environment effects. 

3- RECOVERABILITY 

As a report of “Oilfield Publication Limited” (OPL), maintenance expenses can be as high as 

60% of the operating cost for the offshore oil and gas business (Levy, 1991). This factor can 

greatly reduce maintenance costs and increase resilience as an identifier of the ease and time of 

recovery action. Since the failure is ingrained like engineering systems, the recovery concept's 

main purpose is to minimize downtime and back time, thus reducing related costs. Moreover, it 

tries to increase efficiency and safety when maintenance is performed under given conditions 

and using stated procedures and resources. Maintenance and related indexes such as 

maintainability in the resilience field can be considered a branch of the vast concept named 

“Recoverability”. Recoverability measures the infrastructure system's ability to restore its 

capacity and performance by recovering from the adverse effects of adverse events during a 

period under given conditions, using the available resources. The four components include 1) 

supportability of disrupted components, 2) maintainability of disrupted elements, 3) the 

resilience of the owner’s organization in the case of disruption, and 4) the prognostics and health 

management (PHMa) efficiency of the system can be influenced the recoverability (Rod et al., 

2020; Youn et al., 2011). 

Moreover, recoverability influences and is also influenced by how the different processes and 

infrastructures are designed and manufactured. These factors are called recoverability attributes 

that are directly or indirectly affected by the operational environment that is considered as “risk 

factors” or “covariates” (Rod et al., 2020). In this context, Kayrbekova et al. was discussed 

operation and recovery challenges under Arctic conditions. They showed that the operating 

environment has a considerable influence on failure occurrence, recovery activities, repair times, 

and, consequently, costs (Kayrbekova et al., 2011). Bijarte et al. recently evaluated the risk 

factors (observed and unobserved risk factors) effect of the recovery process of Norwegian 

electric power distribution grid infrastructure disruptions. To this aim, the accelerated failure 

time (AFT) model is used to analyze the recovery time of disrupted critical infrastructures. This 

is achieved by considering the operating conditions and other covariates, where the recovery 

time is selected to be the random variable of interest. The analysis indicates that disruption in 

the regional grid, natural conditions, area affected, and disruptions in the operational control 

system significantly impact the recovery process. (Rod et al., 2020). Due to the infancy of the 

recoverability concept and many commonalities of this concept with maintainability, this section 

mainly focuses on the research that had been done in the field of maintainability. ". A superficial 

scientometrics study of maintainability in Figure 3-1 shows that publications rose from 1996 to 

2006. But after one decade of totalitarianism, maybe because of the integration of this concept 

T 
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with availability and maintenance, the publication trend is decreased. Then the number of 

publications slowly was rising by a continuous upward trend up to 2019. Keep in mind that the 

frequencies for 2020 are most likely incomplete. It shows that international experts and scholars 

had paid continuous attention to the field of maintainability after 2006. 

 
Figure 3-1- Published year histograms of maintainability publications from Scopus database in 1996-2020 

The citations of scientific literature in Figure 3-2 reflect the objective laws of scientific 

development in the maintainability field. 

 
Figure 3-2- The citations of maintainability publications from the WoS database in 1978-2020 

In analyzing the scientific output, we find that the literature on maintainability research shows 

increasing nominally year by year. The histogram of the research area in Figure 3-3 presents 

that the engineering area is the most prolific field. The authors' next most popular research areas 

were Computer Science and Operation Research Science. In the next section, the application of 

this concept in engineering is discussed.  
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Figure 3-3- Research areas histograms of maintainability publications from Scopus database in 1997-2020 

3-1- The state of recoverability concept in engineering systems 

In the engineering field, recoverability is rarely studied as a whole concept. But the 

maintainability as one of the most important and influential components of recoverability has 

been extensively reviewed in the literature. Maintainability is used to improve the system's 

performance based on adequate maintenance or recovery activities. The scientometrics literature 

output of maintainability in Figure 3-4 shows a similar trend variation, with Figure 3-1 

presenting engineers' recent attention to maintainability and its topics. 

 

 
Figure 3-4- Published year histograms of maintainability publications in an engineering field from Scopus 

database in 1997-2020 

The maintainability in mathematics is defined as the probability that a failed system will be 

restored to operational effectiveness within a given period (t) when the repair action is 

performed according to the prescribed procedures (Barabadi and Markeset, 2011). Tsarouhas 

used the maintainability analysis to find the best possibilities for cost reduction on a yogurt 

production line. The classic probability method (like reliability analysis (Barabady and Kumar, 

2008; Kumar and Klefsjö, 1992)) used were carried out, and the best fitness index parameters 
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were determined (Tsarouhas, 2015). Facility layout, which studies and determines how to locate 

the given facilities in the narrow space, is another essential item for system design and 

maintenance (recovery) support activities. To improve the maintainability design's efficiency 

and quality, Luo et al. presented maintainability optimization of a ship cabin with a layout design 

perspective. The maintenance operating space, amount of hoisting, the balance of cabin, distance 

requirement, personnel movement distance, mechanical functional constraints, and some 

important layout experience had been considered and formulated in the proposed design. Then, 

these multiple constraints and multiple objectives function is solved by the particle swarm 

optimization algorithm (Luo et al., 2015). Li et al. studied testability besides maintainability as 

a design characteristic that represents the ability to determine its states timely and accurately 

and effectively diagnose its faults. They believed that fault detection rate, fault isolation rate, 

fault detection time, and fault isolation time are the most important testability analysis factors. 

This paper optimizes testability combined with reliability and maintainability based on the 

generalized stochastic Petri nets model (Li et al., 2015). The Logistics and Supply Chain (LSC) 

is the other field of maintainability application. All specialties, logistics, reliability, and supply 

chain management (SCM) use the same or similar data but differently. All of these in working 

together can be optimized supply chain, availability, and maintenance requirements. Gillespie, 

in 2015 presented a short paper on reliability and maintainability applications in the logistics 

and supply chain area (Gillespie, 2015). Mohammadi et al. used the classic approach of 

reliability and maintainability to critically analyze mining equipment's inherent availability 

(dragline) availability. In this light, the dragline understudy was broken into seven major 

subsystems connected in series and represented by a reliability block diagram. Then required 

data as the time between failure and time to repair was extracted, and the best models were 

fitted. Finally, Therefore, inherent availability of the subsystem was computed (Mohammadi et 

al., 2016). This approach is abundantly used by researchers in different areas (Barabady and 

Kumar, 2008; Hall and Daneshmend, 2003; Hoseinie et al., 2012a; Kumar, 1989). With the high 

complexity of technological systems in the Oil & Gas and Electrical industries, the availability 

and productivity improvement to meet demanding criteria is very important. The study of 

assessing the operational performance of a reciprocating compressor system package and 

Insulated Gate Bipolar Transistor was presented by Corvara et al. (Corvaro et al., 2017) and 

Memon and Alam. (Memon and Alam, 2016). The main aims of these research works were; 

availability assessment, the equipment, subsystem identification and ranking, and proposing the 

potential cost-effective optimization options to ensure the target availability. The study 

demonstrated the methods' usefulness and could also be used by the engineers to apply RAM 

principles in process design (Corvaro et al., 2017; Memon and Alam, 2016). In the other oil & 

gas industry work, Aly et al. presented an integrated RAM model for the K-out-of-N system 

performance evaluation and bottleneck identification. Their proposed approach was applied in 

the Egyptian Petrol Company system and discussed the effect of failure and repair rates at 

different mission times (Aly et al., 2018). As mentioned in this section and reliability section, 

RAM studies are common in oil and gas but applying it to a wine plant maybe is unique. 

Tsarouhas, through the case study of a wine packaging production line, demonstrated how RAM 

analysis is very useful for maintenance strategy planning and organizing. The line consists of 

nine automated, repairable machines in series. RAM analysis to f Velásquez and Lara performed 



CHAPTER 3 RECOVERABILITY 

 

27 

a RAM calculation of a series capacitor banks located at Cotaruse 220 kV substation in Peru. 

The work's main objective was to create a simple and highly reliable design, which will give 

high availability and low maintenance costs (Velásquez and Lara, 2018). Soltani et al. were 

evaluated the performance of the conveying process of an automotive company by using the 

RAM principle. They proposed a framework for RAM evaluation and maintenance optimization 

that could improve operational performance and sustainability of the production process 

(Soltanali et al., 2019). In late Agrawal reports the study on RAM of an earth pressure balance 

tunnel boring machine (EPB-TBM) deployed for excavating an irrigation tunnel located in 

Central India and the impacts of these parameters on the penetration rate of the machine. The 

RAM analysis of the four major subsystems includes: cutter head, hydraulics, screw conveyor, 

and structure were modeled by Markov chain (Agrawal et al., 2019). Ahmadi et al. are using the 

same process for RAM analysis of from main conveyor system of Tabriz Metro Line 2 EPB-

TBM. To carry out the analysis, the main conveyor system was divided into three sub-systems 

including conveyors 1, 2, and 3, which are located on the TBM machine, inside the tunnel and 

station (Ahmadi et al., 2019). In the other work of India, Choudhary et al. aim to improve the 

availability of a cement plant by avoiding failures and reducing maintenance time through RAM 

analysis of its subsystems. The result analysis serves as a reference for reliability and 

maintenance managers in deciding maintenance strategies of cement plants as well as in 

improving their capacity utilization (Choudhary et al., 2019). 

Maintainability is also considered in ergonomics for considering the human factors in 

maintenance activities. The International Ergonomics Association (IEA) defines ergonomics as 

“the scientific discipline concerned with understanding human interactions and other system 

elements. The profession applies theory, principles, data, and methods to design to optimize 

human well-being and overall system performance”. Bernard et al. performed a detailed 

maintainability study of the aeronautic field for comprehending which ergonomic skills and 

tools should be used and how design engineers utilize them to evaluate the human factor. Their 

observations showed that ergonomics was integrated with the design process mainly by a 

physical approach using engineering tools and not ergonomic tools. Also, maintainability must 

be integrated with other organizational, cognitive, and human factors. (Bernard et al., 2017). 

The green maintainability of buildings concepts as a new branch of maintainability application 

originated from the “green building” concept for facilities management. The construction 

industry began to design and construct more sustainable buildings in the green building attempt 

to incorporate sustainable development principles. Chew et al. found a knowledge gap about the 

green maintainability concept. Thus, they did a literature review on green practices and methods 

that can valuably contribute to the existing theories, practices, and methods concerning building 

maintainability and facilities management. Also, they proposed a conceptual framework for the 

green maintainability of buildings evaluation (Chew et al., 2017). Che et al., in their short paper, 

tried to answer the questions "Why is it Important to Measure Maintainability, and What Are 

the Best Ways to Do it?" in the field of software engineering. After discussing maintainability 

importance, they earned a deep understanding in assessing software maintainability by 

performing a comparison study between automated maintainability metrics and human-assessed 

maintainability metrics (Chen et al., 2017). 
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3-2- The state of recoverability concept in the Arctic area 

The system with a low level of resilience of being deployed in a cold climate such as the Arctic 

often needs special and additional focus on recoverability characteristics to achieve a higher 

performance level. For example, in the petroleum industry, which is one of the most crucial 

industries for Norway and the Arctic region (It is estimated that 14% of the world’s remaining oil 

and natural gas reserves are found in Arctic areas, most of these offshore (Coomber, 2008)). The 

performance issues, especially the recoverability, generate critical challenges for this industry's 

successful and effective operation in the Arctic environment as the working conditions are made 

very difficult by low temperature, ice, a short period of daylight, and lack of support facilities. 

Various researchers have studied the operating condition and system condition issues in the 

Arctic. For example, Kumar et al. explored the potential risk factors with a human 

factors/ergonomic principle view to reduce their effect and increase maintainability. They 

summarized the influencing human performance factors in recovery activities in the cold 

environment as below (Kumar et al., 2009): 

• The manual skills, agility, coordination, and accuracy reduction can impact productivity 

and safety. 

• The injuries and accidents such as musculoskeletal injuries and peripheral circulation 

reduction will be increased. 

• Discomfort from cold, stiff hands and feet, runny nose, and shivering 

• Impaired ability to perceive cold, cuts, pain, and heat. 

• Reduction of decision-making ability. 

Also, they identified features that affect maintainability as standardization, interchangeability, 

accessibility, special tools, removal/installation, mounting-proof, safety precautions, ease of 

handling, troubleshooting, and skill level. Moreover, recovery activities from an ergonomic 

issues perspective can be influenced by anthropometric factors (that is, deal with the 

measurement of the human body), human sensory factors (that is related to sight, hearing, smell, 

feel or touch, and so on), physiological factors (that is referred to environmental stresses on 

human performance efficiency) and psychological factors (that is related to the characteristics 

of the human mind) (Kumar et al., 2009). Barabadi and Markeset reviewed the Arctic 

environmental challenge’s effect on maintainability and discussed the appropriate statistical 

approaches for quantifying the moon maintainability performance. This paper studied 

maintainability under the broad dependability concept defined as a collective term that describes 

availability performance and its influencing factors, namely reliability performance, 

maintainability performance, and maintenance support performance. Their research showed that 

three main items influence maintainability: personnel (maintenance crew) attributes, design 

attributes, and logistic support (Barabadi and Markeset, 2011). Since historical data and 

covariates play an important role in RAM analysis, the data must reflect the conditions that the 

equipment has experienced during its operating time. Barabadi et al., in continuing their 

research, studied the data collection process and challenges under Arctic conditions and 

proposed a methodology for it. The proposed methodology's application is considered for a 

centrifugal pump of Norway's oil and gas industry-offshore industry (Barabadi, Gudmestad, et 

al., 2015). Recoverability principles also must be applied in the design phase to affect the time, 
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accuracy, ease, and safety requirements of the repair process. Barabadi and Aalipour proposed 

a systematic management approach to effectively design for maintainability during the design 

phase.  

To highlight the application of the proposed step-by-step methodology, Svea Coal Mine's 

conveyor belt (the northernmost coal mine in the world) as a case was discussed (Barabadi and 

Aalipour, 2015). Naseria et al. are the other researchers who studied the RAM attributes of Oil 

and Gas processing plants operating under dynamic Arctic weather conditions for scheduling 

preventive maintenance tasks. This work developed a virtual age model, which described the 

impacts of RAM's time-varying and stressing operating conditions. The case study sensitivity 

analysis results showed that the plant availability was more sensitive to weather conditions on 

equipment hazard rates than maintenance duration (Naseri et al., 2016). This researcher also 

broadly reviewed and discussed different elements of offshore operating conditions specific to 

the Barents Sea and further investigated various effects of such conditions on Arctic offshore 

O&G facilities and operations' RAM (Naseri and Barabady, 2016b). Naseri additionally 

discussed maintainability considering the effect of winterization of oil and gas equipment. In 

this regard, a mathematical framework for maintainability analysis was proposed. He used a 

Monte Carlo system simulation technique for system downtime analysis (Naseri, 2017). 

3-3- The recoverability analysis approaches 

One of the main sides of the resilience triangle is the recoverability that, like reliability, can be 

affected by different influencing risk factors such as the number of crew members, available 

resources, environmental conditions, region, and technical condition of the system. These 

parameters lead to a great deal of uncertainty and, thus, unreliable analysis results. Therefore, 

recoverability deals with the criteria that consist of time and the effects of environmental 

conditions. It could be said that the recoverability goal is that the system should be recovered 

without a considerable investment of time, at the lowest cost, with a minimum impact on the 

environment, and with a minimum expenditure of resources. Recoverability is also considered 

a pivotal index to enhance system performance and measure system recovery ability. The 

significance of these indicators (recoverability, reliability, resilience, etc.) has increased due to 

rising energy costs, the competitive market environment, and new concepts such as resilience 

in different areas. The formal definition of recoverability is an organization's ability to restore 

an infrastructure unit or system to a level that can deliver required functions as before the 

disruptive event. In an analogy with the maintainability definition that as “the ability of an item 

under given conditions of use, to be retained in, or restored to, a state in which it can perform a 

required function when maintenance is performed under given conditions and using stated 

procedures and resource,” recoverability defined for infrastructures, organizations and different 

systems in general shape. This can be paraphrased as “the probability of recovery at a given 

time” (Barabadi and Markeset, 2011; Rod et al., 2020; Smith, 2011). According to this point, 

most of the statistical methods in the reliability domain discussed in detail can be used in 

recoverability analysis. Therefore, a general review of these methods is done in this chapter. 

Similar to the reliability, the basic statistical approaches were the parametric methods that had 

been used more frequently the recovery time as the only variable of interest (Barabadi, 
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Garmabaki, et al., 2015; Barabady, 2005; Elevli et al., 2008; Knezevic, 1993; Kumar, 1989). In 

parametric methods, if “t” is a random variable representing recovery time, the mathematical 

definition of recoverability is given by Eq.(3-1) (Rod et al., 2020): 

𝑅𝑒𝑐(𝑡) = 𝐹(𝑇 < 𝑡) = ∫𝑓(𝑥)𝑑𝑡

𝑡

0

= 1 − 𝑒𝑥𝑝(−∫𝜇(𝑢)𝑑𝑢

𝑡

0

) (3-1) 

where 𝑅𝑒𝑐(𝑡) is the recoverability at time t. Also, let 𝑓(𝑥) be the corresponding probability 

density function (PDF). 𝐹(𝑡) is the cumulative recovery distribution function and expresses the 

probability of completing the recovery process at T < t. 𝑓(𝑥) is the recovery density function 

(Hoseinie et al., 2012b). 𝜇(𝑢) is recovery rate and defined as the probability the recovery is 

completed in the time interval (𝑡, 𝑡 + ∆𝑡) when it is known the recovery has not been completed 

until time t. Recovery rate  can be defined by Eq.(3-2) (Rod et al., 2020): 

𝜇(𝑢) =  
𝑓(𝑡)

1 − 𝑅𝑒𝑐(𝑡)
 (3-2) 

It should also be mentioned that recovery activities, in general, are carried out in complex and 

uncertain environments. In such operational environments, many factors can directly or 

indirectly affect system performance attributes. Therefore, as the other system performance 

attribute, the recoverability evaluation can be easily affected by the operational condition and, 

as a result, affected the resilience. Thus, it is challenging to analyze the effect of the operating 

environment condition, and the magnitude of their effect must be estimated. This evaluation 

can be provided as a management decision tool in which operational environments are more 

important from a recoverability point of view. Influencing factors on the recovery path 

trajectory like reliability analysis can be categorized into observable risk factors and 

unobservable risk factors.  

A few models are available for predicting the influence of various factors on recoverability. 

Some researchers used a proportional hazard model as a starting point to model the operational 

environment effect and developed the proportional recovery model (PRM) (Barabadi and 

Markeset, 2011; Gao et al., 2010b; Kumar et al., 2017; Tsarouhas, 2018). Like PHM in 

reliability analysis, this model's application is also restricted to the time-independent and 

observable covariates. AFT, SCRM, and EPHM are the main appropriate statistical approaches 

that can be used to identify and formulate the time-dependent influence factors discussed in the 

reliability analysis subsection (Chen and Wang, 2000; Ciampi and Etezadi-Amoli, 1985; 

Gorjian Jolfaei, 2012). Here, the PRM is discussed as a basic model. The recovery rate (𝜇(𝑡, 𝑧)) 

can be used to analyze covariates’ effect on recoverability performance and can be expressed 

as Eq.(3-3) (Barabadi et al., 2011a): 

𝜇(𝑡, 𝑧) = 𝜇0(𝑡)𝜙(𝑤𝛽) = 𝜇0(𝑡)𝑒𝑥𝑝(∑𝑤𝑗𝛽𝑗

𝑚

𝑗=1

) (3-3) 

The component recoverability influenced by covariates is expressed as (Barabadi et al., 2011a):  

𝑅𝑒𝑐(𝑡, 𝑧) = 1 − (1 − 𝑅𝑒𝑐0(𝑡))
𝑒𝑥𝑝(∑ 𝑤𝑗𝛽𝑗

𝑚
𝑗=1 )

 (3-4) 
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where 𝜇(𝑡, 𝑤) and 𝑀(𝑡, 𝑧) are the recovery and recoverability function, respectively, 𝛽 is a 

regression coefficient of the corresponding m covariates (w), and 𝜇0(𝑡)and 𝑀0(𝑡) are the 

baseline recovery rate and baseline recoverability (cumulative distribution function of TTRs). 

A covariate stratifies the model with non-proportional recovery in the stratified Cox regression 

method for recovery data. The same approach can be useful in time-dependent modeling 

covariates. Different baseline recovery rates are computed for each stratum, while the 

regression coefficients for all strata are equal. The recovery rate of an asset in the 𝑔𝑡ℎ stratum 

can be expressed as (Barabadi et al., 2011a; Ghodrati and Kumar, 2005b): 

𝜇𝑔(𝑡, 𝑤) = 𝜇0𝑔(𝑡)𝑒𝑥𝑝(∑𝑤𝑗𝛽𝑗

𝑚

𝑗=1

)    𝑔 = 1,2,… , 𝑢 (3-5) 

where 𝛽 is the regression parameter and 𝜇0𝑔  is the baseline recovery function for each stratum. 

The baseline recovery function for u strata is arbitrary, and all are assumed to be completely 

unrelated. 

The models discussed to this point can only analyze time data and observable risk factors. To 

remove this restriction, recently, some base covariate-based methods, such as the accelerated 

failure time (AFT) and proportional hazard (PH) models, have been extended by the frailty 

model to analyze the observable and unobservable risk factors effects in combination with time 

data. They named it as mixture frailty model (MFM), and its recovery function can be written 

as (Rod et al., 2020; Zaki et al., 2019):  

𝑅𝑒𝑐𝜃(𝑡, 𝑧𝑖 . 𝑧𝑗(𝑡)) = 1 − [1 − 𝜃𝑙𝑛{1 − Rec(𝑡, 𝑧𝑖. 𝑧𝑗(𝑡))}]
−
1
𝜃  (3-6) 

Where: 

• 𝑅𝑒𝑐𝜃(𝑡, 𝑧𝑖 . 𝑧𝑗(𝑡)) is the unconditional recoverability function with gamma distribution 

frailty function, the mean and variance are assumed equal to one and θ (Asfaw and 

Lindqvist, 2015; Cha and Finkelstein, 2014; Garmabaki et al., 2016; Slimacek and 

Lindqvist, 2017). 

• 𝑧𝑖  and 𝑧𝑗(𝑡) are time-independent and time-dependent observed covariates 𝑃; 𝛿 are 

column vectors, consisting of the regression parameters for identified time-independent 

and time-dependent observed covariates. 

• Rec(𝑡, 𝑧𝑖. 𝑧𝑗(𝑡)) is the recoverability function of time and observable covariates. If the 

observed covariate follows the exponential function in the presence of m time-

independent observed covariates and n time-dependent observed covariates, it can be 

written as: 

𝑅𝑒𝑐(𝑡, 𝑧𝑖 , 𝑧𝑗(𝑡)) = 1 − [1 − 𝑅𝑒𝑐0(𝑡)]
exp[∑ 𝑝𝑘zi+∑ 𝛿𝑘zj(t)

𝑛
j=1

𝑚
i=1 ]

 (3-7)  

Where covariates 𝑝 and 𝛿 are column vectors, consisting of the regression parameters 

for identified time-independent and time-dependent observed covariates. 𝑅𝑒𝑐0(𝑡) is the 

baseline recoverability function dependent only on the time as follows: 

𝑅𝑒𝑐0(𝑡) = 1 − 𝑒𝑥𝑝 [−∫ 𝜇0(𝑡
′)𝑑𝑡′

𝑡

0

] (3-8)  
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Where 𝜇0(𝑡
′) is the baseline recovery rate 𝜇0(𝑡) dependent on time alone, which is 

modeled using appropriate distributions. 

As said before, the main limitation of the PH models such as PRM and SCRM is the 

proportionality assumption. The AFT can be easily implemented to remove this restriction and 

does not require any assumptions. Like PH models, AFT can be captured the impact of technical 

features, organizational aspects, and environmental conditions (also known as influencing 

variables, covariates, or risk factors) and not require any assumptions. The AFT model is 

primarily applied in reliability theory, industrial experiments, and alternatives if the 

proportional hazards assumption does not hold. The recovery rate of the AFT model under the 

impact of covariates can be rewritten as (Hanagal, 2011; Wienke, 2010): 

𝜇(𝑡, 𝑧(𝑡)) = 𝜇0 (𝑡 × 𝑒𝑥𝑝(𝛽𝑧(𝑡))) 𝑒𝑥𝑝(𝛽𝑧(𝑡)) (3-9) 

Where, 𝑧(𝑡) is a vector of covariates, and 𝛽 is a vector of regression coefficients. Covariates 

accelerate or decelerate the failure time relative to baseline hazard according to whether 

𝑒𝑥𝑝(𝛽𝑧(𝑡)) > 1 or 𝑒𝑥𝑝(𝛽𝑧(𝑡)) < 1. The 𝜇0 as baseline hazard and a nonnegative function of 

the covariates may either be left unspecified or is assumed to be parametric. The regression 

models, such as the exponential and Weibull, can be implemented as AFT models. 
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esilience of the engineering system is the central focus of this chapter. The first section 

presents the concept and definitions of resilience. The literature is then reviewed in its 

three main perspectives: engineering systems, resilience in the Arctic area, and “Resilience, 

Reliability, and Recoverability (3Rs)”. The third section is followed by a more focused 

consideration of reliability and recoverability-centered resilience assessment that showed the 

resilience evaluation procedure generally could be separated into two major categories: 

qualitative and quantitative. Thus, the last section focuses on quantitative approaches, given 

our interest in engineering systems. 

4- RESILIENCE 

The occurrence of significant disruptions or discontinuities that shift the system away from its 

current equilibrium state is why a deep understanding of system resilience is essential. Such 

disruptions could include finding new technologies, the appearance of new regulatory and 

market forces (production improvement), or changes in the availability of resources. The 

scientometrics review of resilience publication by year in Figure 4-1 illustrates the steady 

growth in the number of publications focusing on resilience in the engineering research area 

from 2006 to 2019. Keep in mind that the frequencies for 2020 are most likely incomplete. 

 

 
Figure 4-1- Published year histograms of resilience publications from Scopus database in 1997-2020 

As Figure 4-2 indicates, the total output's major contribution came from four subject areas: 

Environmental Since, Ecology, Psychiatry, and Environmental Studies. Both indicate that the 

engineering and technological fields are new and can be more considerate. The pie chart of 

subjects’ areas of the WoS database in Figure 4-3 confirms this. It illustrates that Social science 

and Environmental science are the most popular research areas among the authors. 

R 
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Figure 4-2- Since categories histograms of resilience publications from the Scopus database in 1997-2020 

 

 
Figure 4-3- Subject areas histograms of resilience publications from WoS database in 1978-2020 

 

After a basic familiarity with the resilience concept and before delving into the nuances, it is 

important to clarify the definition of resilience and its conceptual evolution. In the review paper, 

pointed out that the word resilience has been originally initiated from the Latin word “resiliere,” 

which means to “bounce back.” The common use of resilience implies an entity or system's 

ability to return to normal conditions after an event that disrupts its state (Hosseini et al., 2016). 

In the following, some of the widely accepted definitions of resilience are presented for finding 

the root of this concept.  

As far back  as the early 20th century, resilience was defined as  the thermodynamic work 

required to cause elastic  deformation (e.g., stretching) in a solid material. The term resilience 

was first introduced in materials engineering, where it specified the material's ability to return 

to the original shape after deformation (Trautwine, 1906). Holling then popularized it in 1973 

within the seminal, which has formed the foundation for most studies of the concept of 
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ecological resilience and various other forms of resilience (Holling, 1973). But it must be 

attention that resilience is related to both the individual and organizational responses to 

turbulence and discontinuities. In organizational Horne and Orr's context, resilience is the 

fundamental quality to respond productively to significant change that disrupts an event's 

expected pattern without introducing an extended period of regressive behavior (Home III and 

Orr, 1997). Hamel and Valikangas extended  the  meaning  of organizational resilience as 

continuous reconstruction capacity (Hamel and Valikangas, 2004). Hollnagel et al. defined 

resilience in the context of engineering as “The ability to sense, recognize, adapt and absorb 

variations, changes, disturbances, disruptions and surprises” (Hollnagel et al., 2006). Fiksel 

considered resilience the system's capacity to tolerate disturbances while retaining its structure 

and function (Fiksel, 2006). For about two decades, brand and Jax reviewed the variety of 

definitions proposed for “resilience” within sustainability science. They achieved three 

categories, ten classes, and correspondingly ten definitions of resilience. Then each definition 

of resilience was explained in more detail concerning its category and class, respectively. These 

ten definitions represent coverage to the original descriptive concept of resilience as Holling 

introduces (Brand and Jax, 2007). Haimes believed that resilience is a system's ability to 

withstand a major disruption within acceptable degradation parameters and recover within an 

acceptable time and composite costs and risks (Haimes, 2009). Resilience in the context of civil 

engineering is expressed mechanistically as the ability to "bounce back" after a major 

disturbance (Reed et al., 2010). 

Similarly, the ability to reduce the magnitude and/or duration of disruptive events can be defined 

as infrastructure resilience (Starr et al., 2003). Several definitions are suggested depending on 

the assessment objects for engineering systems, such as mechanical engineering, civil 

engineering, critical infrastructure, etc. In 2014, Francis and Bekeru added the notion of 

resilience, a conceptual framework composed of multiple dimensions. Absorptive, adaptive, and 

restorative capacities are at the center of what a system needs to do and how it needs to respond 

to perceived or real shocks. The objective of defined resilience was to retain predetermined 

system performance dimensions, and identity is given forecasted scenarios (Francis and Bekera, 

2014). 

The diverse definition of resilience in the other context such as physical systems, ecological 

systems, socio-ecological systems, psychology, disaster management has been developed 

(Bodin and Wiman, 2004; Bruneau et al., 2003; Francis and Bekera, 2014; Holling, 1973; 

Luthans et al., 2006; Walker et al., 2002). A comprehensive review of recent research articles 

related to defining and quantifying resilience in various disciplines was done by Hosseini et al. 

(Hosseini et al., 2016). 

Azadeh et al. define resilience engineering that is incorporated both the property to stay away 

from failures, losses and the ability to react effectually after events. They used flexibility, 

adaptability, and redundancy as effective resilience engineering factors to optimize supplier 

selection problems (Azadeh et al., 2017). McDonald had an opinion that Resilience conveys the 

properties of adapting to the environment's requirements and managing the variability of the 

environment (McDonald, 2017). Fujita defined the organizational system's resilience as the 

ability to recognize & adapt to handle random perturbations that call into question the 

competence model and demand a shift of process, strategies, and coordination (Fujita, 2017). 
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Cai et al. recently defined resilience as an entity's capability to recover from an external 

disruptive event (Cai et al., 2018). Another standard definition of engineering resilience is 

presented by The American Society of Mechanical Engineers (ASME) as the ability of a system 

to sustain external and internal disruptions without discontinuity of performing the system’s 

function or, if the function is disconnected, to fully recover the function rapidly (“The American 

Society of Mechanical Engineers - ASME”, 2020). Recently Asadzadeh et al. defined resilience 

as "a process that makes it possible to effectively respond to unanticipated changes and 

unexpected events, vulnerabilities, and opportunities lying outside the scope of formal 

procedures" (Asadzadeh et al., 2020). 

As a result, it must be said, the resilience of the system depends on the four cornerstones that 

determine how a resilient system reacts to disturbances: 

• The first one is returning to a reliability level after reaching a balance following a 

disruptive event. 

• The second one is the ability of the system to sustain residual reliability after an event. 

• The other two are the system's ability to continue operations in an undesirable status (or 

desirable status) based on the understanding of adaptive capacity hereafter. 

However, the current review pointed out that some definitions of resilience compete with 

"Robustness". Robustness is often used synonymously or in place of resilience to value 

engineering designs in the engineering field. But it must be mentioned, when the notion of 

resilience is applied to any field like engineering, communities, and the wider context of 

organizations, this broad definition is “the capability and ability of an element to return to a pre-

disturbance state after a disruption” does not change. 

4-1- The state of resilience concept in engineering systems 

This section explains how engineering systems' resilience should be understood differently than 

Holling’s resilience. The concept of resilience in the engineering field is moderately new 

compared to other fields. The engineering area includes technical and industrial systems 

designed by engineers who interact with humans and technology, such as water distribution 

systems, nuclear plants, transportation systems, locks, and dams. Also, engineers in the 

resilience concept try to ensure complex systems that can sustain adverse conditions and 

recover quickly after disruptions. The examination of the distribution of different countries' 

output in resilience from 1996 to 2019 indicated that the works were published mainly by 

authors from 25 different nationalities. The countries contributing most to the field of resilience 

for 23 years are presented in Figure 4-4. It is illustrated in Figure below; the U.S.A, China, and 

England were the countries with high contributions. 

Interestingly, these three countries accounted for most scientific literature over the studied 

period on average. Generally speaking, the study indicates that the field has not evolved 

considerably in different world regions. Although the rosing trend in the distribution of 

resilience-related journal articles by year and citation in Figure 4-5 and Figure 4-6, using WoS 

and Scopus databases presents this concept's increasing importance between engineers. 

According to the increasing appearance of resilience-related research, the current government 

and policy emphasis on resilience is also seen in academic research. 



CHAPTER 4 RESILIENCE 

 

37 

 

Figure 4-4- Geographical distribution of the resilience publications in the engineering field from Scopus 

database in 1997-2020 

 

 

Figure 4-5- Distribution of resilience papers citation in an engineering field from WoS database in 1982-

2020 

 

 

Figure 4-6- Distribution of resilience papers by year of publications in an engineering field from Scopus 

database in 1997-2020 
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The attention of two industrial giants (USA and China) and the upward trend of publication and 

related papers to the resilience concept emphasize the importance of further research. The 

resilience in the engineering domain was introduced in the 17th century in mechanics, 

describing materials' properties (Righi et al., 2015). In the early 2000s, Fiksel used the resilience 

concept to industrial enterprise sustainability design by adopting a fresh perspective based on 

systems thinking. This work had been identified four major system characteristics that 

contribute to resilience as follows (Fiksel, 2003): 

• Diversity: the existence of multiple forms and behaviors; 

• Efficiency: performance with modest resource consumption; 

• Adaptability: flexibility to change in response to new pressures; 

• Cohesion: the existence of unifying forces or linkages. 

Rydzak et al. examined machine reliability improvement programs using System Dynamics 

models to illustrate the idea of resilience. The paper focuses on refineries and chemical plants 

(Rydzak et al., 2006). Moore et al. provided resilience scenarios for the three ice-related species 

categories in the Arctic. This paper proposed an approach to study the impacts (potential 

challenges to species’ survival associated with recent Arctic ecosystem perturbations such as 

ice-obligate, ice-associated, and seasonally migrant) and the resilience of Arctic marine 

mammals to climate change. (Moore and Huntington, 2008). A review of resilience literature in 

its widest context and later its application at an organizational level in small and medium 

enterprises (SMEs) provided by Bhamra et al. They identify that the relationship between human 

and organizational resilience; understanding interfaces between organizational and 

infrastructural resilience are the main area of resilience researches up to 2011 (Bhamra et al., 

2011). Francis and Bekera, in 2014, reviewed the literature to offer guidance to infrastructure 

system engineers by comparing risk analysis to resilience analysis. Also, They proposed a metric 

for resilience measurement (Francis and Bekera, 2014). The following year, a comprehensive 

literature review based on 237 studies from 2006 to 2014 was done by Righi et al. They defined 

six research areas foe resilience concept as the theory of resilience; identification and 

classification of resilience; safety management tools; analysis of accidents; risk assessment; and 

training (Righi et al., 2015). Lundberg and Johansson presented a “systemic resilience model” 

that is systemic – focusing on constraints emerging from the system context, functional 

dependencies, and resilience strategies (Lundberg and Johansson, 2015).  

Pursiainen et al.'s paper, resilience is linked to the crisis management cycle by seven phases: 

risk management, prevention, preparedness, warning, response, recovery, and learning. Risk 

management often includes the first three phases (risk assessment, prevention, and 

preparedness). Hence, the resilience concept goes beyond traditional risk management and 

covers more than mere protection and pre-event capabilities (Pursiainen et al., 2016). The 

concept of resilience has a multi-disciplined background, from economics to social sciences and 

ecology systems. Recently, the literature on resilience in process system engineering and plants, 

including technical aspects, has been growing significantly. These publications mostly 

emphasized safety and/or resilience as an important characteristic (Jain et al., 2017; Jain, 

Pasman, et al., 2018; Jain, Rogers, Pasman and Mannan, 2018; Jain, Rogers, Pasman, Keim, et 

al., 2018). Also, the resilience approach with a safety improvement perspective had been used 
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in critical systems such as healthcare systems, nuclear power plants, process industry, aviation, 

process industry, and maintenance organizations (Asadzadeh et al., 2019; Azadeh and Salehi, 

2014; Carvalho et al., 2008; Dekker et al., 2016; Dinh et al., 2012; Jeffcott et al., 2009; Shirali 

et al., 2013). Hoseinie et al. attempt to apply the resilience concept to the mining and production 

systems. The linear recovery function measured resilience (Hoseinie et al., 2020). 

Based on available literature from engineering backgrounds, resilience has been characterized 

and defined in many concepts and different points of view. However, some of those are more 

general and have been accepted by researchers significantly. As a result, it can be said that 

engineering resilience is the ability of an engineered system to maintain its functionality by 

resisting and recovering against adverse events such as failures. The resilience concept as a 

developing philosophy of production systems could also efficiently support decision-making in 

advanced engineered systems and infrastructures to reach a high level of product assurance and 

enterprise asset management. 

4-2- The state of resilience concept in the Arctic area 

Modern societies rely on complex systems, such as gas turbines, industrial plants, or 

infrastructure networks. These systems' operation is directly related to the operational, 

conditional, and environmental attributes highlighted in the Arctic with a harsh environment. 

Thus, there are new challenges for researchers, designers, and managers, who try to evaluate 

their performance. This issue becomes more critical concerning a new and multifaceted idea 

such as resilience. In recent years, resilience research in the Arctic has been widely conducted 

in Environmental science, as shown in Figure 4-7 and Figure 4-8. Geology is the second 

discipline 

 
Figure 4-7- Distribution of resilience researches areas in the Arctic from Scopus database in 1997-2020 
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Figure 4-8- Distribution of resilience researches areas in the Arctic from WoS database in 1982-2020 

 

In confirmation of the study, the result of Hosseini et al. that “CiteSpace” software clusters had 

done presented the Environmental, Social, & Ecology were in the highest priority disciplines 

(Chen, 2006; Hosseini et al., 2016). Moreover, Increasing the resilience of a natural system is a 

common conservation goal. The geographical distribution of resilience publications in the Arctic 

field in Figure 4-9 shows the USA is the leader territory and Norway in the second position. 

 

 
Figure 4-9- Country o territory distribution of resilience researches in the Arctic field from WoS database 

in 1982-2020 

When extending the scientometrics study to the affiliation of a published document (Figure 

4-10), it can be seen that “The Arctic University of Norway (UiT)” could get the highest rank. 

Figure 4-11 shows that Bjarte Rød and Barabadi Abbas from UiT, with seven and four 

publications as first authors, are ranked first and third, respectively. The support of Norwegian 

universities and researchers of the resilience concept shows that this idea is well established in 
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this country and shows its importance in the Arctic region. It can be seen in recent years' upward 

trend of publication citation. 

 
Figure 4-10- Affiliation distribution of resilience researches in the Arctic field from WoS database in 1982-

2020 

 

 
Figure 4-11- Documents distribution of resilience by author in the Arctic field from WoS database in 1982-

2020 

As a result, our literature in the Arctic area also began with environmental, Social, & Ecology 

area publications. Hansen et al., in the user’s manual for building resistance and resilience to 

climate change in natural systems, tried to assist natural resource and protected area managers 

as they begin to consider how to respond to this growing threat. It's a proper document for 

natural resource managers ready to meet the impacts of climate change. This document consists 

of nine chapters that different authors write with resilience and protection perspectives of the 

Arctic ecosystem. It defined resilience in an environmental context as the ability of ecosystems, 

habitat types, and species to maintain a relatively constant state in the face of trouble and stress 

and to recover quickly after a temporary disturbance (Hansen et al., 2003). In a report of the 
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Arctic Council project, the resilience of social-ecological systems in the Arctic was analyzed. 

In the social-ecological system, humans are part of nature, and that these systems function in 

interdependent ways. The main impression of resilience in this report is human and natural 

systems' ability to adapt or transform in the face of change. This work aimed to identify the 

potential for ecosystem services shocks and evaluate adaptation and transformation strategies 

in the Arctic (Arctic Council, 2013). In the other report of Council, the nature of the Arctic 

change, including critical tipping points, the factors that support resilience, and the kinds of 

choices that strengthen adaptive capacity, were evaluated. It is documented slowing Arctic 

ecosystems change, an overview of tools and strategies for assessing and building resilience, 

and highlighting the world's stakes. It defined resilience as the capacity to buffer and adapt to 

stress and shocks, thus navigating and shaping change. It also addressed social-ecological 

resilience and defined it as “the capacity of people to learn, share and make use of their 

knowledge of social and ecological interactions and feedback, to deliberately and effectively 

engage in shaping adaptive or transformative social-ecological change”. Ultimately, This report 

shows that the outcome of resilience in the Arctic will depend on empowering their people to 

self-organize, challenges definition in their terms, and discover their solutions, knowing that 

they have the support to implement their plans (Council, 2016). Ikpong and Bagchi assessed 

highway bridges’ resilience or vulnerability against climate change (global warming) impacts 

in 14 bridges of the Canadian Arctic and proposed the “Bridge Resilience Indicators (BRI)”. 

The objective is to describe a system of rating bridges using a BRI set to catch the resilience in 

global warming effects. The results illustrated how significant public investments (such as 

highway bridges) resulting from the failure of public transportation agencies to consider 

climate-related BRIs could be wasted in infrastructure improvement (Ikpong and Bagchi, 

2015). 

Bijarte et al., in 2016, published a paper focused on the resilience of Arctic infrastructures. They 

developed a practical approach for characterizing the expert judgment-based resilience of 

Arctic infrastructure systems. It also includes the review of resilience quantification methods 

and highlights the resilience metrics. The focus is on the engineering and technological domain. 

(Rød et al., 2016). Kenny used the resilience concept about the urbanization of the Arctic. The 

paper's literature review shows different planning, design, engineering, architectural and 

technological concepts and solutions to resilience in Arctic settlements adapting to climate 

changes and social and economic development support. However, comprehensive planning 

agendas are needed for the Arctic that balances resilient and sustainable growth with climate 

change challenges. (Kenny, 2017). Taarup-Esbensen posed a risk assessment by utilizing a 

resilience perspective and evaluating organizations operating in the Arctic. Though, the 

thinking behind and the structure of the model is not restricted to this specific environment. 

This approach uses resilience engineering (RE) to improve assessments. RE’s focus on the 

system's ability to respond, monitor, learn and anticipate to improve system resilience to 

confront events that have the potential to damage or destroy something of value (Taarup‐

Esbensen, 2020). Bayesian network (BN) is an acyclic graph that connects the multiple 

interdependent failures and their causes through conditional probability tables. Also, the 

estimated failure probabilities can be updated when new data and information becomes 

available by Dynamic Bayesian Network. Zinetullina et al. do the resilience assessment of a 
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separator in the oil production system by Dynamic Bayesian network (DBN). They model the 

probabilistic relationships between causes and effects of winterized process systems in a 

dynamic manner (Zinetullina et al., 2020). 

The Arctic is known for its undeveloped and harsh environmental conditions, such as icing, 

snowstorms, strong winds, darkness, and remoteness to emergency support bases. This 

significantly reduces the equipment lifetime and increases the probability of system failure. 

Thus, it is challenging to ensure safe and reliable production in this region. Resilience concept 

as a comprehensive system property consists of four main attributes: absorption, adaptation, 

restoration, and learning. It tries to cover the different perspectives of performance and quality 

in various conditions. Therefore, it could easily open itself up among new concepts and be used 

in different Arctic-related sciences, especially in Environmental science. 

4-3- Resilience, Reliability, and Recoverability (3Rs) 

In the past few decades, reliability has been widely known as important in engineering product 

and process design. However, resilience in the engineering field deprives sufficient attention, 

and several resilience metrics have been proposed for engineering systems. New works and 

concepts demand a deep understanding of how engineered systems achieve resilience and 

develop a generic resilience principle that applies to the different engineering fields. A 

resilience-driven system design (RDSD) framework had been proposed by Youn et al. The 

proposed framework was used to design complex engineered systems with resilience 

characteristics. It comprises three hierarchical tasks: resilience allocation problem, system 

reliability-based design optimization, and system prognostics and health management (Youn et 

al., 2011). Smart grids as modern infrastructure systems make power distribution more 

dependable and efficient. Failures in these structures can propagate more quickly and 

extensively and cause lower reliability. Albasrawi et al. described metrics for assessing the 

phase before a failure occurs and the recovery phase after a failure in a small smart grid based 

on the IEEE 9-bus test system. The first phase was characterized by reliability, and the latter 

was quantified using resilience (Albasrawi et al., 2014). As described, uncertainty 

quantification is a key requirement and challenge for realistic and reliable numerical modeling 

such as industrial systems. In this way, software-s are had a bold effect on solving complicated 

problems and making the non-deterministic analysis a common practice in computational 

models and numerical simulations. Patelli et al. had an overview of the main capabilities of the 

recent release of the Matlab open-source toolboxes OPENCOSSAN which includes 

optimization analysis, life-cycle management, reliability and resilience analysis, sensitivity, 

optimization, and design under uncertainty (Patelli et al., 2018). Hariri-Ardebili presented a 

systematic review of uncertainty quantification's fundamental elements: risk, reliability, and 

resilience. The paper's focus is on an integrated approach for risk analysis and risk management 

of dam safety (Hariri-Ardebili, 2018). Cai et al. proposed an availability-based engineering 

resilience metric by using a dynamic Bayesian network. They consider Resilience an inherent 

ability attribute of an engineering system that affects two main factors: structure and 

maintenance resources (Cai et al., 2018). Sarwar et al. also used the Bayesian network format 

to build a resilience metric as a function of reliability, vulnerability, and maintainability for a 
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remote offshore oil and gas facility for a potential hydrocarbon release. The proposed metric 

developed the resilience capacity to the system’s absorptive, adaptive, and restorative capacities 

(Sarwar et al., 2018). The process design and technology selection are the other areas of the 

resilience assessment application and other subjects, including technical, safety, environmental, 

and economic. Moreno-Sader et al. applied the resilience concept to propose an integrated 

"Return on Investment (ROI) Metric". The proposed methodology was applied to analyze a 

compressor process system in a hydrocracking process plant (Moreno-Sader et al., 2019). Civil 

infrastructure is one of the main civilizations and engineering subjects. These systems' 

reliability is defined as the ability to safely provide essential goods or services that are 

essentially connected with other systems. Resilience could be raised as a nexus between 

economic, social, and technological systems and advanced models to narrow the gap between 

engineering and social science aspects. Since huge systems such as civil infrastructures in the 

aftermath of a damaging event, lose some of their capacities, and their return to functional 

condition depends entirely on the coordination of the mentioned systems. In this way, Guidotti 

et al. introduced the probabilistic to integrating physical infrastructure and social systems in the 

assessment of the communities’ resilience. Their models consist of a four-step probabilistic 

assessment procedure, which is an integration of physical infrastructure and social systems in 

community resilience. Also, they studied the reliability and resilience of the potable water 

network of Seaside, Oregon, as the application of the proposed procedure. (Guidotti et al., 

2019). The other new system is the urban transportation network vital to megacities' robust 

operation. This system is often disturbed by recurrent perturbations such as traffic jams and 

non-recurrent perturbations such as earthquakes, tsunamis, terrorist attacks, etc., which have 

their own unpleasant consequences and cost for the population. Thus, like the other systems, 

here we need the performance measures for pre-perturbations and post-perturbations. 

Therefore, Recently, a review paper of three concepts including reliability, vulnerability, and 

resilience in transportation network performance is presented by Gu et al. the main goal of this 

paper is to clarify, to distinguish, and understand the three mentioned concepts in the context 

of the transportation network (Gu et al., 2020). In the most recent work, Asadzadeh et al. present 

an integrated approach of resilience engineering to service reliability improvement in 

maintenance organizations. The proposed strategy applied for resilience assesses the gas 

industry. They try to increase service reliability (Probability of undesirable events) by 

establishing a learning policy that is covering resilience concepts and principles. The paper 

analysis shows that resilience practice can be improved system reliability (Asadzadeh et al., 

2020). Yarveisy et al. study resilience and its measurement definitions with a new attitude. The 

metric establishes a relationship between system: absorptive, restorative, and adaptive 

capacities, and satisfies the desired characteristics, the level of dependencies among said 

capacities. In this paper, firstly, they review the existing definitions of resilience for a revised 

understanding of the resilience engineering (RE) concept. This work offers new metrics based 

on reliability and maintainability combined with the system modeling approach. Finally, the 

proposed metric assay by a case study of the “Self-Sealant Central Tire Inflation  System” (SS-

CTIS) and “Swiss high-voltage electric power supply system” (EPSS) (Yarveisy et al., 2020) 

Reliability analysis approaches as reliability engineering offer relevant contributions to the 

overall system performance, such as a clear understanding of equipment behavior, optimization 
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of process performance, reduction in system life-cycle costs, and assurance of safety operation 

and production quality. But it singly can't evaluate all edges of performance, especially in a 

large and sensitive system such as infrastructures. In this regard, recently, the resilience 

approach has received great interest. This concept is an inherent attribute of any engineering 

system, and it can be integrated with different characteristics of the system such as reliability, 

maintainability (recoverability), availability, supportability, etc. This specification of resilience 

can be more useful for engineers familiar with the reliability concept for many years. Using this 

feature, they can quantify the resilience, which provides an implementation guide for 

engineering planning, design, operation, construction, and management. Besides, when an 

engineering system is planned and designed, identifying the weak components or missions 

affecting resilience is important. Quantification of resilience in integration with performance 

factors can be provided it. Thus, as for the future perspectives, it is planned to find the 

performance-based resilience assessment approaches to modeling systems and 

preprogramming their disruptions. 

4-4- The resilience analysis approaches 

Measuring resilience is crucial to understanding it. The resilience assessment is characterized 

by (Lange et al., 2017): 

• Resilience analysis: The process of comprehending and determining the level of 

resilience 

• Resilience evaluation: The process of comparing the analysis results against some 

predefined criteria to decide whether the level of resilience is acceptable or not. 

This study is mainly put forward in investigating the first part. Although we have devoted most 

of our discussion to resilience's management principles, a metric reflecting these principles is 

needed for decision support and design. It has been acknowledged that quantitative metrics are 

required to support resilience engineering. In this context, the desired approach should be 

identified organizational resilience indicators such as top management commitment, just culture, 

learning culture, awareness and opacity, prepared-ness, and flexibility. Despite the consensus 

regarding the importance of resilience, the existing ones have not yet resulted in a unified 

practical method for applying the engineering domain approaches. Applications of resilience to 

engineering problems rely on the availability of quantitative resilience measures. According to 

the various field and diverse definitions (presented in the literature review report), different 

resilience metrics and corresponding evaluation methodologies have been developed that 

depend on accurate knowledge. Therefore, in this chapter, we review some most popular ones 

in the engineering area with a probabilistic perspective: 

First resilience metric: In this approach, the quality of degraded infrastructure is compared to 

the as-planned infrastructure quality (=100) during the recovery period. However, it can be 

extended to many systems as quality is a general concept. This metric measures the resilience 

(Re) loss to an earthquake. Hereafter, for convenience, the measure of performance is assumed 

to be system reliability. If we suppose the time at which the disruption occurs is 𝑡0 (hazard 

occurrence time), and the time at which the community returns to its normal pre-disruption state 
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is 𝑡1 (necessary time to restore the functionality of a critical system). The quality of the 

community infrastructure resilience loss (RL) at time t, is denoted with 𝑄(𝑡) (Bruneau et al., 

2003; Hoseinie et al., 2020): 

𝑅𝐿 = ∫[100 − 𝑄(𝑡)]

𝑡1

𝑡0

𝑑𝑡 = 1 −
∫ [𝑄(𝑡)]
𝑡1

𝑡0
𝑑𝑡

𝑡1 − 𝑡0
 (4-1) 

This formulation 100% quality means that a system is completely functional; zero percent is 

entirely non-functional. This entire plot has been used to represent the resilience of a system 

over time after a disruption. The resilience metric (Re) can be defined as follows (Hariri-

Ardebili, 2018): 

𝑅𝑒 =
∫ [𝑄(𝑡)]
𝑡1

𝑡0
𝑑𝑡

𝑡1 − 𝑡0
 (4-2) 

Resilience (Re) and loss of resilience (RL), their complement, are usually shown through a 

“recovery function” illustrated as the shaded area in Figure 4-12.  
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Figure 4-12- The required content of first quantify resilience metric (Hosseini et al., 2016; Kammouh et al., 

2017) 

If we suppose linear recovery mode for some systems and events and the immediate degradation 

of performance after a disruptive event, which may be not realistic, then Eq.(4-1) becomes 

simple to Eq.(4-3) (Bruneau et al., 2003; Hoseinie et al., 2020): 

𝑅𝑒 =
∆𝑄 × ∆𝑡

2
 (4-3) 

In Figure 4-12, the resilience triangle (resilience loss) illustrates the performance over time, and 

the smaller the triangle, the more resilient the infrastructure. In this figure, the resilience 

triangle's size simultaneously indicates robustness, vulnerability (Susceptibility of the system 

to failure or perturbations), and rapid recovery. Gu et al. in Figure 4-13 give an attractive 

illustration of different reliability, vulnerability, and resilience (Gu et al., 2020). Reliability is 

measured by the probability that system performance satisfies the desired level, and high 

probability refers to high reliability; vulnerability is measured by the decrease of system 

performance under non-serious failure or perturbation, where a large reduction refers to high 

vulnerability; resilience is measured by the size of resilience triangle, where small triangle 

refers to high resilience (Gu et al., 2020). 
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As shown in Figure 4-13, the high reliability does not necessarily lead to low vulnerability as 

different perturbations with their measurements often cause the two concepts. Furthermore, 

both vulnerability and recovery speed contribute to resilience. Thus, shortening the duration of 

negative perturbation impact must be considered instead of just focusing on achieving higher 

resilience by lowering vulnerability. 

 

 
Figure 4-13- The relationship between reliability, vulnerability, and resilience (Gu et al., 2020) 

Second resilience metric: This metric is defined as measuring economic resilience. As shown 

in Figure 4-14 and Eq. (4-4) (Rose, 2007): 

𝑅𝑒 =
%Δ𝐷𝑌𝑚𝑎𝑛 −%Δ𝐷𝑌

%Δ𝐷𝑌𝑚𝑎𝑥
 (4-4) 

It is the avoided drop-in system output ratio and the maximum possible drop-in system output. 

Parameters include %Δ𝐷𝑌 as the difference in non-disrupted and expected disrupted system 

performance and %Δ𝐷𝑌𝑚𝑎𝑥 as the difference in non-disrupted and worst-case disrupted system 

performance are determined. 
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Figure 4-14- The required content of the second quantify resilience metric (Hosseini et al., 2016) 
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Third resilience metric: It is a time-dependent resilience metric that considers as “Dynamic 

resilience.” It can be obtained by speeding up the repair and managing capital stock. This metric 

is defined in Eq. (4-5) (Rose, 2007): 

𝑅𝑒 =∑𝑆𝑂𝐻𝑅(𝑡𝑖) − 𝑆𝑂𝑊𝑅(𝑡𝑖)

𝑁

𝑖=1

 (4-5) 

Where 𝑆𝑂𝐻𝑅 : is the output of the system under hastened recovery, 𝑆𝑂𝑊𝑅 : the system’s output 

without hastened recovery, 𝑡𝑖: is the ith time step during recovery, and N is the number of time 

steps considered. It is depicted graphically in Figure 4-15 (Rose, 2007). 
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Figure 4-15- The required content of the third quantify resilience metric (Hosseini et al., 2016) 

Fourth resilience metric: The other time-dependent resilience metric is developed as the ratio 

of recovery to loss. This metric is defined based on performance function 𝜑(𝑡) for three system 

states at a point in time that list as follow and depicted in Figure 4-16 (Cutter et al., 2008; Henry 

and Ramirez-Marquez, 2012; Hu and Mahadevan, 2016): 

• The original stable state is the Normal functionally of a system before a disruption 

occurs, starting from the time 𝑡0 to 𝑡𝑒 (normal or baseline state).  It is usually announced 

with reliability as the probability that the system performs satisfactorily in the presence 

of disruptive events. 

• The disrupted state made by a failure or disruptive event (𝑒𝑗) at time 𝑡𝑒 whose effects 

set in until the time 𝑡𝑑 , defines the system performance from time 𝑡𝑑 to 𝑡𝑠 (vulnerable 

state). The system's degraded performance after disruptive events (higher vulnerability 

means more severe failure). 

• The stable recovered state is the new steady-state performance level once the recovery 

action started at the time 𝑡𝑠 is ended (recoverable state). It is usually announced with 

recoverability as to how quickly and well a system can recover to its normal state after 

the disruption. 

Thus the time-dependent measure of resilience based on reliability, vulnerability, and 

recoverability is defined in Eq. (4-6) (Cutter et al., 2008; Henry and Ramirez-Marquez, 2012): 

𝑅𝑒 =
𝜑(𝑡|𝑒𝑗) − 𝜑(𝑡𝑑|𝑒

𝑗)

𝜑(𝑡0) − 𝜑(𝑡𝑑|𝑒
𝑗)
 (4-6) 

Where resilient behavior is a function of 𝑒𝑗. 
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Fifth resilience metric: This probabilistic metric had been developed based on mitigation and 

contingency strategies. It is the degree of a passive survival rate (or reliability) plus a proactive 

survival rate (or restoration). 
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Figure 4-16- The required content of the fourth quantified resilience metric considering different disruption 

and recovery paths (Hosseini et al., 2016; Hu and Mahadevan, 2016; Sarwar et al., 2018) 

Mathematically, the resilience measure can be defined as the sum of reliability and restoration 

as follow (Youn et al., 2011): 

𝑅𝑒 = 𝑅(𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) + 𝜌(𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛) = 𝑅 + 𝜌(𝑅, Λ𝑝 , Λ𝐷 , 𝐾) (4-7) 

where k, Λ𝑝 𝑎𝑛𝑑 Λ𝐷  are the conditional probabilities of the mitigation/recovery action success, 

correct prognosis, and diagnosis. The above definition turns engineering resilience into a 

quantifiable property, making it possible to analyze an engineered system's resilience potential. 

Eq. (4-7) metric accounts for the reliability or a preventive means to stave off the occurrence of 

disruption as a component in quantifying resilience. In contrast, most other resilience assessment 

metrics are primarily a function of the level of initial impact and duration of recovery. The 

restoration is further expressed as a joint probability of having an event, correct prognosis, 

diagnosis, and mitigation/recovery could be rewritten as (Hu and Mahadevan, 2016): 

𝑅𝑒 = 𝑅 + (1 − 𝑅)𝑃𝐷𝑖𝑎𝑔𝑜𝑛𝑜𝑠𝑖𝑠𝑃𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑖𝑠𝑃𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (4-8) 

where 𝑃𝐷𝑖𝑎𝑔𝑜𝑛𝑜𝑠𝑖𝑠  is the probability of correct diagnosis, 𝑃𝑃𝑟𝑜𝑔𝑛𝑜𝑠𝑖𝑠 is the probability of correct 

prognosis, and 𝑃𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 is the probability of correct recovery. This focuses on the restoration 

of the system using prognostics and health management (PHMa) methods (Youn et al., 2011). 

Sixth resilience metric: This metric is probabilistic and represented in Eq. (4-9) (Chang and 

Shinozuka, 2004): 

𝑅𝑒 = 𝑃(𝐴|𝑖) = 𝑃(𝑟0 < 𝑟
∗ 𝑎𝑛𝑑 𝑡1 < 𝑡

∗) (4-9) 

Where “A” represents the set of performance standards for maximum acceptable loss of system 

performance (𝑟∗): and maximum acceptable recovery time (𝑡∗), for disruption of magnitude (i). 

So, it measured two central parts: performance losses and (ii) recovery length. 
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Seventh resilience metric: This stochastic metric had been developed based on system aging. It 

considers robustness and resourcefulness as two main assessment element and provides as 

follow (Ayyub, 2014): 

𝑅𝑒 =
𝑇𝑖 + 𝐹Δ𝑇𝑓 +𝑀Δ𝑇𝑟
𝑇𝑖 + Δ𝑇𝑓 + Δ𝑇𝑟

 (4-10) 

where 𝑇𝑖: the time to the incident, 𝑇𝑓: the time to failure, 𝑇𝑟 the time to recovery, Δ𝑇𝑓 = 𝑇𝑓 − 𝑇𝑖: 

the duration of failure, and Δ𝑇𝑟 = 𝑇𝑟 − 𝑇𝑓: the duration of recovery. Also, “F” is a measure of 

robustness and redundancy and “M” measures recoverability with Eq.(4-11) and Eq.(4-12) 

respectively (Ayyub, 2014): 

𝐹 =
∫ 𝑓
𝑡𝑓
𝑡𝑖

𝑑𝑡

∫ 𝑄
𝑡𝑓
𝑡𝑖

𝑑𝑡
 (4-11) 

𝑀 =
∫ 𝑟
𝑡𝑓
𝑡𝑖

𝑑𝑡

∫ 𝑄
𝑡𝑓
𝑡𝑖

𝑑𝑡
 (4-12) 

Where “f” is any failure event, and “r” is any recovery event.  

Eighth resilience metric: This performance base metric is defined resilience as the expectation 

of the ratio of the integral of the system performance Q(t) over a time interval [0, T] as a 

stochastic process, and the integral of the target system performance Τ𝑄(𝑡) during the same 

time interval as a stochastic process (Salomon et al., 2020): 

𝑅𝑒 = 𝐸[𝑌] 𝑤ℎ𝑒𝑟𝑒 𝑌 =
∫ 𝑄(𝑡)
𝑇

0
𝑑𝑡

∫ Τ𝑄(𝑡)
𝑇

0
𝑑𝑡
 (4-13) 

The “Re” tolerates between 0 and 1. The value “1” indicates a system performance conforming 

to the target performance, while “0” presents that the system is not working during the 

considered period. 

Ninth resilience metric: In a recently proposed metric for resilience analysis, Bruneau’s concept 

(Bruneau et al., 2003; Henry and Ramirez-Marquez, 2012) with reliability as the system's 

measure performance assumption is used. The required content of the metric is illustrated in 

Figure 4-17. Where Ro and Rf are the initial and the final reliability levels at times To and Tf. 

The disrupted steady-state reliability of the system at times Tl1 and Tl2 are Rʹl1 and Rʹl2, while 

Rl1 and Rl2 are system reliability in the absence of the disturbance (Yarveisy et al., 2020). The 

resilience metric (Re) is quantified as the Boolean relation among absorptive, restorative, and 

adaptive capacities of the system (Yarveisy et al., 2020): 

𝑅𝑒 = 𝐴𝑏 ∪ (𝐴𝑑 ∩ 𝑅𝑒𝑠) = 𝐴𝑏 − (𝐴𝑑 × 𝑅𝑒𝑠) − (𝐴𝑏 × 𝐴𝑑 × 𝑅𝑒𝑠) (4-14) 

Where: 

• Ab is “Absorptive Capacity” and quantified as:  

𝐴𝑏 = (
�́�𝑙1
𝑅0
) × (1 + (

𝑅0 − 𝑅𝑙1
𝑅0

)) (4-15) 
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Figure 4-17- The required content of the ninth quantify resilience metric (Yarveisy et al., 2020) 

• Res is “Restorative Capacity” and quantified as:  

𝑅𝑒𝑠 =

(

 
 
 
 
 𝐴𝑟𝑐𝑡𝑎𝑛(

�́�𝑓 − �́�𝑙2

(
𝑇𝑓 − 𝑇𝑙2
𝑇𝑓 − 𝑇0

)
)

90

)

 
 
 
 
 

× (
�́�𝑓
𝑅𝑓
) × (

𝑇𝑙2 − 𝑇0
𝑇𝑓 − 𝑇0

) (4-16) 

Where �́�𝑓: level of reliability between the residual and the “as old” reliability,  

• Ad is “Adaptive Capacity” and quantified as:  

𝐴𝑑 = 1 − (
𝑇𝑓 − 𝑇𝑙2
𝑇𝑓 − 𝑇0

) (4-17) 
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5- CONCLUSION 

In this study, the first part of each section begins with a quantitative analysis performed by 

using the global publication's scientometrics technique in performance-based resilience in the 

field of engineering and the Arctic region. The systematic search using the Scopus and Web of 

Science database was conducted with the search terms include reliability, maintainability, 

recoverability, resilience, engineering, and the Arctic limiting the search to scientific journal 

articles written in English. These databases are the large databases of pre-reviewed literature. 

We found that reliability and resilience publications have increased year by year. Especially in 

the last decade, their upward trends have a steep slope, showing the birth of new ideas and 

expanding scholarly and field application of them by researchers. But we can't deduce the same 

conclusion about recoverability (maintainability). It has an upward and downward slope in the 

first half of the 2010 decade and slowly increases to 2019. Keep in mind that the frequencies 

for 2020 are most likely incomplete. 

Moreover, the engineering field is the most popular domain for reliability and recoverability 

concepts. But resilience publications mostly originate from Social science and Environmental 

science. It is a young seedling in the engineering territory that new work, ideas, applications, 

and researchers must be strengthened. The Geographical distribution of resilience publications 

in the engineering field shows that the USA is the leader of this field and China is next. When 

the search field is limited to the Arctic, the USA keeps its leadership, but Norway and the United 

Kingdom share second place. Scientometrics study of WoS for Affiliation distribution in the 

Arctic-related publication indicates "The Arctic University of Norway (UiT)" ranks first. 

Furthermore, Rod Bjarte and Abbas Barabadi, the first author from UiT, are ranked first and 

third. In the second stage, the papers' abstracts and titles were subjected to a first review based 

on their relevance from 2015 to 2020. Those papers identified as relevant were in a third stage 

subjected to a full-text review. The full-text review in stage three included 35 engineering 

reliability articles, 16 the Arctic reliability articles, 25 engineering recoverability articles, nine 

the Arctic reliability articles, 21 engineering resilience articles, eight the Arctic resilience 

articles, and 11 the 3Rs articles included in the final review. It should be noted that some articles 

have been repeated in different fields due to different aspects of research.  

The full-text review revealed that the classical time-based reliability approach could be a helpful 

tool for bulks manufacturers or the primary management level that provided a general 

perspective. In this approach, the lifetime estimation of equipment in terms of the probability 

distribution (TBFs) reflects the average behavior of the population's reliability characteristics. 

The approach can be implemented when many historical repair and failure time data are 

available. This approach also does not cover the condition and operating environment data. 

Whereas, as the result of the reviewed study, most researchers believe that the operational 

conditions may significantly affect the reliability and maintainability performance. In this 

regard, new models and techniques should be developed, or available approaches should be 

modified for RAM assessment of systems. One of the early steps in such efforts is understanding 

the prevailing environmental and operating conditions and their impact on systems. Such an 

overview and discussion play a key role in building knowledge about operations and their RAM 
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performance and associated risks. That's why, although this approach provides useful 

information, yet due to limitations, the covariates-based approaches were developed. Covariate 

(or risk factor) data are commonly obtained in addition to time-based data. While collecting 

covariate data may be difficult and costly, such data contain more useful information than time 

data about the system. These models could be addressed the reliability analysis in dynamic 

operating environment conditions. Our review indicates that several covariate-based hazard 

models have been developed. These existing covariate-based hazard models were established 

based on the Proportional Hazard Model principle (PHM). The first advantage of these models, 

like the classical model, is their ability to incorporate incomplete and suspended data into asset 

life modeling. These models could be analyzed the system in a dynamic environment 

considering by covariates effect. Covariate can be classified as observable and unobservable. 

Observable covariate data are obtained in addition to failure time data. In many cases, collecting 

covariate data may be difficult and costly, but they contain more valuable information than time 

data. These models could be parametric or semiparametric such as Cox-PHM. Even though the 

Cox PHM is less restrictive than a fully parametric model, various underlying assumptions must 

be valid. First of all, it confides in the assumption of independent censoring for reasonable 

inference in the presence of right-censored data. Besides, an obvious assumption for most 

regression models, including the Cox PHM, is that the observations are independent. This is an 

invalid assumption in the case of multiple observations per subject, i.e., recurrent event analysis. 

Finally, the most crucial assumption to satisfy is proportional hazards (PH assumption). This 

limitation of the PH assumption causes extended PHM in a set of covariates at certain strata as 

the stratified Cox regression model (SCRM) or accelerated failure time model (AFTM). 

The quantity and quality of field data in these models are the main limitations required for 

building the model. Insufficient data availability would introduce further uncertainties into 

models' parameters. Most of the covariate-based works neglect to fully utilize three types of 

asset information, including failure event data, observable, and un-observable operating 

environment data, into a more impressive performance prediction model. Thus, the related and 

imperative question is how all indicators should be effectively modeled and integrated into the 

covariate-based hazard model. For instance, in the Arctic, to develop a spare parts prediction 

model, one should account for the effects of continuous parameters of the weather (e.g., 

temperature and wind speed), discrete meteorological phenomena (e.g., polar low pressures) 

and, sea state (e.g., sea ice and iceberg drift) on lead-time and possible supply delivery delays 

and system RAM. This point has recently received more attention from the authors such as R. 

Zaki, B. Rod, A.Barabadi, etc... the new works with fresh ideas have been published (Rod et al., 

2020; Zaki et al., 2019). Their proposed approaches as the Mixture frailty model (MFM), 

somewhat resolve the identified limitation of the existing covariate-based hazard models in the 

field of engineering systems. The risk factors and operating conditions become a more important 

role for operating systems (or infrastructures) in the Arctic region with a harsh environment.  

Recoverability as sconed performance index in this report can be defined as the probability that 

a failed system item will be restored to its satisfactory operating state. Thus, some of the main 

objectives of applying recoverability principles to engineering systems are reducing projected 

recovery costs and time and using recoverability data to estimate system performance. Their 

maintainability functions depend on the time to recovery (TTR) data and analysis. Since the 
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approaches in this context are similar to reliability analysis; therefore, repetition is avoided. In 

the context of recoverability in the Arctic, adequate cold-protective clothing is necessary to 

overcome some of the cold-related problems. The lighting available for visual inspection tasks 

can influence performance and productivity significantly. Improper illumination can 

discriminate a defect difficult due to shadows, glare, or too much or too little light. The 

recoverability (Maintainability) challenges in Arctic conditions can be listed below: 

• Increased inspection time or fault detection time 

• Increased access time to reach failed component 

• Increased removal time for the failed unit 

• Higher repair time 

• Increased replacement time for the failed unit 

• Increased testing time to verify the repair 

These may be due to 1) reduced physical mobility, reduced hand dexterity, decreased cognitive 

performance, reduced motor coordination; bulky clothing; decreased human sensory 

performance, or 2) improper anthropometric consideration for body dimensions cold 

environment. Cold protective clothing increases the dimensions of the body. In this regard, some 

fundamental principles must be considered for designing for recoverability; it is important to 

implement these in the design and planning phase since it is hard to change after the construction 

phase; these principles are listed here (Niebel, 1994): 

• Minimize the need for maintenance, for example, by materials or design changes 

• Optimize the frequency and complexity of the recovery tasks 

• Make a recovery easy 

• Make good and clear mechanical, electrical, etc. routines 

• Establish suitable training and education for personnel 

• Have good and easy recovery plans 

• Provide accessibility to all departments, equipment, and components requiring 

recovery 

• Provide possibilities of easy fault (failure or event) identification 

• Make it easy to use performance measures to predict the needs 

• Use visualization approaches to make it easy to identify events and 

responsibilities. 

• Use standard tools wherever it is possible for easy work  

• Have a good support philosophy and plans 

• Have a plan to use new technology such as long live parts, sensors, robots, etc. 

The last section of the presented report shows the priory attempt to develop and investigate the 

performance-based resilience assessment method that helps evaluators in their work. 

Considering the subjectivity of expert opinions, lack of information, and the variety of 

approaches to assessment problems, the author concludes that this research area still demands 

further investigation and development of a new complex framework for resilience measurement, 

especially in the field of performance measurement indicators. In reviewing existing 

approaches, the two core tenets had been considered: first, how resilience is defined, and second, 
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how resilience is statistically evaluated in the engineering field. In highlighting the use of 

reviewed approaches, it is important to emphasize that there is no one-size-fits-all approach to 

resilience measurement and assessment. Before choosing which approach to adopt, researchers 

and engineers should consider several factors, including their core objective of the measurement 

exercise, theory of knowledge creation, resource and data constraints. Thus, a full review of 

resilience measurement approaches can make valuable contributions: identifying hotspots, 

understanding drivers, and inferring impact. The literature review -up to our reading- revealed 

that although more researchers concentrated on RAM evaluation investigation, little attention is 

paid to investigating RAM's integration with the resilience concept. Thus, resilience approaches 

require preparing for the unexpected by performance analysis proceeds from the premise that 

failures are identifiable. Resilience is a novel way of thinking that cannot be implemented by an 

incremental evolution of prior design strategies. The term “resilience” appears in several 

different domains like ecology, economy, psychology, and the context of mechanical and 

infrastructure systems. It is derived from the Latin word “resilire” which means “to bounce 

back”. So, a departure from existing practice is not limited to structural or technological changes 

but can also be achieved through behavioral or cultural innovations. This approach embraces 

uncertainty and failure via anticipation and adaptation. The resilience evaluation of complex 

engineering systems such as infrastructures with non-stationarity (wherein path dependencies, 

changing boundary conditions, or interdependencies generate different responses to identical 

stimuli that happen at different times) and unexpected shocks (extreme events lead to failure of 

the engineered systems) attributes become more complicated. There exist highly coupled 

relationships among transportation, electric power, and telecommunication systems, among 

other infrastructures. And the resilience of one system can impact the resilience of others. The 

resilience analysis improves the system response to surprise these two attributes. Recently the 

resilience approach has received great interest. This concept can be integrated with system 

characteristics such as reliability, maintainability (recoverability), availability, supportability, 

etc. This specification of resilience can be more useful for engineers familiar with the reliability 

concept for many years. Using this feature, they can quantify the resilience, which provides an 

implementation guide for engineering planning, design, operation, construction, and 

management. Identifying the weak components or missions that affect resilience is important 

when an engineering system is planned and designed. Quantification of resilience in integration 

with performance factors can be provided. Thus, as for the future perspectives, it is planned to 

find the performance-based resilience assessment approaches to modeling systems and 

preprogramming their disruptions. 

In the last section of this chapter, we look for a suitable quantitative approach for integrating 

the performance indicators with the resilience concept. The concept of resilience as a new 

approach in engineering applications has gained growing popularity in recent years. But 

applications for engineers rely on quantitative measures, which various methodologies have 

been developed within the last two decades. In summary, a quantitative measure of resilience 

depends on the specific choice and definition of system performance. We used probabilistic 

(quantitative) approaches, given our interest in engineering systems. The current report only 

considers a few performance-based resilience strategies. Simultaneously, other techniques and 

estimated resilience dimensions can also be explored to find the optimum retrofit strategies. 
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Other dimensions of resilience, such as social, organizational, and economic, should be 

addressed to provide a comprehensive resilience analysis using additional parameters like the 

availability of critical facilities, the number of people served, or the level of economic activities. 

The illustrated metrics in this report for resilience quantification and valuation are developed 

considering the reliability, recoverability, and system modeling approach and are thus unitless. 

Some of the advantages and disadvantages of study approaches are as follows: 

• The first metric is based on the resilience triangle, and its general applicability and 

simplicity are essential advantages. However, it could be a tricky measure to 

comprehend for evaluators even when given as a percentage. In most applications of this 

method, the disruptive event has an assumed instantaneous impact, and the recovery 

efforts begin immediately, which is not in line with the real situation. Also, the linear 

assumption for recovery may not always be correct. This metric's last issue is that system 

quality (reliability or other performance measures) after the recovery process does not 

return to old conditions, or the system does not have complete performance quality. 

• The most important limitation of the second metric is the difficulty of parameter 

estimation. Because, for unknown disruptions, the attributes such as depth, width, and 

intensity might not be precisely estimable. 

• The third metric is relatively simple. However, it is not bounded between 0 to 1, and it 

can't be provided a convenient understanding of the resilience concept. 

• The fourth metric is complete than the first metric. This metric considers three states: 

stable original, disrupted state, and stable recovered. It measures resilience using 

reliability, vulnerability, and recoverability indicators. The main restriction of this metric 

is the impossibility of observing the main functions of the three mentioned indicators in 

the calculations. It expresses all the parameters based on a performance function. 

• The fifth metric could be more suitable for the engineering field due to its reliability. 

This criterion considers both pre-disaster and post-disaster activities, and how to use 

statistical performance indicators can be seen in it. It is noteworthy that this metric is 

bounded on [0,1]. It could be said that the calculation of performance indicators 

probability is the hard part of this metric. 

• The distinguishing feature of the sixth metric is considering the uncertainty in the 

quantification of resilience. However, when performance loss and recovery length 

exceed their maximum acceptable values, it does not consider an extra penalty. 

• The assumption of system performance in the seventh metric is similar to the fourth 

metric. It is among the most comprehensive resilience measures, using reliability (as the 

ratio of robustness to redundancy) and recovery (as the ratio of resourcefulness to 

rapidity) strategies. It introduces a specific meaning of vulnerability and recoverability 

and incorporates the aging effects in the analysis. 

• The eighth metric also has a probabilistic vision that takes 0 and 1. This metric's 

performance response process in a disruptive event is divided into three stages: system-

resistant, absorptive, and restorative capacities. It is adequate for both single and 

multiple hazard types, including their simultaneous occurrence, capturing the frequency 
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variations, and including fluctuations. It may also vary for the n'th event due to the 

resource allocations or the preventive measures taken for other hazard events. 

• The ninth metric's central concept is also based on the widely accepted concept of the 

resilience triangle first introduced by Bruneau et al. This metric studied the resilience 

performance in various phases and for convenience. The reliability index measured 

performance. It considers the effects of degradation due to aging on the system operating 

at a given level of reliability. In this concept, the recovered reliability can reach any 

desired level between residual reliability and reliability at the disruptive event. The 

formulation of resilience in this metric is based on adaptive, absorptive, and restorative 

capacities. 

In a final word, the system behavior itself may depend on a wide variety of attributes that 

influence its performance, named risk factors or covariates. The main drawback of the existing 

methods can be found in excluding observable operational factors into resilience analysis: 

literature lacks resilience studies incorporating risk factors. Moreover, unobservable covariates 

had been scarcely studied in reliability engineering; therefore, dealing with this idea in the 

resilience concept is rare. 
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