16,558 research outputs found

    Tensor models and embedded Riemann surfaces

    Full text link
    Tensor models and, more generally, group field theories are candidates for higher-dimensional quantum gravity, just as matrix models are in the 2d setting. With the recent advent of a 1/N-expansion for coloured tensor models, more focus has been given to the study of the topological aspects of their Feynman graphs. Crucial to the aforementioned analysis were certain subgraphs known as bubbles and jackets. We demonstrate in the 3d case that these graphs are generated by matrix models embedded inside the tensor theory. Moreover, we show that the jacket graphs represent (Heegaard) splitting surfaces for the triangulation dual to the Feynman graph. With this in hand, we are able to re-express the Boulatov model as a quantum field theory on these Riemann surfaces.Comment: 9 pages, 7 fi

    Complete algebraic vector fields on affine surfaces

    Get PDF
    Let \AAutH (X) be the subgroup of the group \AutH (X) of holomorphic automorphisms of a normal affine algebraic surface XX generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces XX quasi-homogeneous under \AAutH (X) in terms of the dual graphs of the boundaries \bX \setminus X of their SNC-completions \bX.Comment: 44 page

    The Phase Diagram of Fluid Random Surfaces with Extrinsic Curvature

    Full text link
    We present the results of a large-scale simulation of a Dynamically Triangulated Random Surface with extrinsic curvature embedded in three-dimensional flat space. We measure a variety of local observables and use a finite size scaling analysis to characterize as much as possible the regime of crossover from crumpled to smooth surfaces.Comment: 29 pages. There are also 19 figures available from the authors but not included here - sorr

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure

    3-manifolds efficiently bound 4-manifolds

    Full text link
    It is known since 1954 that every 3-manifold bounds a 4-manifold. Thus, for instance, every 3-manifold has a surgery diagram. There are several proofs of this fact, including constructive proofs, but there has been little attention to the complexity of the 4-manifold produced. Given a 3-manifold M of complexity n, we show how to construct a 4-manifold bounded by M of complexity O(n^2). Here we measure ``complexity'' of a piecewise-linear manifold by the minimum number of n-simplices in a triangulation. It is an open question whether this quadratic bound can be replaced by a linear bound. The proof goes through the notion of "shadow complexity" of a 3-manifold M. A shadow of M is a well-behaved 2-dimensional spine of a 4-manifold bounded by M. We prove that, for a manifold M satisfying the Geometrization Conjecture with Gromov norm G and shadow complexity S, c_1 G <= S <= c_2 G^2 for suitable constants c_1, c_2. In particular, the manifolds with shadow complexity 0 are the graph manifolds.Comment: 39 pages, 21 figures; added proof for spin case as wel
    corecore