2,776 research outputs found

    Geometric Combinatorics of Transportation Polytopes and the Behavior of the Simplex Method

    Full text link
    This dissertation investigates the geometric combinatorics of convex polytopes and connections to the behavior of the simplex method for linear programming. We focus our attention on transportation polytopes, which are sets of all tables of non-negative real numbers satisfying certain summation conditions. Transportation problems are, in many ways, the simplest kind of linear programs and thus have a rich combinatorial structure. First, we give new results on the diameters of certain classes of transportation polytopes and their relation to the Hirsch Conjecture, which asserts that the diameter of every dd-dimensional convex polytope with nn facets is bounded above by ndn-d. In particular, we prove a new quadratic upper bound on the diameter of 33-way axial transportation polytopes defined by 11-marginals. We also show that the Hirsch Conjecture holds for p×2p \times 2 classical transportation polytopes, but that there are infinitely-many Hirsch-sharp classical transportation polytopes. Second, we present new results on subpolytopes of transportation polytopes. We investigate, for example, a non-regular triangulation of a subpolytope of the fourth Birkhoff polytope B4B_4. This implies the existence of non-regular triangulations of all Birkhoff polytopes BnB_n for n4n \geq 4. We also study certain classes of network flow polytopes and prove new linear upper bounds for their diameters.Comment: PhD thesis submitted June 2010 to the University of California, Davis. 183 pages, 49 figure

    Separation-Sensitive Collision Detection for Convex Objects

    Full text link
    We develop a class of new kinetic data structures for collision detection between moving convex polytopes; the performance of these structures is sensitive to the separation of the polytopes during their motion. For two convex polygons in the plane, let DD be the maximum diameter of the polygons, and let ss be the minimum distance between them during their motion. Our separation certificate changes O(log(D/s))O(\log(D/s)) times when the relative motion of the two polygons is a translation along a straight line or convex curve, O(D/s)O(\sqrt{D/s}) for translation along an algebraic trajectory, and O(D/s)O(D/s) for algebraic rigid motion (translation and rotation). Each certificate update is performed in O(log(D/s))O(\log(D/s)) time. Variants of these data structures are also shown that exhibit \emph{hysteresis}---after a separation certificate fails, the new certificate cannot fail again until the objects have moved by some constant fraction of their current separation. We can then bound the number of events by the combinatorial size of a certain cover of the motion path by balls.Comment: 10 pages, 8 figures; to appear in Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999; see also http://www.uiuc.edu/ph/www/jeffe/pubs/kollide.html ; v2 replaces submission with camera-ready versio

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Computational determination of the largest lattice polytope diameter

    Full text link
    A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let {\delta}(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine {\delta}(d, k) for small instances. We show that {\delta}(3, 4) = 7 and {\delta}(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby {\delta}(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors

    Computational determination of the largest lattice polytope diameter

    Full text link
    A lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let {\delta}(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine {\delta}(d, k) for small instances. We show that {\delta}(3, 4) = 7 and {\delta}(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby {\delta}(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors

    Graphs of Transportation Polytopes

    Get PDF
    This paper discusses properties of the graphs of 2-way and 3-way transportation polytopes, in particular, their possible numbers of vertices and their diameters. Our main results include a quadratic bound on the diameter of axial 3-way transportation polytopes and a catalogue of non-degenerate transportation polytopes of small sizes. The catalogue disproves five conjectures about these polyhedra stated in the monograph by Yemelichev et al. (1984). It also allowed us to discover some new results. For example, we prove that the number of vertices of an m×nm\times n transportation polytope is a multiple of the greatest common divisor of mm and nn.Comment: 29 pages, 7 figures. Final version. Improvements to the exposition of several lemmas and the upper bound in Theorem 1.1 is improved by a factor of tw
    corecore