3,821 research outputs found

    Run-time compilation techniques for wireless sensor networks

    No full text
    Wireless sensor networks research in the past decade has seen substantial initiative,support and potential. The true adoption and deployment of such technology is highly dependent on the workforce available to implement such solutions. However, embedded systems programming for severely resource constrained devices, such as those used in typical wireless sensor networks (with tens of kilobytes of program space and around ten kilobytes of memory), is a daunting task which is usually left for experienced embedded developers.Recent initiative to support higher level programming abstractions for wireless sensor networks by utilizing a Java programming paradigm for resource constrained devices demonstrates the development benefits achieved. However, results have shown that an interpreter approach greatly suffers from execution overheads. Run-time compilation techniques are often used in traditional computing to make up for such execution overheads. However, the general consensus in the field is that run-time compilation techniques are either impractical, impossible, complex, or resource hungry for such resource limited devices.In this thesis, I propose techniques to enable run-time compilation for such severely resource constrained devices. More so, I show not only that run-time compilation is in fact both practical and possible by using simple techniques which do not require any more resources than that of interpreters, but also that run-time compilation substantially increases execution efficiency when compared to an interpreter

    A selective dynamic compiler for embedded Java virtual machine targeting ARM processors

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2004-2005Ce travail présente une nouvelle technique de compilation dynamique sélective pour les systèmes embarqués avec processeurs ARM. Ce compilateur a été intégré dans la plateforme J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Con- figuration). L’objectif principal de notre travail est d’obtenir une machine virtuelle accélérée, légère et compacte prête pour l’exécution sur les systèmes embarqués. Cela est atteint par l’implémentation d’un compilateur dynamique sélectif pour l’architecture ARM dans la Kilo machine virtuelle de Sun (KVM). Ce compilateur est appelé Armed E-Bunny. Premièrement, on présente la plateforme Java, le Java 2 Micro Edition(J2ME) pour les systèmes embarqués et les composants de la machine virtuelle Java. Ensuite, on discute les différentes techniques d’accélération pour la machine virtuelle Java et on détaille le principe de la compilation dynamique. Enfin, on illustre l’architecture, le design (la conception), l’implémentation et les résultats expérimentaux de notre compilateur dynamique sélective Armed E-Bunny. La version modifiée de KVM a été portée sur un ordinateur de poche (PDA) et a été testée en utilisant un benchmark standard de J2ME. Les résultats expérimentaux de la performance montrent une accélération de 360 % par rapport à la dernière version de la KVM de Sun avec un espace mémoire additionnel qui n’excède pas 119 kilobytes.This work presents a new selective dynamic compilation technique targeting ARM 16/32-bit embedded system processors. This compiler is built inside the J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Configuration) platform. The primary objective of our work is to come up with an efficient, lightweight and low-footprint accelerated Java virtual machine ready to be executed on embedded machines. This is achieved by implementing a selective ARM dynamic compiler called Armed E-Bunny into Sun’s Kilobyte Virtual Machine (KVM). We first present the Java platform, Java 2 Micro Edition (J2ME) for embedded systems and Java virtual machine components. Then, we discuss the different acceleration techniques for Java virtual machine and we detail the principle of dynamic compilation. After that we illustrate the architecture, design, implementation and experimental results of our selective dynamic compiler Armed E-Bunny. The modified KVM is ported on a handheld PDA and is tested using standard J2ME benchmarks. The experimental results on its performance demonstrate that a speedup of 360% over the last version of Sun’s KVM is accomplished with a footprint overhead that does not exceed 119 kilobytes

    Reification: A Process to Configure Java Realtime Processors

    Get PDF
    Real-time systems require stringent requirements both on the processor and the software application. The primary concern is speed and the predictability of execution times. In all real-time applications the developer must identify and calculate the worst case execution times (WCET) of their software. In almost all cases the processor design complexity impacts the analysis when calculating the WCET. Design features which impact this analysis include cache and instruction pipelining. With both cache and pipelining the time taken for a particular instruction can vary depending on cache and pipeline contents. When calculating the WCET the developer must ignore the speed advantages from these enhancements and use the normal instruction timings. This investigation is about a Java processor targeted to run within an FPGA environment (Java soft chip) supporting Java real-time applications. The investigation focuses on a simple processor design that allows simple analysis of WCET. The processor design has no cache and no instruction pipeline enhancements yet achieves higher performance than existing designs with these enhancements. The investigation centers on a process that translates Java byte codes and folds these translated codes into a modified Harvard Micro Controller (HMC). The modifications include better alignment with the application code and take advantage of the FPGA’s parallel capability. A prototyped ontology is used where the top level categories defined by Sowa are expanded to support the process. The proposed HMC and process are used to produce investigation results. Performance testing using the Sobel edge detection algorithm is used to compare the results with the only Java processor claiming real-time abilities

    OpenISA, um conjunto de instruções híbrido

    Get PDF
    Orientador: Edson BorinTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: OpenISA é concebido como a interface de processadores que pretendem ser altamente flexíveis. Isto é conseguido por meio de três estratégias: em primeiro lugar, o ISA é empiricamente escolhido para ser facilmente traduzido para outros, possibilitando flexibilidade do software no caso de um processador OpenISA físico não estar disponível. Neste caso, não há nenhuma necessidade de aplicar um processador virtual OpenISA em software. O ISA está preparado para ser estaticamente traduzido para outros ISAs. Segundo, o ISA não é um ISA concreto nem um ISA virtual, mas um híbrido com a capacidade de admitir modificações nos opcodes sem afetar a compatibilidade retroativa. Este mecanismo permite que as futuras versões do ISA possam sofrer modificações em vez de extensões simples das versões anteriores, um problema comum com ISA concretos, como o x86. Em terceiro lugar, a utilização de uma licença permissiva permite o ISA ser usado livremente por qualquer parte interessada no projeto. Nesta tese de doutorado, concentramo-nos nas instruções de nível de usuário do OpenISA. A tese discute (1) alternativas para ISAs, alternativas para distribuição de programas e o impacto de cada opção, (2) características importantes de OpenISA para atingir seus objetivos e (3) fornece uma completa avaliação do ISA escolhido com respeito a emulação de desempenho em duas CPUs populares, uma projetada pela Intel e outra pela ARM. Concluímos que a versão do OpenISA apresentada aqui pode preservar desempenho próximo do nativo quando traduzida para outros hospedeiros, funcionando como um modelo promissor para ISAs flexíveis da próxima geração que podem ser facilmente estendidos preservando a compatibilidade. Ainda, também mostramos como isso pode ser usado como um formato de distribuição de programas no nível de usuárioAbstract: OpenISA is designed as the interface of processors that aim to be highly flexible. This is achieved by means of three strategies: first, the ISA is empirically chosen to be easily translated to others, providing software flexibility in case a physical OpenISA processor is not available. Second, the ISA is not a concrete ISA nor a virtual ISA, but a hybrid one with the capability of admitting modifications to opcodes without impacting backwards compatibility. This mechanism allows future versions of the ISA to have real changes instead of simple extensions of previous versions, a common problem with concrete ISAs such as the x86. Third, the use of a permissive license allows the ISA to be freely used by any party interested in the project. In this PhD. thesis, we focus on the user-level instructions of OpenISA. The thesis discusses (1) ISA alternatives, program distribution alternatives and the impact of each choice, (2) important features of OpenISA to achieve its goals and (3) provides a thorough evaluation of the chosen ISA with respect to emulation performance on two popular host CPUs, one from Intel and another from ARM. We conclude that the version of OpenISA presented here can preserve close-to-native performance when translated to other hosts, working as a promising model for next-generation, flexible ISAs that can be easily extended while preserving backwards compatibility. Furthermore, we show how this can also be a program distribution format at user-levelDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2011/09630-1FAPES

    Acceleration and semantic foundations of embedded Java platforms

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2006-200

    Comparison of Implicit Path Enumeration and Model Checking Based WCET Analysis

    Get PDF
    In this paper, we present our new worst-case execution time (WCET) analysis tool for Java processors, supporting both implicit path enumeration (IPET) and model checking based execution time estimation. Even though model checking is significantly more expensive than IPET, it simplifies accurate modeling of pipelines and caches. Experimental results using the UPPAAL model checker indicate that model checking is fast enough for typical tasks in embedded applications, though large loop bounds may lead to long analysis times. To obtain a tool which is able to cope with larger applications, we recommend to use model checking for more important code fragments, and combine it with the IPET approach
    • …
    corecore