
COMPARISON OF IMPLICIT PATH
ENUMERATION AND MODEL CHECKING

BASED WCET ANALYSIS

Benedikt Huber and Martin Schoeberl1

Abstract
In this paper, we present our new worst-case execution time (WCET) analysis tool for Java processors,
supporting both implicit path enumeration (IPET) and model checking based execution time estima-
tion. Even though model checking is significantly more expensive than IPET, it simplifies accurate
modeling of pipelines and caches. Experimental results using the UPPAAL model checker indicate that
model checking is fast enough for typical tasks in embedded applications, though large loop bounds
may lead to long analysis times. To obtain a tool which is able to cope with larger applications, we
recommend to use model checking for more important code fragments, and combine it with the IPET
approach.

1. Introduction

Worst-case execution time (WCET) analysis is needed as input to schedulability analysis. As mea-
suring the WCET is not a safe approach, real-time tasks have to be analyzed statically. We present
a WCET analysis tool for Java. The first target processor that is supported by the tool is the Java
processor JOP [24]. A future version will also support the multi-threaded Java processor jamuth [27].

The WCET analysis is performed on Java bytecodes, the intermediate representation of compiled Java
programs. A Java virtual machine (JVM) executes bytecodes by either interpreting the bytecodes,
compiling them to native code, or executing them in hardware. The latter case is the execution model
of a Java processor. Using bytecode as the instruction set without further transformation simplifies
WCET analysis, as the execution time can be modeled at the bytecode level.

The primary method for estimating the WCET is based on the standard IPET approach [21]. We
have implemented a context sensitive, bottom-up analysis, and an interprocedural analysis to support
a simple method cache approximation. The tool additionally targets the UPPAAL model checker [3].
The control flow graphs (CFG) are modeled as timed automata, and a binary search is used to obtain
the WCET. An (exact) cache simulation was added to the UPPAAL model, which is used to evaluate
the quality of static cache approximations. Having implemented those two methods in a single tool,
we compare traditional IPET with model checking based techniques.

Although we analyze Java programs, neither the model checking based analysis nor the method cache
are Java specific (e.g., the method cache has been implemented in the CarCore processor [15]).

1Institute of Computer Engineering, Vienna University of Technology, Austria;
email: benedikt.huber@student.tuwien.ac.at, mschoebe@mail.tuwien.ac.at

ECRTS 2009
9th International Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2009/2281

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.1. The Target Architecture JOP

JOP [24] is an implementation of the Java virtual machine (JVM) in hardware. The design is opti-
mized for low and predictable WCETs. Advanced features, such as branch prediction or out-of-order
execution, that are hard to model for the WCET analysis, are completely avoided. Instead, the pipeline
and the caches are designed to deliver good real-time performance.

Caches are a mandatory feature for pipelined architectures to feed the pipeline with enough instruc-
tions and speedup load/store instructions. Although direct-mapped caches or set-associative caches
with a least recently used (LRU) replacement policy are WCET friendly, the instruction cache in JOP
has a different organization. The cache stores full methods and is therefore named method cache [23].
The major benefit of that cache is that cache misses can only occur at method invoke or on a return
from a method. All other instructions are guaranteed hits and the cache can be ignored during WCET
analysis.

JOP uses a variable block method cache, where methods are allowed to occupy more than one cache
block. JOP currently implements the variable block cache using a so called next-block replacement,
effectively a first in, first out (FIFO) strategy. It is known, that the FIFO replacement strategy is not
ideal for WCET analysis [22]. A LRU replacement would be preferable, as it provides a better caching
behavior and is easier to analyze. However, the constraint on the method cache that a method has to
span several contiguous blocks, makes the implementation of a LRU replacement strategy difficult.

1.2. Related Work

WCET related research started with the introduction of timing schemas by Shaw [26]. Shaw presents
rules to collapse the CFG of a program until a final single value represents the WCET. An overview
of actual WCET research can be found in [20, 28]. Computing the WCET with an integer linear
programming solver is proposed in [21] and [13]. The approach is named graph-based and implicit
path enumeration respectively. We base our WCET analyzer on the ideas from these two groups.

Cache memories for the instructions and data are classic examples of the paradigm: Make the common
case fast. Avoiding or ignoring this feature in real-time systems, due to its unpredictable behavior,
results in a very pessimistic WCET bound. Plenty of effort has gone into research to integrate the in-
struction cache into the timing analysis of tasks [1, 9] and cache analysis integration with the pipeline
analysis [8]. Heckmann et. al described the influence of different cache architectures on WCET anal-
ysis [10]. Our approach to cache analysis is to simplify the cache with the method cache. That
form of caching needs no integration with the pipeline analysis and the hit/miss categorization can be
approximated at the call graph, which leads to shorter analysis times.

WCET analysis at the bytecode level was first considered in [4]. It is argued that the well formed
intermediate representation of a program, the Java bytecode, is well suited for a portable WCET anal-
ysis tool. In that paper, annotations for Java and Ada are presented to guide the WCET analysis at
bytecode level. The work is extended in [2] to address the machine-dependent low-level timing anal-
ysis. Worst-case execution frequencies of Java bytecodes are introduced for a machine independent
timing information. Pipeline effects (on the target machine) across bytecode boundaries are modeled
by a gain time for bytecode pairs. Due to our target architecture that executes Java bytecode natively
we can extend on the work of WCET analysis at bytecode level.

2

In [25], an IPET based WCET analysis tool is presented that includes the timing model of JOP. A
simplified version of the method cache, the two block cache, is analyzed for invocations in inner
loops. Trevor Harmon developed a tree-based WCET analyzer for interactive back-annotation of
WCET estimates into the program source [6]. The tool is extended to integrate JOP’s method cache [7]
in a similar way as in [25]. Compared to those two tools, which also target JOP, our presented WCET
tool is enhanced with: (a) analysis of bytecodes that are implemented in Java; (b) a tighter method
cache analysis; and (c) an evaluation of model checking for WCET analysis and exact modeling of
the method cache in the model checking approach.

Whether and to what extend model checking can deliver tighter WCET bounds than IPET is inves-
tigated in [16]. Though we use timed automata and a different cache model, the argument that state
exploration is potentially more precise than IPET still applies. A project closely related to our model
checking approach is presented in [5]. Model checking of timed automata is used to verify the schedu-
lability of a complete application. However, even with a simple example, consisting of two periodic
and two sporadic tasks, this approach leads to a very long analysis time.

2. The WCET Analysis Tool

The new WCET analysis tool deals with a less restricted subset of Java than [25], adding support for
bytecodes implemented in Java and dynamic dispatch. The supported subset of the Java language
is restricted to acyclic callgraphs. As any static WCET analysis, we require the set of classes to be
known at compile time.

For determining loop bounds, we rely on both source code annotations (similar to the ones described
in [11, 25]) and dataflow analysis [19]. The latter is also used for computing the set of methods
possibly executed when a virtual method is invoked. By default, the WCET is calculated using IPET,
taking the variable block method cache into account (see Section 2.1.). Additionally, a translation to
timed automata has been implemented, including method cache simulations (see Section 2.2.).

2.1. IPET and Static Cache Approximation

The primary method for estimating the WCET is based on the standard IPET approach [21]. Hereby,
the WCET is computed by solving a maximum cost circulation problem in a directed graph repre-
senting the program’s control flow. Each edge is associated with a certain cost for executing it, and
linear constraints are used to exclude infeasible paths.

In addition to the usual approach modeling the application as one big integer linear program (ILP), we
also support a bottom-up analysis, which first analyses referenced methods separately and then solves
the intraprocedural ILP model. This is a fast, simple alternative to the global model, and allows us to
invoke the model checker for smaller, important parts of the application. Furthermore, the recursive
analysis is able to support incremental updates, and could be used by a bytecode optimizer or an
interactive environment.

After completing the WCET analysis, we create detailed reports to provide feedback to the user and
annotate the source code as far as possible. For this purpose, the solution of the ILP is analyzed, first
annotating the nodes of the CFG with execution costs, and then mapping the costs back to the source
code.

3

Computing the Cache Cost To compute the cost of cache misses for JOP, we observe that a cache
miss either occurs when executing an invoke instruction or when control returns to the caller. Each
method takes a fixed number of cycles to load (depending on its size), and depending on the instruction
triggering the cache miss, a certain number of those load cycles are hidden.

FIFO caches show unbounded memory effects [14] and simulating the cache with an initially empty
cache is not a safe approximation. This applies even when the cache sequence corresponds to a path
in a non-recursive call tree, so it is necessary to flush the cache at the task’s entry point to get a safe
approximation using simulation. As furthermore a long access history is needed to classify a cache
access as hit or as miss, standard dataflow analysis techniques perform poorly on FIFO caches [22].

Approximating the Method Cache using Static Analysis Our technique to approximate the cache
miss cost for an N-block FIFO method cache is based on the following fact: If it is known that during
the execution of some method m, at most N distinct cache blocks (including those of m) are accessed,
each accessed block will be loaded at most once when executing m. Currently a simple heuristic is
used to identify such all-fit methods, by checking whether all methods possibly invoked during the
execution of m fit into the cache.

To include this approximation into the ILP model, we traverse the callgraph of the program starting
from the root method, and check for each call site, whether the invoked method m is all-fit. If this is
the case, the supergraph of m is duplicated, adding constraints that the code of each method possibly
accessed during the execution is loaded at most once. Otherwise, the invoke and return cache access
are considered to be a cache miss.

2.2. Calculating the WCET using Model Checking

UPPAAL is a model checker based on networks of timed automata, supporting bounded integer vari-
ables and synchronization using channels [3]. We have implemented a translation of (Java) programs
to UPPAAL models, and use the model checker to determine a safe WCET bound. This allows us to
potentially deal with complex timing dependencies, and gives us the opportunity to verify whether
and to what extent model checking works for practical WCET estimation. Our initial attempt was
based on ideas from [17, 5] and has been subsequently refined using progress measures and adding
cache simulations.

General Strategy An UPPAAL model comprises global declarations of clocks, synchronization
channels and variables, and a set of processes. Each process is instantiated from a template and
may have its own set of local clocks and variables. We start by declaring a global clock t, which
represents the total time passed so far, and build timed automata simulating the behavior of the pro-
gram, one for each method. Additionally, we add a clock representing the local time passed at some
instruction, tlocal .

There is one location I, which is the entry point of the program, and one location E, which corresponds
to the program’s exit. When execution has finished, the system takes the transition from E to the
final state EE (Figure 1). If we want to check whether tguess is a safe WCET bound, we ask the
model checker to verify that for all states which are at location E, t ≤ tguess holds. If this property is
satisfied, tguess is a safe WCET bound, otherwise we have to assume it is not. Starting with a known

4

I EEE

Start of Task End of Task Execution
Finished

Model of Task

Safe bound if (E implies t ≤ tguess)

commited
location

Figure 1. Calculating the WCET bound using UPPAAL

Basic
Block

tlocal ← 0

tlocal ← 0

Invariant
tlocal ≤ cmax

tlocal ≤ c1

tlocal ≤ c2

(a) Modeling basic blocks

Loop
Header

Loop
Body

if(?)
break continue

in ← 0 in ≥ Ln

in++ < Kn

in ← 0

in ≥ Ln

in ← 0

(b) Modeling loops

Figure 2. Modeling CFGs as Timed Automata

upper bound, provided by the IPET analysis, we perform a binary search to find a tighter WCET
bound. Note that if the model checker kept track of the maximum value of t encountered during state
exploration, it would not be necessary to perform a binary search.

Translation of CFGs Given the CFG of a Java method mi, we build an automaton Mi simulating
the behavior of that method by adding locations representing the CFG’s nodes and transitions repre-
senting the flow of control. The initial location Mi.I corresponds to the entry node of the CFG, and
the location Mi.E to its exit node.

To model the timing of basic blocks, we reset tlocal at the incoming edges of a basic block. If the
execution of the basic block takes at most cmax cycles, we add the invariant tlocal ≤ cmax to the cor-
responding location. On architectures where the maximum number of cycles depends on the edge
e taken, additional guards of the form tlocal ≤ ce are added to the outgoing edges of the basic block
(Figure 2(a)).

Modeling Loops It would be possible to eliminate bounded loops by unrolling them in a prepro-
cessing step, but it is more efficient to rely on bounded integer variables. Assume it is known that
the body of loop n is executed at least Ln and at most Kn times. We declare a local bounded integer
variable in representing the loop counter, ranging from 0 to Kn. The loop counter is initialized to 0
when the loop is entered. If an edge implies that the loop header will be executed one more time, a
guard in < Kn and an update in← in +1 is added to the corresponding transition. If an edge leaves the
loop, we add a guard in ≥ Ln and an update in← 0 to the transition (Figure 2(b)).

It might be beneficial to set Ln = Kn, but this is only correct in the absence of timing anomalies, and
therefore in general unsound in the presence of FIFO caches. In principle, every control flow repre-

5

invoke
M WAIT

M! M?

invoking method N

Entry M Exit M

Model of Method M
M?

M!

invoked method M

I E

(a) Method Invocations

load
N

invoke
M

load
M

wait

access_cache(M)

! lastHit

M!
lastHit

M!
M?

access_cache(N)
! lastHit

lastHit

(b) Cache Simulation

Figure 3. Translating Method Invocations and Cache Accesses

sentable using bounded integer variables can be modeled using UPPAAL, though we only implemented
simple loop bounds in the current version of our tool.

Method Invocations We build one automaton Mi for each reachable method mi. To model method
invocations, we synchronize the method’s automata using channels. When a method mi is invoked, the
invoke transition synchronizes with the outgoing transition of Mi.I on the invoked method’s channel.
When returning from method mi, the transition from Mi.E to Mi.I synchronizes with the correspond-
ing return transition in the calling method. This translation assumes that there are no recursive calls.
To allow the method to be invoked several times, a transition from Mi.E to Mi.I is added to all methods
(see Figure 3(a)).

Method Cache Simulation Using timed automata, it is possible to directly include the cache state
into the timing model. It is most important, however, to keep the number of different cache states
low, to limit space and time needed for the WCET calculation. JOP’s method cache is especially well
suited for model checking, as the number of blocks and consequently the number of different cache
states are small.

To include the method cache in the UPPAAL model, we introduce an array of global, bounded integer
variables, representing the blocks of the cache. It is assumed that the cache initially only contains
the main method and is otherwise empty. As this is not a safe approximation in general, we have to
ensure that the first access to some method is actually a cache miss, for example by inserting a cache
flush at the beginning of the main method.

We insert two additional locations right before and after the invoke location, modeling the time spent
for loading the invoked method and the invoking method at a return, respectively. The UPPAAL

function access cache updates the global cache state and sets the variable lastHit to either
true or false (see Figure 3(b) and Listing 1).

6

1 const int NBLOCKS[NMETHODS] = { /∗ number of blocks per method ∗/ };
2 const int UNDEF = NMETHODS;
3 /∗ In the initial state , the main method occupies the first , say , K blocks of
4 the cache. Therefore , all fields of the array are undefined , except the one
5 at position K−1, which is set to the id of the main method. ∗/
6 int [0, NMETHODS] cache[NBLOCKS] = { UNDEF, ..., MAIN ID, UNDEF, ... };
7 bool lastHit ; /∗ whether last access was cache hit ∗/
8 void access cache (int mid) {
9 int p = 0; /∗ pointer into the cache ∗/
10 int mblocks = NBLOCKS[mid]; /∗ blocks of accessed method ∗/
11 lastHit = false ; /∗ no cache hit so far ∗/
12
13 /∗ Check if mid is in the cache ∗/
14 for (p = 0; p < NBLOCKS; p++)
15 if (cache[p] == mid) { lastHit = true ; return; }
16
17 /∗ Move cache blocks and insert new tag ∗/
18 for (p = NBLOCKS − 1; p >= mblocks; p−−)
19 cache[p] = cache[p − mblocks];
20 for (p = 0; p < sz−1; p++)
21 cache[p] = UNDEF;
22 cache[p] = mid; /∗ tag is written at position mblocks − 1 ∗/
23 }

Listing 1. FIFO variable block cache simulation

Progress Measures and Optimizations The performance of the model checker crucially depends
on the search order used for state exploration. Instead of using the default breadth-first search, per-
formance is greatly improved by using an optimal search order. For a loop-free CFG, it is obviously
beneficial to deal with node a before node b, if a is executed before b on each possible execution
path. This topological order is generalized to CFGs with loops by taking the values and bounds of
loop counters into account. Finally, we extend this idea to applications with more than one method
by defining a relative progress measure [12], which is incremented on transitions and monotonically
increases on each possible execution path. The progress measure both guides UPPAAL’s state space
exploration and reduces memory usage.

Additionally, for cache simulation purposes we pre-calculate the WCET of inner loops and leaf meth-
ods, using either model checking or IPET. The corresponding subgraphs of the CFG are replaced
by summary nodes, resulting in a locally simplified model. Currently, we are developing a model
checker prototype to explore further optimizations using state abstractions, optimized data structures,
and exploiting sharing, caching, and locality.

3. Evaluation

In this section, we will present some experimental results obtained with our tool. The first problem
set2 consists of small benchmarks to evaluate the model checker’s performance for intraprocedural
analysis. The second set comprises benchmarks extracted from real world, embedded applications.
Those examples are reactive systems, with many control flow decisions but few loops, making it
difficult to obtain a good execution time estimate using measurements.

Table 1 lists the number of methods, the bytecode size of the tasks under consideration, and the
number of control flow nodes in the (conceptually) unrolled supergraph. Additionally, we list the size
of the largest method in bytes, which determines the minimal cache size. As WCET analysis targets

2Provided by the Mälardalen Real-Time Research Center, except GCD.

7

Problem Description Methods Size (Total / Max) Nodes
DCT Discrete Cosine Transform (8×8) 2 968 / 956 45
GCD Greatest Common Divisor (32 bit) 3 138 / 100 9599
MatrixMult Matrix Multiplication (50×50) 3 106 / 84 19460
CRC Cyclic Redundancy Check (40 bytes) 6 404 / 252 26861
BubbleSort Bubble Sort (500×500) 2 87 / 80 1000009
LineFollower A simple line-following robot 9 226 / 76 96
Lift Lift controller 13 1206 / 216 438
UdpIp Network benchmark 28 1703 / 304 9600
Kfl Kippfahrleitung application 46 2539 / 1052 11348

Table 1. Problem sets for evaluation

Problem Measured ET Single Block FIFO Cache FIFO Cache Pessimism
JOP IPET IPET UPPAAL Ratio

DCT 19124 19131 19131 19124 1.00
GCD 62963 75258 73674 73656 1.17
MatrixMult 1.09M 1.09M 1.09M 1.09M 1.00
CRC 0.19M 0.47M 0.38M 0.38M 2.00
BubbleSort 32.16M 46.33M 46.33M 46.33M 1.44
LineFollower 2348 2610 2411 2368 1.03
Lift 5484 8897 8595 8355 1.57
UdpIp 8375 131341 130518 129638 15.58
Kfl (8 Block) 10616 49744 40452 37963 3.81

Table 2. Measured and computed WCET

single tasks, the size of the considered applications seems to be realistic for embedded systems. On
the other hand, we would definitely benefit from a larger and varying set of benchmarks.

3.1. Comparison of Measured Execution Time and Calculated WCET

Table 2 compares the measured execution times and the computed WCET estimates. For all exper-
iments, we use a memory access timing of 2 cycles for a read and 3 cycles for a write. We use a
16-block variable-block FIFO method cache, with 1 KB instruction cache memory in total.

The WCET was computed assuming a cache in which every access is a cache miss (Single Block
IPET), using the static method cache approximation described in Section 2.1. (FIFO Cache IPET),
and the UPPAAL cache simulation presented in the last section (FIFO Cache UPPAAL). 3

Pessimistic estimations in the first problem set are mainly due to missing flow facts and data de-
pendent flow (BubbleSort, CyclicRedundancyCheck), while in the second problem set the
measurements do not cover all execution paths (Lift, Kfl) or use a small payload (UdpIp). The
estimates using the static cache approximation are quite close to the exact cache simulation using
UPPAAL, so here, the approximation worked well. One should note, however, that the cache costs are
in general small, and a bigger difference could occur on other platforms.

3For the Kfl benchmark, UPPAAL ran out of memory, so we had to reduce the number of cache blocks to 8.

8

Problem IPET UPPAAL Breadth First UPPAAL Progress
Verify Search Verify Search

DCT 0.00 0.09 1.21 0.07 0.84
GCD 0.00 3.10 47.65 0.20 2.75
MatrixMult 0.01 0.21 3.52 0.23 4.58
CRC 0.01 1.21 16.32 0.52 9.46
BubbleSort 0.00 7.63 197.91 10.33 268.43
LineFollower 0.00 0.11 1.07 0.15 1.10
Lift 0.01 0.17 2.07 0.18 1.38
UdpIp 0.03 8.98 84.69 1.78 30.28
UdpIp simplified 0.64 7.28 0.44 7.07
Kfl (no cache) 0.04 92.19 1229.42 0.57 9.23
Kfl simplified (no cache) 33.81 444.73 0.45 7.23
Kfl (8 blocks) 0.13 — — 31.77 428.24
Kfl simplified (8 blocks) — — 17.72 263.18

Table 3. Analysis execution time in seconds

3.2. Performance Analysis

We have evaluated the time needed to estimate the WCET using the techniques presented in this
paper, summarized in Table 3. For the approach using the UPPAAL model checker, we consider the
translation without (UPPAAL Breadth First) and with progress measures (UPPAAL Progress Measure).
For the two largest problems, we additionally consider locally simplified models (Section 2.2.). The
time spent in the binary search and the maximum time needed for one invocation of the UPPAAL

verifier are listed in the table. For comparison, we measure the time spent in the ILP solver, when
using the global IPET approach.

All experiments were carried out using an Intel Core Duo 1.83 Ghz with 2 GB RAM on darwin-9.5.
For IPET, the linear programs were solved using lp solve 5.5. We use UPPAAL 4.0.7 with aggres-
sive space compression (-S 2), but without convex hull approximation, as for our translation, the
number of generated states is not affected by this choice.

For the first problem set, the analysis times for the IPET approach are below 10 milliseconds, as loops
can be encoded efficiently using linear constraints. We observe that UPPAAL handles the analysis of
those small benchmarks well too, as long as the number of executions of the innermost loop’s body
do not get too large (as in BubbleSort).

In the second problem set, the solver times for the IPET approach are still below 0.2 seconds, so
the additional equations for the cache approximation did not result in a significant increase of the
time needed for the ILP solver. Although model simplifications reduced the analysis times for the
larger two problems, the most important optimization for UPPAAL is the use of progress measures.
Progress measures can greatly improve performance (up to −99%), sometimes leading to slightly
longer analysis times (+35%). Furthermore, the cache simulation of the Kfl benchmark was only
possible using progress measures, although we had to reduce the number of cache blocks to avoid a
state explosion.

9

4. Conclusion

In this paper, we presented a WCET analysis tool for Java processors. The tool is open-source under
the GNU GPL license.4 The tool includes a static analysis of the effects of the method cache. The
first target is the Java processor JOP. In a future version we will include jamuth as a second target.

From the comparison of IPET with model checking based WCET analysis we see that IPET analysis
outperforms model checking analysis with respect to the analysis time. However, model checking
allows easy integration of complex hardware models, such as that of the method cache. We conclude
that a combined approach where model checking is used on simplified problems delivers tight WCET
bounds at a reasonable analysis time. In the current version of the tool we simplified CFGs and used
model checking for the global analysis.

As future work we consider using model checking to analyze local effects and solve the global analy-
sis with IPET. As an application of this approach we consider model checking for the complex timing
interaction of a chip-multiprocessor version of JOP [18].

Acknowledgement

One author thanks Anders P. Ravn for suggesting UPPAAL for the model checking based WCET anal-
ysis during an enjoyable research visit at the University of Aalborg. We thank Anders for the initial
UPPAAL model of the method cache and constructive comments on preliminary versions of the paper.
The research leading to these results has received funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under grant agreement number 214373 (Artist Design).

References

[1] ARNOLD, R., MUELLER, F., WHALLEY, D., AND HARMON, M. Bounding worst-case
instruction cache performance. In IEEE Real-Time Systems Symposium (1994), pp. 172–181.

[2] BATE, I., BERNAT, G., MURPHY, G., AND PUSCHNER, P. Low-level analysis of a portable
Java byte code WCET analysis framework. In Proc. 7th International Conference on Real-Time
Computing Systems and Applications (Dec. 2000), pp. 39–48.

[3] BEHRMANN, G., DAVID, A., AND LARSEN, K. G. A tutorial on Uppaal. In Formal Meth-
ods for the Design of Real-Time Systems: 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM-RT 2004 (September 2004),
M. Bernardo and F. Corradini, Eds., no. 3185 in LNCS, Springer–Verlag, pp. 200–236.

[4] BERNAT, G., BURNS, A., AND WELLINGS, A. Portable worst-case execution time analysis
using Java byte code. In Proc. 12th EUROMICRO Conference on Real-time Systems (Jun 2000).

[5] BOGHOLM, T., KRAGH-HANSEN, H., OLSEN, P., THOMSEN, B., AND LARSEN, K. G.
Model-based schedulability analysis of safety critical hard real-time Java programs. In Proceed-
ings of the 6th international workshop on Java technologies for real-time and embedded systems
(JTRES 2008) (New York, NY, USA, 2008), ACM, pp. 106–114.

4The source is available on the project’s website http://www.jopdesign.com.

10

[6] HARMON, T., AND KLEFSTAD, R. Interactive back-annotation of worst-case execution time
analysis for Java microprocessors. In Proceedings of the Thirteenth IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007) (August
2007).

[7] HARMON, T., SCHOEBERL, M., KIRNER, R., AND KLEFSTAD, R. A modular worst-case
execution time analysis tool for Java processors. In Proceedings of the 14th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2008) (St. Louis, MO, United
States, April 2008).

[8] HEALY, C. A., ARNOLD, R. D., MUELLER, F., WHALLEY, D. B., AND HARMON, M. G.
Bounding pipeline and instruction cache performance. IEEE Trans. Computers 48, 1 (1999),
53–70.

[9] HEALY, C. A., WHALLEY, D. B., AND HARMON, M. G. Integrating the timing analysis of
pipelining and instruction caching. In IEEE Real-Time Systems Symposium (1995), pp. 288–297.

[10] HECKMANN, R., LANGENBACH, M., THESING, S., AND WILHELM, R. The influence of
processor architecture on the design and results of WCET tools. Proceedings of the IEEE 91, 7
(Jul. 2003), 1038–1054.

[11] HU, E. Y.-S., KWON, J., AND WELLINGS, A. J. XRTJ: An Extensible Distributed High-
Integrity Real-Time Java Environment. In Proceedings of the 9th International Conference on
Real-Time and Embedded Computing Systems and Applications RTCSA-2003 (February 2003),
vol. LNCS 2968, pp. 208–228.

[12] KRISTENSEN, L. M., AND MAILUND, T. A generalised sweep-line method for safety prop-
erties. In FME ’02: Proceedings of the International Symposium of Formal Methods Europe on
Formal Methods - Getting IT Right (London, UK, 2002), Springer-Verlag, pp. 549–567.

[13] LI, Y.-T. S., AND MALIK, S. Performance analysis of embedded software using implicit path
enumeration. In LCTES ’95: Proceedings of the ACM SIGPLAN 1995 workshop on languages,
compilers, & tools for real-time systems (New York, NY, USA, 1995), ACM Press, pp. 88–98.

[14] LUNDQVIST, T. A WCET analysis method for pipelined microprocessors with cache memories.
PhD thesis, Chalmers University of Technology, Sweden, 2002.

[15] METZLAFF, S., UHRIG, S., MISCHE, J., AND UNGERER, T. Predictable dynamic instruction
scratchpad for simultaneous multithreaded processors. In Proceedings of the 9th workshop on
Memory performance (MEDEA 2008) (New York, NY, USA, 2008), ACM, pp. 38–45.

[16] METZNER, A. Why model checking can improve WCET analysis. In Computer Aided Ver-
ification (CAV) (Berlin/Heidelberg, 2004), vol. 3114 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 334–347.

[17] OUIMET, M., AND LUNDQVIST, K. Verifying execution time using the TASM toolset and
UPPAAL. Tech. Rep. Embedded Systems Laboratory Technical Report ESL-TIK-00212, Em-
bedded Systems Laboratory Massachusetts Institute of Technology.

[18] PITTER, C. Time-Predictable Java Chip-Multiprocessor. PhD thesis, Vienna University of
Technology, Austria, 2009.

11

[19] PUFFITSCH, W. Supporting WCET analysis with data-flow analysis of Java bytecode. Research
Report 16/2009, Institute of Computer Engineering, Vienna University of Technology, Austria,
February 2009.

[20] PUSCHNER, P., AND BURNS, A. A review of worst-case execution-time analysis (editorial).
Real-Time Systems 18, 2/3 (2000), 115–128.

[21] PUSCHNER, P., AND SCHEDL, A. Computing maximum task execution times – a graph-based
approach. Journal of Real-Time Systems 13, 1 (Jul. 1997), 67–91.

[22] REINEKE, J., GRUND, D., BERG, C., AND WILHELM, R. Timing predictability of cache
replacement policies. Journal of Real-Time Systems 37, 2 (Nov. 2007), 99–122.

[23] SCHOEBERL, M. A time predictable instruction cache for a Java processor. In On the Move to
Meaningful Internet Systems 2004: Workshop on Java Technologies for Real-Time and Embed-
ded Systems (JTRES 2004) (Agia Napa, Cyprus, October 2004), vol. 3292 of LNCS, Springer,
pp. 371–382.

[24] SCHOEBERL, M. A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture 54/1–2 (2008), 265–286.

[25] SCHOEBERL, M., AND PEDERSEN, R. WCET analysis for a Java processor. In Proceedings
of the 4th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2006) (New York, NY, USA, 2006), ACM Press, pp. 202–211.

[26] SHAW, A. C. Reasoning about time in higher-level language software. IEEE Trans. Softw. Eng.
15, 7 (1989), 875–889.

[27] UHRIG, S., AND WIESE, J. jamuth: an IP processor core for embedded Java real-time sys-
tems. In Proceedings of the 5th International Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES 2007) (New York, NY, USA, 2007), ACM Press, pp. 230–237.

[28] WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHALLEY,
D., BERNAT, G., FERDINAND, C., HECKMANN, R., MITRA, T., MUELLER, F., PUAUT,
I., PUSCHNER, P., STASCHULAT, J., AND STENSTRÖM, P. The worst-case execution time
problem – overview of methods and survey of tools. Trans. on Embedded Computing Sys. 7, 3
(2008), 1–53.

12

