HAMDI YAHYAOUI

ACCELERATION AND SEMANTIC
FOUNDATIONS OF EMBEDDED JAVA
PLATFORMS

These présentée
a la Faculté des études supérieures de 1'Université Laval
dans le cadre du programme de doctorat en informatique
pour l'obtention du grade de Philosophiee Doctor (Ph.D.)

FACULTE DES SCIENCES ET DE GENIE
UNIVERSITE LAVAL
QUEBEC

2006

(©Hamdi Yahyaoui, 2006

Abstract

With the advent and the rising popularity of wireless systems, there is a proliferation
of small internet-enabled devices (e.g. PDAs, cell phones, pagers, etc.). In this context,
Java is emerging as a standard execution environment due to its security, portability,
mobility and network support features. In particular, J2ME/CLDC (Java 2 Micro Edi-
tion for Connected Limited Device Configuration) is now recognized as the standard
Java platform in the domain of mobile wireless devices. An important factor that has
amplified the wide industrial adoption of J2ME/CLDC is the broad range of Java based
solutions that are available in the market. All these factors made Java and J2ME/CLDC
an ideal solution for software development in the arena of embedded systems. A suc-
cessful deployment of Java on these devices relies on a fast and lightweight execution
environment. Our research comes to provide a practical and a theoretical vision about
possible solutions to design, implement and validate optimization techniques. More
precisely, the research results that led to reach this objective are the following:

1. The design, implementation and evaluation of dynamic acceleration techniques:
we have designed and implemented a dynamic selective compiler. This compiler
speeds up the execution of embedded Java applications by a rate of 400%. More-
over, we have designed other acceleration techniques for the interpretation and
the method call mechanisms.

2. The elaboration of a concurrent denotational semantic model that extends the re-
source pomsets semantics of Gastin and Mislove with unbounded non-determinism.
This model is intended to be accommodated to JVML/CLDC (the bytecode
language) and to be used for proving the correctness of the optimizations of
JVML/CLDC programs.

3. A case study that shows how this semantic model can be embedded in the proof
assistant Isabelle in order to validate optimizations of JVML/CLDC programs.

Résumé

De nos jours, nous assistons & une croissance fulgurante des réseaux sans fil et des
systémes embarqués (cellulaires, assistants digitaux, ete.). Dans ce contexte, Java a
connu une popularité grandissante comme étant un environnement d’exécution stan-
dard grice & ses caractéristiques intrinséques comme la sécurité, portabilité et mobilité.
Plus précisément, J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device
Configuration) est devenue une plate-forme standard dans le domaine des systémes
embarqués. En effet, I'important déploiement des téléphones Java a permis une large
adoption de cette plate-forme. Le succes de celle-ci nécessite 1'existence d’un environ-
nement, qui permet une exécution rapide des applications Java. C’est dans ce cadre
précis que s'inscrit notre recherche. Notre objectif primordial est de concevoir, im-
planter et fournir une base formelle pour valider des techniques d’accélération de Java
pour les systémes embarqués. Les principaux résultats ayant contribué a l'atteinte de
cet, objectif sont les suivants :

1. La conception, 'implantation et I'évaluation d'un compilateur léger et rapide
pour l'accélération de l'exécution des applications Java dans les systémes em-
barqués. Ce compilateur accélere la machine virtuelle embarquée KVM qui vient
avec J2ME/CLDC par un facteur de 4. D’autres techniques d’accélération de
l'interprétation et du mécanisme d’appel de méthodes ont été réalisées.

2. L’élaboration d'un modele sémantique dénotationnel qui étend le modéle resource
pomsets de Gastin et Mislove au non-déterminisme non borné. Ce modele est
congu pour spécifier la sémantique du langage JVML/CLDC (langage bytecode)
et aussi pour valider les optimisations de programmes JVML/CLDC,

3. Une étude de cas montrant comment ce modéle peut étre embarqué dans |’assistant
de preuves Isabelle pour des fins de validation semi-automatique des optimisations
de programmes JVML/CLDC.

Acknowledgments

I’'m very indebted to Pr. Nadia Tawbi and Pr. Mourad Debbabi for their advices, ideas
and efforts to ensure a continuous supervision of this thesis. Their excellent supervision
helped me in preserving enthusiasm and motivation to finish this thesis. They deserve
all my acknowledgements.

I would like to thank Pr. Mohamed Mejri who has read carefully an earlier version
of this thesis and gave thorough comments.

I would like to thank Pr. Kamel Adi and Pr. Marc Frappier who accepted to review
this thesis. Their questions, remarks and suggestions will be useful for producing the
final version of this thesis.

I would like also to express all my acknowledgements to my colleagues at the Lan-
guages, Semantics and Formal Methods Group (LSFM) at Laval University: Abdeloua-
hed Gherbi, Lamia Ketari, Chamseddine Talhi and Sami Zhioua who shared with me
interesting scientific discussions.

Many thanks to Concordia Institute for Information Systems Engineering (CIISE)
staff who provided for me an outstanding environment to work. Particularly, I would
like to thank Computer Security Laboratory (CSL) members: Luay Alawneh, Chadi
Assi, Mourad Azzam, Nadia Belblidia, Ali Bensam, Djamel Benredjem, Hassan Issa,
Yosr Jarraya, Marc-André Laverdiére, Mona Mehrandish, Hadi Otrok, Sujoy Ray, Mo-
hamed Salah, Payam Shahi, Andrei Soeanu, Syrine Tlili, Anil Venkataiahgari for the
grateful moments we shared at CIISE. I'm also grateful to Mrs Lynda Goulet and
Rachel Lapierre from the secretariat of the computer science and software engineering
department at Laval University. They are so kind and helpful to all the students.

Finally, I would like to thank my friends Nafaa Jabeur, Nabil Sahli, Mahjoub Langar
and Walid Ali for their encouragements, support and solidarity.

To my parents
To my wife and sisters
To my [riends and colleagues

Contents

Abstract 1
Résumé iii
Acknowledgments iv
Contents vi
List of Tables xi
List of Figures xii
1 Introduction i
1.1 Introduction and Motivations 1
12 Repeafch IS8UEE cwmm s s B 55 5 § 5 5 5 5 55 8 8 5 B 6 R 5 5 6 & 5.8 § & 3
1.2.1 Dynamic Compilation for Embedded Java Platforms 3
1.2.2 Optimizations Validation G
1.3 Objectives o e 7
Ld. Methodelogy wwomammwmima o s 6 5 5 « 8 5 5 5 5 v 6 8 ¥ 8 % ¢ & 5 = % 2 8
1.4.1 Reverse Engineering of the KVM 3
1.4.2 State of the Art of Dynamic Compilers 8

1.4.3 A Dynamic Compilation Technique for the Acceleration of Em-
bedded Java Platforms S

1.4.4 A Semantic Model for True Concurrency with Unbounded Non-
Determinisiie oo mon o9 5 5 % 5 5 & 5 5 5 %5 5 5 5 8% € 8 % 8§ § 9

1.4.5 A Case Study for Validating Optimizations Using our Semantic
I Lo Ti S R N . L0
1.5 Contributions 11
1.6 Thesis Structure. 12
I Embedded Java Platforms Acceleration 13

2 The Java Technology 14

vil

21 Ditrednctiol c s cwe v sva s ma 5 55 5 5 5 5 48 555 5§ 5835586 14
2.2 Java 2 Server Edition (J2SE) Platform 15
2.2.1 Java Compilation {5
2.2.2 Java Interpretation Mechanism t7
998 JavaVerifeatlon < «wowas v w5 5298 5 5 94 358 8% 488 16
2.3 Java2Micro Bditioni - « « <2 ¢ s v s v v h s ik e h v e v s h s s s 20
2.3.1 Kilo Virtual Machine (KVM) o
2.3.2 Mobile Information Device Profile (MIDP) 28
2.4 KVM Reverse Engineering 0oL 25
2.4.1 Static Analysisof the KVM ot
2.4.2 Tuning KVM Performance, 29
2.4.3 Benchmarking the KVM on Embedded Platforms 30
25 Conclusion v v v v v i e e e e e e e e e e e e e e e e 30
State of the Art of Java Acceleration Techniques 34
3.1 Imtroduction e 31
3.2 Taxonomy of Acceleration Techniques 31
3.2.1 Hardware Acceleration Techniques 35
3.2.2 Ahead of Time Compilation (AOT) 37
3.2.3 Dynamic Compilation ¢« v v v v v v i i e e 38
3.2.4 General Optimizations i2
3.3 Accelerated Embedded JVMs 16
8331 RiloJIT[BIFE} o w v o2 0 0 58 6 6 5 8 8 0 v wwwwswws 17
3.3.2 SunCLDC HotSpot (Monty) . : : : « « v v v v v v v v v o0 48
3.3.3 Insignia Embedded Virtual Machine (EVM) 1%
3.3.4 Esmertec Jbed Micro Edition CLDC (Jbed) 13
3.3.5 Acunia Embedded Virtual Machine (Wonka) 49
3.4 Accelerated Conventional JVMs 19
34 SuntHOtBPOL v ww w555 69 65 5085656658585 19
342 IBMITComper « s s 5 5 3 ¢ 8 s 55 55 65§55 053333 53
343 JUDOQJITCompiler « o s 5 5 5 5 s 4 5 § 5 ¢ 5 656555 553 3 57
344 LaTTe e i)
3.4.5 Aware Just In Time (AJIT) Compilation System 02
3.4.6 Jalapeno Dynamic Optimizing Compiler 6
3.5 Dynamic Compilation Challenges in an Embedded Context i
B30 Oorelisghon « s o 506 4 5 5 5 6 55 8 6 8§ 5 5 S 4 9 S 49§63 588 6 553 G&

E-Bunny: A Dynamic Compiler for Embedded Java Virtual Machines 70
4] THETOOUBEION o i mom s o a6 6 8 5 5 5 5 6 55 55 5 5 0 8 v o s sssunss 70
4.2 Architecture e e e e e e 71

4.2.1 Imterpreter e T2

4.2.2 Native Code Execution Component 73
428 ProfleP. oo o wimmem i 5 5 2 5 5 5 5 8 55 5 5 2 5 59 9999888 s 73
4.2.4 One-Pass Compiler 73
4.2.5 Cache Manager 73
43 DESIED o owcwmw mm mw s m w8 w w8 s 6 8 % B M Bk e R S s e @k 74
4.3.0 Compilation SErategy « vowou 5 ¢ 5 5 « % 5 5 v a5 55 58 55 5 5 74
4.3.2 Switching Mechanism S
4.3.3 Threads Management %0
4.3.4 Garbage Collection Issues K7
4.4 Implementation and Results 59
4.5 Conelusion v i e e e i)

5 A Synergy Between Efficient Interpretation and Dynamic Compila-

tion 93
51 ItTOdEehon v o e s v 5 5 5 5 5 5 5 5 8 5§ 5 55 8588 EE 5 a 93
5.2 Compiling by Code Reuse 94
5.2.1 Generated Native Threaded Interpreter 96
5.2.2 Reusing Codelets for Dynamic Compilation 100
5.2.3 Smooth Switching Mechanism Lo2
B2 DOBHEFO o ww 9w s 5 5 5 8 8 55 8 85 85 8 55 8 8% 88888y e 104

5.3 Enhancing Interpretation by Method Call Acceleration HI5
5.3.1 Method Lookup Mechanism 106
5.3.2 Method Lookup Acceleration 105
538 Larhing wowwwmwmw s 5 o 5 5 5 8 & & % < @ 5 ¢ ¥ 2 8 ¥ @ ¥ ¥ ¥ ¥ w6 L1
5.34 Implementation & Results 112

BA OHneliiion s s o ams s ms & 5 5 5 5 5 6 4 55 % 5 85§ 95 € 58 655§ 5 £33
II Semantic Foundations of JVML/CLDC 115
6 Concurrency Models 116
B Inbroduseon - o 265 %6 6 58 6 8 5 8 8 8 55 5 845 55 FE 8§ ¥ 5 5 116
6.2 Mathematical Definitions e I1&
6.2.1 Some Notions about Domain Theory 113
6.2.2 Some Notions about Category Theory 119
6.2.3 Some Notions about Transfinite Numbers 120)

6.3 Operational Models oo 120
6.4 Denotational Models 201
Al PRIO¥SDEEE . . - 5 s 5 5 5 6 5 8 % § & 5 8 FFF G E B FEEE 8 s ¥ 121
6.4.2 Acceptance Trees oo e 122

6.4.3 Event Structures 123

6.4.4 Resource Trace Model 123
6.4.5 Resource Pomsets Model B8
6h O NeReEl i vvwsmm e mm 5 58 86866000 nnnna%5nn 139
6.5.1 Non-Determinism 1440

A Semantic Model for True-Concurrency with Unbounded Non-Determinism 143

7.1 Imtroduction e 113
7.2 Language Syntax0 e e e L6
T3 Process SPaoe « « s w o mow e e wsmn g % 8 8 5 8 % s 5 % % % % B ¥ § a8 148
73] DependenecMBDE. o oo m o w5 & 5 8 § 5 5 8 8 3 85§ 8 5 86 s 8 113
7.3.2 Labelled Dependence Mapso 150)
7.3.3 Deterministic Processes. 151
7.3.4 Space of Non-Deterministic Processes 05
T4 Algebraic Properbies o o vowoev v v 5 5 0 0 v v v 6 o 5 6 6 5 5 4 x5 w0 155
75 Bemantios cs v vnumpmmw o5 8 55 5 5 55 5955355355555 & 3 156
7.5.1 Semantic Interpretation Function 156
7.5.2 Non-Deterministic Choice LG7
7.5.3 Strict Sequential Composition 15&
7.5.4 Hiding o e 1ol
7.5.5 Weak Sequential Composition 1653
7.5.6 Parallel Composition v « v v v v v v v v e e 1639
V-DF DBEOUrSiOn - o 5555 5.6 55 555 § 6533583 58555688834 177
7.6 Details about the Construction of the Space M[. 180
7.7 Algebraic Properties 182
7.7.1 Definition of a Co-induction Principle over the Space M. 152
7.7.2 Algebraic Properties: Claims and Proofs 183
7.8 Monotonicity Proofs e 159
7.8.1 Monotonicity of the Non-Deterministic Choice 91
7.8.2 Monotonicity of the Strict Sequential Composition 191
7.8.3 Monotonicity of Hiding L9%
7.8.4 Monotonicity of the Weak Sequential Composition RIS
7.8.5 Monotonicity of the Parallel Composition. 205
7.8.6 Fixed Point Existence 212
7.9 Healthiness Conditions 216
7.9.1 First Healthiness Condition Verification. 216
7.9.2 Second Healthiness Condition Verification 220
Tl ConeltBlon + + v voww w9 a5 5 5 5 5 6 5 5 6 5 6§ 5955 6 5688888 8 222

Towards A Framework for Validating Optimizations of JVML/CLDC
Programs 223
BAd |nbro0dvetion - 5 5.0 5 2 » 5 6 5 6 5 55 855 55 s REERE N K E v 0 as 273

8.2 Related Work 223
8.3 Isabelleat aGlance e 225
831 ThHeoti® o v owwswmw s s 5 5 5 5 986558555 55868§58 25
BIZ Datalypes ciwwmw mmmp s 8 % 55 46 6 4 85 85 86555558 395
8.3.3 Function Declaration 225
8.3.4 Tactics 226
8.4 Embedding the Semantic Model 226
85 JVML/CLDC Subget Symbax.. « o s u o s o « 0 v s 5 6 a5 ¢ 65 v v 5 5 5 i
8.6 A Case Study about the Validation of Optimizations of JVML/CLDC
PIOSTOE crpeucaommass s i85 3 855884485966 6888§8 230
8.6.1 Constant Propagation 230
8.6.2 Dead Assignment Elimination 252
8.6.3 Common Subexpression Elimination 232
8.6.4 Denotational Semantics, 234
RE ColigheN - v msma 55 665585 8 88685 8758858883 58 245
9 Conclusion 246

Bibliography 249

List of Tables

2.1

3.1
3.2

4.1

5.1
5.2

Exception table

Dynamic call optimization in the presence of dynamic class loading

A Jalapeno optimized HIR . .

Executable file footprint overhead

Context-free bytecodes

Context-dependent bytecodes

IS

65

39

a7

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Morris approach for compiler correctness 6
Wand paradigm for proving compiler correctness 7
A O DEEBIE ~ 25 5 2555 5 5 5 5 5 5 8 G 5 6§55 F S F 55 585G 16
Java bytecodes e 16
try/catchcode L (8
Compiled program e 19
Posgibleconfigurations .« o soww s s % 5 % % 5 5 o 5 55 5 ¥ 8 5 5 5 § 5 & 8 20
Piohils Archiberburs . o o ow s 5 5 5 5 5 8 8 & % § 6 § 8 8 K 6 5 6 ¥ 5 8 5 & 21
Interaction between some components of the KVM 22
Romizing process v v v v v i e e 23
551 7515357 6 215155 U S 25
KYMagtacklayoub v 5% o6 9w w5 5 4 5 8 6 8 v 0 v s 5 v 85 95 5 55 3 46
Thread synchronization in KVM 27
Snapshot of KVM analysis in Imagix 31
KVM scoreson an IPAQ 32
Partial view of the KVM call graph 32
KVMtuning 0 0o v v e e e e e e 13
Class hierarchy example v i v v v v v v v v v v o v o v v 50
HotSpot client performance 53
IBM-JIT compiler architecture 5%
Code translation in IBM-JIT 56
IBM-JIT performance « ¢« v i v v v v v v o v v v v o v s v n n s b7
JUDO COMPONENtE . & 4 o 5 & 5 o & & 8 8 s ¢ v 8 9 8 5 5 5 5 8 5 5 & 5+ H
JUDO optimizing compiler structure 58
JUDO performance 60
LaTTe architecture i il
LaATTe performnaime . «. o v o 5 5 5 « ¢ « « s 5 % 5 5% 5 = % 5 % ¥ ¥ v u w ¥ 62
VRA annotation for iaload opcode 633
ANT porfOYMANEE = = 5 5 5 2 5 5 % = 5 @ 8 5 8 5 ¥ 5 5§ 8 5 § 8 6§ 5 5 8 8 5 652
Jalapeno architecture L oL 64

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1
6.2
6.3
6.4

E-BUnty @rehitestiiie & s s so o s MBS a8 8 58 s i 5 55 4 b
Context saving L e
Context restoration o o
iload bytecode translation
load on thepaliveslack v e saun s o s m B EF S 55 & 855§
ifeq bytecode traliBlation . o vs epemus 3908 596 8 8 5 E &5 6 s
putfield bytecode translation
invokevirtual bytecode translation
athrow bytecode translation
Interpreted to native mode switching algorithm
Switching to the nativemode
Native to interpreted mode switching algorithm
Multi-threading in E-Bunny,
Garbage collection algorithm modifications
CaffeineMark scores of KVM and E-Bunny with GCC
CaffeineMark midlet ran by KVM and by E-Bunny
Snapshot of an E-Bunny generated code

Generated native threaded interpreter structure
Codelet foraload 3. v v v v it
Interpreter codelet generation
Native code generation scheme
Compilationof abytecode L.
The unified stack layout
A lightweight interpreter/compiler mode switching mechanism
Prologue e e e
BpUOBUE & v v v v s wswmm e s e ma 4% 4% 9 % %95 8858 358355585 8
Bytecode sequence under compilation L.
A scenario of the proposed compilation by code reuse technique

Method hash table construction algorithm
Original lookup algorithm
Optimized lookup algorithm« o o v oo v v o i i oo i i,
Threaded interpreter performance
Typical example for our Optimization technique
Execution time acceleration for a typical example
Trade-Off between footprint and collisions

Morris Approach to Compiler Correctness
Wand Paradigm for Proving Compiler Correctness
Example of a resource trace0
Example of a concatenation of two resource traces

xiii

e

1)
70
T
ey

id

i

S0

6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8
7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16

8.1

A restriction of a process execution to a set of resources
The parallel composition of two processes
Example about strict sequential composition
Example about hiding aprocess,

Example of a graphical representation of a dependence map
An example illustrating the operator \ on dependence maps
A strict sequential composition of two finite processes
A strict sequential composition of a finite and an infinite Process
A hiding of events using some resource set from a process
A hiding of events using a resource set from a recursive process that
results into a divergence oo
Weak sequential composition of two processes
Another example of weak sequential composition of two processes

Example about the emergence of transfinite dependencies in the presence
of weak sequential composition of two processes
A parallel composition of two finite processes
A parallel composition of two infinite processes.
A parallel composition of two non-terminated processes
The semantics of the process P
The semantics of the process @,
The semantics of the process T« .. oo
Cone Existence Diagram

Development Environment L 0oL

xiv

Chapter 1

Introduction

1.1 Introduction and Motivations

With the advent and the rising popularity of wireless systems, there is a proliferation
of small internet-enabled devices (e.g. PDAs, cell phones, pagers, ete.). In this context,
Java [55, 72] is emerging as a standard execution environment due to its security,
portability, mobility and network support features. In particular, J2ME/CLDC (Java
2 Micro-Edition for Connected Limited Device Configuration) [79] is now recognized
as the standard Java platform in the domain of mobile wireless devices. It gained
big momentum and is now standardized by the Java Community Process (JCP) and
adopted by many standardization bodies such as 3GPP and MEXE. Another factor that
has amplified the wide industrial adoption of J2ME/CLDC is the broad range of Java
based solutions that are available in the market. In fact, the number of Java-enabled
phones that are deployed in the market is estimated to be more than 1 billion [84]. All
these factors made Java and J2ME/CLDC an ideal solution for software development,
in the arena of embedded systems. J2ME/CLDC consists of three layers: a lightweight
virtual machine (e.g. KVM or Kilobyte Virtual Machine), a configuration (Connected
Limited Device Configuration) and a profile (e.g. MIDP or Mobile Information Device
Profile). Wireless devices have two main limitations:

e Memory limitations: most of wireless devices are very resource-constrained. Typ-
ical devices such as phones have less than 512 KB of RAM.

e Power limitations: the battery life of these devices is short. The processors are
very slow (e.g. 206 MHz for IPAQ H3600) in order to minimize power consump-

tion.

The “Write once, run everywhere” Java paradigm is considered as a programming
revolution. The main features of the Java revolution like portability, reliability and
security make the deployment of Java in the wired world a very successful story. How-
ever, Java application execution is very slow in embedded devices. In fact, the KVM
runs from 30 to 80% of the speed of a conventional Java Virtual Machine (JVM) [141].
This fact leads to a real need for the acceleration of Java for embedded systems.

Java acceleration techniques are classified in two categories:

e Hardware acceleration techniques: Java is executed directly by hardware proces-
sors or co-processors. This entails a significant speedup of execution (up to 30
times [91]). However, their use comes with a high price in terms of power con-
sumption. This energy issue is really damaging especially in the case of low end
mobile devices.

e Software acceleration techniques: there are two subcategories of software acceler-
ation techniques:

— Static acceleration techniques: these techniques are applied before execution.
By using heavy static analysis and optimizations, the execution of Java ap-
plications is considerably enhanced (up to 10 times [134]). However, these
techniques entail an important memory footprint ', which is unacceptable in
an embedded context. Moreover, they assume that the application code is
always available, which is not true in a dynamic environment like the JVM
or KVM. In fact, the code can be loaded dynamically from a distant site.

— Dynamic acceleration techniques: these techniques are applied dynamically.
This allows to profit from the available dynamic information about the code.
Dynamic compilation” is the most prominent dynamic acceleration tech-
nique. In fact, this technique is able to achieve significant speedup (up
to 20 times). However, traditional dynamic compilers like Sun HotSpot [7§]
or IBM Jalapeiio [8] consume a lot of power and memory space to perform
analysis. This is unacceptable in an embedded context.

Few research initiatives [62, 84, 113] targeted the acceleration of Java for embedded
platforms. These initiatives are led by some industrial companies for commercial goals.

'Overhead in terms of memory
2Dynamic compilation consists in translating dynamically a source code to native code

What is published is restricted to white papers about the general features of the accel-
erated JVMs. This is the main reason for having a poor related work for this research

field.

All these facts have motivated us to elaborate a research thesis about Java accel-
eration in embedded systems. The main challenge of this research is to design fast,
lightweight and correct optimization techniques that can be applied and integrated in
embedded Java platforms such as J2ME. More accurately, we investigated dynamic
acceleration techniques and particularly dynamic compilation for embedded Java plat-
forms.

1.2 Research Issues

In the sequel, we present the research issues that we faced at the practical and theoretical
levels.

1.2.1 Dynamic Compilation for Embedded Java Platforms

When we started this research, there was a lack of academic initiatives about the accel-
eration of embedded Java platforms. Actually, only industrial companies led industrial
projects to accelerate embedded Java platforms (mainly J2ME/CLDC). For instance,
Sun [77], Insignia [62], Esmertec [46] and few companies worked and are still working on
this topic without publishing details about their research. They provide just white pa-
pers or advertising documents about these projects. The ultimate goal of their projects
is to produce enhanced versions of the KVM or devise new accelerated embedded virtual
machines.

This entailed the need for studying the dynamic compilation of Java in desktop and
server systems. This study was a useful step to know in deep the proposed solutions
and see if they can be applied in an embedded context.

We faced many practical issues when we were in the process of designing a dynamic
compilation technique for embedded Java platforms and particularly for the KVM. We
present hereafter these issues.

Code Translation

In the literature, many dynamic compilers build an intermediate representation for the
Java code. Flow-based analyses are performed on this representation. The aim of these
analyses is to optimize the code (e.g. constant propagation, dead code detection) and
to compute some information about variables (e.g. liveness information) that is useful
to generate a native code of good quality.

The use of heavy flow-based analysis techniques is not convenient for memory-
constrained embedded platforms (having an available memory that is less than 512
KB). Moreover, these techniques perform many passes so they are not efficient at the
compilation side. Hence, a tradeoff between compilation time and code quality should
be established in the embedded context.

Compilation Unit

The first designed dynamic compilation strategy consists in compiling all the loaded
code. This strategy entails an important footprint, which is unacceptable. Accordingly,
dynamic selective techniques have emerged. The selection is based on the detection of
the frequently executed code known as hotspot code. In fact, a compilation unit can be
a method or a set of instructions. Each of these compilation units has its advantages
and disadvantages. The design of a lightweight hotspot detection technique and the
choice of the compilation unit are two important practical issues.

Communication between the KVM Interpretation and Native Execution

Generating native code from a JVML/CLDC" program is a critical step that prepares
for its execution. In a mixed mode execution (interpreted/compiled), a communication
between the Java world (the KVM interpreter) and the native world can occur fre-
quently. Traditional Java Virtual Machines (JVMs) use a Java Native Interface (JNI)
to invoke native code from a Java code. This mechanism is not implemented in em-
bedded JVMs, like the KVM, because it is very heavy. A call from an interpreted
method into native code requires setting the call context (e.g. parameter transfer from
the Java stack to the native stack, local variables setting, etc.). A design of an efficient

3JVML/CLDC is the binary language for embedded Java

and lightweight Java to native interface, that enables the switch between compiled and
interpreted code (and vice versa), is one of compilation issues.

Exception Mechanism Translation

The KVM exception propagation mechanism consists in looking for a handler of a
thrown exception in the method that raises it. When no handler is found, the search
continues in the calling method. Dynamic compilation should preserve the exception
propagation semantics not only between interpreted methods but also between inter-
preted and compiled methods in a lightweight manner.

Threading

The KVM uses a round-robin algorithm to perform thread rescheduling after the exe-
cution of some instructions. All active threads are kept in a circular linked list. A time
slice is assigned to each thread. A zero-value of this counter triggers thread reschedul-
ing. Hence, the next thread in the circular list is selected for execution. Since the
KVM interpreter cannot manipulate the native code, a design of a thread rescheduling
mechanism between the native world and the Java world (and vice versa) is required.
The issue here is to design compact data structures that are required to preform thread
rescheduling in a mixed mode execution.

Cache Management

A dynamic compiler requires memory buffers to hold translated native code that it
produces. It is known that Java instructions (Java bytecodes’) are much smaller than
native instructions. Actually, the code generated by a dynamic compiler is generally
4 to 5 times [84] the original code size. For embedded platforms, this code should be
saved in a dedicated cache. Since the cache size is limited, the elements of the cache
have to be replaced when the cache is full and a new compiled code has to be added to
the cache. Consequently, a cache replacement policy is required.

4The binary instructions of Java

P, compile P,

SeEmanticSspurce Semanticsiarget

. encode ’
Semantics; —————— Semantics,

Figure 1.1: Morris approach for compiler correctness

1.2.2 Optimizations Validation

Establishing the semantic correctness of an optimization technique consists in proving
that the optimization preserves the semantics i.e. the original program and the opti-
mized one are semantically equivalent. This entails the elaboration of one semantics
if the original and optimized programs are defined in the same language. In the case
of dynamic compilation, we are in the presence of two languages”: the source language
and the target language. This means that two semantics are needed.

In the literature on programming languages, many researchers used the method
introduced by Morris in [90], further promoted in [130], to establish the correctness of
a compilation/optimization process. This approach advocates the use of algebraic data
types and algebraic semantics to capture the optimization correctness as the following
equation:

encode(8emantics source(P1)) = Semantics jarget(compile(Py))

This amounts to the commutation of the diagram reported in Figure 1.1. Later,
this approach has been accommodated to use an operational semantics style as what
Stephenson proposed in [122] or a denotational semantics style as what Wand proposed
in [133]. In a denotational semantics setting, the correctness of the compiler is ex-
pressed as the equality of the denotation of the source program and the denotation of
its translation. This paradigm for proving compiler correctness is outlined in Figure
G.2.

To establish the correctness of our dynamic compilation or any other optimization
that can be performed on JVML/CLDC programs, we have to provide first a semantic
model for JVML/CLDC. Particularly, since JVML/CLDC is a concurrent language, we
have to select or elaborate a concurrency semantic model for this language. This is

5The source code is JVML/CLDC and the target code is the binary language of Intel processors.

P, compile P,

SemManticSsource SemantiCiarges

Intermediate Language

Figure 1.2: Wand paradigm for proving compiler correctness

another big challenge for this research. Moreover, the choice between the operational
or denotational strategy is one of the important decisions in this research project. The
reasons underlying our decision are provided later.

1.3 Objectives

The main intent of this thesis is to contribute at two levels: acceleration and semantic
foundations of embedded Java platforms. We target the design of semantically-correct
acceleration techniques for embedded Java platforms. Particularly, we are interested in
dynamic acceleration techniques since static compilation is not adequate in an environ-
ment where applications can be loaded dynamically. More accurately, our objectives
are threefold:

e Design, implement and evaluate dynamic acceleration techniques for embedded
Java platforms and particularly for the KVM, which is the defacto standard em-
bedded VM. This practical task allows to enrich the related work on the acceler-
ation of embedded Java platforms.

e Provide a semantic model for JVML/CLDC. The main traits of this model are:
provability, compositionnality and readability. By provability, we mean that the
model can be a basis for formal validation of optimizations. Compositionality
means that the semantics of an expression is defined in terms of the semantics of
its sub-expressions. Besides, the semantics should be abstract and clear.

e Show that our semantic model can be embedded in a theorem proving tool and
used in order to validate several optimizations. The use of a proof assistant allows
to provide correct and machine-checked proofs.

1.4 Methodology

In the sequel, we detail our methodology.

1.4.1 Reverse Engineering of the KVM

We spent an important time to understand the inner working of the KVM components
and to detect where it is possible to enhance execution. We used a static analysis tool
(Imagix) to understand the interaction between KVM components. Moreover, we used
a dynamic profiling tool (Intel VTune) to detect critical functions in the KVM. Our
first conclusion is that the interpretation mechanism represents a high percentage of the
overall execution with respect to the other mechanisms (loading, verification, etc.). This
allowed us to know that it is more relevant to concentrate our efforts on the acceleration
of the interpretation mechanism than the other ones. Thus, we decided to enhance the
interpretation mechanism by a dynamic strategy. The reasons for excluding the static
strategy are mentioned before.

1.4.2 State of the Art of Dynamic Compilers

The lack of academic research initiatives on the acceleration of embedded Java platforms
is the main reason for the study of several dynamic compilers for desktop and server
systems. This study enabled us to know the proposed techniques to accelerate Java
in these systems. We have elaborated a detailed description of the architectures of
well-known dynamic compilers. In addition, we have studied their performance, their
strengths and weaknesses. Thanks to this study, we elaborated a strategy for achieving
a successful dynamic compilation technique for embedded Java platforms.

1.4.3 A Dynamic Compilation Technique for the Acceleration
of Embedded Java Platforms

We give hereafter a brief overview of our dynamic compilation strategy:

e The dynamic compilation is selective (restricted to hotspots, which are frequently

called methods).

e To keep the memory footprint low, we do not use any heavy static analyses or rep-
resentations. The code translation is performed in one-pass. This avoids spending
much time in generating native code and offers a reasonable speedup.

e There is no register allocation. More precisely, we avoid the use of heavy register
allocation algorithms (such as graph coloring or algorithms that use liveness infor-
mation). The time spent in register allocation will be saved. Only optimizations
that can be performed in one-pass are allowed.

e The generated code should be cached. The cache is small with careful manage-
ment: a limited space for the cache allows to respect the memory limitations of
embedded systems.

The full detailed compilation strategy is explained later in this thesis.

In addition, we come with a dynamic acceleration technique that establishes a syn-
ergy between dynamic compilation and interpretation. This technique enhances our
compiler by a unified interpretation model in which the compiler and the interpreter
are collaborating in a smooth way.

1.4.4 A Semantic Model for True Concurrency with Unbounded
Non-Determinism

To comply with the requirements of provability, compositionality and readability, we
have decided to elaborate a denotational semantic model that can be accommodated to
JVML/CLDC and follow Wand [133] approach to establish optimization correctness.
JVML/CLDC is a concurrent language. This requires the selection/elaboration of an
adequate concurrent and denotational model.

Concurrency models are classified w.r.t three major criteria [137]: the focus on
the state or the behavior, the treatment of parallelism through interleaving or true
concurrency and the way by which non-determinism is handled.

Famous denotational models such as failure sets and acceptance trees [19, 58] put
focus on the behavior. They are branching models and they give an interleaving meaning
to parallelism. In fact, in these models, the parallel composition of two processes is

10

reduced to the possible interleaving between them. This leads to a state explosion
problem.

True concurrency models minimize this state explosion by using partial orders. In
these models, independent events/actions can be executed simultaneously. Famous
true concurrency models such as labelled event structures [135] and labelled transition
systems with independence [13] can capture true concurrency but they lack explicit
description of it.

Lately, Gastin and Mislove [50] provide an explicit description of true concurrency
in a model they called resource pomsets. The model is extensional, which means that it
puts more emphasis on the behavior than the system itself. Moreover, it is linear since
it does not consider branching points. The main interesting feature of this model is the
resources, which play a fundamental role to specify when two events can be executed
in parallel. For our research, the resource concept is useful since we aim to provide a
semantics that describes in an explicit way the Java synchronization mechanism. For
instance, they can be used to denote objects that can be locked by processes when
they execute synchronized methods/blocks. Moreover, the use of resources establishes
a good connection between actions/events and data.

Unfortunately, the resource pomsets model reduces parallel composition of events
sharing the same resource to a deadlock. This is not true in many concurrent languages
such as JVML/CLDC. In fact, when two processes are claiming, at the same time, the
same synchronized method, the execution interleaves between these processes. This
leads to the need for the extension of the resource pomsets model to include non-
determinism.

We have extended the resource pomsets model with unbounded non-determinism.
The rationale behind choosing an unbounded non-determinism is that this form of
non-determinism allows to abstract from implementation details. More reasons about
adopting this form of non-determinism are provided later in this thesis.

1.4.5 A Case Study for Validating Optimizations Using our
Semantic Model

We provide a case study about validating some optimizations of JVML/CLDC pro-
grams using our semantic model. The validation is performed using the theorem prover
Isabelle [95]. More precisely, we present an embedding of a subset of JVML/CLDC

11

with its denotational semantics in Isabelle. We also provide a particular discussion
about the equivalence relation that can be adopted in proving the semantic equivalence
between JVML/CLDC programs. Furthermore, we discuss the semantic equivalence
between several JVML/CLDC programs and their optimized versions. The studied
optimizations are: constant propagation, dead assignment elimination and common
subexpression elimination.

1.5 Contributions

The main contributions of this thesis are the following:

e The design, implementation and evaluation of new dynamic acceleration tech-
niques for embedded Java virtual machines: we have designed and implemented
a dynamic selective compiler (called E-Bunny), which speeds up the KVM execu-
tion by a rate of 400%. We have also designed an acceleration technique for the
method call mechanism. The proposed technique is dynamic, flexible and efficient.
Note that this practical work was leaded with some colleagues of the LSFM (Lan-
guages, Semantics and Formal Methods) research group who are: Abdelouahed
Gherbi, Lamia Ketari, Chamseddine Talhi and Sami Zhioua.

e The design of a concurrent denotational semantic model that extends the resource
pomsets semantics of Gastin and Mislove [50] with unbounded non-determinism.
More precisely, we provide the semantic interpretation of some useful concurrency
operators and a fixpoint semantics of recursion. This model is intended to be
accommodated for JVML/CLDC.

e A case study that shows how this semantic model can be embedded in the proof
assistant Isabelle in order to validate some optimizations of JVML/CLDC pro-
grams.

As a downstream result, we succeeded to publish the following research papers:

e A paper, entitled “E-Bunny: A Dynamic Compiler for Embedded Java Plat-
forms”, is published in the Journal of Object Technology (JOT), volume 4, num-
ber 1, 2005. The main contribution of this paper is the design and implementation
of a fast and lightweight dynamic compiler that accelerates by a rate of 400% the
original KVM.

12

e A paper entitled “A Selective Dynamic Compiler for Embedded Java Virtual
Machines Targeting ARM Processors”, is published in the International Journal
of Science of Computer Programming, volume 59, issues 1-2, 2006. The main
contribution of this paper is the porting of E-Bunny to the ARM architecture.

e A paper, entitled “A Synergy between Lightweight Dynamic Compilation and
Fast Interpretation”, is published in Proceedings of Principles and Practice of
Programming in Java (ACM PPPJ’04). The main contribution of this paper is
the design and implementation of a fast and lightweight interpreter generation.

e A paper, entitled “Method Call Acceleration in Embedded Virtual Machines”, is
published in the Workshop of Java in Computation Science (WJCS’2003). The
main contribution of this paper is the design and implementation of dynamic,
flexible and efficient techniques for accelerating the method call mechanism for
embedded Java Virtual Machines.

e A patent submitted to European, Asian and American patent offices. This patent
deals with the acceleration of Java Method Call in Virtual Machines.

e A paper about the design of a new semantic model for true concurrency with
unbounded non-determinism was under consideration for publication in a confer-
ence.

1.6 Thesis Structure

The rest of this document is organized as follows. In the second chapter, we give
an overview of the main features of the Java language, J2ME and particularly the
KVM. In the third, we present the related work about Java acceleration techniques
and give insight into the challenges in an embedded context. The fourth chapter is
devoted to the design and implementation of a fast and lightweight dynamic compiler
for embedded Java platforms. In the fifth chapter, we give insight into a lightweight
compilation technique that extends what we propose in the fourth chapter. We also
present a method call acceleration technique that we designed and implemented in the
KVM. In the sixth chapter, we present the known concurrency models and put focus
particularly on the resource pomsets semantic model. In the seventh chapter, we provide
a denotational semantic model for true concurrency with unbounded non-determinism.
This model is intended to be accommodated for JVML/CLDC. In chapter eight, we
show how our semantic model can be used in the theorem prover Isabelle in order to
validate optimizations. Finally, we give some conclusions and possible continuations for
this research.

Part 1

Embedded Java Platforms
Acceleration

13

Chapter 2

The Java Technology

2.1 Introduction

Java is recognized as a prominent language for the development of mobile code. In
fact, Java is a portable, secure and reliable language. The success of Java is due to the
following features:

e Strong Typing: each Java construction has a type that is known statically. This
allows Java compilers to generate type-safe programs. Moreover, a dynamic verifi-
cation process allows to check the typing of dynamically loaded Java applications.
This verification ensures that properties like control flow, stack and memory safety
are satisfied by the verified code.

e Automatic Memory Management: the memory management is transparent to
users. In fact, there is no way to manipulate directly the memory. The garbage
collector is the component responsible for memory management.

e Platform Independence: Java bytecodes are platform-independent. This allows
a high portability. A machine-dependent interpreter, residing in the virtual ma-
chine, is responsible for executing Java bytecodes.

In the sequel, we present two Java platforms: Java 2 Server Edition (J2SE) for
server and desktop systems and Java 2 Micro Edition (J2ME) for embedded devices.

15

2.2 Java 2 Server Edition (J2SE) Platform

J2SE provides an environment for the development of Java applications intended for
desktops and servers. J25E comes with Java Application Programming Interface (API)
classes and a Java Virtual Machine (JVM). A typical JVM is composed of: a loader, a
verifier, an interpreter and a garbage collector. The interpreter executes Java classfiles,
which are the result of compiling source Java files by a Java compiler. In the sequel,
we give an overview about Java compilation and interpretation mechanisms.

2.2.1 Java Compilation

The target language of the Java compilation is called Java Virtual Machine Language
(JVML). It is a machine-independent stack-based language. This format ensures the
portability of Java. The compilation of a source Java class provides a classfile that
contains Java bytecodes. In the sequel, we present the structure of a classfile and an
example illustrating the compilation of a Java program to a JVML one.

Java Classfile Structure

A Java file is compiled into a classfile. Each classfile has a constant pool, a list of fields
and a list of methods. A class constant pool contains entries refereing to fields and
methods of the class.

A Java method structure is composed of a list of modifiers (e.g static, public), its
local variables table, its code (bytecodes) and its exception table.

Each bytecode is composed of an opcode and one or many operands. For instance,
the bytecode invokevirtual #5 has invokevirtual as opcode and #5 as operand. This
bytecode means that a method that has the same signature as the 5 method in the
constant pool of the call receiver (the object on which the call is performed) class is
invoked. The call receiver class is resolved statically but the real method to be invoked
can figure in a subclass of this class.

Figure 2.1 outlines a simple Java program and Figure 2.2 presents its compiled
version,

16

public class HelloWorld

{
private String Hello;
public void printHello()

{
Hello = “Hello World™;

System.out.printin(Hello);

}

public static void main(String[] args)

{
HelloWorld hw = new HelloWorld();

hw.printHello();
}

Figure 2.1: A Java program

Method void printHello()
0 aload_0
1 1dc #2 <String "Hello World">
3 putfield #3 <Field java.lang.String Hello>
6 getstatic #4 <Field java.io.PrintStream out>
9 aload_0
10 getfield #3 <Field java.lang.String Hello>
13 invokevirtual #5 <Method void println(java.lang.String)>
16 return

Figure 2.2: Java bytecodes

Examples of Opcodes
Hereafter, we present some examples of opcodes:

e invokevirtual: opcode for a virtual (non-static) method invocation.
e getfield: opcode for a non-static field access.
e checkcast: opcode for checking a subtyping relation.

e monitorenter: opcode for locking an object.

A complete description of Java bytecodes can be found in the JVM specification
book [72].

17

2.2.2 Java Interpretation Mechanism

The execution of a Java application starts by loading the system classes and then the
classfile given by the user in the command line (and eventually its superclasses). Then,
a verification step is performed. The objective of this step is to verify the structure and
the well-typing of the loaded classes.

Once the verification is performed, the interpretation step takes place. The inter-
preter has a main loop that iterates on each bytecode of a called method. First, the
main static method of the application is executed. Then, for each called method, a
frame is created on the Java stack. This frame contains useful information to restore
the calling context. Among these information, we mention:

e A reference to the local variables table (Ip) of the method,
e A reference to the runtime constant pool (cp) of the called method class,

o A reference to the stack (sp) that will contain the temporary values created while
executing this method,

A reference to the previous instruction pointer (Prewviouslp): the instruction
pointer of the instruction following the call,

e A reference to the previous stack pointer (PreviousSp): the stack operand of the
calling method and

A reference to the previous frame pointer (PreviousFp): the frame of the calling
method.

A frame destruction is performed when a call returns from a called method to the
calling one. The execution continues at the previous instruction pointer. The previous
stack pointer will be the current stack and the previous frame pointer will be the current
frame.

Java Exceptions

The Java exception mechanism is very convenient to help developers detecting the
errors that can occur. An exception is thrown when a violation of some Java safety rules

18

void catchTwo()

}

try {

tryltOut();

}

catch(TestExcl e) {handleExc(e); }
catch(TestExc2 e) {handleExc(e); }

}

Figure 2.3: try/catch code

From | To | Target Type
0 4 L5 Class TestExc_1
0 4 12 Class TestExc_2

Table 2.1: Exception table

happens. For instance, when there is an access to a null pointer or an access to an index
that is outside the boundary of an array etc. This exception can be caught and handled
in the application. An exception construct is a try/catch/finally, try/catch, or try/finally
instruction. Clauses starting with catch represent possible execution continuations after
the occurrence of an exception. An exception can be thrown by a throw instruction or by
the VM itself. The exception type is used to look for a compatible catch (the parameter
of the catch instruction is a super type of the thrown exception type). The execution
continuation will be the first catch that satisfies this condition. Any enclosing finally
clause must be executed even if there is no catch that handles the thrown exception.
Figure 2.3 shows a Java code for a try/catch instruction.

Figure 2.1 shows the bytecodes resulting from the compilation of the Java code pre-
sented in Figure 2.3, Since the Java source code contains exception constructs, the Java
compiler builds an exception table that describes the possible execution continuations
after a possible exception. The exception table is presented in Figure 2.1. It says the
following: when an exception is raised between the 0** and the 4** instruction, it can
be caught at the 5 instruction if its type is a subtype of TestExc_1. The continuation
can be at the 12" instruction when the exception is a subtype of TestExc_2.

19

void catchTwo()
0 aload_0

1 invokevirtual#5
4 return

5 astore_1

6 aload.0

7 aload_1

8 invokevirtual#:7
11 return

12 astore_1

13 aload_0

14 aload_1

15 invokevirtual#7
18 return

Figure 2.4: Compiled program

Java Threads

Thread management in Java is performed at a software level. Two main thread man-
agement mechanisms are provided by a JVM:

e Switching: switching between threads requires saving the context of the current
method in the thread structure and loading another method context from the
thread to which the execution switches.

e Synchronization: the thread executing a synchronized method locks the call re-
ceiver object. Any other thread trying to execute this method, on the same
receiver object, is blocked (saved in a wait queue) until the thread owning the
lock releases it. When a liberation of the lock occurs, a notification is performed
by the virtual machine to awaken blocked threads. The synchronization can be
performed also on block of instructions.

2.2.3 Java Verification

Java verification is performed dynamically. It consists of performing data flow analyses
on the control flow graph of each loaded method. The intent of these analyses is to

20

ensure that some properties are satisfied by the loaded code. For instance, these anaylses
can ensure that no stack overflow will occur during execution and that methods are
invoked with the appropriate arguments.

2.3 Java 2 Micro Edition

The Java 2 Micro Edition technology (J2ME) is a Java platform that is dedicated to
resource-constrained devices. Two concepts are introduced under the J2ME technology:

e Configuration: due to the wide range of wireless devices, Sun has introduced the
configuration concept, which is the combination of a set of APIs, class libraries
and a virtual machine, dedicated to a set of similar devices. Two standard con-
figurations are available: the Connected Limited Device Configuration (CLDC)
that is intended for smaller wireless devices with less than 512 KB of available
memory (cellular phones, pagers, PDAs, etc.) and the Connected Device Con-
figuration (CDC) that is intended for larger wireless devices with at least a few
megabytes (2 to 16 Megs) of available memory (Internet TV, gaming consoles,
etc.). The CDC configuration includes the C Virtual Machine (CVM), a full
J2SE-compliant virtual machine. The CLDC configuration includes the Kilo Vir-
tual Machine (KVM). Figure 2.5 outlines the possible configurations.

e Profile: a profile offers to developers user interface APIs dedicated to a specific set
of devices. Mobile Information Device Profile (MIDP) is an example of a profile
using the CLDC configuration. The profile architecture is depicted in Figure 2.6.

Java Application Java Application
KVM + CVM +
CLDC APIs CDC APIs
APIs APIs
Native OS Native OS
Device Device

Figure 2.5: Possible configurations

We are particularly interested in studying J2ME/CLDC, which is designed for
severely memory constrained-devices (less than 512 KB of available memory). In the
sequel, we present the KVM, which is the cornerstone component of J2ME/CLDC.

21

Java Application

Profile

Configuration

Native OS

Device

Figure 2.6: Profile Architecture

2.3.1 Kilo Virtual Machine (KVM)

KVM (Kilo Virtual Machine) [81] is Sun’s compact Java Virtual Machine technology,
intended for small wireless devices (cellular phones, PDAs, etc.). It is a particular
implementation of a Java virtual machine meeting the CLDC specification, which is
aimed at defining a standard Java platform for small, resource constrained, connected
devices.

The KVM is implemented in a portable C language. The core of this VM is about
24,000 lines of code including comments. The KVM executable size varies from 40
to 80 KB depending on the target platform and the used compilation options. KVM
performance on embedded devices is not satisfactory. In fact, it is established that
KVM runs from 30 to 80% of the speed of a JVM without a dynamic compiler [141].

Due to resource limitations of embedded devices, many features of Java were omit-
ted/redisigned in the KVM. For instance, the floating operations consume a lot of power
so they were removed. Notice that recent versions of the CLDC specification (since ver-
sion 1.1) include the floats. Naturally, this comes with a memory footprint and power
cost.

Bytecode verification is one of the JVM features that were redesigned in KVM. In
fact, the traditional bytecode verification requires an important memory space that is
not convenient for embedded devices. This is due to heavy data flow analyses that
are performed dynamically. Java Verification is dispatched in two steps: a static pre-
verification step and a dynamic lightweight verification step. Figure 2.7 outlines the
relation between the static (offline) and dynamic (online) verification steps and also the
interaction between some of the KVM components.

22

Java Application
Offline v Online
Preverifier v
- Loader B Verifier Interpreter

A

y
Romizer (JCC)
[
Y
Embedded Device

Figure 2.7: Interaction between some components of the KVM

In the sequel, we give an overview about the main KVM components.

Class Loading

The class loading process consists of loading Java system classes and user classes. The
result of the loading process is the creation of constant pools of the loaded classes.
These constant pools contain information that are used at the execution step such as
typing information, fields and methods information.

At run-time, class loading consumes a lot of memory. To avoid the loading overhead,
Sun offers in the KVM, a way to pre-load the classes. In fact, a romizing tool translates
Java classes into C structures that contain all the information about the compacted
classes. These structures are stored in ROM. So, the loading process is accelerated and
a considerable RAM memory space is saved. The romizing tool is composed of two
components: a Java Filter and a Java Code Compactor (JCC). The Java filter gets as
input a Java application and Java APIs then computes the required fields and methods
to be used. This allows to avoid loading unnecessary fields and methods. Then, JCC
generates a file romJava.c that contains the C structures corresponding to the filtered

23

classes. Finally, the object code of this file is linked to the KVM object code. The
romizing process is outlined in Figure 2.5,

Application and Java classes

}

Java Filter

Required Fields and methods
Y

Application and Java classes =~ ——=| Java Code Compact

v romJava.c

Native Compiler

romJava.o

Y

KVM Object Code
API Object Code

Y

Native Linker

l

Romized-KVM executable

Figure 2.8: Romizing process

The CLDC specification does not allow user-defined class loaders. The rationale
behind this is to prevent security flaws. This decision is one of the global strategy of
the sandbox security model of J2ME. In this model, the applications are executed in a
restricted environment so they can use only non-critical resources.

Class Verification

The JVM class verification process is not convenient for the KVM. In fact, the data
flow analysis performed by the verifier requires a lot of memory. In the KVM, the
verification process is dispatched into two steps:

e A pre-verification step: in this step, a data flow analysis is performed. This
analysis collects typing information about program variables. The computed in-
formation is stored in the pre-verified class file.

24

e A lightweight verification step: in this step, a verification of the information stored
in the pre-verified class file is performed.

The dispatch of the verification into two steps makes the verification fast because
the most costly step is performed offline.

Interpretation

The KVM interpretation mechanism is based on two interpretation loops: one slow loop
and another fast one called the main loop. Each loop contains a switch-case instruction.
The fast loop handles frequently executed bytecodes (e.g. arithmetic, load and store
bytecodes). It is made as small as possible to allow compilers to optimize it. The slow
loop is called by the main loop when it encounters an infrequent bytecode.

Another optimization introduced in the KVM consists of the use of Quickened forms
of bytecodes. These bytecodes allow to get quickly some information about the exe-
cuted code from a dedicated cache. For instance, if a call receiver class is not changed
w.r.t a previous call, the method can be extracted directly from the cache without the
need to look for it again in the hierarchy. This situation is related to the bytecode
invokevirtual_fast, which is a quickened form of the bytecode invokevirtual.

The KVM interpretation main loop is depicted in Figure 2.0, The interpreter uses
the KVM stack to save contexts of calling and called methods. The principle of sav-
ing/restoring these contexts is the same as what is presented in section 2.2.2. The KVM
stack layout is depicted in Figure 2.10.

The interaction between the KVM interpreter and the native code is performed via
some basic primitives that allow the manipulation of KVM and native stacks. Tra-
ditionally, a Java Native Interface (JNI) is used in conventional VMs to allow such
communication. However, for security and cost reasons, this mechanism is not sup-
ported in J2ME.

Threading

Thread Synchronization

25

Java bytecodes

Java code
intx=1; Compilation o TCORSLI
: 1 istore_1
inty=2; » 2 iconst_2
intz=x+y; 3 istore_2
4 iload_1
5 iload_2
6 iadd
7 istore_3
8 return

Interpretation

switch(opcode){
Interpreter case aload_0:

Main Loop
case invokevirtual;

Figure 2.9: Interpreter

The KVM implementation supports threading. However some aspects of threading
such as thread group management are not supported. Figure 2.11 shows an automaton
that represents the KVM synchronization model. The automaton shows object locking
states as circles and the state transitions are shown as directed lines connecting the
automaton states. The automaton consists of states A-E, which indicate the locking
status of a given object. The state A represents an unlocked state; the state B represents
a simple locked state; the state C represents an extended state; the state D represents
a monitor state; and the state E represents an exception state. The transitions are
identified with letters: ‘uw’, ‘s’, ‘¢’, ‘m’ and ‘z’. In particular, the letters represent
the following operations: u: set_unlocked; s: set_simplelock; e: set_extended lock; m:
set_monitor; and z: raise_exception.

The interaction of the transition operations is described in the context of a given
object. Initially the object is in an unlocked state A. A set_simple_lock() operation is
performed when a thread attempts to lock the object for the first time. The object’s
locking state changes to the simple lock state B. Further, when the same thread
attempts to lock the same object, which is in the simple locked state B, the object’s
locking state is changed to the extended lock state C'. The object remains in an extended
state C until any different thread tries to lock it further. From any given state, a creation
of a monitor state D can happen when a second thread tries to lock an object while

26

!
~.Operands.. - sp (Top of the KVM stack)
Locals Pointer to local variables inside the frame
SynchObject Pointer to locked object
Previouslp Previous instruction pointer
PreviousFp Previous frame pointer
thisMethod Pointer to the method being executed
ConstantPool e~ cp (Pointer to the current constant pool)
.Locals...
...Params...
- 'this' le— [p (Parameters + Local Variables)
!
i
i

Figure 2.10: KVM stack layout

another thread owns the lock. In this case, a transition from any state to the monitor
D state happens. Exiting from a synchronized method triggers the transition from the
monitor state D or the extended state C' to the state A.

A transition from any given state to any other state is possible with the sole exclusion
of the exception state E. An object reaches the exception state E when an exception
signal is raised. For all other states, i.e., A-D, transition to any other state or to itself
is possible by sending an appropriate transition instruction or signal. The state A is
final since in the case of a normal execution (without exception), any object should be
unlocked.

Thread Switching

The KVM manages thread execution by switching between them. In fact, after
executing a certain number of bytecodes, thread switching can be performed. The
execution environment of the current thread is stored and that of the new thread is
loaded. This rescheduling mechanism is based on a round-robin algorithm. Notice,
that for portability goals, the multi-threading management is platform-independent.

27

1
-
4
f
e /

[
—n

Figure 2.11: Thread synchronization in KVM

Garbage Collection

The garbage collection eliminates unused references in the heap. This helps in avoiding
memory overflow errors. In the JVM, a finalization process is responsible for freeing
memory. However, there is no support for the finalization process in the KVM because
it consumes time, which is unacceptable for limited configuration devices.

Garbage collection in the KVM is implemented through a mark and sweep with
compaction algorithm. This algorithm operates in two steps:

1. The first step consists of visiting the heap and marking all alive objects. A bit is
used to mark each alive object.

2. The second step consists of the removal of unmarked objects from the heap. These
objects are considered unused. However this can create a memory fragmentation
problem. A compaction of the heap allows to avoid this.

28

2.3.2 Mobile Information Device Profile (MIDP)

Owing to the wide range of configurations of wireless devices, Sun has introduced the
concept of a Profile to the J2ME platform in order to address this issue. A profile pro-
vides the libraries to develop applications for a particular type of devices. Specifically,
the Mobile Information Device Profile (MIDP) introduces a set of J2ME APIs that de-
fine how software applications interface with cellular phones, pagers, PDAs, etc., taking
into consideration the screen and memory limitations of these wireless devices. More
specifically, MIDP offers APIs that enable developers to write wireless applications that
use user interface components, I/O and event handling, networking, etc. Interfaces are
built by using/extending a very specific class called Midlet. This class is the equivalent
of a Java applet in desktop and server systerns.

2.4 KVM Reverse Engineering

Our first mission was to understand and extract the relevant functionalities in this VM.
This is not possible with only reading 24,000 lines of C code. Accordingly, we used static
and dynamic analysis tools to investigate the inner working of the KVM. In the sequel,
we present the static and dynamic analysis of the KVM and also the benchmarking of
this VM on an embedded device.

2.4.1 Static Analysis of the KVM

By static analysis, we mean the static investigation of KVM components. We achieved
this by the use of an interesting tool called Imagiz [28]. This tool allows the reverse
engineering of C and C++ code. Moreover, it provides a graphical representation of the
call graph of the analyzed code. Hence, the user can navigate through call links and
discover the possible interactions between the components of an application.

Figure 2.12 presents a snapshot of the Imagix analysis output for the KVM.

Figure 2.1'1 outlines a partial view of the KVM call graph extracted by Imagix. The
call graph shows that the loading and initialization of the main class are performed
first and after that the interpretation starts. Notice that the interpreter can interact
with the loading and initialization components. This happens when a class needs to be

29

loaded or initialized.

2.4.2 Tuning KVM Performance

The intent of the dynamic analysis of the KVM is to know the frequently called com-
ponents. These are qualified as critical ones. Such investigation, helps in focussing our
efforts on the relevant components that should be enhanced.

VTune [1] is a very interesting tool for performing this kind of analysis. By a
dynamic profiling of the KVM, VTune can provide statistics about the time cost of
each function call. A dynamic call graph, where critical functions are colored in red, is
also provided. Figure 2 15 outlines the KVM tuning.

By this analysis, we found that the interpret function is the most critical one. So,
the acceleration of the interpretation is worth to be done. This conclusion comes after
performing the analysis on many applications and specifically on a standard benchmark
called CaffeineMark benchmark. The CaffeineMark benchmark provides five tests:

Sieve: computes prime numbers < 2048.
e Loop: executes many loops.

Logic: executes logical operations (e.g. shift).

String: executes many string concatenations.

Method: executes recursive calls of methods.

e Float: simulates a 3D rotation of objects around a point.

For each test, a score is computed. A higher score indicates better performance. An
overall score, which is a function of individual test scores, is provided in order to allow
the comparison of several VM performance. This standard benchmark is used later to
evaluate our acceleration techniques.

30

2.4.3 Benchmarking the KVM on Embedded Platforms

In order to evaluate KVM performance in embedded devices, we ported the original
KVM to ARM'. We had extended the KVM to support floats. The main goal is to know
KVM performance on these devices. This is done by executing CaffeineMark on this
ported KVM in a Compaq IPAQ PDA that is running Linux. Figure .13 outlines KVM
performance on this device. As shown, the floating score is very low. This explains why
floats are not supported by the first CLDC specification (version 1.0). '

2.5 Conclusion

In this chapter, we provided a quick overview of Java fundamental concepts. We pre-
sented the embedded Java platform (J2ME), which is designed for resource-constrained
devices. Particularly, we gave some technical details about the design of the KVM
and its main components. The next chapter is devoted to the related work about Java
acceleration techniques.

LARM is the architecture of most of the embedded devices

31

_‘ Py

e 1 Bt
i e B

£ WO 3T B DUTEID WL M

Sest) e et 4
e L
TR R LIRS AR

VI e

Ul = TME e

neads e sl WY ad

=

e S L e o i T 1=}

Figure 2.12: Snapshot of KVM analysis in Imagix

-

KVM Performance on IPAQ

Sieve Loop Logic String Float ~ Method Overall
Tests

Figure 2.13: KVM scores on an IPAQ

1 Loading
StartTVM . getClass | loadClassfile |«
callsr 2 Threading, Initialization and Verification
KVMStart | initializeThreading intializeClass » verifyClass

3 Interpretation

Tnterpret

Figure 2.14: Partial view of the KVM call graph

Q17 2Indt

1 INAM

urun

G KVMORGX - ¥Tune(TM) Performance Analyzer - [Call Graph Display of E\KVHORGADEBUG ¥Tune \EGREGIDAPRE] . R s, ' =i} x]

T ple Bt Bun Yew fosert Configws Window bel _ =igf2xi

miﬁlﬂl Ej wan32 Cab Graph Proting =]

D D RG

i1 <D CaliGeapin Beovoons
B Caligraph 01 (PID=00}
Cheonciogias

taf g Samplng Seanon:
i g Static Code Anshyis
S Syutems

Fieady

{55

Chapter 3

State of the Art of Java
Acceleration Techniques

3.1 Introduction

The intent of this chapter are twofold: first present a taxonomy of Java acceleration
techniques and second exhibit the issues facing the acceleration of embedded Java plat-
forms.

Particularly, we give insight into the dynamic compilation as a relevant acceleration
technique for embedded Java platforms. Then, we detail a plethora of optimization
techniques implemented by dynamic compilers (called also Just In Time compilers)
and highlight their strengths and weaknesses. finally, we exhibit dynamic compilation
challenges in the embedded context.

It is worth to mention that the related work about concurrency models is detailed
in chapter 0.

3.2 Taxonomy of Acceleration Techniques

There are two main techniques for accelerating Java Virtual Machines: hardware and
software acceleration.

35

3.2.1 Hardware Acceleration Techniques .

In the sequel, we provide the available information about hardware acceleration of
Java. These information are not very detailed and are generally available in web sites
of companies or white papers. This is due mainly to the commercial goals of the
acceleration projects.

JSTAR Interpreter

The JSTAR Nazomi’s interpreter [27] is an on-the-fly interpretation engine that gener-
ates native code from bytecodes. JSTAR supports 159 bytecodes directly in hardware.
JSTAR sit in the instruction decode path and translate Java bytecodes, on the fly, into
the native code of the target host. JSTAR’s interpreter takes over the main interpreta-
tion loop and, where appropriate, passes control back to the VM. To allow this, Nazomi
rewrites the VM by introducing a call back table. When JSTAR encounters a Java byte-
code that does not belong to the 159 supported bytecodes, it performs a call back to
a VM function. This is generally dedicated to complex bytecodes like invokevirtual
since these bytecodes are complex and consume a lot of energy if they are executed
directly in hardware. JSTAR’s performance is validated using the industry standard
Embedded CaffeineMark benchmark [118]. Individual Embedded CaffeineMark tests
run up to 10 times faster with JSTAR than on the standard KVM.

Jazelle Interpreter

The ARM Jazelle interpreter [7] is tied to ARM architecture. This makes it different
from JSTAR, which is able to work with any CPU. Like JSTAR, Jazelle translates
bytecodes, on the fly, into native code. In Jazelle, 140 bytecodes are supported di-
rectly in hardware. In addition, two instructions are used to switch between the native
state and the Java state. Jazelle technology removes the interpretation loop from the
VM and replaces it with ARM’s propriety support code. According to ARM, Jazelle
increases Java application performance by a factor of 8 compared to an equivalently
ARM processor executing Java.

36

JVXtreme Hardware Accelerator

The Insilicon JVXtreme [63] is a Java processor that decodes bytecodes and executes
them as well. JVXtreme handles 92 bytecodes directly in hardware and, like Jazelle
and JSTAR, it leaves the other bytecodes (more complex ones) for software execution
on the host CPU. When JVXtreme encounters an unsupported bytecode, it calculates
a jump address and passes control back to the host CPU. JVXtreme has an instruction-
folding mechanism that looks for situations in which several bytecodes can be executed
in the same cycle. JVXtreme performance is estimated to 15 times over a Java software
interpreter.

Chicory Systems HotShot Engine

The Chicory Systems HotShot engine [24] implements a hardware-based Just In Time
compiler (JIT). Like the other three implementations, Chicory HotShot handles a subset
of the Java bytecode (148 bytecodes) directly in hardware, leaving the more complex
bytecodes for software execution on the host CPU. The HotShot architecture supports
"Quickened bytecodes”. These bytecodes allow a fast execution since they capture
information that allow to avoid reference resolution. Chicory HotShot increases the
execution speed of Java applications by a factor of 25 times on embedded devices.

Zucotto’s Xpresso Processor

Zucotto Wireless [91] has developed a Java processor called Xpresso. Like the other
hardware accelerators, Xpresso supports only a subset of bytecodes directly in hard-
ware. When the Xpresso processor encounters one of the unsupported 56 bytecodes,
it yields control to a software module, which executes the Java instruction. To allow
direct memory access and to improve virtual machine performance, Xpresso implements
some custom bytecodes. Moreover, Zucotto includes an efficient hardware support for
garbage collection. It is worth to mention that Zucotto put a high priority on power
consumption. Xpresso delivers 20 to 40 times of execution speedup w.r.t the KVM.

In what we presented above, it is clear that hardware accelerators achieve a signifi-
cant speedup of Java execution. However, it remains that their use comes with a high
price in terms of power consumption. This energy issue is really damaging especially
in the case of low end mobile devices. Moreover, the cost (royalties, licensing, etc.) of

37

these hardware acceleration technologies is an additional obstacle to their wide adoption
by the industry.

These drawbacks of hardware acceleration created an interesting and challenging
niche for software acceleration of embedded Java virtual machines. Software accelera-
tion techniques are classified in three categories: ahead of time compilation techniques,
general optimizations and dynamic compilation. These techniques are detailed in what
follows.

3.2.2 Ahead of Time Compilation (AOT)

Ahead-of-Time compilation is a compilation technique that is applied before the exe-
cution. This allows to perform traditional time-consuming optimizations such as in-
traprocedural /interprocedural data-flow analyses and optimizations. Consequently, the
generated code is of high quality. AOT compilers are classified in two subcategories:
translators and direct compilers.

Translators

Translators perform the transformation of application code into an intermediate high
level programming language. Because C compilers allow several optimization techniques
and are available for almost all the platforms, many bytecode-to-source compilers use
C as an intermediate high level language into which Java bytecodes are translated.
An example of such translators is Toba, which speeds up Java execution by a factor
between 1.5 and 4.2 [106]. Toba has its own object layout and its own threading,
exception and garbage collection mechanisms. The main drawback of Toba is that it
does not support the interaction with the Java interface since all the classes, including
APIs, are translated into the C language. Moreover, the translation of all Java classes
induce a high memory footprint, which is not acceptable in embedded devices. Another
drawback consists of supposing that all the classes are available at execution, which is
not always true because a Java application can load at execution time a class from a
distant website.

38

Direct Compilers

Direct compilers translate application code directly to native code. TurboJ [134] is an
example of a direct compiler for Java. This compiler does not generate a standalone
binary code. Instead, it generates native code that will interface with a Java Virtual
Machine. TurbolJ selects some classes for compilation in order to reduce the size of
the generated code. By doing so, the required memory space for storing this code is
reasonable.

TurboJ performs offline optimizations before generating a binary code. These op-
timizations include transforming method calls to direct calls when the call receiver is
known and replacing a method call by its code (inlining). The results show that TurboJ
speeds up Java execution by a factor of more than 10 times.

As aforementioned, there are three main disadvantages of AOT compilers:

1. The memory footprint entailed by these compilers is important even if a selective
compilation technique is used. In fact, by compiling an entire class, some of the
compiled methods are not really invoked. Hence, their compilation induces a time
overhead.

2. They can not optimize dynamically-loaded classes since the compilation is per-
formed offline. Moreover, in an offline mode, the application source code is not
always provided so it is not reasonable to suppose that the code (or part of it)
is available before the execution. Nevertheless, this technique can be relevant for
Java APIs.

3. The generated executable code is not always portable. In fact, the platform is
not known in advance. Alternatively, a dynamic compiler has the advantage to
be able to detect dynamically the target platform and generate a convenient code
for this platform.

3.2.3 Dynamic Compilation

The dynamic compilation technique consists of the dynamic translation of a source
code into native code. For Java, this technique can improve considerably the execution
time. In fact, the stack-based representation of Java bytecodes relies on many stack
manipulations. The values of the variables are loaded from/into the stack frequently.

39

These operations make the interpreter slow. On the other hand, the native code is
register-based. Consequently, the translation of Java bytecodes to native code speeds
up the execution of the translated code.

JIT compilers try to get the best tradeoff between code quality and acceleration. In
fact, getting a code that uses the minimum number of machine registers needs perform-
ing variable liveness analyses. These analyses are expensive. Avoiding these analyses
offers a fast compilation but provides a native code that use many memory load and
store operations (called also a spill code). To give an idea about JIT compilation, we
present in the sequel some important definitions.

Intermediate Representation

Most of JIT compilers generate an Intermediate Representation (IR) from the appli-
cation code. For Java, the bytecode representation is not convenient for performing
data flow analyses and optimizations. An IR like a three-code address representation
is easier to analyze.

Register Allocation

JIT compilers face a problem that traditional compilers must solve. This problem is the
register allocation, which is performed at the code translation step. Register allocation
is the process of allocating machine registers (or physical registers) to variables. Since
the number of machine registers is finite, the problem of allocating the minimum number
of registers to the maximum number of variables is similar to a graph coloring problem
[23].

Dynamic Compilation Techniques

There are two known dynamic compilation techniques: a traditional JIT compilation
[40] and a dynamic selective compilation technique [78]. In the traditional JIT compi-
lation technique, a method code is translated into native code at the first invocation of
this method. This technique could increase considerably the memory overhead when
the application code to be compiled is huge. Moreover, a compilation time overhead is
introduced when useless code is compiled.

40

The selective dynamic compilation technique avoids the compilation of rarely in-
voked methods by selecting the methods that are frequently called. This technique had
proven its relevance because it is time and memory-space aware. The main important
components of a dynamic selective compiler are: a profiler, a compiler and a cache
manager. In what follows, we present the role of each component.

Profiler

The main profiler task is to predict on which pieces of code the program spends most of
its time. For this end, the profiler must be able to monitor and trace events that occur
during runtime, to set the cost of these events and attribute the cost of these events to
specific parts of the program [71].

Hence, the profiler uses the past to predict the future and, the more prediction is
made early, the more the JIT compiler is efficient. Indeed, if the profiler is too timid in
its decision making, it may miss good opportunities for optimization. There are three
categories of profilers: time-based, counter-based and sample-based.

e Time-based profiler

A time-based profiler records the time spent in each method. Instrumentation
instructions are inserted in calls, returns, throws and catches. These instructions
check the current time and add it to the appropriate method. Once, a method
reaches a pre-established time threshold, it is considered to be frequently called
(known as hotspot). The advantage of time-based profiling is its completeness in
the sense that all methods appear in the profile. However, the major disadvantage,
is the overhead introduced in both, time and code size, by instrumenting instruc-
tions. This disadvantage reduces considerably the use of time-based profiling in
dynamic compilation systems.

e Counter-based profiler

A counter-based profiler allocates an invocation counter to each method. At
the beginning of the execution, all invocation counters are initialized to zero.
Whenever a method is invoked, the corresponding counter is incremented. The
invocation counter is incremented on method entries and backward branches (loop
iterations). The advantage of counter-based profiling is its completeness and
accuracy. The disadvantage is the overhead caused by counters update and the
issue of choosing thresholds.

41

e Sample-based profiler

This profiler samples the running application periodically (every 10 milliseconds
in several systems), when the application reaches predefined points. These points
are method entries and loop back-edges. A possible strategy to attribute samples
to methods is the following:

— When the sample is taken on a loop back-edge, it is attributed to the method
containing the loop,

— When it is taken on a method entry, it is attributed to both the calling and
the called method.

Another strategy to sample the running application consists of traversing the Java
stack periodically in order to see which methods are currently executed. Samples
are attributed to these methods. Then, methods are ordered according to the
number of samples attributed to them. Once, the number of samples exceeds a
pre-established threshold, the method is considered to be frequently called. An
important advantage of this type of profiling is the reduced overhead. Indeed,
there is no need to instrument the code at each method entry or loop back-edge
and sampling can be triggered periodically. However, the disadvantage of sample-
based profiling is its incompleteness since it is possible for a method to be executed
but never being sampled.

Compiler

The compiler is responsible for generating native code from Java bytecodes. The compi-
lation unit can be a method or a fragment of code. If the compilation unit is a method,
then the cache can be quickly saturated. On the other hand, if the compilation unit is
a piece of code, then the cache capacity can be better exploited but the detection of fre-
quently used fragments is more complex. Since memory space is limited, the generated
code is saved in the cache for future calls.

Cache Manager

A cache structure is needed for storing the compiled code. The compiled code typically
resides in the heap. So, it can be removed by the garbage collection like any other object.
The cache manager is responsible for managing the native code in the memory. Since
the cache size is limited, the cache manager must select some elements to remove. This

42

selection depends on many parameters such as method size, compilation time and future
calls of this method. Consequently, a cache replacement policy is required. In the sequel,
we present some known algorithm for memory page replacement in operating systems.
These algorithms can be applied to cache management for Just-In-Time compilers.

1. First-In-First-Out (FIFO) Algorithm: it takes into account the chronological order
of the element storing. Thus, when the cache is full, the element to be removed
is the oldest among those currently in the cache.

2. Optimal Algorithm: it replaces the element that will not be used for the longest
period of time. This algorithm is used mainly for comparison studies. In partic-
ular, it is used as benchmark in order to compare other algorithms. In fact, this
algorithm is not achievable in practice because it requires a perfect knowledge of
the future (the entire list of elements that will be referenced).

3. Least-Recently-Used (LRU) algorithm: it takes into account the chronological
order of the use of the elements. In fact, it replaces the element that has not
been used for the longest period of time. It is an approximation of the optimal
replacement algorithm since it uses the past behavior as a predictor of the future.
A time of the last use is associated to each element. Hence, this information has
to be updated each time an element is referenced.

4. Second chance Algorithm: this algorithm is an enhancement of the FIFO algo-
rithm. It uses a FIFO queue. A reference bit is set whenever the element is
referenced. To replace an element when a cache miss occurs, the FIFO algorithm
is run but the reference bit of the oldest element is inspected. If it is 1, the element
is put at the bottom of the list and the reference bit is reset. Hence, it is given a
second chance. Else, if it is 0, the element is old and not used, so it is replaced.
The goal of the second chance algorithm is to keep recently used elements in the
cache.

3.2.4 General Optimizations

General optimizations aim to accelerate several JVM features such as threading, method
lookup, garbage collection and interpretation. In the sequel, we present the motivation
behind accelerating each feature and how it can be accelerated.

43

Threads Synchronization

Java threads synchronization mechanism leads to a potential performance overhead.
In fact, Java libraries are implemented in a thread-safe manner (by lock and unlock
primitives), so the synchronization mechanism degrades considerably the application
performance, particularly for mono-threaded applications. In this case, the synchro-
nization mechanism is not appropriate because there is only one running thread. In
Java, the synchronization mechanism is provided through monitors that give exclusive
access to shared data. This structure contains some information about object lock states
that have to be stored in the object header. Hence, an additional per-object state (for
lock and unlock operations) and at least two words (sometimes three) of object header
space are needed.

A known optimization technique [33] called Thin Locks implements monitors in a
lightweight manner. A minimum set of instructions is used to perform lock operations on
objects. Besides, a compact memory representation of a monitor allows to minimize the
memory footprint. This strategy allows to accelerate the acquisition and the liberation
of the lock.

Other research initiatives [12] showed that object header compression techniques can
improve run-time performance. Particularly, a good object model design is required to
speed up the synchronization mechanism.

However, the main disadvantage of these techniques is that they require the change
of the object layout, introducing hence changes in other virtual machine components.

Method Lookup Acceleration

Java, like any object oriented-language, uses a dispatch mechanism to implement method
calls. In this context, the selection of the appropriate method to execute is based on
a lookup mechanism. In fact, the actual method to be executed after an invocation is
determined dynamically. This lookup is based on the type of the call receiver, the class
hierarchy and the method inheritance or overloading schema. If the receiver class im-
plements a method that has the same signature as the called one, the found method will
be executed. Otherwise, the parent classes will be checked recursively until the searched
method is found. If no method is found, an error is signaled (MsgNotUnderstood). This
algorithm is called the Dispatch Table Search [54] (DTS). It induces an expensive cost
while probing classes that did not implement a called method. This overhead is up

4

to 29% of the total execution time of an application [21]. Hence, there is a need to
speedup up the lookup mechanism. Accordingly, static and dynamic techniques were
proposed to minimize the method invocation overhead.

Selector Table Indexing (STI) is a static technique for the acceleration of the method
lookup mechanism. It works as follows: given a class hierarchy of C'classes and S method
names (called selectors), a two-dimensional array of CxS entries is built. Classes and
selectors are given consecutive numbers on each axis and the array is filled by pre-
computing the lookup for each class and selector. An array entry contains a reference
to the corresponding method or to an error routine. These tables are computed for the
complete application. The main drawback of STT is that space requirements are huge for
a big application. Hence, many dispatch table compression techniques were proposed
(Selector coloring, Row displacement, etc.) to minimize space waste. Moreover, this
technique is very sensitive to changes in the class hierarchy. Changes in the hierarchy
makes the previously computed table inaccurate.

Dynamic techniques consist of caching results of previous lookups, thus avoiding
other lookup operations. The main approaches to caching are: global caches, small
inline caches and polymorphic inline cache.

The global cache technique stores previous lookup results. In the global cache table,
each entry consists of triplets (receiver class, selector, method address). The receiver
class and the selector are used to compute an index in the cache. If the current class
and the method name match those in the cached entry at the computed index, the
code at the method address is executed. Hence, unnecessary method lookup is avoided.
Otherwise, a default dispatching technique is used and at the end of this search, a new
triplet is added to the cache table and control is transferred to the found method.

The inline cache technique consists of caching the result of a previous lookup
(method address) in the code itself at each call site. Inline cache changes the call
instruction by overwriting it with a direct invocation of the method found by the de-
fault method lookup.

Polymorphic inline cache is an extension of the inline cache technique. The compiler
generates a call to a special stub routine. Each call site jumps to a specific stub function.
The function is initially a call to a method lookup. Each time the method lookup is
called, the stub function is extended.

The main drawback of caching techniques is that a frequent changes of the call

45

receivers induce frequent update of the cache.

Garbage Collection

The garbage collection mechanism manages allocation and deletion of objects. There
are two main categories of garbage collection algorithms: reference counting and tracing,

Reference counting algorithms use counters that are associated to memory cells.
A memory cell counter is incremented when the memory cell is used and decremented
otherwise. When the counter reaches zero, the memory cell is freed and can be allocated
to new created structures.

Two known tracing algorithms are deployed in JVMs:

e Mark and sweep algorithms: garbage collection is performed in two steps. The
first step is for marking alive objects. In the second one, unused objects are
removed from the memory. Then a possible compaction of the heap can be per-
formed.

e Generation-based algorithms: in these algorithms, mainly two generations are
used: old and new ones. The old generation contains the objects before allocation
and the new generation contains just those newly created. A copy of alive objects
from the old to the new is performed. Remaining objects in the old generation
are removed. The new generation becomes the old one for further allocations.

In embedded platforms, memory space is limited. This makes the use of generational-
based algorithms inadequate. Mark and sweep algorithms use just a bit to mark each
object while counting algorithms use an integer. This makes the mark and sweep algo-
rithm more convenient for embedded platforms. Notice that this is the algorithm that
is implemented in the KVM.

Interpreter Acceleration

Java applications take more than 60% of their time in interpretation. It is clear that
without a fast interpreter, the execution is slow. Accelerating the interpretation mech-
anism has been and is still a focus of interest for many researchers.

46

Generally a pure bytecode interpreter is a loop embedding a switch-case statement
that dispatches to a sequence of bytecodes. Each switch case value implements one
Java bytecode. This entails a significant overhead. To circumvent this drawback the
use of direct threaded interpretation has been suggested. The latter is is an interpre-
tation technique introduced in the Forth programming language [45]. Thanks to this
technique, the central dispatch is eliminated. Each bytecode of the method being inter-
preted is replaced by an address of a corresponding implementation. In addition, such
an implementation ends with the required dispatch to the next opcode.

The inline threading interpretation technique [101] improves upon the direct thread-
ing technique by eliminating the dispatch overhead within basic blocks. The former
technique identifies bytecode sequences that form basic blocks. A new implementa-
tion is then dynamically created for such sequences by copying and catenating each
bytecode’s implementation in a new buffer. The dispatch code is then copied at the
end. More recently, a ‘preparation sequence” has been proposed [48] to cope with
the difficulties that arise when adapting the inline threading techmique to Java. In
fact, Java's features such as lazy class initialization, lazy class loading and linking and
multi-threading create a conflict with the implementation of inline-threaded interpre-
tation technique.

General optimization techniques can not compete with compilation techniques at
the performance level. This makes them a valuable secondary solution that can work
together with compilation techniques.

3.3 Accelerated Embedded JVMs

The deployment of Java on embedded systems faces different issues due to small devices
features. Among these features, we mention:

e Memory: it is a precious resource on embedded systems. Indeed, cell phones,
PDAs and several embedded devices have an available memory less than 512 KB
to handle the entire Java runtime environment. In fact, the minimum memory
requirements of a small device are: 300 KB of RAM and about 1 MB of flash
and ROM. Specifically, in this context, the available memory size is required to
store application data (heap), subroutines and return information (stack), loaded
classes and possibly buffers of dynamic compilation. Hence, because of severe
memory resource-constraints, the memory footprint for the virtual machine and

47

its libraries have to be minimized.

e Battery life: since battery life affects the extent and duration of mobility, battery
efficiency should be enhanced. This can be achieved by a fast startup and execu-
tion time. Consequently, when the execution is faster, a little power is consumed.

To deploy the Java technology on embedded systems, it is crucial to have Java
acceleration techniques that suite small devices requirements. In this context, many
companies are working to boost Java embedded virtual machines performance and to
reduce memory footprint. Unfortunately, what is published is very limited. All what
we present in the sequel is a summary of available white papers or few publicaﬁons.

3.3.1 Kilo JIT (KJIT)

Sun has produced an accelerated version of the KVM that integrates a small effective
JIT, called KJIT [115]. In KJIT, the compilation process is restricted to two passes
in order to get an effective compilation: a pre-compilation transformation of a subset
of bytecodes then a dynamic compilation of this subset. In the first pass, stack-based
bytecodes are transformed into a simple three-address intermediate representation. This
representation uses new created local variables in order to avoid creating temporary
variables on the Java stack. By doing so, the switching between the Java stack and
the native stack is avoided. The dynamic compilation maps each local variable to a
register. To make this possible, the number of local variables is supposed to be less
than available registers. Another key feature that makes this KJIT effective consists of
having a simple and quick cache management.

However, the first-pass transformation induces an important increase of local vari-
ables number and of the code size (estimated to 30%). Moreover, the proposed solution
is not complete since exception handling, threads rescheduling and garbage collection
are handled at the VM side and there is no consideration of possible exception in the
generated native code for instance.

The KJIT implementation, based on the KVM version 1.0.2, requires only 60 KB
on ARM architecture and it speeds up KVM execution by a factor ranging between 5.7
and 10.7.

43

3.3.2 Sun CLDC HotSpot (Monty)

The Sun CLDC HotSpot [84], called Monty, is a high-performance Java Virtual Ma-
chine for the CLDC configuration. Its architecture and implementation are largely
extracted from the HotSpot implementation for J2SE [78] and adapted to the J2ME
platform. It is designed to achieve a fast bytecode execution while maintaining a very
small device footprint and minimizing the battery consumption. Mainly, Monty uses
an optimized bytecode interpreter and a dynamic selective compiler that translates fre-
quently executed methods into native code. It also uses acceleration techniques dealing
with fast synchronization, compact object layout, good cache behavior (configurable
code cache size), compilation and de-compilation policies and generational garbage col-
lection. Monty is said to be 10 times faster than the KVM.

3.3.3 Insignia Embedded Virtual Machine (EVM)

The Insignia Embedded Virtual Machine (EVM) [62] is a fast configurable and tunable
Java Virtual Machine for its Jeode platform: an accelerated platform designed to meet
the Java specifications for resource-constrained devices. It delivers an optimal balance
of performance with a small memory footprint. More specifically, EVM uses a dynamic
selective compiler, a concurrent garbage collection and a predictable system behavior
that enables developers to optimize memory requirements without compromising per-
formance. In fact, the Jeode platform contains an event monitor and a memory use
analyzer that enable developers to configure and tune the EVM for any kind of em-
bedded devices. While the application is running, the EVM determines which code
fragments are the most frequently executed, compiles them and stores the generated
code into a memory buffer, whose size is configurable. The EVM may recycle the buffer
to optimize performance in the pre-fixed footprint. EVM is said to execute Java appli-
cations, on average, six times faster than interpreted virtual machines with a minimal
memory overhead.

3.3.4 Esmertec Jbed Micro Edition CLDC (Jbed)

The Esmertec Jbed Java Virtual Machine [113] is developed for real-time systems.
It is a Sun certified JVM for small mobile devices. Jbed provides a complete J2ME
runtime environment. Jbed compiles, in an offline step, all the application code to native
code instead of interpreting it. Also, the Jbed’s virtual machine includes a dynamic

49

compilation component called FastBCC (Fast Byte Code Compiler), which compiles on
the fly the loaded classfiles and links them into the application.

3.3.5 Acunia Embedded Virtual Machine (Wonka)

The Acunia Wonka virtual machine [20] is a high-performance virtual machine im-
plementation that runs Java applications which are designed for resource-constrained
embedded systems. It does not require a host operating system unlike other embedded
virtual machines. Its main features are: concurrent garbage collection that enables
efficient use of resources, high availability and effective memory usage by minimizing
fragmentation. Acunia developers are working on the development of a dynamic com-
piler called J-Spot.

The study of embedded VMs shows that there is a little published knowledge about
their inner workings. The main reason is that these VMs are designed for commercial
aims. Hence, a careful investigation of accelerated conventional VMs and mainly of
dynamic compilers for desktop or server class systems is required. The goal of this
study is to know what are the inner working of dynamic compilers and to study their
relevance for embedded platforms.

3.4 Accelerated Conventional JVMs

In this section, we give an overview of the most famous dynamic compilers for conven-
tional VMs that are published so far.

3.4.1 Sun HotSpot

The Sun HotSpot is a JVM [78] that includes two JIT compilers: a server and a client
JIT compiler. The first targets server and desktop systems while the latter is designed
for more resource constrained systems. The HotSpot client and server compiler use a
dynamic selective technique that compiles the frequently called methods on the fly. To
determine frequently called methods, a counter is associated with each method. For each
method call, its counter is incremented. When the counter exceeds a preset threshold,
the method is considered to be hotspot and a compilation request is performed. A

50

thread compiler is responsible for translating a hotspot method. This selective technique
creates a mired mode execution. In fact, an interpreted method could call a compiled
(translated) one and vice versa.

The HotSpot client compiler generates an IR from Java bytecodes. It translates the
instructions of this IR into machine code. The virtual machine runs a Java application
and detects the methods that represent “hot” parts of this program. Computing such
information can increase the interpretation time. However, these information allow
the HotSpot compiler to know what methods to translate. Thus, the time spent to
translate rarely called methods is saved. Both HotSpot compilers perform some common
optimizations that we describe in the sequel. We note that the server compiler uses
more aggressive optimizations than the client.

Method Inlining

Method inlining consists of replacing a dynamic method call by the code of the invoked
method. This technique provides good performance. In fact, the method code allows
to perform optimizations on the fly. In addition, frame creation overhead is avoided.
Method inlining is achieved by using a Class Hierarchy Analysis (CHA) in order to
compute an approximation of call receivers. This technique was designed by Dean et
al. [34]. It uses the static type of the receiver object and the class hierarchy of a program
to compute the possible receiver types of a dynamic call. Let the class hierarchy be that
of Figure 3.1. Let O.m() be a method call where O is a variable and A is its declared
type; so the possible receiver class could be A, B or C. By analyzing the class hierarchy,
we detect that the method m is not defined in the class C nor in B. Hence, the only

B/A m\c

Figure 3.1: Class hierarchy example

possible receiver class is A.

However, method inlining could increase memory requirements. Besides, method
inlining could give erroneous results in the presence of dynamic class loading.

51

Dynamic Deoptimization

Java dynamic loading could make an inlining decision erroneous. In fact, the inlined
method could not be the same as that invoked when a dynamic class loading occurs.
Deoptimization consists of replacing an inlined method with the initial method call.
Only the HotSpot JIT server compiler uses this deoptimization technique because it
induces an important execution time overhead.

Memory Model

The Sun JVM HotSpot proposes a new object memory model in which the access to
objects is performed directly and not through an indirection level. This representation
accelerates the access to objects. Moreover, object headers are represented by two
machine-words while in ordinary JVMs these headers are represented by three. This
optimization enables to reduce memory space requirements. In fact, 8% of space is
saved for most of the applications.

A unique stack model is used for Java, compiled and C methods. The goal is to make
the communication between Java and the native environment efficient. Besides, Java
threads are mapped to native threads in order to profit from the scheduling mechanism
used by the OS.

Register Allocation

The first technique that was designed in compilers to perform register allocation is the
graph coloring. A graph coloring algorithm operates as follows:

e Build basic blocks of an IR-based program and compute live variables at each
instruction.

Build an interference graph. Each node of this graph is a program variable. An
edge links two nodes if they are live at the same time at least at one instruction.

e Coalesce nodes that are sources and targets of copy operations.

Try to find an N-coloring subgraph of the interference graph where N is the
number of machine registers.

52

The HotSpot server compiler uses a register allocation algorithm designed by Chaitin
[23]. The idea of Chaitin is to find a node T' of degree less than N. The interference
graph is N-colorable if the sub-graph, from which the node T" and its edges are removed,
is IN-colorable. This step is recursively applied until all the graph is traversed. The
blocking step occurs when the algorithm can not find a node of degree less than N.
In this case, a spill code is generated (a code that copies a register to a temporary
variable). The interference graph is modified (by removing the spilled registers). This
is repeated until an N-colorable code is obtained. The removed nodes are added in the
reverse order by which they were removed. For each added node, a color (a machine
register) is assigned.

HotSpot Performance

Before presenting the HotSpot performance, we give an idea about a famous industrial
benchmark called SpecJVM98. This benchmark is composed of the following programs:

e _200_check: a test that deals with array creation, public and private access, array
operations and branching operations.

e _201_compress: runs a compressing algorithm.

e _202_jess: runs rules on a set of data. A puzzle should be resolved. The data set
is expanded iteratively by adding a new fact with different literals.

e _209_db: performs some operations on a database.

e _213_javac: runs the javac compiler.

e _222 mpegaudio: decompresses audio files.

e _227_mtrt: this is a raytracer that works on a scene depicting a dinosaur.

e _228_jack: a Java parser generator developed in Purdue University.

For each of the above tests, a score is computed. A test score (called also a spec ratio)
is the result of the division of its execution time under a reference machine (the latter
is a specific machine that was chosen, see [41] for more details) by the test execution
time. A higher score means a better performance. The obtained scores allow developers
to evaluate the performance of a JVM or a Java compiler. The overall performance is
determined by the geometric mean of unit test scores. In some tables, throughout

53

this document, we give execution times instead of giving the scores. In this case, no
geometric mean is presented.

The HotSpot client performance on Solaris/SPARC with 512 MB memory is illus-
trated in Figure i.2. Columns represent scores.

Benchmark Worst Best Interpreter
_227_mtrt 40.9 76.4 11.6
_202_jess 25:1 35.2 11.9
_201_compress 45.1 48.4 4.88
_209_db 12.6 14.4 6.59
_222_mpegaudio 44.6 53.6 7.62
_228 jack 21.0 29.6 17
_213_javac 936 18.8 8.93
Geometric Mean 24.4 34.3 9.09

Figure 3.2: HotSpot client performance

The results show that the HotSpot client is 3 to 4 times more efficient than a JDK
1.3.1 interpreter. HotSpot client good performance come mainly from the profiling
strategy. In fact, only frequently called methods are translated into native code. How-
ever, the register allocation algorithm requires a high memory space since it is based
on a coloring graph algorithm that uses an interference graph. Building such a graph
requires computing liveness information about code variables. Moreover, many steps
are needed to translate Java bytecodes into native code. This is inadequate for power
and memory-constrained systems.

3.4.2 1IBM JIT Compiler

Sauganuma et al. [124] have designed a JIT compiler that performs run-time optimiza-
tions for Java applications. '

Data Structures Optimization

For instance, data structures are modified in order to accelerate their access. The
object layout is modified in order to make the access to it faster. In fact, in the JVM, an

54

Before overriding the method After overriding the method

call imm _ca // static method call | jmp dynamic_call

jmp after_call jmp after_call

dynamic_call: dynamic_call:

load cp, (obj) load cp, (obj) // load class pointer
load mp, (cp) load mp, (cp) // load method pointer
load ca, (mp) load ca, (mp) // load code address
call ca call ca

after_call after_call

Table 3.1: Dynamic call optimization in the presence of dynamic class loading

object is accessed through an indirection level. This indirection level makes the access
to object fields very slow.

Inlining

Inlining is one of the performed optimizations. The inlining decisions take into consid-
eration many factors such as the code length of the inlined virtual method, the existence
of an exceptions table, the number of local variables and of stack variables increased
by the inlining optimization.

Another optimization consists of replacing a dynamic method call with a static one.
This is achieved by using CHA [34]. The main obstacle, as mentioned previously, that
makes this optimization difficult is the dynamic class loading feature of Java. In fact,
the class hierarchy can change dynamically when the virtual machine loads a class that
contains new methods that can override some of the inlined ones. The authors had
adapted CHA to the dynamic class loading issue by changing a static invalid call with
the initial dynamic one. Table 3.1 outlines their solution.

Exception Check Elimination

Some Java dynamic verifications can be avoided in some cases. For instance, a Null-
PointerException check, an array bounds check can be removed by performing some
data flow analyses. For the NullPointerException check, a flag, saying that the
pointer has been tested, is propagated while analyzing the Java code. This flag is

55

tested when a pointer check is required. For array bounds check, a data flow analysis
is required to compute the range set of the array indexes and propagate them through
the program Control Flow Graph (CFG).

Dynamic Compilation

To avoid a high memory footprint (memory requirements), the proposed JIT compiler
performs a selective compilation where hotspot methods are translated into native code.
A counter is associated to each method. An initial value is assigned to this counter.
This value is considered as a threshold. The counter is decreased by 1 when the method
is invoked. A zero value of the counter triggers a translation of the method code into
native code. The IBM-JIT native code generation step is performed as follows: a flow
analysis is performed on Java bytecodes after generating basic blocks. Then, Bytecodes
are converted to an IR called extended bytecodes. An example of an extended opcode
is one that obtains a reference to an array. This opcode allows, by store and load
operations, to access consecutive array elements instead of indexing each element. After
that, some optimizations are performed on the extended bytecodes (method inlining,
exception check elimination, common subexpression elimination, ete.). Finally, the
code translation step is performed at the same time as the physical register allocation
in order to minimize the compilation time. A code scheduling is then performed to get
an optimized code representation. Figure 3.3 outlines the architecture of the IBM-JIT
compiler.

Flow Analysis Loop versioning

Y

Method Inlining Stack Analysis

Y

Exception check
elimination

Native code generation

4

COﬂ'llTIOI':I spba_xpression [Code scheduling
elimination

Figure 3.3: IBM-JIT compiler architecture

The IBM-JIT compiler uses its own strategy to generate native code. In fact, the
Java, code is divided into tiles. A loop is considered as a tile and the code between

56

loops is so. Information about local variables are stored in each tile. Local variables are
ordered by their access counting. The register allocation process does not use a graph
coloring algorithm because it is expensive. It allocates registers to stack variables
first, then to local variables according to their access counting. A circular allocation
algorithm that returns the least recently allocated register is used to assign a physical
register to a variable. In fact, when a new register is needed and there is no available
physical register, a register among those allocated to local variables is chosen and finally
among those allocated to stack variables. This order assumes that stack variables are
frequently referenced so they are checked last. Figure .1 presents an example of a Java
program and the native code generated from it by the IBM-JIT compiler.

Class example { Class example {
int a[]; int af];
void sortTest() { void sortTest() {
for (int i = a.lenght; --i>=0) (intfa[] =a;
for (int j=0; j < i; j++) { for (int i = a.lenght; —i>=0) {
if (a[j] > a[j+1]) for (int j=0; j <i; j++) {
int tmp = a[j]; int *la0 = &la[j];
alj] =alj+1]; int iv0 = *la0;
alj+1] = tmp; intivl = *(la0 + 1);
if (iv0 > iv1) {
} *1a0 =ivl;
} *(1a0 + 1) = iv0;
})
}]
]
t
Original program Optimized pseudocode
BB:
15: aload_4/iload_2/eaddress/estore_5 15: mov eax, [ebx]
lea esi, [ebx + edi*4 + 8]
dec eax
js_throw_out_of_bound_exception
cmp eax, edi

jbe_throw_out_of_bound_exception

Register allocation

19: eaload_5(0)/istore_6 "“‘"l 'l b - 19: mov ecx, [esi]
21: eaload_5(1)/istore_7 Local v:::i ::::(tnrlll:l[ﬁ’ 21: mov eax, [esi+4]
23: iload_6/iload_7/icmp2 30 23; cmp eax, ecx
jee 30
BB:
26: iload_6/eastore_5(1) 26: mov [esi], eax
28: iload_7/eastore_5(0) 28: mov [esi+ 4], ecx
BB:
30: iinc2 1 30: incedi
31:iload_2/iload_1/icmp2 15 31: cmpedi, edx
jlt1s
Optimized extended bytecode Generated native code

Figure 3.4: Code translation in IBM-JIT

57

Performance

The IBM-JIT compiler was tested on the SPECjvm98 benchmark. The comparison
between the IBM-JIT compiler and the Sun’s reference implementation of JDK 1.1.7,
on a machine with a pentium II 350 MHZ and a 512 MB memory, proves the high
performance of the IBM-JIT compiler. The execution time acceleration is more than
50 % for some tests (on Jack and Javac compilers). Figure 3.5 outlines these results.
Higher bars mean higher performance. The results are relative to the IBM-JIT compiler.

1.0
0.9
0.8
0.7
0.6
0.5
0.4

MTRT JESS COMPRESS DB MPEGAUDIO JACK JAVAC

IBM-JIT compiler
JVM SUNJDK 1.1.7

Figure 3.5: IBM-JIT performance

The IBM-JIT compiler performs good optimizations. These optimizations are based
on some data flow analyses. These analyses require a lot of memory. However, in an
embedded context, lightweight optimizations should be designed to fit memory con-
straints.

3.4.3 JUDO JIT Compiler

Ciernak et al. [25] designed a JIT compiler. Their work deals mainly with Java Under
Dynamic optimizations (JUDQ). The compiler architecture is composed of three com-
ponents: a fast code generator, an optimizing compiler and a profiler. Figure 3.6 shows
these components.

The fast code generator produces an unoptimized native code. It operates in two
passes: the first is for building basic blocks, the second one is for performing some

lightweight optimizations and inserting profiling functions.

The profiling data is a collection of method entry points to detect call-intensive

Fast code generator

Unoptimized native

Profiling data
representation

Optimizing compiler

Optimized native

Figure 3.6: JUDO components

58

methods and back edge information to detect loop-intensive methods; the latter are
considered very JIT-sensitive. These data are useful for deciding if the method is

hotspot. In this case, it could be recompiled by the optimizing compiler.

The optimizing compiler is based on some global optimizations. Among these opti-
mizations, copy propagation and dead code elimination are performed. Then, a global
register allocation is performed. In this step, the native code contains just the machine
registers that are available. The code scheduling phase reorders the native instructions
to get a better performance. The structure of the optimizing compiler is depicted in

Figure 3.7.

y

Prepass

Y

IR construction

Global
optimizations

Code expansion

Global register
allocation

GC support

Code emission

Profiling data
representation

Figure 3.7: JUDO optimizing compiler structure

59

Static Optimizations

Some static optimizations are implemented in this work. For instance, array bound
checks can be eliminated if the compiler is sure that the index is inside the array
bounds. This is performed for array access in loops. A simple loop that does not
contain an array bounds check is inserted in the code when the compiler proves that
the index is inside the array bounds range. This loop duplication could trigger a code
explosion.

Inlining is one of the performed optimizations. A method is inlined if it is called
frequently and its code size is not greater than 25 bytes. For further calls, an inlined
method is tested to know if its code is the actual one to execute. A simple equality test
between the virtual table of the receiver object and that of the inlined method class
provides such a decision.

Dynamic Optimizations

Some dynamic optimizations are implemented in this work. A dynamic inline patching
(an inlining that takes into consideration the dynamic class loading problem), a lazy
garbage collection and a lazy exception mechanism are among these optimizations. For
the lazy exceptions mechanism, the exception object is not always created. This allows
to save in some cases the memory space. Removing the exception object creation is
possible only when this creation has no side effects on the variables of the program.

Dynamic Recompilation

A dynamic recompilation mechanism is used to recompile methods that are hotspot.
Two mechanisms are introduced in order to perform such a recompilation: a profiling
mechanism and a thread-based mechanism.

In the first mechanism, the code is instrumented and counters are associated to
methods. The recompilation is triggered automatically when a counter becomes zero.
Choosing the value of a counter is an issue since a low counter triggers the recompilation
of less frequently called methods. A high counter value leads to the recompilation of
frequently called methods and could neglect less frequently called ones.

60

In the thread-based mechanism, a thread scans periodically the profiling information
to know when the recompilation should happen. The drawback of this strategy is that
all the methods are scanned and that a hotspot method could be detected late.

Performance

Figure 3.% shows the JUDO performance. The first column gives the execution times
obtained when running each of row tests by the fast code generator. The second gives
the execution times when the optimizing compiler is included and the last two columns
deal with the execution times when the dynamic recompilation technique is applied.

Fast Opt. Dynamic recomp.

code gen (secs)

(secs) instr. thread

(secs) (secs)

201_comp. 29.30 22.29 22.38 22.47
202-jess 14.04 12.77 12.42 11.89
209_db 34.41 29.78 29.38 29.62
213_javac 21.89 18.91 18.52 16.68
222_mpeg 23.75 19.32 18.58 18.60
227_mitrt 10.99 8.49 7.83 7.94
228_jack 20.23 17.93 17.91 17.14
Total 154.61 129.49 127.02 124.34

Figure 3.8: JUDO performance

The results show that the dynamic recompilation technique gives good results ex-
cept for the first test because the profiling information did not help much to improve
execution time. JUDO has the same disadvantages as the HotSpot and the IBM-JIT,
which concern time and memory requirements.

3.4.4 LaTTe

LaTTe [139] is a JIT compiler that translates a method to native code the first time it
is invoked. The architecture of LaTTe is depicted in Figure 3.9.

LaTTe performs bytecodes translation in five steps:

61

Marking basic , CFG of pseudo-instructions
blocks (SPARC instructions, symbolic
registers)

!

Optimizations (optional)

I

Code generation (register
allocation)

Figure 3.9: LaTTe architecture

1. Branch instructions and basic blocks are computed.

2. A translation of bytecodes into pseudo code (code that uses symbolic registers)
is performed: the pseudo code contains symbolic registers. For instance, the
bytecode iaload n is translated into the native instruction mov il{n}, is{TOP +
1}, which consists of copying the n* variable to the stack. il refers to the local
variables table and is refers to the stack. These are symbolic registers.

3. Some optimizations are performed. This is an optional step.

4, Fast register allocation: the register allocation technique used by LaTTe is effi-
cient. In fact, tree regions are extracted from the CFG of pseudo-instructions.
A tree region is a single entry and multiple exit sub graph. A fast backward
and forward sweep algorithm is performed on these regions to allocate machine
registers to symbolic registers. A CFG of real SPARC instructions is generated
(instructions that use real registers).

5. Native code emission is performed.

Performance

LaTTe performance is presented in Figure 3.10. Columns give the execution times of
several tests in seconds. These tests were performed on a Sun UltraSPARC-IIi 333MHz
processor with 128 MB of memory.

The results show that LaTTe improves the execution speed of the SpecJVM98 pro-
grams by a factor of 4 comparatively with the JDK 1.1 and up to 2 with the JDK 1.2
and the JDK 1.3.

62

SPECjvm98 benchmarks

Benchmark LaTTe(sec) H():::)l J'I():Ll)l]'D(;(elc]SC JD(]:G]L:?S LI/ |1.2/L) 1.3C/L | 1.3S/L
_200_check 4.29 230 355 1.12 3.90(054 | 083 026 091
_201_compress 4236 | 78.95 | 4045 5085 3237 1.86 | 095 120] 076
_202_jess 26.17 | 68.01 | 22.25 24.57 28.21| 260 | 0.85] 094 1.08
_209_db 41.82 | 181.22 | 70.57 63.24 56.16] 4.33 | 1.69] 151 1.34
_213_javac A1.3477167.21 | 4497 4724 8§7.03| 4.04 1.651 114 211
_222_mpegaudi 35.84 | 61.30 | 38.80 54.88 37.82| 1.71] 1.08 153 106
_227_mirt 2260 | 8423 | 2124 36,05 26,11 373 [094] 160 1.16
_228_jack 3152 | 78.30 | 34.88 3261 53.73| 248 | 1.1 1.03 .70

Figure 3.10: LaTTe performance

LaTTe does not use a hotspot strategy, hence needing a high memory footprint.
Moreover, the translation of all the methods is not a good strategy since the translation
time of the less frequent code will decrease the overall performance.

3.4.5 Aware Just In Time (AJIT) Compilation System

Azevedo et al. [10] designed a static compiler, which computes some annotations that
simplify the JIT compiler work. An IR is generated from Java bytecodes. This IR is
a three-address based representation. Some traditional optimizations such as common
subexpression elimination and copy propagation are performed on this IR. The gen-
erated annotations help to perform garbage collection, runtime code optimization and
register allocation.

Among these annotations, we cite Virtual Register Annotations (VRA). An example
of VRA for the iaload opcode is depicted in Figure 3.11. VRA are composed of four
fields: SRC-SRC-EXTRA-EXTRA-DEST. The first field represents the virtual register for the
array address, the second one represents the virtual register for the index, the third
represents the value of the index, the fourth contains the value of the array address and
the fifth represents the virtual register that will contain the array element that is read
from the memory.

An unlimited number of virtual registers is used to perform a virtual register allo-
cation. VRA are used by the JIT compiler to produce native code in an efficient way.
The virtual register allocation process assigns the minimum number of virtual regis-
ters to the most important variables (e.g. the variables that are accessed frequently).
This technique allows to allocate dynamically the minimum number machine registers
to these variables. A run-time register allocation algorithm maps virtual registers to

63

Bytecode Java IR
iaload vp holds array address
vy holds index
1 :ishl vy, "ishift”, va
2 : iadd vs, “arraySizeOffset”, va
3 :aadd Vo, Va, V3
4 :ild (va), va
Annotated Bytecode
Opcode SRC SRC EXTRA EXTRA DEST
iaload Vo vy vy Vi V4

Figure 3.11: VRA annotation for iaload opcode

machine registers. If machine registers are insufficient, virtual registers are stored in
stack temporaries.

The main disadvantage of this technique is that the class file size could be increased
dramatically. Moreover, the time to handle annotations could be high and it is added
to the code compilation time. Besides, the source code of applications is not always

available since code can be loaded dynamically.

Performance

The results are presented in Figure 3.12. Columns represent the execution times (in
seconds). The results show that the execution of the native code produced by the AJIT
compiler for a Java method is 4.83 faster than its interpretation under the JDK 1.1.1

interpreter.

Benchmarks Sun Interpreter AJIT
(secs) (secs)

Neighbour 553.03 115.31
256x256 array
Iterations = 1500
EM3D 359.84 74.51
1250 tree nodes
Iterations = 200
Bitonic Sort 167.05 120.96
1024 tree nodes
Iterations = 512
Huffman 4690.00 1487.00
30000 array nodes
Iterations = 288

Figure 3.12: AJIT performance

64
3.4.6 Jalapeno Dynamic Optimizing Compiler

Burk et al [4] designed a Java JIT compiler called the Jalaperio dynamic optimizing
compiler. Figure .5.13 shows the Jalapenio architecture. This architecture is similar to

that of JUDO.
Baseline/Quick @
Compiler

Unoptimized code .
Bytecode translation

Instrumented Codg Optimized code

Adaptative Optimization
System

Optimizing
compiler

Online
Measurements

Context Sensitive Optimization plan

Profile Information

Controller

Figure 3.13: Jalapefio architecture

The baseline compiler generates an unoptimized native code. The generated code
provides slightly better performance than the interpreted code. The baseline compiler
does not perform register allocation. The Jalapefio compiler uses three IRs:

e A High-level Intermediate Representation (HIR): in this representation, an in-
struction is composed of an operator and a number of operands. An operator
is a reserved word like an opcode. Jalapeno adds explicit operators that are
related to dynamic verifications such as NULL_CHECK that verify if a pointer is
null or BOUNDS_CHECK that verifies if an array index is in a specific range. Ta-
ble 3.2 shows a Java program, its Jalapefio IR and the corresponding optimized
representation. This example shows how the optimized representation removes
unnecessary temporary variables used in the IR representation.

e A Low-level Intermediate Representation (LIR): HIR is translated into LIR, which
is a low-level representation that is specific to the Jalapeno. Some specific opcodes
such as invokevirtual or getfield are translated into some operations that use
explicitly object and method table layout.

e A Machine-specific Intermediate Representation (MIR): a dependance graph is
built from LIR. LIR contains temporaries and local variables. A register allo-

65

Java bytecode | Intermediate Representation | Optimized representation
iload x INT_ADD tint, xint, 5 INT_ADD yint, xint, 5
iconst.5 INT_MOVE yint, tint

iadd

istore_y

Table 3.2: A Jalapeno optimized HIR

cation step is performed on this representation. The priority in allocating ma-
chine registers is given to temporaries that are live just in the current basic block.
Jalaperfio uses a linear scan of the variables liveness range [104] to perform register
allocation. This algorithm is proved to be faster than a coloring graph algorithm.

Jalapeno defines three levels of optimizations:

e Level 0: includes optimizations that are performed when Java bytecodes are trans-
lated into an intermediate representation. Among these optimizations, we cite
constant and copy propagation.

e Level 1: includes more local optimizations such as common subexpression elimi-
nation.

e Level 2: adds more optimizations to the level 1. These optimizations are per-
formed on programs that are in a Static Single Assignment form (SSA). In the
SSA representation, each program variable appears on the left hand side of only
one assignment statement. Many analyses are easier to be performed on the SSA
representation.

Besides, Jalapefio has an architecture for dynamic selective compilation. This ar-
chitecture has three components:

e Runtime measurements subsystem: can support many measurement techniques
such as method call counters, basic blocks and back edges profiling.

e Controller: takes into consideration the measurement information in order to
make decisions about the methods that should be recompiled.

e Recompilation subsystem: it is composed of compilation threads that invoke the
optimizing compiler. This compiler performs a recompilation of the methods that
are chosen by the controller.

66

The recompilation subsystem is composed of:

e Optimization Plan: contains the optimizations to perform.
e Profiling data: contains data that help to perform optimizations.

e Instrumentation plan: contains instrumentation instructions that will be inserted
in the native code.

For Jalapeiio, only the methods that are identified to be hotspot are recompiled. A
counter is associated with each method. At a call site, both counters of the called and
the caller method are incremented. A method counter is also incremented in a back
edge program point. A thread scans method counters every 10 milliseconds. When a
method counter exceeds a threshold, the method is considered to be frequently called.
The recompilation decision depends on some parameters. Let:

e i be the current optimization level.

e j be the level to which a method compilation decision will be taken. We suppose
that § > i. Let m be this method.

e T; be the future time spent by the program if the method m is not compiled.
e C; be the cost in time of recompiling m at the level j.

e T; be the future time spent if m is recompiled at level j.

m is recompiled at level j if C; + T; < T;. The future time estimation of an execution
is an issue. Jalapefio supposes that if a program spends z seconds in execution, it will
spend x seconds in the future. Let P, be the estimated percentage of future time in
a method m and T} the future expected running time of the program. The estimated
future execution time of m is 7; = Ty * P,,. Let S be the estimated speedup at level
k compared to level 0. The future time spent, if a recompilation happens at level 7, is
'I.';,' = T, X S / Sj.

Register Allocation

Jalapeno uses a linear scan algorithm to perform register allocation. This algorithm
has been designed by Poletto and Sarkar [104]. It is more efficient than a graph coloring
algorithm. This algorithm operates as follows:

67

Order the instructions.

e Compute the set of live intervals for the code variables.

Allocate a virtual register to each interval:

— If a register is available then allocation is possible.

— Otherwise, a previously allocated register is chosen. Then, the spill code is
added. This choice depends on the live intervals of the registers.

Rewrite the code according to the allocation:

— Machine registers will replace virtual ones.

— Spill code is generated.

Jalapeno Performance

The Jalapefio baseline compiler is two times faster than the IBM JVM 1.1.8. The
optimizing compiler is as fast as the IBM JIT for this JVM. The high memory footprint
is the major drawback of the Jalapefio compilation strategy. Generating native code
for all the methods (the baseline compiler strategy) is a bad strategy because there is
a waste of time and memory in compiling less frequent methods. However, a one-pass
strategy is interesting for our work since it is an efficient way to generate native code.

3.5 Dynamic Compilation Challenges in an Embed-
ded Context

The studied dynamic compilers for desktop and server systems require an important
space memory to store intermediate representations and native code. The required
memory can go beyond some Megs, which is unaffordable in embedded platforms. An-
other common feature of these compilers, is the need for many passes to perform heavy
analyses. This is time-consuming and harmful for limited-power devices.

We are convinced that there are two key elements for the success of a dynamic
compilation in an embedded context:

68

e The compilation should be efficient. Performing many passes induces a high
power cost and does not guarantee that, in the future, the spent time will be
compensated.

e The compilation should be aware of memory constraints. Compact data structures
should be designed to minimize footprint. Moreover, the compiler size should be
minimized since it is accounted in the global overhead.

For the design and implementation of our embedded dynamic compiler (that we
called E-Bunny), we set the following requirements:

e The compilation should be fast and lightweight. Heavy optimizations are avoided
and the compiler should use the available dynamic information to get a native
code of good quality.

e Because of memory constraints in embedded systems, it is not possible to compile
all bytecodes, so we choose to compile a selected set of methods. Moreover, the
unit of compilation is a method. The rationale behind this is to avoid heavy and
more frequent switching mechanisms when the unit is a set of instructions. Our
design will target Connected Limited Devices (with memory space less than 512
KB) so memory footprint should not exceed 150 KB.

e A cache is used to store the generated machine code. We fixed the maximum size
that the cache can reach to be 64 KB. This is a reasonable size for embedded Java
platforms with 512 KB of available memory.

Our strategy rests on establishing a tradeoff between time compilation and the
quality of the generated code. Detailed technical description of this strategy is presented
in the next chapter.

3.6 Conclusion

We have investigated many dynamic compilers for desktop and server class systems.
The high compilation overhead is the main drawback of these compilers. This is un-
acceptable for embedded low-power devices. Moreover, the memory footprint of these
compilers is high and is surely inappropriate for embedded platforms with less than 512

69

KB of available memory (like J2ME/CLDC). As mentioned above, embedded VM accel-
eration projects were leaded mainly by companies so the state of the art in such research
field is poor. Hence, our first challenge is to accelerate Java in an embedded context
by following two lines: dynamic compilation techniques and general optimizations tech-
niques. These techniques are carefully designed in order to take into consideration
embedded system constraints.

Chapter 4

E-Bunny: A Dynamic Compiler for
Embedded Java Virtual Machines

4.1 Introduction

In this chapter we present an extremely lightweight dynamic selective compiler for
embedded Java virtual machines called E-Bunny. This compiler is built on top of
KVM. The contributions of this work are threefold:

e Our research is the first academic initiative that targets CLDC-based embed-
ded Java virtual machines optimization by dynamic compilation. The remaining
projects such as CLDC HotSpot [84] and Jbed [113] are commercial.

e Qur solution, besides the compilation of all kinds of bytecodes, covers the differ-
ent issues of the integration of a dynamic compiler into a virtual machine such as
multi-threading support, exception handling, garbage collection, switching mech-
anism between the compiler and the interpreter modes, etc.

e Qur solution is efficient. It allows to improve the KVM performance by a rate of
400% while the memory footprint overhead does not exceed 138 KB.

71

4.2 Architecture

E-Bunny is a dynamic selective compiler for embedded Java virtual machines that uses
as its foundation the KVM. In this section, we present the key features that make E-
Bunny an appropriate Java acceleration technology for embedded systems. The major
features of E-Bunny are:

e Reduced Memory Footprint: the footprint resulting from the integration of
the E-Bunny dynamic compiler does not exceed 150 KB. The key idea of reducing
the code size of E-Bunny is carried out by merging the compilation processing of
some bytecodes. This is possible because several bytecodes have common pro-
cessing (e.g. invokespecial, invokevirtual). This strategy is applied mainly for some
quickened forms of bytecodes [72](e.g. getstatic, getstatic_fast, getstaticp_fast, get-
static2_fast).

e Selective Compilation: since dynamic selective compilation is the most ad-
equate compilation-based acceleration technique for embedded systems, it was
adopted in E-Bunny. Only a subset of methods is compiled. The methods are
selected according to their invocation frequencies. The unit of compilation is ex-
clusively a method. The rationale behind this decision is to minimize the technical
complexity of the switching between interpreted and compiled codes.

e Efficient Stack-Based Code Generation: for the compilation strategy, a
trade-off has to be made between the compilation cost and the generated code
quality. Although a register-based code is more efficient, we do not generate such
code because it requires more passes over the bytecode and increases consider-
ably the compilation time. In E-Bunny, we generate a stack-based code because
it requires only one-pass over method bytecodes. Thus, a one-pass code genera-
tion strategy is adopted, without using neither intermediate representations nor
heavyweight optimizations. Only optimizations that might be applied in one-pass
are allowed.

e Multi-Threading Support: another challenge introduced by dynamic compi-
lation is the multi-threading support. Conventionally, each thread has its own
execution stack. Since our approach uses two kinds of stacks, each thread is as-
signed two stacks upon its creation: a Java stack to interpret methods and a
native stack to run compiled ones. For the Java stack, we keep the KVM man-
agement strategy in which the KVM allocates the Java stack in the heap and
manipulates it at a software level. For the native stack, the adopted approach is

72

A

Execution Engine —Fl One-Pass Compiler |
EEES
|
1 ¥
| Profiler - [Cache Manager |

Figure 4.1: E-Bunny architecture

to organize the native stack as a pool of segments and allocate a segment to each
thread. Thus, the native stack will be shared by all living threads.

e LRU Algorithm for Cache Management: a limited memory space is allo-
cated to the compiled code. When this space is full, a cache strategy based on a
Least Recently Used (LRU) algorithm [74] is adopted to free the necessary space.

E-Bunny architecture is depicted in Figure 4.1. It includes four major components:
the execution engine, the profiler, the one-pass compiler and the cache manager. Ini-
tially, all invoked Java methods are interpreted. During interpretation, a counter-based
profiler gathers profiling information. As the code is interpreted, the profiler identifies
hotspot methods. Once a method is recognized as hotspot, its bytecodes are translated
into native code by the compiler. The produced native code is stored in the dynamic
compiler cache. On future references to the same method, the cached compiled method
is executed instead of interpreting it. In the sequel, we highlight the main components
of the proposed embedded dynamic compiler architecture.

4.2.1 Interpreter

By interpreter, we mean the KVM’s interpreter, which is basically a loop that fetches,
decodes and interprets bytecodes of a given method. E-Bunny adopts a mixed-mode'
execution approach. Therefore, the interpreter cooperates with the native code execu-
tion component to switch between two modes: interpreted and native.

!Execution overlaps between interpretation mode and native code execution mode

73

4.2.2 Native Code Execution Component

The native code execution component is responsible for invoking compiled methods.
Basically, it looks for the corresponding native code in the cache and then executes it.
In addition, this component is responsible of transferring method arguments, if any,
from one stack to the other. More details about this mechanism are given in Section
1.3.2. When the native code of a given method is executed, the cache must be set
up-to-date according to the cache algorithm. The native code execution component
triggers the cache update.

4.2.3 Profiler

A simple counter-based profiler is used in E-Bunny. A per-method counter is incre-
mented each time the method is invoked. A method is considered as hotspot when its
counter reaches a threshold. This threshold is known after running tests on the accel-
erated KVM. These tests allow to know the threshold that gives the best speedup. For
instance, for the CaffeineMark benchmark, the threshold is 200. Consequently, a com-
pilation request is triggered. Our profiling strategy assumes that every method called
by a compiled method must be compiled. So, a compiled method cannot invoke an
interpreted method. The motivation behind this strategy is to reduce the complexity
of the switching mechanism between interpreted and native modes.

4.2.4 One-Pass Compiler

The one-pass compiler is the core component of E-Bunny. It is triggered by the profiler.
Basically, it compiles Java methods to native code. The E-Bunny compiler is extremely
lightweight. It goes through the bytecode in one-pass and generates a stack-based code.
The detailed compilation strategy is described in Section 1.33.1.

4.2.5 Cache Manager

Once a method is recognized as hotspot and compiled, the corresponding native code
needs to be stored in the heap. In E-Bunny, a memory space, called the cache, is
pre-allocated in the heap to store the generated code. The cache is pre-allocated in

74

the permanent space of the heap to avoid any conflicts with the garbage collection
mechanism. Conventionally, the garbage collector does not scan the permanent space.
When the cache becomes full, the cache manager must select elements to remove in order
to free space for newly compiled methods. For this purpose, an LRU algorithm is used.
This algorithm selects the methods that have not been invoked for the largest period
of time and removes them from the cache. A queue is used to keep the chronological
order of invoked methods. This queue is updated each time a compiled method is
invoked. The LRU algorithm does not prevent methods from being recompiled several
times, but our experiments show that using an LRU algorithm reduces efficiently the
re-compilation rate.

4.3 Design

In this section we discuss the design issues of E-Bunny. First, we detail the compila-
tion strategy. Second, we focus on a delicate aspect of dynamic selective compilation,
which is the switching mechanism between interpreted and compiled modes. Then, we
illustrate how E-Bunny supports multi-threading. Finally, we describe the interaction
with the garbage collection mechanism.

4.3.1 Compilation Strategy

Our compilation strategy spans over a lightweight one-pass compilation technique. This
strategy avoids complex computations performed by common compilers and generates a
code of reasonable quality. Indeed, the generated code is stack-based as Java bytecode
but uses many information computed at the compilation step (field offsets, constant
pool entry address etc.). These information are grafted in the generated code in order
to avoid unnecessary further re-computation.

Compiling a method goes through three steps. First, generating context saving
instructions (the prologue). Second, translating bytecodes into native code instructions.
Third, generating context restoration instructions (the epilogue). The second step,
which is the core step of our compilation strategy, consists of translating each bytecode
into a sequence of native instructions. We distinguish two categories of bytecodes. The
first kind includes bytecodes that are completely translated into native instructions in
a straight manner. They are called: simple bytecodes. The second kind of bytecodes
are more complex to translate and are called complex bytecodes. E-Bunny targets Intel

75

//saving old value of EBP on the native stack
push EBP

/ /setting the new value of EBP

mov EBP, ESP

//CurrentThread->LastEBP = EBP

mov EAX,&CurrentThread->LastEBP

mov [EAX], EBP

Figure 4.2: Context saving

[A-32 architecture [29]. This version was successfully ported to ARM architecture by
another member of the team [11]. IA-32 is a 32 bit CISC machine, which provides eight
general purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP). EBP and ESP
are dedicated to stack management. The remaining registers fulfill different other tasks.
Hence, compiling a method consists of generating assembly instructions that reproduce
the bytecode behavior on an IA-32 platform.

Context Saving and Context Restoration

Context saving and context restoration instructions are used to re-establish a calling
method context after the execution exits from a called method. Context saving in-
structions figure on top of the method generated code. They carry out three basic
operations. First, save old EBP register value (of the calling method) on the native
stack. Second, assign a new value to EBP register (of the callee method). Third, assign
the new value of EBP to LastEBP field of the current thread structure (Current Thread-
> LastEBP =EBP). Actually, LastEBP is a new field added to the thread data structure
in E-Bunny. It gives for each thread the EBP value of the last called compiled method.
This information is used for two purposes: '

1. Garbage collection: the object references in the native stack should be checked
when a garbage collection happens.

2. Exception handling: exceptions could be propagated from a compiled method to
another one.

Context saving instructions in E-Bunny are illustrated in Figure 4.2

Context restoration instructions figure on the end of method generated code. Since
all Java methods finish by a return bytecode (ireturn, Ireturn, areturn or return), con-

76

/ /restore the old value of EBP register
mov ESP, EBP

pop EBP

//CurrentThread->LastEBP = EBP
mov EAX,&CurrentThread->LastEBP
mov [EAX], EBP

Figure 4.3: Context restoration

iload (0x15)
Description: Load integer from local variable
Format: iload <index>
Corresponding Assembly Instructions :

push [EBP + 4 * (<FrameSize> - <index> + 3)]

Figure 4.4: iload bytecode translation

text restoration instructions are generated when translating return bytecodes. Context
restoration instructions carry out two operations. First, restore the old value of EBP
register (saved on the native stack). Second, assign this value to LastEBP field of Cur-
rentThread data structure. Consequently, when returning to the calling method, the
EBP register and CurrentThread->LastEBP are set to the appropriate values. Context
restoration instructions in E-Bunny are illustrated in Figure 4.3.

Simple Bytecodes Translation

The simple bytecode category includes loads (e.g. iload, iaload, Idc), stores (e.g. as-
tore, lastore), stack manipulation (e.g. pop, dup), arithmetic, logic and shift (e.g. iadd,
land, ishr, 12i) and branching (e.g. ifne, if-icmpeq, goto) bytecodes. These bytecodes
are directly translated into a stack-based native code, which reproduces the interpreter
behavior on the native stack. As an example, we give the translation details of two
bytecodes: iload and ifeq. We have selected a stack manipulation bytecode (iload byte-
code) to show how it behaves on the native stack and a branching bytecode (ifeq) to
illustrate how E-Bunny translates forward branching instructions in one-pass.

Stack Manipulation Bytecodes Translation

The bytecode iload loads an integer (32 bit value) from a local variable to the top
of the stack (stack operand). It is directly mapped to a push instruction as shown in
Figure 4.4. Note that the symbols “[]” denote the content of the specified register
and the FrameSize variable is an integer that gives the number of local variables of the

77

local Local var [—
variabl !
method space 1
frame space 2 iload
EIP
EBP
operand 1
stack - stack‘
1 Local var [growing
ESP direction

Figure 4.5: iload on the native stack

current method. The value 3 in the offset of the push instruction denotes the space,
in bytes, left for EIP register and for two empty spaces for the returned value (space 1
and space 2) as illustrated in Figure 1.5.

Control Flow Bytecodes Translation

An important issue of the one-pass translation strategy is how to deal with control
flow bytecodes (or branching bytecodes). In the sequel, we highlight this issue and how
it is processed in E-Bunny.

Control flow bytecodes are translated using a bytecode map table called BCNa-
tiveMap. It is an integer table that maps each bytecode index to its corresponding
native instruction index. For instance, BCNativeMap[5] = 31 means that the native
instructions corresponding to the fifth bytecode start at index 31 in the NativeCode
table. A BCNativeMap table is associated with each compiled method. It is initialized
to zero and filled progressively when the translation of the method is being performed.
At a given moment of the translation, the BCNativeMap table is filled for the scanned
bytecodes and empty (zero values) for the rest.

When we deal with control flow bytecodes, there are two situations that should
be handled: forward branches and backward branches. The translation of backward
branches is simple. In fact, the BCNativeMap table is used to get the target native
instruction index and then to generate the corresponding jump native instruction. How-
ever, the translation of forward branches is more complex. Indeed, the corresponding
BCNativeMap entry of a forward branch is not resolved yet (contains zero) since the
target bytecode is not compiled yet. The complete translation of the forward branching
bytecode is postponed until the target bytecode is reached. Actually, a jump native
instruction opcode (e.g. jl, jne, jmp) is generated with an unresolved operand. Each

ifeq (0x99)
Description: Branch if equal to zero
Format: ifeq <offset>
PseudoCode:
if (BCNativeMap[currentBytecode + offset] ==
//forward branching//
generate a jump instruction without operand
leave space for the operand
else / /backward branching//
generate jump instruction
compute offset operand
generate operand
endif
translate next bytecodes
when reaching the target bytecode:
compute the current offset
fill the space left before by the computed offset
Corresponding Assembly Instructions:
pop EAX
cmp EAX, 0

jz <computed native code offset>

)

Figure 4.6: ifeq bytecode translation

78

79

next bytecode is checked whether it is a target of an unresolved branching. In such case,
the corresponding offset is computed and then used to update the unresolved operand
of the jump native instruction. To handle multiple unresolved forward branching, a
linked list is used. In Figure 4.6, we give the translation algorithm of the bytecode ifeq
and the corresponding native instructions.

Complex Bytecodes Translation

The KVM interpretation of some bytecodes involves the use of some virtual machine
runtime services such as method lookup or field reference resolution. For example, the
bytecode getfield uses a field reference resolution subroutine to compute the reference
of the appropriate field. In E-Bunny, bytecodes that require virtual machine services
are called complex bytecodes. Translating this kind of bytecodes is more complex. A
possible approach consists of generating the corresponding native code, instruction by
instruction, including virtual machine services. This yields a complex and a very bulky
code. The approach adopted in E-Bunny is to define for each bytecode a specific func-
tion that calls necessary virtual machine services. These functions are called from the
native code. Hence, the generated native code is compact and less complex. Complex
bytecodes category includes field access, objects creation, array manipulation, method
invocations, return, monitor access, casting and exception bytecodes. In the sequel,
we illustrate the translation mechanism of field access bytecodes and the exception
bytecode (athrow).

Field Access Bytecodes Translation

Field access bytecodes are putfield, getfield, putstatic, getstatic and their quickened
versions. These bytecodes make access to object fields using symbolic references, to get
or set their values. Such symbolic references have to be resolved so that the access could
be possible. In E-Bunny, for each bytecode a specific function is defined. For getfield
and getstatic, this function calls the field reference resolution subroutine and returns
the value of the field in EAX register (EAX and ECX for long values). This value is
then pushed into the native stack. For putfield and putstatic, this function calls the field
reference resolution subroutine, sets this field and returns the field size in EAX register.
This value is then used to update the native stack. The translation of putfield is given
in Figure 41.7. Note that cp_index denotes a constant pool index. The “switch” operator
is used to clarify the illustration. Actually, it is implemented with jump instructions.

Method Invocation Bytecodes Translation

Method invocation bytecodes require a special care because they involve more com-
plex processing than other bytecodes. Furthermore they are performance-critical (on
average 11% of total bytecodes are method invocation bytecodes [109]). The processing,

putfield (0xb5)
Description: Set field value in object
Format: putfield <cp_index>
Function used: putField()
Pre-conditions:
the following items must be on the top of native stack:
- ip (bytecode ip)
- field value
- objectref.
Post-conditions:
set EAX to the filled size:
1 when the field needs one memory word
2 when the field type is two memory words
Corresponding Assembly Instructions:
//push the ip into the Intel stack
push ip
mov ECX, &putField
call ECX
//popping the putfield arguments
//switch// ECX
1: add ESP, 12
2 : add ESP, 16

Figure 4.7: putfield bytecode translation

80

81

that method invocation bytecodes should carry out, includes:

e Performing a method reference resolution.
e Checking the validity of the receiver object.
e Performing a dynamic method lookup.

e Creating a new frame for the invoked method.

Moreover, these bytecodes deal with the switching mechanism between interpreted
and compiled modes (more details about the switching mechanism are given further).

In E-Bunny, to translate method invocation bytecodes, specific functions are defined
(callVirtual for invokevirtual and invokespecial, callStatic for invokestatic and calllnterface
for invokeinterface). These functions behave differently according to the kind of the
called method (compiled or native). The conventions adopted in the design of these
functions are the following: the defined functions resolve the invoked method reference,
check the validity of the receiving object, make the method lookup and then:

e If the invoked method is native:

1. Transfer the arguments from the native stack to the Java stack (because the
called native method needs to get its arguments from the Java sack).

2. Invoke the native method and finally transfer the returned value to the Java
stack.

In addition, these functions, set EAX register to 1 (to distinguish the native
method call from the compiled method invocation) and EDX register to an in-
teger value that is required to update the native stack (see Figure 1.3).

e If the invoked method is compiled:

1. Get the native code from the cache.

2. Update the latter and exit.

Note here that the defined functions do not call the invoked method. Instead,
the native code address of the called method and the local variables number are
returned respectively in EDX register and in the top of the native stack. These
values are used to prepare the invocation. After that, the method is invoked.
When the execution exits from this method, the method context information is
updated using the size of the value computed by the translated return bytecode.

invokevirtual (0Xb6)
Description: Invoke an instance method
Format: invokevirtuall <cp_Index>
Function used: callVirtual()
Pre-conditions:
the following items must be on the top of the Intel stack:
- ip (bytecode’s ip)
- one empty word
Post-conditions:
if (called method is a C (native) function)
-EAX =1
- The returned value is on the native stack
- EDX = integer value to update the native stack.
else //called method is a compiled java method
-EAX =0
- [ESP] = local variables number
- EDX = native code address.
endif
Corresponding Assembly instructions:

sub ESP,4 / /leaving the first space

push ip //pushing ip (and the second space)
mov EAX, &callVirtual
call EAX

//Switch// EAX

1: add ESP, EDX //updating the native stack

0 : mov EAX, [ESP] //getting space for locals
sub ESP, EAX //leaving space for locals

call EDX //launching the native code
add ESP, EAX //updating the native stack
POP_FRAME_FROM_NATIVE

Figure 4.8: invokevirtual bytecode translation

32

83

athrow (Oxbf)
Description: Throws an exception or error
Format: athrow
Function used: throwExc()
Pre-conditions:
the following item must be on top of the Intel stack:
- exception object reference
Post-conditions:
- jumps to the exception handler if any
- raise a virtual machine exception otherwise.
Corresponding Assembly Instructions:
mov EAX, &throwExc
call EAX

Figure 4.9: athrow bytecode translation

To illustrate this mechanism, the translation of the invokevirtual bytecode is given
in Figure 4.3.

Notice that the method call preparation step and mainly the method lookup are
not accelerated by the dynamic compilation. We propose, in the next chapter, a tech-
nique for accelerating this feature. Enhancing this mechanism allows an additional
acceleration of method calls.

Exception Bytecodes Translation

Another important feature of the Java language is the exception handling mech-
anism. An exception is raised by the athrow bytecode. A major constraint that the
dynamic compilation should respect is to preserve exception handling semantics. The
dynamic compilation introduces new issues relevant to exception propagation. Indeed,
a compiled method could propagate an exception to an interpreted method. E-Bunny
handles the following situations:

e The method where the exception is thrown and the one where the exception is
caught, are both interpreted: the original KVM exception handling mechanism is
used.

e The method where the exception is thrown, is interpreted and the one where the
exception is caught is a compiled method. This case is excluded since the adopted
profiling strategy assumes that a compiled method cannot invoke an interpreted
one.

84

e The method, where the exception is thrown, is a compiled method. There are
two possible situations: the method catching the exception is either interpreted
or compiled. In order to locate the method handling the exception, first, BCNa-
tiveMap is used to identify the bytecode corresponding to the native instruction
throwing the exception. Then, an exception handler lookup is performed. If the
method catching the exception (the method containing the handler) is a compiled
one then its BCNativeMap is used to locate the native instruction corresponding
to the bytecode handling the exception. A jump to this instruction is performed.
Otherwise, we switch back to the interpreted mode at the level of this bytecode.

The generated code for the athrow bytecode calls a specific function called throwExc.
This function uses the virtual machine exception handling functionality to locate the
exception handler. Then, it resumes the execution at the appropriate location. The
translation of athrow is illustrated in Figure 1.0.

4.3.2 Switching Mechanism

In E-Bunny, compiled methods are executed in the native stack while interpreted meth-
ods are executed in the Java stack located in the heap. Hence, execution of Java pro-
grams overlaps between the native and Java stack. The switching between the two
modes implies context transferring between the two stacks. We distinguish two situ-
ations where the switching occurs between the two modes: interpreted to native and
native to interpreted.

The switching from the interpreted to the native mode occurs when interpreting an
invoke bytecode and the invoked method happens to be compiled. Coming from the
interpretation mode, the called method arguments are on the top of the Java stack.
The switching to the native mode requires their transfer to the native stack. This is
carried out according to the algorithm in Figure 4.10. The algorithm is based on the
method frame layout in the native stack, depicted in Figure 1.11.

The switching from the native mode to the interpreted mode occurs in two situations.
First, when a compiled method calls an interpreted method. Second, when a compiled
method exits and returns back to its interpreted caller method. The profiling strategy,
we adopt, assumes that every method called by a compiled method should be compiled.
The switching is then reduced only to the second situation (return case). Handling this
switching consists of transferring the returned value, if any, from the native stack to
the Java stack. The implementation of this action depends on the returned value type
as illustrated in Figure 1.12.

Figure 1.11 shows the native stack in different phases of the switching. First, before
a method call (a). Second, after the execution of algorithm 1 (b). Third, when the

ALGORITHM 1: interpreter to native switching

Stepl: transfer arguments

for (i <= NbrArguments)
push arg.i

Step2: reserve space for local variables

Step3: reserve two words for the returned value
sub ESP, 8

Step4: call the compiled method generated code
call Method_Native_code

Figure 4.10: Interpreted to native mode switching algorithm

a. Native stack
before call

ESP -
arg | return val
algol step 1 | arguments
argn
Local 1
local
algolstep 2 ‘ variables
@ Local m
space 1
algol.step 3 Sptic 2
Igol 4 il
sl
algol.step —
| stack
ESP
b. Native stack . Native stack

during execution

after return

ESP

stack
growing
direction

Figure 4.11: Switching to the native mode

85

86

ALGORITHM 2: native to interpreter return
switch returned_value_type_size:

0 //void
nothing

1 //integer, reference, etc.
pop value
pushStack(value)

2 //long
pop lowHalf
pop highHalf
pushStack(highHalf)
pushStack(lowHalf)

Figure 4.12: Native to interpreted mode switching algorithm

translated called method exits (¢). In (c), we assume, in this illustration, that the
called method returns a one word size value (e.g. integer, short etc.).

It is worth mentioning that this switching hurts execution since the Java stack and
the native stack are both manipulated. The next chapter proposes a new technique for
enhancing the switching mechanism by unifying these stacks.

4.3.3 Threads Management

A Java virtual machine provides a framework to run properly different threads. Each
thread has its own stack. In the interpreted mode, these stacks are created and managed
at a software level. Basically, thread stacks are allocated in the heap. However, in E-
Bunny, since two stacks are used, compiled methods have to be run on a native stack.
Consequently, threads should use the native stack.

In the current implementation, the native stack is organized as a pool of segments.
A segment is assigned to a thread when the latter is created. The segment pool man-
agement is based on a bit map. An entry of this map is a bit indicating whether the
corresponding segment is used or free. Therefore, each thread executes its compiled
methods in its own segment. A consequence of managing several threads with two
stacks is that each thread has two forms of context information. The first is relevant
to the Java stack (e.g. sp: stack pointer, fp: frame pointer, Ip: locals pointer) and the
second is relevant to the native stack (ESP, EBP and EIP registers). The data struc-
ture representing the thread in the virtual machine holds information representing both

87

| Thread 1

l . ,E— — 1 _Iava‘l'hm!di] Native stack

limeslic
Lumcs:

1
stack + Frame | !
poveg | | 7 | o
ircetion

| —le pSI-urlﬁ
‘ ‘ ———————{ | Juva stack
| —— % fpitoe context

i Frame

Thread 1 Java stack I e - Frame |

P.BPs_n;m_.- ——

R ——t i |
mxlihmF] T T

 JavaThread ‘I* M

— | ___umcsiltc B
|
|
|

|
-
| Frame < "

|

| Frame
|

e [pSwore

b i
Thread 2 Java stack ESPsiore o]—— |

a v | dirston

: [|
\;— - spStore !
|
|

nextThread

Figure 4.13: Multi-threading in E-Bunny

contexts (Figure +.13).

Thread scheduling in the KVM is based on a round robin scheduling model. Each
thread keeps control during a time-slice. This is decremented after each bytecode that
may cause a control transfer (e.g. branching and invoke bytecodes). When the time-
slice becomes zero, the virtual machine stops the current thread and resumes the next
one in the running threads queue. Method compilation requires the support of thread
scheduling. To achieve this purpose, additional code is generated for bytecodes that
can cause thread switching. This code, mainly, decrements ESI register, dedicated to
hold time-slice value and triggers thread switching when ESI reaches the null value. In
addition, a special care to save both contexts relevant to Java and native stacks, is
taken.

4.3.4 Garbage Collection Issues

KVM garbage collection is based on a mark-sweep with compaction algorithm. This
algorithm goes through three steps: mark, sweep and compact. First, this algorithm
scans all the heap in order to mark live objects. In particular, it scans method frames in
Java stacks and marks referenced objects. Second, it sweeps the free chunks to consti-
tute consistent blocks. Finally, an eventual heap compaction is carried out, leading to a
move of the objects inside the heap. Object addresses are then changed and therefore,

88

Marking:
for each frame {
if (compiled_method)
Mark_Native_Stack_References(compiled_method)
else

Mark_Java_Stack_References(interpreted_method) }

Updating references:
for each frame {
if (compiled_method)
Update_Nuative_Stack_References(compiled_method)
else

Update_Java_Stack_References(interpreted_method) }

Figure 4.14: Garbage collection algorithm modifications

references to them, particularly in Java stacks, have to be updated.

With the selective approach of E-Bunny, compiled methods are executed on the
native stack. Consequently, the native stack may contain some object references. Since
the current garbage collection algorithm scans only the heap, the native stack will not
be considered and then, object references on it will neither be marked nor updated.
Therefore, the current garbage collection algorithm is inaccurate with a selective ap-
proach.

The garbage collection algorithm has to be extended to deal with the native stack.
More precisely, translated method frames, which figure in the native stack, have to
be scanned in order to mark and update object references. In E-Bunny, the garbage
collection algorithm is enhanced to address this issue. Mainly, the garbage collection
functionalities are modified to take into account the object references in the native
stack. Indeed, for both marking and updating loops, we check if the frame corresponds
to a compiled method or not. If the method is compiled we consider the native stack,
otherwise we consider the Java stack. The modifications in marking and updating loops
are illustrated in Figure 1.11.

89

KVM | E-Bunny | Footprint
Overhead
144K 208 K 64 K

Table 4.1: Executable file footprint overhead

Sievs Loop Logic Suig Method Overal

Figure 4.15: CaffeineMark scores of KVM and E-Bunny with GCC

4.4 Implementation and Results

E-Bunny is implemented using the C programming language. In our experiments, we
used the GNU C compiler (GCC) to build the KVM (version 1.0.4) with E-Bunny.
Table 1.1 shows the executable size of KVM with and without E-Bunny. The first
column gives the total executable footprint of KVM without E-Bunny. The second
column gives the total executable footprint of KVM equipped with E-Bunny dynamic
compiler. Finally, column 3 of the table shows that using GCC to build KVM with E-
Bunny produces a footprint overhead of 64 KB. To summarize, E-Bunny requires 64 KB
for executable footprint overhead, 64 KB for storing translated methods and 10 KB for
the map between bytecodes and native instructions, which is used for compiling control
flow instructions and for exception handling mechanism. Hence, the total memory
resources required by E-Bunny is 138 KB.

To evaluate the performance of E-Bunny, we have run CaffeineMark benchmark
(without the float test) on the original version of KVM with and without E-Bunny.

E-Bunny produces an overall speedup of 400% over the original KVM (Compare
overall score in Figure 1.15). Note that a higher score, in this Figure, means better
performance. Particularly, the String test is drastically improved thanks to our dynamic
compiler since this test contains a loop in which a method that appends strings is
frequently called. Moreover, we built the MIDP 2.0 profile, intended to CLDC devices,
using E-Bunny and we ran successfully several midlets. Figure 1.1 shows a snapshot
of MIDP emulator illustrating CaffeineMark midlet results.

Figure 1.17 outlines an example of an output for the method ezecute of the Sieve
test, which is one of CaffeineMark test suites.

90

Figure 4.16: CaffeineMark midlet ran by KVM and by E-Bunny

4.5 Conclusion

We reported, a new acceleration technology for Java embedded virtual machines that
is based on dynamic selective compilation. This technology targets the J2ME/CLDC
(Java 2 Micro Edition for Connected Limited Device Configuration) platform. We
designed and implemented an efficient, lightweight and low-footprint dynamic compiler
for embedded Java Virtual Machine. We presented the architecture, the design as well
as the technical issues of E-Bunny and how we addressed them. Experimental results
demonstrated that we accomplished a speedup of 400% with respect to the Sun’s latest
version of KVM.

Many enhancements can be introduced in E-Bunny. The major one concerns the
bidirectional smooth switching between the interpreted and compiled modes. In fact,
the profiling strategy adopted in the current version of E-Bunny, which consists of com-
piling each method called from the compiled one, is less complex to implement. How-
ever, it presents a drawback since it leads to compile non-performance-critical methods.
On the other hand, a more efficient centralized thread scheduling is needed. This is
expected to reduce the generated native code size.

In the next chapter, we propose two dynamic acceleration techniques that can work
together with an embedded dynamic compiler like E-Bunny:

e The first is an acceleration technique that is related to the generation of a native
interpreter and which works together with E-Bunny. This technique allows to
avoid the drawback of switching between two stacks (Java and native ones) by
the design of a unified stack model.

91

e The second is a hash-based technique for accelerating the dynamic method lookup
mechanism. This technique is dynamic, flexible and efficient.

These two techniques are designed in the scope of a synergy between a fast inter-
pretation and lightweight dynamic compilation.

=i

>lle P mUnterret

S S B) e

LT'p 231y

Prologue i!
Method int execute()

——— O lconst_1

1 istore_1
2 iconst_O
———3 Istore_2
___ 4 aload_0
—5 getfield #9 <Field Int wPrimes[>
8 iconst_0O
Siconst_1
10 iastore
11 aload_O
12 getfield &2 <Fileld int wPrimes[}>
15 iconst_1
18 lconst_2

17 lastore

Bytecodes

opoo pajrIauss Auung-y ue jo joysdeug

c6

Chapter 5

A Synergy Between Efficient
Interpretation and Dynamic
Compilation

5.1 Introduction

Strengthened by the results of the E-Bunny project and the downstream insights, we
started looking for more acceleration. This led us to the idea of establishing a synergy
between efficient interpretation and dynamic selective compilation.

In this chapter, we propose two acceleration techniques for embedded Java plat-
forms: (1) the use of a threaded interpreter that collaborates with a fast one-pass
dynamic selective compiler to translate performance-critical methods to native code;
(2) the acceleration of the method lookup mechanism by a hashing technique.

The first acceleration technique advocates the use of a threaded interpreter and a
fast one-pass dynamic selective compiler, like E-Bunny, to translate performance-critical
methods to native code. The threaded interpreter is a pool of codelets. Each codelet
carries out the dispatch to the next bytecode eliminating therefore the need for a costly
centralized traditional dispatch mechanism. The translation process takes advantage
of the threaded interpreter by reusing most of the previously mentioned codelets. This
tight collaboration between the interpreter and the dynamic compiler leads to a fast
and lightweight (in terms of footprint) execution of Java class files.

The second technique relies on improving the method lookup that is implemented

94

in the KVM. This technique is dynamic, flexible and efficient. In fact, it is performed
at the loading-time. Moreover, it offers the possibility to developers of embedded VMs
for making a tradeoff between the memory space and execution time. Finally, this
technique proved its cfficiency w.r.t the KVM original method lookup.

To sum-up, the main contributions of our acceleration techniques are the following:

e The design of a generated threaded native interpreter. This is defined as a pool
of codelets. An important subset of these codelets is suitable for code reuse.

e A fast one-pass dynamic selective compiler based on the reuse of interpreter
codelets.

e A smooth switching mechanism between the interpreted and compiled modes.

A fast method lookup mechanism based on the cooperation of two components
of the KVM: the loader and the interpreter. The loader builds a method hashing
table and the interpreter uses it to perform a quick method lookup.

5.2 Compiling by Code Reuse

Accelerating the interpretation mechanism has been and is still a focus of interest for
many researchers. Generally a pure bytecode interpreter is an infinite loop embedding
a switch-case statement that dispatches to a sequence of bytecodes. Each switch-case
value implements one Java bytecode. This entails a significant overhead. To circum-
vent this drawback, the use of direct threaded interpretation has been suggested. The
latter is an interpretation technique introduced in the Forth programming language
[15]. Thanks to this technique, the central dispatch is eliminated. Each bytecode of
the method being interpreted is replaced by an address of a corresponding implementa-
tion. In addition, such an implementation ends with the required dispatch to the next
opcode.

The inline threading interpretation technique [101] improves upon the direct thread-
ing technique by eliminating the dispatch overhead within basic blocks. The former
technique identifies bytecode sequences that form basic blocks. A new implementa-
tion is then dynamically created for such sequences by copying and catenating each
bytecode’s implementation in a new buffer. The dispatch code is then copied at the
end.

95

Hendren et al. [18] proposed a technique that copes with the difficulties that arise
when adapting the inline threading technique to Java. In fact, Java's features such as
lazy class initialization, lazy class loading/linking and multi-threading support conflict
with the implementation of inline-threaded interpretation technique. A technique called
“preparation sequence” has been proposed in [48] to solve the problems caused by in-
place code replacement within an inline-threaded interpreter of a Java virtual machine.

These acceleration techniques of the interpretation mechanism achieve a reasonable
speed-up. However, they fail to compete with those approaches that introduce some
sort of compilation (AOT, JIT, dynamic selective compilation, ete.) [4, 10, 25, 60, 78,
124, 139).

The closest work to our proposed technique can be found in [75]. The authors
presented a technique that combines interpretation with compilation to get a sort of
hybrid interpretation strategy. This technique targets embedded systems and presents
a code generation technique that leverages the interpreter self-code. The interpreter is
written in the C language to achieve portability. This limits however the interpreter code
reuse. Moreover, the compilation targets method fragments. The rationale underlying
this choice is to reduce the size of the generated code. However, by doing so, the
switching frequency between the interpreter and the compiler modes is increased and
therefore an additional complexity and overhead are introduced. The method advanced
by the authors requires: (1) the use of some kind of bytecode analysis to detect basic
blocks; (2) the use of a peephole optimizer to improve the quality of the produced code.
These two analyses lead to an additional overhead.

Qur interpretation technique leverages also the interpreter code but it deviates from
[75] in two directions:

e [irst, the interpreter code is efficiently generated and is not the result of a high-
level compiler. This makes it suitable for reuse by a dynamic compiler to generate
code by copy and concatenation.

e Second, the compilation unit in our technique is a method. By doing so, we
reduce significantly the technical complexity of the switching mechanism and the
underlying overhead and frequency.

The threaded interpretation achieves a relative speed-up over the switch-case based
interpretation [48, 101]. In order to reach significant performance, it is necessary to
introduce dynamic compilation. Embedding a dynamic compiler into a Java virtual

96

machine targeting small devices limits severely the application of traditional optimiza-
tions (flow-based analysis). In this context, dynamic selective compilation is the most
adequate approach. Hotspot methods should be dynamically identified and compiled
at run-time. The compilation cost in time and footprint should be lightweight.

It is crucial to design a system allowing a cooperation between an efficient interpre-
tation mechanism together with a lightweight dynamic selective compilation. The tech-
nique fits in this framework. The main idea is to generate a native threaded interpreter.
This is pool of code units, called codelets. Each codelet is a native implementation of a
Java bytecode. This interpreter is generated at the start-up of the Java virtual machine
or better offline if the target architecture is known. When a method is identified as
hotspot, it is dynamically compiled. The compiler makes use of the interpreter codelets
during the code generation process. This leads to a lightweight compilation mechanism
that is appropriate in an embedded context.

Generating a native interpreter allows us to implement the Java stack on the native
stack. This induces a fast switching between the interpreter and compiler modes of
execution since the frames of an interpreted method and a compiled one are on the
same stack unlike what is proposed in the previous chapter. The transfer of parameters
between the Java and the native stack is no more needed when switching from the
interpreter mode to the native mode and vice versa. Our technique is sustained by a
smooth and uniform switching mechanism.

5.2.1 Generated Native Threaded Interpreter

Since the dynamic compiler reuses the codelets during the code generation process,
these codelets have to be implemented in a way that facilitates code reuse.

We distinguish two categories of bytecodes: context-free bytecodes and context-
dependent bytecodes. They are defined as follows:

e A context-free bytecode can be translated to a native code that is independent of
dynamic information. For instance, the bytecode aload.0 is always translated to
a push instruction of the 0™ local variable into the stack.

e A context-dependent bytecode requires some dynamic information (e.g. instruc-
tion pointer) to be translated to native code. For instance, the bytecode iload

97

nop aconstnull iconst.ml iconst.0
iconst._1 iconst.2 iconst_3 iconst_4
iconst.5 lconst 0 lconst.1 iload.0
iload.1 iload 2 iload_3 1lload.0
lload_1 1lload 2 lload.3 aload 0
aload. 1 aload 2 aload_3 istore 0
istore._1 istore.2 istore.3 lstore 0
lstore.1 lstore.2 1store.3 astore 0
astore_1 astore. 2 astore_3 pop

pop2 dup dup.x1 dup_x2
dup2 dup2.x1 dup2_x2 swap
iadd ladd isub lsub
imul lmul idiv ldiv
irem lrem ineg lneg
ishl 1shl ishr lshr
iushr lushr iand land

ior lor ixor 1xor

i2l1 12i i2b i2c

i2s lcmp return ireturn
areturn lreturn arraylength iaload
laload iastore lastore baload
bastore castore caload saload
sastore aaload aastore monitorenter
monitorexit athrow customcode

Table 5.1: Context-free bytecodes

requires computing the index of a local variable, which is extracted from the
bytecode stream using the instruction pointer.

A scan of the instruction set (without floats) of the Kilo Virtual Machine (KVM)
proves that 95 bytecodes are context-free while the number of context-dependent byte-
codes is 66. Hence, context-free bytecodes represent more than 59% of the standard
bytecodes handled by the KVM. The set of the context-free bytecodes is presented in
Table 5.1.

The remaining bytecodes fit in the context-dependent category and are presented
in Table 5.2.

The main motivation underlying our bytecode taxonomy is to confine the codelet
reuse to context-free bytecodes. Actually, these bytecodes are very frequently used in
Java applications as exemplified by [110]. According to the results of [110], it is easy to
see that our context-free bytecodes correspond to the Loads, Stores and ALU categories,
which are very frequently used. For instance, with respect to the SPECjvm98 bench-

98

bipush sipush ldc ldc.w

ldc2.w iload lload aload

istore lstore astore iinc

ifeq ifne iflt ifge

ifgt ifle if_icmpeq if_icmpne
if_icmplt if_icmpge if_icmpgt if_icmple

if _acmpeq if_acmpne goto tableswitch
lookupswitch newarray anewarray multianewarray
ifnull ifnonnull goto_w new

instanceof checkcast wide putfield

getfield getstatic putstatic invokevirtual
invokespecial invokestatic invokeinterface getfield fast
getfieldp fast getfield2 fast putfield fast putfield2 fast
getstatic fast getstaticp_fast getstatic2 fast putstatic_fast
putstatic2 fast invokevirtual fast invokespecial fast invokestatic fast
invokeinterface fast new.fast anewarray.fast multianewarray fast
checkcast_fast instanceof _fast

Table 5.2: Context-dependent bytecodes

mark [30], these categories represent respectively 35.54%, 6.65% and 9.94% of the total
bytecodes of this benchmark. Hence, the compilation process of performance-critical
methods by copying interpreter codelets instead of regenerating them is improved. This
relies on the relatively high frequency of context-free bytecodes. In the sequel, we high-
light the interpreter structure and components.

The present technique is based on a generated native threaded interpreter. The
generation of the interpreter is one-time virtual machine operation performed at the
start-up. Basically, the interpreter may be considered as a pool of code units called
codelets. Each codelet is an efficient native implementation of a bytecode. The im-
plementation of this interpreter uses a data structure composed of a jump table and a
codelet table. Each entry in the codelet table contains the generated native implemen-
tation of the corresponding bytecode. '

The interpretation main loop is reduced to a jump into the codelet table via the
jump table according to the current bytecode in the method under interpretation. In
addition, each codelet ends up by dispatching to the next bytecode. This eliminates the
traditional centralized bytecode dispatch overhead. Besides, the codelets are generated
in a way that allows to reuse them in the code generation phase during a method
compilation. Figure 5.1 outlines the interpreter architecture.

The template of a codelet for a bytecode is as follows:

99

Bytecode stream

L o= aoad 0@ jump_table

invokevirtual #5 (182)

Codelets Table

-

fo

=& D S— |
aload_0 codelet

push [EST]
addip, |
Jmp jump_table(*ip]

ump_table[*ip] ———~—~ o i s o0
Juup jomp. table{*ip] invokevirtnal
codelet

255

Figure 5.1: Generated native threaded interpreter structure

push the 3rd local variable
add ip, 1
jmp jump_table[*ip]

Figure 5.2: Codelet for aload_3

e Native code;
¢ Incrementation of the instruction pointer (ip);

e Jump to the entry corresponding the bytecode at the current ip.

Figure 5.2 illustrates the codelet, in assembly-like pseudo-code, for the aload._3
bytecode.

Figure 5.5 depicts the algorithm, in pseudo-code, for the interpreter codelets gen-
eration. The start-up of the interpretation of a method is reduced to a jump to the
codelet associated with the opcode of the first bytecode of this method. The codelets
are generated and their respective addresses are stored in a jump table. The latter
maps each opcode with the address of the corresponding codelet.

100

generatelnterpreter(ip) {
generate a jump instruction to jump_table[*ip]
for each bytecode
generate the corresponding native code
insert the codelet address into the next entry of jump_table

Figure 5.3: Interpreter codelet generation

5.2.2 Reusing Codelets for Dynamic Compilation

Dynamic compilation occurs at run-time. The compilation overhead is then a critical
issue particulary in the embedded context. Therefore, it is important to minimize the
compilation time in order to reduce the overall execution time. The classical compi-
lation techniques (flow analysis, aggressive optimizations etc.) produce a high code
quality. They require however, huge data structures and consume time, which makes
them unaffordable when targeting virtual machines that are meant to be embedded in
resources-constrained devices.

The code reuse technique that we propose is a natural continuation of the work done
on E-Bunny. Thanks to this technique, we avoid the systematic regeneration of native
code each time a performance-critical method is detected. We achieve this goal by the
reuse of already-generated code for the interpreter at the virtual machine start-up (or
offline).

Context-free bytecodes are translated by a simple copy of the already generated
codelets. Thus, we save the time spent in regenerating it. However, to avoid re-
computing dynamic information such as instruction pointer values, constant values in
constant pools, as it is required by the interpretation process, the dynamic compiler
computes them efficiently, once for all, for the method under compilation. Hence,
context-dependent bytecodes are translated to native code using these dynamic infor-
mation. Figure 5.1 depicts the native code generation scheme used in this technique.

Figure 5.5 outlines the algorithm, in pseudo-code, for compiling a bytecode. When
the opcode of the bytecode under compilation is context-free, the interpreter codelet
associated with this opcode is just copied and concatenated to the already generated
code in a buffer. A special care is taken to discard the original dispatch code in each
codelet. In the case of a context-dependent bytecode, the compiler generates an efficient
code from scratch. The compiler uses the dynamic information available at run-time,
such as the value of ip, to generate efficient native code. Section 5.2.4 gives more details
on this issue.

Interpreter codelets

Compiler

Codelens Baw »- Copy and concatenate

Bytecode

stream

the associated codelets

Y

information
context-free

bytecode?

2. Generation of efficient
native code

1. Computaion of Dynamic

Generated native code

for the method under

compilation

Figure 5.4: Native code generation scheme

compile(bytecode) {
if is_context_free(bytecode)
copy jump_table[bytecode]
else {
compute dynamic information
generate native code for the bytecode

}
}

Figure 5.5: Compilation of a bytecode

101

102

ESP

-

_ EBP

stack operands

saved EBP

The opcode after the invocation

next opcode P
P or an artificial bytecode

@ return ip of the instruction following the
call or a native return address
thisMethod The current method address
saved ESI

synchObject | The lock object

local variables

arguments ESI

Figure 5.6: The unified stack layout

5.2.3 Smooth Switching Mechanism

The technique, we propose, is supported by a smooth and uniform switching mechanism
between the interpreted and compiled modes. In order to achieve this goal, we use
a unique native stack per thread. In the sequel, we illustrate the stack layout that
supports the switching mechanism and describe the switching implementation.

A straightforward translation approach would maintain a run-time stack and ma-
nipulates it the same way the interpreter does with the Java stack [60]. Consequently,
the bytecode execution is based on two stacks (Java stack and native stack). The
switching between the interpreter and native modes is much expensive. This is due to
the unnecessary memory traffic between the two stacks.

We propose a design where the frames of an interpreted method and a compiled
method for a thread are represented in the same native stack. This leads to a smooth
and fast switching from the interpreted to the compiled mode and vice versa. Indeed,
using a unique execution stack (native stack) saves the overhead induced by transfers of
call parameters from the Java stack to the native stack. Figure 7.0 depicts the unified
stack layout.

Besides, some registers are dedicated to hold some information. For instance, the
ESI register contains arguments address whereas the EBX register contains the instruc-
tion pointer (ip).

The use of a unique stack speeds up the switching between interpreted and compiled
methods. However, it introduces new issues. In fact, we need to know the kind of the

103

@retumn

Interpreted mode Compiled mode
(an invoke interpretation) (an invoke compilaion)
1/ Push the opcode of the next | /! Push the address of the native
// bytecode on the stack | /! instruction following the call
push *ip | push @retrun
|/ Push the articficial opcode
| push ART_OPCODE
< ESP 1 « ESP
next opcode] ART_OPCODE
I
|
|

pop EAX
jmp jump_table[[EAX]]

EAX = ART_OPCODE EAX contains an ordinnary opcode

:;:' ::ﬁﬁ?ﬂ::;ﬁ;“:kﬁufgp‘gzcsgetﬂ 1/ Here we reach the codelet associated
// to the next bytecode

/! Pop the native return address
pop EAX
/! JTump to this address
jmp [EAX]

Uniform return:

Figure 5.7: A lightweight interpreter/compiler mode switching mechanism

calling method (interpreted or compiled) to restore the calling context.

Actually, returning to an interpreted method resumes the execution at the next
opcode following the invocation bytecode whereas returning to a compiled method
resumes the execution at the next native instruction following the call. Hence, the
return address has different semantics in our design depending on the calling method

type.

We propose a uniform mechanism allowing to restore smoothly the calling method
context. This is based on the use of an artificial opcode and a specific codelet associated
with it. When interpreting a method invocation bytecode (invokevirtual, invokespecial,
invokeinterface, invokestatic etc.), the opcode of the following bytecode is pushed into
the stack. In the case of a compiled method, the native return address and the artificial
opcode are pushed into the stack. This artificial opcode allows to restore the context
of the compiled calling method transparently without any explicit test. Actually, the
codelet associated with this artificial opcode is responsible for jumping to the native
address previously pushed into the stack as well. When returning to an interpreted
method, a jump to the codelet associated with the already pushed opcode is performed.
Figure 5.7 outlines the implementation of this lightweight uniform switching mechanism.

The switching is implemented by means of two stubs. A prologue stub ensures saving
the context of a calling method and setting the context of the called one. Reciprocally,
an epilogue stub is responsible for restoring the context of the calling method. Figures

104

prologue() {
//leave space for n local variables

sub ESP, n*4

//push the call receiver object into the stack
push object

push ESI

//push the method pointer

push thisMethod

//push return address (ip or pc)

push returnAddress

// artificial opcode in case of compiled
// or opcode of the next instruction
push opcode

push EBP

mov EBP, ESP

Figure 5.8: Prologue

5.5 and 5.9 outline these stubs.

5.2.4 Scenario

We illustrate, in the present section, the code generation technique based on the inter-
preter codelets reuse to compile Java bytecodes. Figure 5.10 illustrates the bytecode
sequence under compilation.

Figure 5.11 illustrates the code generation technique in action. The righthand part
of Figure 5.11 depicts a snippet of the interpreter codelets generated at the virtual
machine start-up whereas the left-hand part depicts how the different bytecodes are
handled.

The bytecodes aload_1 (43) and iadd (96) belong to the context-free category
mentioned above. The native code generation for these bytecodes is then reduced to a
copy of the corresponding interpreter codelet as depicted in Figure 5.11.

The bytecode bipush 5, is however a context-dependent bytecode. Indeed, an efficient
compilation of this bytecode requires the actual current value of ip in order to access
the index associated with the opcode bipush in the bytecode stream (method), which
is 5 in the present example. This information is not available at the generation of the
interpreter. We recall that the interpreter generation is a one-time virtual machine
operation, which occurs prior to the execution of any Java method. As a result, the
codelet associated with bipush could not be reused.

105

epilogue() {
pop EBP
//artificial opcode or opcode of the next instruction
pop opcode
//return address (ip or pc)
pop EBX
//remove the method pointer from the stack
add ESP, 4
pop ESI
//remove the call receiver object from the stack
add ESP, 4
mov ESP, ESI
jmp jump_table[opcode]

}

Figure 5.9: Epilogue

aload_1
bipush 5
iadd

Figure 5.10: Bytecode sequence under compilation

The dynamic compiler (like E-Bunny), relying on the dynamic information available
at run-time (value of ip for instance), generates an efficient code for context-dependent
bytecodes from scratch. The value to push (which is 5) is extracted from the bytecode
stream. The generated code is just a push of the latter value into the stack: push 5.
The interpreter codelet is inefficient because it contains the extra instructions required
to access the value in the bytecode then afterwards it has to push this value into the
stack.

5.3 Enhancing Interpretation by Method Call Ac-
celeration

The second acceleration technique we propose is related to another important mecha-
nism which is the method lookup. The acceleration of this feature is needed since the
dynamic compilation enhances just the execution of a method while the method lookup
mechanism remains the same. In the sequel, we give a detailed idea about the method
lookup mechanism.

106

Compilation process Interpreter codelets generated at the
start-up

copy codelet_table[43]
Jinative code generation for aload 1

1f code generation for bipush

{
int k = ((signed char *)ip)[1];
GenPUSH_Imm(k);
ip+=12;

}

copy codelet_table[96] !
/Mative code generation for iadd [

push [EST + 4]

add [ESP], [ESP+4]

push [ESI + 4] =t}

| Push3 |

add [ESP], [ESP +4] [

Compilation output

Figure 5.11: A scenario of the proposed compilation by code reuse technique

5.3.1 Method Lookup Mechanism

Object-oriented languages support inheritance and polymorphism to allow the devel-
opment of flexible and reusable software. The type of a specific object would usually
be determined at run time. This feature is called the dynamic binding. In this context,
the selection of the appropriate method to execute is based on a lookup mechanism,
which means that the actual method to be executed after an invocation is determined
dynamically using the type of the method’s receiver, the class hierarchy and the method
inheritance schema. The lookup mechanism consists of determining the actual method
to be executed when an invocation occurs. If this class implements a method that has
the same signature (name and parameter types) as the called one, the found method
will be executed. Otherwise, the parent classes will be checked recursively until the
searched method is found. If no method is found, an error is signaled (MsgNotUnder-
stood). Unfortunately, this operation is too frequent and is very expensive.

The principal dynamic binding algorithm is called the Dispatch Table Search [54]
(DTS). It proceeds as mentioned above. The DTS is good in terms of memory cost,
however the search overhead makes the mechanism too slow. Many techniques were
proposed to minimize the overhead associated to DTS: static techniques which pre-
compute a part of the lookup and dynamic techniques which cache the results of previous

107

lookup, thus avoiding other lookups.

The Selector Table Indexing technique (STI) [31] is one of the static techniques
aiming to enhance the method lookup mechanism. It operates as follows. Given a class
hierarchy of C classes and S selectors (method names), a two-dimensional table of C *
S entries is built. Classes and selectors are given consecutive numbers and the table is
filled by pre-computing the lookup for each class and selector. A table entry contains
a reference to the corresponding method or to an error routine. These tables are com-
puted for a complete system. The main drawback of STI is that space requirements
are huge for a large system. Hence, many dispatch table compression techniques were
proposed (Selector coloring [39], Row displacement [42], etc.) to minimize space over-
head. Another drawback of this technique is that the computed table is very sensitive
to changes in the class hierarchy. However, this technique delivers fast and constant
time lookup.

The devirtualization technique with code patching mechanism [64] is another opti-
mization technique that converts a virtual method call to a direct call. Given a method
call, the current class hierarchy is analyzed by the compiler to determine if the call
can be devirtualized. If it is true and if the method size is small, the compiler gener-
ates the inlined code of the method with the backup code of making the dynamic call.
When devirtualization becomes invalid, the compiler performs code patching to make
the backup code executed later. Otherwise (devirtualization is valid), only the inlined
code is actually executed. The main drawback of this technique is that it relies on
heavy analysis (flow-sensitive type analysis, dynamic class hierarchy analysis, etc.) so
it is not convenient for embedded systems due to the fact that it can be too expensive
in both time and space.

A static method call resolution technique [131] was proposed to solve dynamic
method calls. A variable-type analysis and a declared-type analysis use the whole class
hierarchy program to compute a set of method call receivers. This technique is limited
because it does not deal with the dynamic class loading problem. In fact, the class
hierarchy could change while the program is executing. This could change a method
call receivers set and make the static performed optimizations inaccurate.

Dynamic techniques consist of caching results of previous lookups. Cache-based
techniques eliminate the requirements to create huge dispatch tables, so memory over-
head and table creation time are reduced. There are two main approaches to caching:
global caches [54] and small inline caches [40]. The global cache technique stores the
previous lookup results. In the global cache table, each entry consists of triplets (re-
ceiver class, selector and method address). The receiver class and the selector are used
to compute an index in the cache. If the current class and the method name match
those in the cached entry at the computed index, the code at the method address is

108

executed. Hence, method lookup is avoided. Otherwise, a default dispatching technique
(usually DTS) is used and at the end of this search, a new triplet is added to the cache
table and control is transferred to the found method. The run-time memory required
by this algorithm is small, usually a fixed amount of the cache and the overhead of the
DTS technique. The main disadvantage of this technique is that a frequent change of
the receiver class slows the execution.

The inline cache technique consists of caching the result of the previous lookup
(method address) in the code itself at each call site. Inline cache changes the call
instruction by overwriting it with a direct invocation of the method found by the default
method lookup. Inline cache assumes that the receiver’s class changes infrequently,
otherwise, the inline cache technique delivers slow execution time.

The polymorphic inline cache [59] is an extension of the inline cache technique. The
compiler generates a call to a special stub routine. Each call site is a jump to a specific
stub function. The function is initially a call to a method lookup. Each time the method
lookup is called, the stub function is extended. In each extension, to execute a method
code a test on method and class names is added to the stub function. This technique
has the cost of a test and a direct jump in the best case. Moreover, the executable
code could expand dramatically when the class hierarchy is huge and the receiver class
changes frequently.

Hereafter, we propose a dynamic, flexible and efficient technique for accelerating the
method lookup mechanism in embedded Java virtual machines.

5.3.2 Method Lookup Acceleration

The method lookup is accelerated by the application of a direct access to method
tables. This is achieved by using an appropriate hashing technique. Actually, we build
a hash table for each virtual method table at the loading-time. Each index of the
hash table is a hashing result of the method signature. The size of the hash table
should be carefully chosen so as to have a low footprint while minimizing the collisions
between method signatures. By doing so, we get a more efficient and flexible lookup
mechanism. Efficiency stems from the fact that we have direct access to method tables.
Flexibility stems from the fact that we can tune the size of the hash table so as to
have the best ratio for speed versus footprint. In what follows, we explain how this
lookup acceleration could be implemented within the standard embedded Java virtual
machine such as KVM [81] (Kilobyte Virtual Machine). The method lookup mechanism
in KVM is linear i.e. it uses a sequential access. A hash-based lookup will definitely
yield a better performance. The implementation of such a mechanism will affect two
components of the virtual machine: the loader and the interpreter. The loader is

109

buildMethodHashTable() {
for each method of the class method table {
h = compute_hash(method);
element = get_element(HashTable,h);
if (element->flag == ON) {
allocate_space(method);
register_method_in_collision list();
t
else {
register_method_in_HashTable();
method->flag = ON;
}
}
}

Figure 5.12: Method hash table construction algorithm

modified to construct hashed method tables for each loaded class. The interpreter is
modified to take advantage of the new method tables to perform fast and direct-access
lookups. During the loading process of a class, a hash method table is built. A hash
is computed from the method signature. Each entry in the hash table consists of two
components:

e The first component is a flag indicating whether the class contains a method with
such a definition.

e The second component is a pointer to the method definition. In the case of a
collision, this second component is a pointer to a list of method definitions.

The method hash table construction algorithm is depicted in Figure 5.12.

The original lookup algorithm is linear. It tests in each method table of a class,
by iteration over its elements, if it has a method that has the same signature as that
invoked (key). In Figure 5.1 we give the original lookup algorithm.

The new lookup algorithm uses the hash obtained from the method signature to
access the corresponding entry in the hash table. If the flag associated with this entry
is ON, it accesses the method definition thanks to the second component of the entry.
If the flag is OFF, this means that the class does not implement such a method and the
search is directed to the super-class. In Figure 5.14, we give the new lookup algorithm.

The new lookup algorithm performs fewer iterations than the original one. In fact, in
the worst case, the whole collision list has to be visited. The lookup method acceleration

lookupMethod(class,key) {
while (class) {
table = get_method_table(class);
for each method of table {
if (method->signature == key) {
return method;
}
class = class->superclass;
}
}
}

Figure 5.13: Original lookup algorithm

lookupMethod(class,key) {
while (class) {
HashTable = get_HashTable(class);
h = compute_method_hash(key);
entry = get_element(HashTable,h);
if (entry->flag == ON) {
for each element in collision list {
if (key == element->signature)
return element;
}
}
class = class->superclass;
t
}

Figure 5.14: Optimized lookup algorithm

110

111

depends on the hash table size. In fact, a big size requires a high memory space but
it minimizes the collisions. On the other hand, it might induce an additional cost in
terms of memory management (allocation, garbage collection, compaction, ete.).

5.3.3 Caching

Another technique for the acceleration of a method call is caching. We claim that
the traditional inline cache technique, described previously, could achieve a significant
speed-up of a program execution by slightly modifying the cache layout. Actually,
the modification consists of adding a pointer to the receiver object in the cache entry.
We explain hereafter why such a simple modification will result in a speed-up. In
the conventional inline cache technique (such as the one implemented in KVM), only
a pointer to the method definition is stored in the cache structure. When a method
is invoked, the class of the receiver is compared to the class of the invoked method.
If there is an equality between these two classes, the method definition is retrieved
thanks to the cache entry. If there is no equality, a dynamic lookup is performed to
search for the method definition in the class hierarchy. This inline cache technique
could be significantly improved by avoiding many of the dynamic lookups when there
is a mismatch between the class of the receiver and the class of the invoked method.
Actually, when there is such a mismatch, if we can detect that the receiver has not
changed, we can retrieve the method definition from the cache. This is done by:

e Adding a pointer to the receiver in the cache structure,

e Modifying the condition that guards cache retrieval. Actually, when a method is
invoked, the condition to get a method definition from the cache is:

— The class of the receiver is equal to the class of the invoked method, or,

— The current receiver is equal to the cached receiver (the receiver has not
changed).

Here is an illustration when this inline cache technique yields a significant speed-up.
Assume that we have a class B that inherits a non-static method m from a class A.
Assume also that we have a loop that will be executed very often in which we have
the following method invocation: the method m is invoked on an object say op that
is instance of the class B. In our inline caching technique the object op is going to
be cached after the first invocation of the method m. In the subsequent invocations
of the method m, since the class of the receiver (B) is different from the class of the
invoked method (A), the behavior of the conventional inline cache technique will be very
different from the one of the proposed inline technique. The conventional technique will

112

Scares
4500

4000

3500

3000

[Fastinterpret Only
2500

3 Fastinterpret and
Slowlnterpret

2000 M Threaded Interpreter

1500

1000

500 1

L I

0 44 18 B §
Sieve Loop Legic Sting Method Overall Tests

Figure 5.15: Threaded interpreter performance

perform a dynamic lookup for each subsequent invocation of the method m resulting
in a significant overhead. The inline technique with the modified cache structure will
simply test if the current receiver equals the one that is stored in the cache. Accordingly,
the method definition will be retrieved from the cache for all subsequent invocations of
the method m resulting in a significant speed-up.

5.3.4 Implementation & Results

In the sequel, we give the results related to the techniques we proposed. We have
implemented and integrated a threaded interpreter in the KVM. The experimental re-
sults obtained using the CaffeineMark benchmark and highlighted in Figure .15, show
an execution enhancement up to 53% with respect to the non-optimized main-loop
(FastInterpret) and 30% with respect to the optimized main-loop (composed of two
loops: FastInterpret with SlowlInterpret) thanks to the threaded interpreter. Currently,
other members of the Group are carrying out an in-progress work including the im-
plementation of the interpreter codelets generation, the implementation of a compiler
leveraging E-Bunny technology by reusing these codelets and a porting of the overall
implementation to the ARM architecture.

As of the method call acceleration technique, for some typical examples (e.g. Java
programs that frequently call inherited methods), it is capable to reach a speedup of

113

public class A {
public void m() ;
}
public class B extends A {
public void m() { };
}
public class C extends B { }
public class D extends C {
public static void main(String args[]) {
A o;
o = new D();
inti =0;
while (i < 1000000) {
o.m();
i++;
}
}
}

Figure 5.16: Typical example for our Optimization technique

more than 27%. Figure 5.16 shows a typical example that contains a class hierarchy
and an invocation of an inherited method m. Figure 5.17 shows the execution time
acceleration for this example. This time is given with respect to the hash table size.
Figure .18 outlines the trade-off between footprint and collisions. In fact, when the
hash table size increases, the footprint increases and the number of collisions decreases
so the lookup is more accelerated. However, the footprint is critical in embedded
systems, so we can not minimize so much the collisions. Our technique is flexible such
that the footprint is tunable.

5.4 Conclusion

We reported, in this chapter, two techniques for the acceleration of embedded Java
virtual machines. The first one relies on a tight collaboration between a threaded
interpreter and a lightweight dynamic compiler that reuses some of the codelets of this
interpreter. The second acceleration technique is related to the acceleration of the
dynamic method lookup. The results show that our optimizations are efficient and not
expensive from the footprint standpoint. Moreover, the proposed techniques are very
generic and could be successfully applied to any embedded Java virtual machine.

114

Execution time
900 e
800 m Optimized Method Cajlb
700 (ms)
600 ‘
500 |.0riglnal Method Call
400 | (ms)
300
200
100

o

1113 17 19 23 28 Haghtable size

Figure 5.17: Execution time acceleration for a typical example

11 13 17 19 23 29
Hash Tuble Size

Figure 5.18: Trade-Off between footprint and collisions

Part 11

Semantic Foundations of
JVML /CLDC

115

Chapter 6

Concurrency Models

6.1 Introduction

Establishing the semantic correctness of an optimization technique consists of proving
that the optimization preserves the semantics i.e. the original program and the opti-
mized one are semantically equivalent. This entails the elaboration of one semantics
if the original and optimized programs are both expressed in the same language. In
the case of dynamic compilation, we are in the presence of two languages': the source
language and the target language. Hence, this means that two semantics are needed.

In the literature on programming languages, many researchers have used the method
introduced by Morris in [90], further promoted in [130], to establish the correctness of
a compilation/optimization process. This approach advocates the use of algebraic data
types and algebraic semantics to capture the optimization correctness as the following
equation:

encode(sermanticssource(P1)) = Semanticsarge:(compile(Py))

This amounts to the commutation of the diagram reported in Figure (i.1. Later, this
approach was accommodated to use an operational semantic style as what Stephenson
proposed in [122] or a denotational semantics style as what Wand proposed in [133].
In a denotational semantics setting, the correctness of the compiler is expressed as the
equality of the denotation of the source program and the denotation of its translation:

SemManticssouree(P1) = semanticsqrget(compile(Py))

This paradigm for proving compiler correctness is outlined in Figure G.2. Note
that the presented figures outline the equivalence between a source program and a

In our project, the source code is JVML/CLDC (Java Virtual Machine Language for Connected
Limited Device Configuration) and the target code is the binary language of Intel processors.

117

compile
P Py
Semanticssource semanticsgrget
; encode :
Semantics, Semanticsy

Figure 6.1: Morris Approach to Compiler Correctness

P, compile P,

5emantics source Semanticsarget

Intermediate Language

Figure 6.2: Wand Paradigm for Proving Compiler Correctness

compiled one. However, they are valuable for proving the correctness of other kind of
optimizations, which are also transformations of programs.

Hence, to establish the correctness of optimizations of JVML/CLDC programs, we
have to provide a semantic model for JVML/CLDC, which is a concurrent language.
Therefore, a concurrency model is needed to ascribe a semantics for this language.
Concurrency models can be classified with respect to the following criteria [137]:

e System versus behavior: system models represent explicitly state information
while behavioral models are more abstract and put focus only on the interactions
in the system. The models that put focus on the system are called intensional
while behavioral models are known as eztensional.

e Branching versus non-branching: branching models take into consideration choice
points, expressing non-determinism, that emerge at execution while non-branching
models ignore them. There are two forms of non-determinism: bounded and un-
bounded. Bounded nondeterminism refers to the case where every terminating
computation has only a finite number of possible options while in the unbounded
non-determinism form, the set of options can be infinite [111]. Note that the exact
definition of the word option depends on the studied language i.e. for instance an
option can be a result if the language allows value return or a choice if it is not
the case.

e Interleaving versus non-interleaving: interleaving models reduce the parallel com-
position of processes to a choice between possible interleaving executions of them.

118

On the other hand, non-interleaving (called also true concurrency models) offer
the possibility for a simultaneous execution between the composed actions.

Concurrency models can also be classified with respect to the two most adopted
semantic styles: operational and denotational. Before presenting operational and de-
notational semantic models, we provide some mathematical definitions that clarify the
presentation.

6.2 Mathematical Definitions

This section is devoted to the presentation of some definitions that are useful to get a
clear and full understanding about the content of the current and next chapters.

6.2.1 Some Notions about Domain Theory

A poset (P,C) is a non-empty set P equipped with a partial order relation C. An
element u of P is an upper bound of a subset S of P, if s C u for each s € S. The dual
definition of a lower bound of S is obtained using J instead of C. An element u is the
least upper bound (called also supremum) of a subset S of P if it is an upper bound of
S and if u C t for each t € P upper bound of S. The definition of the greatest lower
bound (infimum) is defined dually. A set D is directed if each finite subset F' C D has
an upper bound in D. A set D is countably directed if every countable subset of D has
an upper bound in D. A poset P is a directed complete partial order (dcpo) if each
directed set D in P has a least upper bound. In this case, the least upper bound of D
is denoted by LID.

A subset F' C P is filtered if each finite subset of F has a lower bound in F. A dcpo
is a complete partial order (cpo) if it has a least element L. A subset S of a cpo P is
bounded if there exists z € P such that s C z for each s € S. A poset P is consistently
complete if every non-empty subset X, for which each pair of elements has an upper
bound in P, has a least upper bound.

Let P be a depo. An element x € P is compact if for each directed subset D C P,
if x C UD, 3k € D such that z C k. The set of compact elements of P is denoted by
K(P). We have for z € P, K(z) = K(P) N |z, where |z ={y € P|yLC z}. Pisan
algebraic domain if K (z) is directed and z = UK (z) for each z € P. An element p of
a depo P is prime if for each subset X C P, which has a least upper bound, p C UX
implies p C z for some x € X. The set of prime elements below some element z € P
is denoted by Pr(z). P is prime algebraic if z = LIPr(z) for each z € P.

119

A subset X of a cpo P is upward closed (called also upper set) if for each element
of this set all greater elements are in the set i.e. we have TX =X where 1X = |, .1z
and Tz = {y € P |z Cp y}. A subset X of a cpo P is downward closed (called also
lower set) if for each element of this set all smaller elements are in the set i.e [X = X
where | X = (J,cxlz. A subset of a cpo P is convex if whenever a and c are in the set
and a Cp b Cp ¢, bis in the set too. An ideal in a cpo P is a downward closed and
directed subset in P. The ideal completion of a poset (P,C) is (ideals(P),C) where
ideals(P) is the set of all the ideals in P.

A function f : P—() between two posets P and () is monotone if, whenever z Cp y,
then f(z) Eq f(y)-

A monotone function f : P—() between posets P and @ is (Scott) continuous if, for
every directed set D that has a least upper bound UD € P, L{f(z) | z € D} = f(LUD)
i.e. f preserves least upper bounds of directed subsets. f is w;-continuous if it preserves
least upper bounds of countably directed sets (w; is the first uncountable ordinal).

(S,+) is called a semilattice if S is a cpo and + : S—§ is a continuous operation.

A poset P is a local cpo (lepo) if it has a least element L and if every directed set
of P that has an upper bound has a least upper bound.

Let (P,C) be a cpo, f : P—P a function. Then, € P is a prefixed point of f if
f(z) Cz. If z C f(x), then z is a postfixed point of f.

6.2.2 Some Notions about Category Theory

A category C'is defined as a collection of objects together with a collection of morphisms
(functions between objects) and which satisfies the following constraints:

e Composition is associative: Given f : X - Y, g:Y - Zand h: Z — W,
ho(gof)=(hog)of.

e For every object X there is an identity morphism idy : X — X, satisfying
idy o g = g for every morphism ¢ : Y — X and foidy = f for every morphism
f: X—-Y.

Let S be a collection of objects (X;)ies together with a collection of morphisms
(fii + X; — Xi)ic; such that Vi < j < k. fi = fji o fr;. A cone over § is an object
X together with a family of morphisms (f; : X — X;);es such that for 4 < j we have

Ji= fji © fj-

120

6.2.3 Some Notions about Transfinite Numbers

Transfinite numbers, also known as infinite numbers, are numbers that are not finite.
There are two different classes of transfinite numbers: ordinal and cardinal numbers.
An ordinal number is a number, which is used to denote the position of an element
in an ordered sequence, whereas a cardinal number denotes the size of a set. As an
example of these numbers, we have the lowest transfinite ordinal number, which is w (w
is the limit of the sequence 0, 1, 2, 3, 4, ...) and the first transfinite cardinal number,
which is Ry, aleph-null, (aleph-null is the cardinality of the infinite set of the integers).

There are two categories of ordinals: Limit ordinals and successor ordinals. Limit
ordinals are ordinal numbers, which haven't direct predecessors. The other ordinals
are called the successor ordinals. Ordinals can also be countable or uncountable. The
smallest uncountable ordinal is equal to the set of all countable ordinals, and is usually
denoted by w;.

6.3 Operational Models

Operational models aim at giving a formal description of a system through an abstract
machine. In the literature, there are plenty of operational semantic models for concur-
rent languages. Famous examples of these semantics include operational semantics for
CSP [103] and CCS [87]. We give hereafter, a brief description of Labelled Transition
Systems, which are the most famous operational model.

A Labelled Transition System (LTS) is a tuple (S,s0,£,7") where:

e S is the set of the states,
e 5 is the initial state,
e L is the set of labels and

e T is a transition relation between states such that T C § x £ x §.

LTS are used to provide a semantics for CCS [87]. In this semantic model, equiva-
lence between processes is established via a bisimulation relation between them. This
relation is interesting since it allows for example the comparison between two designs of
a system. Another application of LTS is model checking of concurrent systems. In fact,
various properties, such as safety and liveness, of concurrent systems can be checked in
a logical framework. True concurrent LTS had emerged by the extension of LTS with
an independence relation between states [13]. This extension allows to minimize state
explosion.

121

The operational style is known to be too concrete since generally, low level details
are considered in the elaboration of the semantics. This decreases the abstraction level
of the semantic model. Accordingly, denotational models are meant to abstract from
these details.

6.4 Denotational Models

Few denotational models for concurrency exist in the literature. In the sequel, we review
these models.

6.4.1 Failure Sets

Failure sets [19] is a denotational model in which a process is denoted by a set of pairs
called failures. The first component of a failure is an execution trace of the process in
question while the second component is the set of events that are refused by it. More
precisely, let ¥ be a set of events, £* the set of all possible traces, £ an element of
P(Z* x P(X),be X, st € ¥*and X,Y € P(E). Let () be the empty trace and (b)
be the trace containing b. FE is a failure set if it satisfies the following conditions:

1. (8,X) € E = X finite,

2. ((),0) € E,

3. (st,0) € E = (s,0) € E (prefix-closed),
4. ,Y)e ENX CY = (3,X) € E,

5. (s,X) e EA(s(b),0) ¢ E= (s,X U{b}) € E.

As an example, the process STOP, which is a process that never does anything, is
denoted by the following failure set: {({), X) | X C ¥ & X finite}. In fact, this process
cannot execute any event in X.

The failure sets model was first used to provide a denotational semantics for CSP.
It was extended to deal with divergence’. In the failure/divergence model, a process is
denoted by (F,D) where F is a failure set and D is the set of divergence traces (the
traces after which a process diverges). Unfortunately, this model can not discriminate
a process, which can communicate a finite number of a from the process that can
communicate an infinite number of a. This discrimination issue is discussed in details

2 A process is considered as divergent if it executes infinite internal invisible actions

122

in Section (i.0.1. Roscoe et al. [111] extended the failure/divergence model by adding
infinite traces that a process can communicate. A process is thus denoted by (F,D,I).
This model was devoted to the treatment of unbounded non-determinism.

6.4.2 Acceptance Trees

Acceptance trees [58] constitute the dual model of failure sets as proved in [15]. In this
model, a process is denoted by a set of pairs called acceptances. The first component
of an acceptance is an execution trace while the second component refers to the set
of events that can be executed by the process. The events, which are outside this set
are refused by the process. More accurately, let A be an element of P(X* x P(X)),
a€ X, o,ne X and XY, Z € P(X). Ais an acceptance set if it satisfies the following
conditions:

1. (0,X) € A= X C initials(A/o),

2. o € traces(A) A a € initials(A/o) = 3X | (0, X) € ANa € X,

3. (e, X) e AN (0)Y) € A) = (0, X UY) € A (union-closed),

4. (0, X)€EAN(0,Z) EANXCY C Z)= (0,Y) € A (convex-closed),

5. ou € traces(A) = o € traces(A) (prefix-closed).

Where:

traces(A) = {o|3X. (6,X) € A}
initials(A) = {a| (a) € traces(A)}

Ala = {(mX) | (op) € traces(A)}

As an example, the acceptance tree {(a,{b,c}),(a,{c})} denotes a process that al-
ready executed a and that accepts (i.e. can execute) either b or ¢. The process STOP is
denoted by the following acceptance tree: {(({),0)}.

The acceptance trees model was first used to provide a denotational semantics for
CSP. An extension of this model appeared in [15]. The aim of this extension is to
capture imperative aspects of languages like CML. Another extension of acceptance
trees for probabilistic processes can be found in [96].

Failure sets and acceptance trees give an interleaving meaning to parallelism. In
fact, in these models, the parallel composition of two processes is defined as all the
possible interleaving between them. This leads to a state explosion problem.

123

On the other hand, true concurrency models avoid this state explosion by considering
that independent actions/events can be executed simultaneously. In the sequel, we
review famous true concurrency models.

6.4.3 Event Structures

Event structures were introduced first in [135] to give an abstract representation of the
behavior of petri nets. They constitute a model for concurrent computation that takes
into account causal relations between events. More precisely, an event structure [135]
is a tuple (E,=,#,,L), where:

e [is a set of events partially ordered by =, which is called a causality relation. <
should satisfy the following constraint: Ve € E. {¢’ | ¢’ < e} is finite.

e # is a symmetric and irreflexive relation called conflict relation. This relation
specifies the events that could not occur in parallel. It should satisfy the following
constraint: Ve,e'.e”" € E. e# e Ae < e’ = e # €.

e [is the set of labels and I: E — L a labelling function.

As an example, for an event structure (E,=X,#,,L), where V' = {e1,eq,€3}, <=

{(e1,€1), (e1,€2), (€2, €2)} and # = {(e1, e3), (€3, €1), (€2, €3), (€3, €2)}, €1 is executed be-
fore e; while e; and ey cannot be executed in parallel with es.

Some quantitative extensions of event structures such as [65] were proposed to cap-
ture real-time systems and reason about system performance. Particularly, famous
extensions introduce the notions of time and probability in the event structure model.

It is worth to mention that event structures [135] and labelled transition systems
with independence [13] can capture true concurrency but they lack explicit descrip-
tion of it. Lately, Gastin and Mislove [49, 50] provided an explicit description of true
concurrency in a denotational resource-based model. In the sequel, we give a detailed
description of two resource-based models. More details can be found in [49] and [50].

6.4.4 Resource Trace Model

The resource trace model was presented in [49]. The main motivation behind this work
is to design a fully abstract semantic model, which is based on the resource concept. In
what follows, we give an overview of this model.

124

Real Trace Definition

Let ¥ be a finite set of actions, R a finite set of resources and res : ¥ — P(R). A
dependence relation D is defined as follows:

D = {(ab) € £ x T | res(a) N res(b) # 0}

a D b means that a and b are dependent. Otherwise, they are independent and we
write a I b where I is the dual relation of D i.e. the set of independent action pairs.

A real trace set R(X,res) is the set of elements ¢ such that ¢ is a directed acyclic
graph [V,E,)], where:

e V is a countable set of events (an event is an occurrence of an action),
e £ CV x V is a synchronization relation on V,
e \: V — X is a node-labelling function and

e All vertices have a finite set of predecessors. This means that each vertex should
have a finite past i.e. Vp € V. |p= {q € V| (¢,p) € E*} is finite. Note that E*
denotes the reflexive, transitive closure of E.

If there exists a vertex having an infinite past, the trace will have a transfinite
part and is not considered as a real trace.

The relation between D and F is defined as follows:

Vpg e V. (A(p)Aq) € D& (pg) e EUE U {(pp) |peV}

Example We provide some examples that illustrate the coding of real traces:

o [{a1,b1},{(a1,b:)},{(e1,a),(b),b)}] is a real trace where:
{ay,b1} is the event set, {(a,b1)} is the synchronization relation, which states that
a, precedes by and {(ay,a),(b1,b)} is the labelling function. Note that the authors
use the set notation for the labelling function to clarify the presentation.

e [{a1,b},0,{(a1,a),(b1,b)}] is another example of a real trace. The events a; and b
are executed simultaneously since the synchronization set is empty, which means
that there is no dependence between these two events.

125

Real Trace Concatenation

In what follows, we provide the formal definition of the concatenation of two real traces.

Let alph be the alphabet of a trace t = [V',E,)] and defined by alph(t) = [J,.\ A(v).
The resources needed by a trace ¢ are defined as follows:

res(t) = res(alph(t)) = U{res(a) | a € alph(t)}

Let resinf(t) be the resources at infinity of a trace ¢ and alphinf(t) the actions
from ¥ that occur infinitely in t. We have: resinf(t) = res(alphinf(t)). Let t; and t,
be two real traces such that:

t = [V1,Ei,M],
tg = [I/Q,Eg,'\g] and
resinf(t;) N res(ty) = 0.

The concatenation of ¢; and ¢y is defined as follows:

ti.ty = [V,E,\ where:

Vi = Nyl

A = A1 4 X and

E = EiWE WV xVonA1(D))

In the aforementioned definitions, ¥ denotes the disjoint union and A~!(D) denotes
the set of pairs composed of events belonging to V; x V5 and which are dependent.
More precisely, A1(D) = {(e,e’) € Vi x V5 | (A\(e), A(¢')) € D}.

It is worth to mention that the condition resinf(t,) N res(tz) = 0 allows to avoid
getting transfinite traces in which an event has an infinite past set. More precisely, all
the events of t, should be independent from any event, which is an occurrence of an
action in alphinf(t).

This condition is also considered as an important solution to the theoretical issue
related to the monotonicity of the concatenation of traces. This idea was proposed first
by Gastin and Teodosiu [52].

Prefix Order
To establish the recursion semantics, the authors defined an ordering between the ele-
ments of a domain. A prefix order =< is defined over real traces as follows:

r=<t < ds € R(X,res) such that ¢t = r.s, s is unique and denoted by r~'¢.

Informally, the trace ¢ is doing more actions than r, which is considered as a prefix
of £.

126

(alu—-n-bl—b61—c-81#—-82 S R)

Figure 6.3: Example of a resource trace
Resource Trace Definition

The resource trace set over (X,R,res) is the family:
F(Z,res) = {(r,R)|r € R(E, res), R C R A resinf(r) C R}

The real part of z = (r,R) is r. It represents a real trace and is denoted by Re(z).
The imaginary part is R and it represents the needed resources for the continuation of
the process. It is denoted by Im(z).

Example Let R be a resource set. We suppose that res(e) C R.

([{al:bl’cl:elaem' . '}1{(01!bl)!(bl,Cl)!(clsel):(61182):(82?63)!' . '},
{(al1a)1(b115)3(6'1:6)1(31 58)5(82’8)1‘ g }]iR)

is a resource trace where the real part is the following real trace:

[{01,b1,61,61,82,. £ ‘}?{(a‘l’bl)s(blacl)s(clael),(61,32),(62,63),. ¥ .},
{(a1,a),(b1,b),(c1,¢),(e1,€),(€2:€),. . . }]

The imaginary part of this resource trace is R. Figure .3 outlines this resource
trace.

An approximation order C is defined over F as follows:
(r,R)C (58) & r=sARDSUres(rls)

This means that (s,S) is a process for which r is a prefix of s and all the resources
it already used and it needs for the continuation are a subset of R.

Note that if the continuation resources set of a process is empty, the real part of this
process is finite and the process is considered as terminated. Otherwise, the process is
a non-terminated one.

Resource Trace Concatenation

“n

A concatenation operation “.” over resource traces is defined as follows:

(r,R).(s,S) = (r.pr(s), RU S U ogg(s))

127

(G,I—bblr—«-ﬁcl—bel—be2 . . .] ?"65(8)) . (dl_"fl ! m) —

(21‘—/-1;'1—-01—-61—'62- i res(e)Ures(f)
1

Figure 6.4: Example of a concatenation of two resource traces

where or(s) = res((ur(s))™'s) and jg(s) is the maximal prefix u of s satisfying:
res(uyNR = 0

As mentioned previously, the intuition behind looking for the maximal prefix, which

is not using some of the resources dedicated to the continuation of the second trace, is

to guarantee that the concatenation is an internal operation of R. This allows to avoid
getting transfinite traces. Moreover, it ensures the monotonicity of the concatenation

with respect to the order C.

Example Let p and ¢ be two resource traces such that:

e p is the following:
([{a1,b1,¢1,€1,€2, - - 1, {(@1,b1),(b1,¢1),(c1,€1),(€1,€2),(€2,€3)s- - .},
{(a1,a),(b1,b),(c1,0),(e1.€),(e2.€),. . -}, {})
e ¢ is the following:

([{dl!fl}’{(dlvfl)}!{(dlvd)a(flaf)}]vm)

e We assume also that res(a)={a}, res(b)={8,7}, res(c)={v.p}, res(e)={p},
res(d)={B,C}, res(f)={C.0}.

The maximal prefix of ¢ that does not use p contains uniquely of the event d;.
Figure 6.4 outlines the concatenation of these two resource traces. The resource trace,
which is the result of the concatenation of p and g, is:

([{al,bl,cl,dl,el,eg,. 4 .},{(G]_,b]_),(bl,dl),(bl,cl),(Cl,el),(61,62),(82,63),. i .},
{(dl:d)s(al1”’)1(b1=b)=(cl’c):(el16))(6216)1' . }]a{PsC})

Hereafter, we give some algebraic properties of F, which are relevant to give a
meaning to recursion in this model:

e (F,C) is a prime algebraic domain and (1,R) is the least element of this domain.
Note that 1 denotes the real trace [@,0,0].

128

e The compact elements in I are the finite resource traces.

Gastin et Mislove [49] illustrate the concept of resource traces by ascribing a deno-
tational semantics to a simple language. In the sequel, we give the syntax as well as
the denotational semantics of this language.

Language Syntax

The syntax of the studied language L is the following:
p #= STOP | a | « | poq | pleg | plr | recap

The meaning of each syntactic construction is the following:

e STOP: the process that cannot execute any action and is claiming all the resources.
It denotes a deadlock.

e a: a process that can execute an action a and which terminates normally.

e z: a process variable.

e p o ¢: a weak sequential composition (concatenation) of two processes.

e p ||c ¢: a parallel composition of two processes that synchronize on a channel C.
e p |p: a process that is restricted to execute actions needing just resources in R.

e rec z.p: a definition of a recursive process.

Denotational Semantics

The semantic interpretation function [] is defined from £ to [F* — F] where F* denotes
a product on A-copies of IF i.e. the domain of mappings from A to F. Let w be an n-ary
operator of the language and & be a map: [F* — F|* — [F* — F].

The semantics of a compound process is defined as follows:

HW(PI,- .. :pn)]] = G)([pl]l" sy [pn]”

The authors proved in [49] that for each operator w, & is continuous. This proves
that the semantic function [| is continuous too. Note that this continuity is needed for
the elaboration of the recursion semantics.

To lighten the notation, the authors use in what follows the same symbol for w and

w.

129

Constants and Variables

Let o: A — F a mapping from variables to complex pomsets. The denotational
semantics of constants and variables are defined by the maps: [STOP], [a] and [z] €
[F* — FF] and defined by:

[sToP](0) = (1,R)
[al () = (a,0)
[z](c) = ol2)

The semantics of STOP is a process that is not progressing and claiming all the
resources specified in R. The semantics of a simple action is a terminated process since
the continuation resources set is (). Note that the trace containing just an event, which
is an instance of the action a, is denoted by a.

Weak Sequential Composition

The weak sequential composition is defined as the concatenation of processes. The
weak sequential composition of processes imposes an execution order on dependent
actions while it allows independent actions to be executed in parallel.

More precisely, the semantics of the weak sequential composition of two processes
is defined as follows:

o : [FA—TF]*? — [F* — F] where:
(f1 o f2)(o) = fi(o) . falo)
BEach f; is a continuous map from F* to F. The resources of the resulted resource
trace are defined by the following equation:

VY(p,q) € F%. res(p.q) = res(p) U res(q)

An example illustrating the semantics of the weak sequential composition is already
provided in Figure 6.1 since, as specified above, the semantics of weak sequential com-
position is exactly the same as concatenation.

Restriction

A restriction for a process p to use a resource set R means that just the events
using resources in R are considered while the events in p, which are not satisfying this
condition are denied. The resources for the continuation of the restricted process are
the intersection of the resources for the continuation of p and R.

More formally, let Fr = {z € F | res(Re(z)) C R}. Fg is the set of real traces that

use only the resources in R. The restriction semantics is defined as follows.

|r : [FA - F] — [F* — F] defined by
(tlr)o = t(o) [r where:

130

(a’.—-—*b'—*cl—"CZ . % w3 T‘GS(C))l{y} =(a—=p a{u])

Figure 6.5: A restriction of a process execution to a set of resources

rR 4 F—-"F
lr = gof where:

f : F —Fgdefined by z+— LU{y € Fr |y C =}
g : Fr—1(1, R) CF defined by (5,5) — (5,5 N R)

Note that f is a mapping that associates to a real trace z the least upper bound
of the set of elements smaller than = and that use just resources in R. g is a mapping
that restricts the continuation resources of a resource trace to a subset of R.

Moreover, we have:

res(zlg) = res(z) N R

Example Figure 6.5 outlines the restriction of a process to a set of resources {u}. We
suppose that: res(c) = {8,u}, res(a) = {u} and res(b) = {u}. As shown in Figure 6.5,
all the events not using just the resource y are denied, while the continuation resources
are restricted to the set {u}.

Parallel Composition

The parallel composition with synchronization on a channel C' (defined as a set of
actions) consists of computing the events in each of the composed processes that are
not using the resources of the set C' and which are independent with the other process.
These events are specified below in a set called ¥j,. More precisely, the composed
process trace is specified as the least upper bound of the trace pairs set, which is built
using ¥y. This least upper bound is specified below in ¢¢.

More accurately, let z; = (s81,51), zo = (82,52) two resource trace, C a chan-
nel and Synce(z,z2) be a synchronization event set and defined as the set of pairs
(a1,a2) € alph(s)) x alph(ss) satisfying:

res(a;) N C = res(ag) N C = res(a;) N res(zz) = res(az) N res(z;) # 0

The semantics of the parallel composition of z; and z; with synchronization over
the channel C is specified as follows:

131

Let
71 = (Zu{Ih M@}

res' . %/ — P(R) defined by res'(a; || az) = res(ar) U res(as)

I . ¥ — % defined by II(a,a2) = a; || az

S(z1,02) = {(an,1) € alph(s1) x {1} | res(as) N (C U res(zs)) =0} U

{(1,a2) € alph(ss) x {1} | res(az) N (C U res(z;)) = 0} U
Synce(21,%2)

Ro(x,m2) = {r € R(Zg(z1,22),res’) | mi(r) < Re(z;) for i = 1,2}

Xo(zy,xe) = {(t,T) € F(X,res") | alph(t) C Ep(z1,22) A
mi(t,T) C z; for i = 1,2}

po(z1,m2) = UXe(1,22)
= (URg(z1,22),51 U Sz U res(r1™'s1) U res(ry~'sy)) where
r= URC(.’I’I]_,SCz) A ri = 71'3'(7")

The parallel composition of two processes x; and z, is defined as follows:

2 le 22 = M(pc(z1,22))

Note that the alphabet set £’ is composed of pairs so the definition of the functions
res and alph are extended to sets of pairs. The definition of the function II is extended
to resource traces. The projection functions m; extract the element at position 7 of an
n-uplet.

Moreover, we the resources needed by the composed process are defined as follows:

res(z; ||e z2) = res(zy) U res(zs)

Example Figure 6.6 outlines the parallel composition of two processes with the con-
dition: the actions a,b and ¢ are pairwise independent. The synchronization is over
the channel C' = {c}. Since a and b are independent, the events which are occurrences
of a are executed in parallel with the events which are instances of b. Moreover, the
composed processes synchronize on the events ¢; which are occurrences of the action
c. The continuation resources of the result process are the union of the continuation
resources of the composed processes.

131

Let
b = (Cu{1Hh™\{@L}
res’ : X' — P(R) defined by res'(a; || az) = res(a;) U res(az)
II ;¥ — ¥ defined by I(ay,a3) = a; || az
So(z,z2) = {(a1,1) € alph(s1) x {1} | res(a;) N (C U res(zz)) =0} U
{(1,a2) € alph(ss) x {1} | res(az) N (C U res(z;)) = 0} U
Synec(z1,22)
Ro(x1,22) = {r € R(E(z1,22),res") | mi(r) < Re(x;) for i = 1,2}
Xe(z1,22) = {(@tT) € F(¥,res) | alph(t) C T (zy,22) A
(4. T) C =i ford = 1,2}

wo(z1,22) = UXe(w1,72)
= (URg(z1,72),51 U S3 U res(r1™'s1) U res(ry~1sy)) where
r = URg(z1,22) A 1y = mi(r)

The parallel composition of two processes x; and z, is defined as follows:

1 e za = T(pc(z1,22))

Note that the alphabet set ¥’ is composed of pairs so the definition of the functions
res and alph are extended to sets of pairs. The definition of the function II is extended
to resource traces. The projection functions m; extract the element at position i of an
n-uplet.

Moreover, we the resources needed by the composed process are defined as follows:

res(zy |lc ®2) = res(z1) U res(zq)

Example Figure 6.6 outlines the parallel composition of two processes with the con-
dition: the actions a,b and ¢ are pairwise independent. The synchronization is over
the channel C' = {c}. Since a and b are independent, the events which are occurrences
of a are executed in parallel with the events which are instances of b. Moreover, the
composed processes synchronize on the events ¢; which are occurrences of the action
c. The continuation resources of the result process are the union of the continuation
resources of the composed processes.

132

(1 —=C — Q3 —=C3 « + =« T'ES(CB) UT@S(C)) ||{c}
c1—by—Ca—=by - - - > res(b)Ures(c)) =

al—*cl/ -
\ /"
by

[
(

c2 « - - »res(a) U res(b) U ‘T‘BS(C))

Figure 6.6: The parallel composition of two processes

Note that in this model the parallel composition of two actions sharing some re-
sources leads to a deadlock.

Recursion

The following theorem, proved by Tarski, Knaster and Scott, establishes the
conditions for a recursive function to have a fixed point.

Theorem 6.4.1 (Tarski-Knaster-Scott) If f: P — P is a continuous selfmap of a
cpo P, then f has a least fized point given by fix(f) = Unsof™(L)

We give, in the sequel, the recursion semantics.

[rec x.pl(e) = |50 @» where:

zg = (L,R) with R = res([p](c[z—(1,0)])),
and Zns1 = [pl(olz-za])

Since all the semantic functions are proved to be continuous and F is a cpo, the
fixed point exists as states the theorem (.41.1. However, the semantics of recursion does
not use the least element of the domain F (which is (1,R)) since the use of this element
gives more resources than what is actually claimed by the recursive process. In fact, R
will be the imaginary part of the semantics of this process. Instead, the authors used
another starting point for the recursion, which claims just the needed resources i.e.
res([p](o[z—(1,0)])). The following example provides an illustration of the recursion
semantics.

Example The following example outlines a process that is executing indefinitely the
action a.

Let ¥ = {a,b,c} with res(a) = {a}, res(b) = {a,y} and res(c) = {y}. Consider
the process ¢ = rec z.p with p = a o x. The semantics of p is the continuous map:

133

[p]: FA—F defined by [p](c) = (a,0).0(z)
The semantics of g is a fixed point of the continuous selfmap:
¢: F—F defined by ¢(z) = (a,0).2

The fixed point is computed as follows:

zo = (Lres([pl(e[z—(1,0)]))) = (1, res((a,0))) = (L{a})
Tpy1 = (a0) .z,
= (a™'{a})

This sequence is increasing and its least upper bound z* = (a”,{a}) is the semantics
of the process ¢ (recall that w is the first infinite ordinal). The obtained process claims
the resource set {a} for its continuation. This complies with the condition imposing
that the resources needed by the actions that occur infinitely often are included in the
continuation resource set of the process.

Hereafter, we summarize the denotational semantics of the language £ in the fol-
lowing rules:

[sTOP] (o) = (LR)
lal(o) = (a0)
[z](o) = o(z)

[podl(e) = I[pl(o) . l4l(o)

[pllcale) = [pl(o) llc la)(o)

[plel(e) = ([Pl())Ix

[rec z.pl(o) = (recz.[pl)(o) = Ll,z0®n where

zp = (1,R) with R = res([p](c[z—(1,0)])) and

Tn1 = [pl(ofzm,))

6.4.5 Resource Pomsets Model

The resource pomsets model’ is an extension of the resource trace model. The main
intent of this extension is to deal with strict sequential composition and hiding. In fact,
as shown in the several examples that we provide later, strict sequential composition
requires that each event of the left-hand process precedes each event of the right-hand

3A pomset is a shorthand of a partially ordered multiset

134

one. Moreover, in this model hiding an event from a trace means removing it from that
trace. If the hidden event executes between two independent events, a dependence,
which is not based on resources, between these independent events is created. Hence,
these operators introduce dependencies between events without necessarily sharing some
resources. This requires introducing some changes on the resource trace model, which
consist mainly in weakening the equivalence between the relations D and E to an
implication (see Section 6.4.4).

Real and Complex Pomsets

Let R be a non-empty countable infinite set of resources, A a set of variables and ¥
defined as follows:

Y = ActU R\
At = {a € PyR)|a#0}
Ry = {p: |z €A}

Note that the alphabet set is composed of resource sets. The reason underlying this
choice is to deal with resource hiding as explained later. Moreover, this set contains
resource variables p,. A resource variable represents an action of unwinding of recursion
and is meant for observing divergence.

A real pomset is defined as a labelled partial order r = (V,<,X) where:

e V is a countable set of vertices,
e =: a partial order on V satisfying |p is finite for each p € V,

e \: V — ¥ assigns to each element of V' an element of X. We also have:
Ap) N AMg) #0=p=qorg=p

The synchronization relation between events is relaxed in the sense that equivalence
is transformed to an implication. This is due mainly, as mentioned previously, to the
fact that strict sequential composition and hiding can introduce some dependencies
between events that are not claiming the same resource.

The real pomset domain is denoted by R. The mapping res : R — P(R) is defined
by res((V,2,A)) = U,epyA(v). Moreover, the length of a real pomset r = (V,<,)) is
defined by |r| = |V].

A complex pomset is defined as a pair (r,R) where:

e r is a real pomset,

135

e R is the set of resources needed for the continuation of r and

o resinf(r) C R and res(r) U R is finite.

The complex pomset domain is denoted by C.

Prefix Order

Let t; = (V4,=1,A1) and to = (V2,=2,A2) two real pomsets. The prefix relation is defined
as follows:
t1 2ty & VTV, V=14,V A2 ==swxy, where
lxVi={peVa|3g eV p=q}
The meaning of the prefix order is similar to the one proposed in the resource trace
model. This order is also used to establish the recursion semantics.

Denotational Semantics

The language studied by Gastin and Mislove in [50] has the following syntax:

p w= SKIP | a | = | p;q | poq | pleq | P\R | reczp

Note the presence of sequential composition (operator ;) and hiding (operator \) in
this language. The informal meaning of other operators (weak sequential and parallel
composition) is the same as what is presented previously in the resource trace model.

It is worth to mention again that to lighten the notation, the authors use in what
follows the same symbol for each syntactic operator and its corresponding semantic
operator.

Strict Sequential Composition

The strict sequential composition of two processes means that the left-hand process
is executed before the right-hand one. If the left-hand one is a non-terminated process
i.e. its continuation resources set is not empty, the right-hand one is not executed. In
this case, the resulted process needs the resources of the right-hand for its continuation.

Let s; = (V1,%1,A1) and s = (V5,=2,A2) two real pomsets. The strict sequential
composition of s; and s is:

s1;8 = (VMW W,X1W 256V X VA @A)

More precisely, let z = (r,R) and y = (s,5). The strict sequential composition of
two complex pomsets z and y is defined as follows:

136

\

a a S
b J 0) ; by ’ R =
(Ity (o
a; — o

P ol .

b)

1 X b R
C1 —=Ca

Figure 6.7: Example about strict sequential composition

Ly =

(r;s,5) if R = 0;
(r, RUres(y)) otherwise.

Example Figure ;.7 outlines an example showing the strict sequential composition of
two processes. For the sake of clarity, we don’t show all the dependencies between these

processes.

Weak Sequential Composition

In what follows, we provide the semantics of weak sequential composition, which has
the same informal meaning as that presented in the resource trace model. Accordingly,
we omit providing examples. The reader can see Figure ;.1 that outlines the semantics
of weak sequential composition.

Let 81 = (Vi,=1,A\1) and s; = (V5,=2,A\2) be two real pomsets. If resinf(s;) N
res(sz) = 0, then the weak sequential composition of s; and s, is 5; 0 85 = (V,=,))
where:

o V=VHulh,

e =< is the transitive closure of <; W <o W {(p,g) € Vi x Vo | A(p) N A(q) # 0} and

.)\=/\1U:JA2

Let f be the following mapping:

k& PR)xC — C
(Ry) = fry) ={z € ClzEy A res(Re(z)) N R =0}

The semantics of weak sequential composition is as follows:

oy = 0 fina@)¥y) = (Re(x) o fhimz)(¥).Im(z) U Oim(z)(y))
pr(y) = U{r e R|r X Re(y) A res(r) N R = 0}

Im(y) U res(ur(y) ™" Re(y))

ar(y)

137

a8 {ap} {af}
N AN & N
{8} {8} 8y - o {apn} \ {8} =
“ AN
{~} {7}

{a} {a} {a} {a}

\ >< >< e

{7} {7} {7}

Figure 6.8: Example about hiding a process
Hiding
Hiding a set of resources R from a process p means removing from the labelling func-
tion all resources belonging to R and removing also those vertices that are associated

with an empty resource label. The continuation resources of the result is composed of
the continuation resources of p from which the set R is removed.

Let s = (V,X,A) € R. s\R = (V',2",)) where V' = {p € V' | A(p)\R # 0},
< ==<nN((V'x V') and N(p) = A(p)\R Vpe V.
Let z = (s,5) € C be a complex pomset and R C R. The hiding semantics is defined

as follows:

2\R = (s\R,S\R)

Example Figure 6.5 outlines an example about the hiding of a process. We see the
use of resource sets (see the definition of X)) in the trace and the creation of new
dependencies after hiding the resource set {3}.

Parallel Composition

In the sequel, we provide the semantics of parallel composition, which has the same
informal meaning as that presented in the resource trace model. Accordingly, we omit
providing an example. The reader can see Figure 6.0 that outlines the semantics of
parallel composition.

Let 51 = (V3,=1,\1) and s = (Va,<2,A2) be two real pomsets. The parallel compo-
sition of these real pomsets is defined as follows:

s1]82 = (ViU Va(=1U=)*M UM

138

Let Re(z1,2,) be asubset of R? and C a subset of ¥ such that each (r1,m3) € Re(z1,22)
satisfy the following conditions:

e r; = Re(z;) and ry < Re(zs),

e The number of occurrences of the action c is the same in r; and rp i.e. |r1]e = |r2e
Ve e C,

e Va € alph(r,) we have a € C or (a I C and a I ;) and Va € alph(ry) we have
a€Cor(alCandalz)and

e 71 || 72 is a real pomset.

Let 21 = (81,51), T2 = (82,52) € C and (r1,r2) = UR¢g(21,22). The parallel compo-
sition of x; and z, is the following:

T ”C Tg = (T'l ” 7'2,81 U 7‘63(7‘1_131) U 82 U T‘BS(TQ_ISQD

Like in the resource trace model, the parallel composition of two actions sharing
some resources leads to a deadlock.

Recursion

The complex pomset domain has no least element. In fact, (1,R) is not the least
element since R is infinite and so (1,R) does not satisfy the third constraint of the
definition of a complex pomset. Hence, (1,R) ¢ C. The recursion semantics has some
common points with that defined for the resource trace model. The introduction of p,
is the new element in this semantics. This resource is used to show unwinding i.e. the
act of replacing a variable by a complex pomset.

More formally, let D be the domain of continuous maps from C* to C. We recall o
is a mapping from variables to processes (elements of C). The recursion semantics is
the following:

TeC T : D—=D
(recz. f)(e) = |50 @u(fs0) where

wo(f,o) = (LR.(f0))
Ry(f,0) = res(®.(f,0,(1,0)))
. (fioy) = pasflofe—y])
zar1(fi0) = @u(f,0,2a(f,0))

po; flolz—zn(f,0)])

139

We give an example illustrating the recursion semantics. The following process
executes an action a indefinitely.

Letp = ax

R, = res(psa;z(ofz — (1,0)]))
= {Pa:} U res((a,@);(l,@))
= {pz} U res((a,0))
= {pxaa}

The semantics of the process ¢ = rec x. p is the least upper bound of the chain
(2;)ien, which is the fixpoint of the recursion. In this case the fixpoint of the recursion
is 7, = ((px — @)”,{ps,a}), which means that the process ¢ does unwinding then
executes the action a indefinitely. Hereafter, we give the details about the computation
of the fixpoint.

zo = (L{psa})
z1 = puila;a](olz—(Lres(a) U res(pz))])
= pm;ﬂa;wﬂ]l

paila; (1, {pz, a})]
(p:c — a, {Pa:aa})
T2 = (p:r: — Q= Py —Q, {Pmﬂ})

.‘L‘;,,. = ((Pm_’a)w!{pmia})

6.5 Our Strategy

Many advantages cater for the adoption of a denotational semantic style for JVML/-
CLDC. In fact, the denotational semantics has strong mathematical foundations. More-
over, it is compositional and more abstract than operational semantics. Furthermore,
this style is very adequate for proving optimizations correctness. Actually, we can en-
code the semantics of the source and target languages in the same model. This is
however not possible in an operational setting if the source and target languages are
different. It is worth to mention that, in the related work, there is no denotational
semantics for JVML or JVML/CLDC. Indeed, what we find in the literature is just a
denotational semantics for a subset of the Java source language that excludes paral-
lelism [5]. The main reason behind this lack is the difficult issues that emerge when
one tries to design such a semantics. We intend to devise a concurrency model that can
be accommodated for JVML/CLDC. More precisely, we found the resource pomsets
model relevant for our research. In fact, the main interesting feature of the resource
pomsets model is the concept of resources, which plays a fundamental role to know
if two events can be executed simultaneously. This concept is useful since we aim to

140

provide a semantics that describes in an explicit way the JVML/CLDC synchroniza-
tion mechanism. For instance, the resources can be used to denote objects that can
be locked by processes. Unfortunately, the resource pomsets model reduces parallel
composition of events sharing some resources to a deadlock. This makes the model
inadequate for JVML/CLDC and leads to the need for extending this model to include
non-determinism. More details about the need for introducing non-determinism in the
resource pomsets model are provided in the next chapter.

6.5.1 Non-Determinism

In what follows, we provide a brief overview about domain constructions and theoretical
issues related to non-determinism.

Powerdomains

Non-determinism is behind the emergence of powerdomain constructions. A powerdo-
main of a domain D is a domain containing some of the subsets of D. There are three
known powerdomains in the literature, which we define in what follows.

Let P, K (D) ={F |0 # F C K(D)} be the finite non-empty subsets of K(D),
where K (D) is the set of compact elements of D.

e Hoare Powerdomain:

The Hoare (Lower) powerdomain is the ideal completion of (P.,K(D),C;) where
FC;, G« F C |G The semilattice operation is union and the continuous
injection is ny(x)=|z. Ty, is defined as follows:

XCLY & VzeX JyeY.zCy

e Smyth Powerdomain:

The Smyth (Upper) powerdomain is the ideal completion of (P, K (D),Cy) where
FCy G« G CTF. The semilattice operation is union and the continuous
injection is ny(z)=Tz. Cy is defined as follows:

XCyY & WeY.meX. zCy

e Plotkin Powerdomain.:

The Plotkin (Convex) powerdomain is the ideal completion of (P K(D),Cc¢)
where F Co G < F C; G and F Cpy G. The semilattice operation is the convex
hull of the union (ie. X @ Y = [(X UY) N (X UY)) and the continuous
injection is 7. (z)={z}. Cc¢ is defined as follows:

141

XY & VeeX JyeY. zCyandVyeY. dJzeX. zCy
i=4 XELY/\XEUY

The three powerdomains are the classical constructions, which are used to deal
with non-determinism. However, these constructions present a serious problem when it
comes to deal with unbounded non-determinism. We discuss this issue in what follows.

Theoretical Issues related to Non-Determinism

As mentioned previously, there are two forms of non-determinism: bounded and un-
bounded. Bounded non-determinism limits the expressiveness of the studied language
[111]. However, the semantic model remains simple and the proofs are relatively easy
with respect to the unbounded form. On the other hand, unbounded non-determinism
provides the capability to deal with more expressive languages. However, there are many
theoretical issues that are related to the handling of unbounded non-determinism. In
this context, Mislove [88] did a very interesting study about dealing with unbounded
non-determinism in the aforementioned powerdomains. He proved that among the three
powerdomains, the Smyth powerdomain is the only one for which we can find a rep-
resentative domain i.e. a domain, which allows to have a semantics that discriminates
between a process that do an infinite a from that performing any finite sequence of
actions a and terminates normally. This is very important since the aim of supporting
unbounded non-determinism is to have such a discrimination.

More precisely, none of these powerdomains allows to differentiate between the pro-
cesses @pena™ and Gpena”v +a¥ ¢, It is worth to mention that an unbounded sum
exists in the lower, upper and convex powerdomain and is respectively equal to the
supremuin, infimum and convex hull of the sets over which the sum is being formed.
However, for instance for the lower powerdomain, the supremum of {|a"v" | n € N}
contains |a“. The other powerdomains fail also to do such discrimination. More details
about this issue can be found in [88]. The solution to this problem consists of leaving
the realm of complete partial orders and continuous functions and using the realm of
posets and monotone functions. This is a solution that is adopted in [111] and [89] for
providing a denotational semantics for unbounded non-determinism to the languages
CSP and timed CSP.

The following theorem provides an example of a construction of a representative
model for an algebraic domain.

4/ is a symbol, which does not belong to the actions set and which is used to specify programs,
which terminate normally

142

Theorem 6.5.1 (Mislove[88]) If P is an algebraic domain, then
Pys(P)={XCP|0#XAX=1X}withX+Y =XUY and XCY if Y C X
18 a representative local cpo for P.

This construction will be the basis of our semantic model as it will be shown in the
next chapter.

Unbounded non-determinism creates other challenges at the semantic level. In fact,
in the presence of random assignment in the langnage under study, the semantic func-
tions are not Scott-continuous [6]. Accordingly, a weaker notion of w-continuity is
considered. More precisely, more than w steps are required to compute a fixed point
for a recursive semantic function. Another issue that emerges in the presence of un-
bounded non-determinism is the invalidity of the standard inverse-limit reflexive domain
construction technique [56]. An alternative transfinite reflexive domain construction
technique was proposed in [53].

On the other hand, the treatment of unbounded non-determinism has many advan-
tages. In fact, non-determinism allows to deal with very expressive languages. Another
feature of unbounded non-determinism is that it allows to abstract from implementa-
tion details. This is one of the most reasons that cater for the adoption of this form
of non-determinism when we elaborated a semantic model that can be accommodated
to JVML/CLDC. Full details about the reasons underlying the choice of unbounded
non-determinism and about our semantic model are provided in the next chapter.

Chapter 7

A Semantic Model for
True-Concurrency with Unbounded
Non-Determinism

7.1 Introduction

In the previous chapter, we studied several concurrency models and provided the reasons
underlying the choice of the resource pomsets model as a starting point of our work. We
pinpointed that the resource pomsets model reduces parallel composition of events shar-
ing some resources to a deadlock. This makes the model inadequate for JVML/CLDC.
In fact, non-determinism emerges in the execution of some JVML/CLDC programs. For
instance, if two JVML/CLDC threads try to execute a synchronized block or method at
the same time, the virtual machine interpreter allows just one of them to execute this
block or method. The second is executed when the first leaves this block or method.
The execution order of these threads depends on many parameters: time, processor
speed, thread priority, etc.

An example of a non-deterministic embedded Java ' program is the following:

import java.util.*;

public class Nondeterminism extends Thread {
public static Object 11 = new Object();
public static long i;

public static void main(Stringl[]l a) {
Thread t1 = new Threadl();
Thread t2 = new Thread2();
i = System.currentTimeMillis();

lEmbedded Java is the source language of JVML/CLDC

144

if ((i%2)==0)
i=20;
aelse
i=1;
tl.start();
t2.start();
¥
private static class Threadl extends Thread {
public void run() {

try { if (i>0)
Threadl.sleep(i); }
catch (InterruptedException e) {}

synchronized (11) {
System.out.println("Thread 1: Holding lock 1...");
} :
¥
1
private static class Thread2 extends Thread {
public void run() {
synchronized (11) {
System.out.println("Thread 2: Holding lock 1...");
}

The semantics of this program is a choice between the possible sequential compo-
sitions of Threadl and Thread2. Indeed, Threadl can execute the synchronized block
(starting with the instruction “synchronized (11)” in the method run() of the class
Threadl) before Thread2 or the opposite can happen. These two possible behaviors
are illustrated by the following possible outputs of the program:

“Thread 1: Holding lock 1...”
“Thread 2: Holding lock 1...”

or

“Thread 2: Holding lock 1...”
“Thread 1: Holding lock 1...”

The interleaving of these two threads proves the presence of non-determinism at
the semantic level for JVML/CLDC. This leads, as previously mentioned, to the need
for extending the resource pomsets model by non-determinism. As mentioned in the
previous chapter, there are two forms of non-determinism: bounded and unbounded and
it is well-established that fairness is tightly connected to unbounded non-determinism

145

[6]. Fairness is a good means for abstracting away from implementation details when
we reason about the semantics of concurrent languages. For instance, assuming that a
process scheduler is fair, we can reason about the semantics of parallel composition of
programs without the need for including implementation details such as thread priority,
processor speed, etc. Let us consider the following embedded Java program, which
illustrates a competition between two threads for the execution of a synchronized block:

import java.util.*;
public class Unbounded extends Thread {
public static Object 11 = new Object();
public static boolean b=true;
public static long ij;
public static void compete() {
Thread t1 = new Threadl();
Thread t2 = new Thread2();
i = System.currentTimeMillis();
if ((i%2)==0)
i=0;
else
i1:=1;
tl.start();
t2.start();
t1.interrupt();
t2.interrupt();
¥
public static void main(String[] a) {
int x = 0;
while(b)
{
compete();
if (b)
X = x+1;
}
System,out.println("Final Value of x");
System.out.println(x);
}
private static class Threadl extends Thread {
public void run() {
try { if (i>0)

Threadl.sleep(i); }
catch (InterruptedException e) {}
synchronized (11) {

b=false;

¥
private static class Thread2 extends Thread {

public void run() {

146

synchronized (11) {
b=true;

1

The final value of z is known only if the boolean b is equal to false. This occurs
when Thread2 executes the synchronized block before Threadl. By fairness hypothesis,
i.e. assuming the scheduler is fair, this program is guaranteed to terminate, i.e. Thread?2
is executed before Threadl. However, we have no knowledge about the exact final
value of x. Actually, the set of possible values of z is infinite. This example shows
that assuming fairness, we can reason easily about the semantics of embedded Java
programs. Hence, by abstracting away from implementation details, we are able to get
an idea about the possible behavior of an embedded Java program and consequently
about a JVML/CLDC program. The example shows also the emergence of unbounded
non-determinism since the set of possible results is infinite.

However, despite the abstraction power provided by unbounded non-determinism,
there is no doubt that the semantic model becomes more complex than the one elab-
orated in the bounded case and mainly proofs become more difficult to do. In fact,
the main issue in the treatment of unbounded non-determinism, is related to the Scott-
continuity of the semantic operators [6]. The lack of Scott-continuity creates additional
challenges to prove the existence of fixed points for recursive semantic functions.

The elaboration of a denotational semantic model for JVML/CLDC including un-
bounded non-determinism is, as illustrated above, a very challenging research. We give
here, a full description of the extension of the resource pomsets model of Gastin and
Mislove [50] by including unbounded non-determinism. Other researchers [66], in our
group, are working on the accommodation of this model to JVML/CLDC. The starting
point of their research is the current work.

In what follows, we present the language syntax, the process space and its algebraic
properties, then the semantics with examples that illustrate our semantic functions.
Moreover, we provide the formal proofs about the monotonicity of our semantic func-
tions together with the proof about the existence of a fixed point for recursion. Finally,
we give some concluding remarks.

7.2 Language Syntax

In this section, we present the language that we study and use to illustrate later our
semantics. The syntax of this language is the following:

147

L > P u= SKIP|STOP |a| X | P\R| P;P | ®ictPi | PoP|P|P|recX. P
Where:

e SKIP denotes a normal termination.
STOP denotes a deadlock.

The term a denotes a simple action belonging to ¥ (a non-empty finite set of
actions). There are some special invisible actions 7, which denote internal actions.
We suppose that we have a finite set of invisible actions that we call Act,. More
precisely, we assume that each visible action a has a dual invisible action 7 that
uses the same resource set as a. The set of visible actions is denoted by Act.
Hence, we have ¥ = Act U Act,. We suppose that V is the set of all possible
events and defined as follows: V' = X x N. To lighten the notation, an event (a, ¢)
is denoted by a;.

X denotes a process variable that belongs to a set of variables (.

P\R denotes a hiding in P of events using a subset of the resource set R. Intu-
itively speaking, an event is hidden if the set of the resources it uses is a subset
of R.

P; P denotes a strict sequential composition of two processes. All the events of
the first process should occur before those of the second.

@;erPi: an unbounded countable non-deterministic choice between processes. We
assume that the unbounded non-determinism is countable to avoid more complex
theoretical issues.

Po P denotes a weak sequential composition between two processes. The events of
the two processes are executed in parallel when there is no resource dependence,
while dependent events are executed sequentially in favor of the left-hand process.

P || P denotes a parallel composition between two processes. The events of
the two processes are executed in parallel when there is no resource dependence.
Dependent events are executed sequentially without giving a favor to a particular
process.

rec X. P denotes a recursive definition of a process.

148

7.3 Process Space

In this section, our concern is to present the construction of the process space. This
space is the set of denotations that will be associated to the syntactic terms of the
language L£. In what follows, we define step by step our process space, which is the
space of non-deterministic processes. First, we present the space of dependence maps,
which is used to define the space of deterministic processes. The latter is used to define
the space of non-deterministic processes.

7.3.1 Dependence Maps

The use of recursive spaces allows to have a high level of abstraction in the design of
language semantics. Actually, the associated semantic functions are recursive, compact
and help in getting clear proofs. This motivated us to design a recursive space, called
M, for dependence graphs. Besides, the recursiveness feature allows us to get a very
simple and clear prefix relation (>) between the elements of the space M as it is shown
later. More precisely, an element of the space M is a map that associates, a pair (p,,e),
where p, is a finite set of events representing the direct predecessors of the event e, with
another map that represents the successors of e. The definition of our space requires
the use of a transfinite space construction technique since the number of successors of
an event can be transfinite. This is illustrated by the semantics of our concatenation
operator o, which allows such transfinite dependence as it will be shown in Section

o A

f.Jud.

More accurately, let —,, be the constructor of infinite maps in which an element
can be associated with a transfinite number of elements. The space M is defined as
follows:

M = Pf(V) X V—>w1 M

The existence proof of M is based on the transfinite recursive space construction
technique, proposed by Di Gianantonio et al. [53]. To simplify the presentation, the
full details about the construction and the existence proof of M are provided in Section

7.6.

The space M is endowed with an ordering >, which is defined as follows. Let
dom(M) denote the domain of the map M. Let M, M’ € M. We have

L[] M
2. M> M' < dom(M) C dom(M') AVa € dom(M). M(a) > M'(a)

149

In what follows, we present some utility functions that we use in the elaboration of
our semantic model. Given two maps M and M’', we write M } M’ for the overwriting
of the map M by the associations of the map M’, i.e. the domain of M t M’ is
dom(M) U dom(M") and we have

; B M'(a), if a € dom(M');
(M5 Ne) = {M(a), Otherwise.

We use a tuple projection function ,, which selects the element at position n in a
tuple. For a pair z = (z,y), the first element is denoted by fst(z) and the second by
snd(z).

We also define a function ¢ that computes the elements of a map.

©® i M — P(Py(V) x V) defined by
_ [it M = [
w(M) = Uscdompniat U @(M(a)), Otherwise.

Moreover, we define a function D that computes the dependence relation between
the elements of a map as follows:

D . P(Ps(V) x V) = P(V x V) defined by
D(S) = {(e,m(a))|a€ SAe€ma)}

We define T C M to be the space of dependence maps such that
M € T if the reflexive transitive closure of D(p(M)) is a partial order relation.

This condition states that we have no cycles in any element of T. It is the first
healthiness condition in our semantic model. Moreover, the domain of each element of
T should contain just initials (an initial is an event having an empty set of predecessors),
ie. VM € T. Ve € dom(M). mi(e) = 0.

Example of a Dependence Map

In what follows, we give an illustration of a dependence map as well as its graphical
representation.

150

ay bl

b

&1 dl

N/
dg bg €1

N/
a2 fi

}

51

Figure 7.1: Example of a graphical representation of a dependence map

[(Ba1) = [({ar}er) = [({ald) ~— [},
({Clad1}1b2) = [({b2}aa2) = [L
({b2sel}vf1) = [({fl}agl) = []
]

]
],

@) ~ [({b1}d1) = [{endihiba) = [({b2}a2) — [],
({b2,e1}.f1) — [({Hibg) — []
]

]
]:
@e1) +— [({baeshfi) = [({Alg) = []
J
J

Figure 7.1 outlines the graphical representation of this dependence map.

7.3.2 Labelled Dependence Maps

The space of labelled dependence maps, which we call R, contains dependence maps
with their labelling functions. A labelling function associates each event of a dependence
map with an action. The space R is defined as follows:

R = Tx(V-5I)

Note that we will use the set notation to encode this labelling function. In fact, this
notation make the proofs simple to do.

Hereafter, we present an example of a labelled dependence map (M, A).

151

M = [0a) - [({a}lb) =[],
({ar}se1) =[]
]
]

The labelling of the dependence map M is the following: A = {(a1, a), (b1, b), (¢1,¢)}.
We define the events set of an element of R by the function:
£ : R —P(V) where
§((M, X)) = dom(})
It is worth to mention that a labelled dependence map is considered as finite if its
event set is finite.

7.3.3 Deterministic Processes

The space of deterministic processes, which we call C, is a set of pairs. Each pair is
composed of a labelled dependence map together with the resources needed by this map
in the future. These resources are called continuation resources. More precisely, the
dependence map represents what is already observed. It can evolve to any dependence
map provided that any new executed action uses a subset of the continuation resources
as it will be shown when we specify the ordering over the space C.

More accurately, let R be a finite set of resources. The space C is defined as follows:

C = RxP(R)

A process p = (rp, Ry) € C such that r, = (M,,),) is considered as finite if and
only if r, is finite. The characterization of finite processes will be useful in determining
the compact elements of the space C.

To give meaning to recursion, we have to endow the space C with an ordering.
To elaborate this ordering, we have to provide some definitions in what follows. We
suppose that we have a function res : ¥ — P(R), which associates an action with a
resource set. Note that we assume that each action uses a non-empty set of resources.
To lighten the notation, we use @ to denote the resource set needed by an action a, i.e.
a = res(a).

The definition of this function is extended to P(X) as follows:
res : P(E)—PR)
res(A) = |Uuea res(a)
The definition of this function is also extended to the space of labelled dependence

152

maps R as follows:

res ¢ R — P(R) defined by
res((M,N)) = U.esarny res(Me))
Finally, the definition of the function res is extended to the space deterministic
processes C as follows:
res : € — P(R) defined by
res(p) = res(r,) UR,
The last extension of the function aims to compute the resources needed by a deter-

ministic process. These resources are those that are already used together with those
that are needed for the continuation of the process, i.e. for the future.

Now, we are ready to define the ordering C¢ over the space C. Let p,q € C, p is
denoted by (rp, R,) where r, = (M,, ;) and g by (rq, R,) where ry = (M, A;). We
have

pCcg € 7127 AR, D RyUres(r;'r,) where

rp 2Ty & M,>MAXCA

7";1""(1 = (MM, 20\ Np)
[(B, m2(b)) > M'(b) | b € dom(M")], fM =[]
MM = { o M(a)]ae dom(M')\ dom(M)] +
Taedomanndomeny M’ (a)\M(a) , Otherwise.

The ordering over C means that any process p can evolve to another process ¢ with
the constraint that only the resources specified in R, are used. We call the constraint
on the continuation resources that figure in the ordering Cg¢: the resource constraint.
Note also that if R, =), the process p is finite and maximal with respect to the ordering
Cc. Otherwise, it is a non-terminated process. It is worth to mention that the operator
1, which is already defined in Section 7.3.1, is used in a symmetric way since there are
no cycles in our coding of dependence maps neither auto concurrency in our semantic
model (recall that any action uses a non-empty set of resources).

Hereafter, we illustrate the operator \ on dependence maps.

153

6'—"f e_"f
b b

\c-—-d \ R =

a/ CL/ d

Figure 7.2: An example illustrating the operator \ on dependence maps

Let
M = {0a) = [{able) = [({chd) =~ []
]
};
@b +~ [({ab}e) = [{chd) — []
]
]:
0e) — [{ehf) = [I
]
]
M = [(0a) — [{ab}e) = []
],

@p) = [({abhe) = []
J

We have
M’\M = [(mad) = []a
() — [({e}.f) = []
]
]
This example is graphically outlined in Figure 7.2.

In what follows, we provide some results related to the extension of the function res
over the space C. These results are needed to establish the algebraic properties of our
process space as well as the monotonicity of our semantic functions.

If r < ¢/, then we have
(7.1) &) = &(r)\é&(r)
Moreover, in this particular case we have

(7.2) res(r’ir') = 0 & r=r

154

Note also that if » < s < £, then we have

(7.3) res(r~1t) = res(r~ls)Ures(s't)

Moreover for p C¢ p/, we have

(7.4) res(p) 2 res(p)

The proofs of these results can be easily established using the relation between the
function £ and the labelling function .

We also need the following definition: Vp,q € C. if r, < r,, then

plg = (rp're, By
This definition is needed to establish the proofs, which are related to the algebraic
properties of our process space.

We also have the following constraint over the elements of C: Vp € C. resinf(r,) C
R,, where resinf(r,) represents the resources required by the actions that occur in-
finitely often in the labelled dependence map r, and which is defined as follows:

resinf . R — P(R) defined by
resinf(z) = [(){res(r~'z), r finite and r < z}
This condition means that all the needed resources for the continuation are specified

in R,. This is the second healthiness condition in our model. In addition, this condition
is needed for establishing the algebraicity of the space C.

Hereafter, we provide a result that is useful for establishing the algebraic properties
of our process space.

For r = t, we have:

(7.5) resinf(t) C resinf(r) Ures(r~'t)

The proof of this result is straightforward.

Examples

As examples of deterministic processes, we provide the following pairs: (([], 0),®) and
(([],0),R). The first represents a process that successfully terminates while the second
denotes a process that cannot evolve since it is requesting all the resources. The latter
represents the least element of the space C.

155

7.3.4 Space of Non-Deterministic Processes

In what follows, we present the space of non-deterministic processes, which we call ID.
This space is the set of denotations that are associated with each syntactic term of our
language L.

The space D is defined as the set of non-empty upper sets that are subsets of C:

D = {XCC|X#0AX=7X} where
TX = lUex1rzandfz={yeC|sCcy}

The space I is endowed with an ordering T and defined as follows:

PCp@Q & P2Q

& VYge@ dpeP.pleyg
The definition of the function res is extended to the space of non-deterministic
processes D as follows:
res . ID— P(R) defined by
res(P) = U,epres(p)

This extension is useful for establishing the resources needed by a recursive process
as shown in Section 7.5.7.

Example

As an example of a non-deterministic process, we have T(([],0), R), which denotes the
deadlock process. This is the least element of the space D.

7.4 Algebraic Properties

In order to give meaning to recursion, we have to establish some results about our
process space. For the sake of clarity, the proofs are provided in Section 7.7.

The following proposition establishes the algebraicity of the space C and specifies
its compact elements.

Proposition 7.4.1 (C,C¢) is algebraic. The compact elements of C are processes
having a finite events set.

The following theorem is useful for proving that the space of non-deterministic
processes, D, is a local cpo.

156

Theorem 7.4.2 (Mislove[88])
If P is an algebraic domain, then Pys(P) = {X C P |0 # X A X = 1X} with
X4+Y=XUYand X CY iff Y C X is a local cpo.

The following corollary establishes an important result about the space I. This
result is important for establishing the existence of a fixed point for recursion.

Corollary 7.4.3 (ID,Cp) is a local cpo.

The corollary is a direct result of the theorem 7.1.2, which states that a space of
upper sets that are subsets of an algebraic domain is a local cpo. Hence, we deduce
directly that (ID,Cp) is a local cpo since (C,C¢) is an algebraic domain.

7.5 Semantics

In what follows, we present the denotational semantics of our language L.

7.5.1 Semantic Interpretation Function

Let

e w be a syntactic operator of our language L,

e #:(— D be an environment, which associates a process variable with a non-
deterministic process and

e T: DxID — DD be the extension of the function @, which is the semantic function
that operates on deterministic processes (elements of C). The signature of @& is
specified later since it depends on the syntactic operator.

The semantic interpretation function takes a syntactic term and returns a function
that takes an environment mapping variables to non-deterministic processes and which
returns a non-deterministic process (element of). More accurately, the semantic
interpretation function is defined as follows:

[-:£—60—-D

In the case of a binary syntactic language operator w, the semantics is defined as
follows:

157

I

[w(P,@)1(0) @* ([P16), [@1(8))

= U 7T &(p,g) such that p € [P](6) A q € [Q](6)

If the operator w is unary, we have

[w*(P))(0) = &*([P](6))
= |J T @(p) such that p € [P](#)

For the elaboration of the semantics of strict sequential composition, weak sequen-
tial composition, parallel composition and hiding, we provide the specification of the
semantic function @. Note that we use the same notation for the language operators and
their corresponding semantic operators. Moreover, to lighten the notation, we use C
instead of Cp and C¢ for the specification of these semantic operators. The appropriate
notations can be deduced from the context.

The semantics of SKIP, STOP, a simple action and a variable are defined as follows:

[skpj(6) = 1(([1.0),0)

= {(([],9),0)}
IISTOPMB) = T((H,@),R)
[a](6) = 1[0, a1) = []],{(a1,2)}),0)

= {(([(0,a1) — []],{(a1,8)}),0)} where a; is an event instance of action a

[X1(0) = 0(X)

In what follows, we provide the semantic interpretation of our syntactic operators.
For the strict sequential, weak sequential and parallel composition, we suppose that
composed processes p and g are labelled differently, i.e. dom(),) N dom(A,) = 0.

7.5.2 Non-Deterministic Choice

The choice semantics is the following:

[®ierP)(0) = Ui [P:1(6)

There are three known semantic strategies for dealing with non-determinism:

e Angelic: Deadlock is avoided, which means that if there is one branch that does
not deadlock, the whole process can progress.

e Demonic: Deadlock is catastrophic, which means that if one branch deadlocks,
the whole process deadlocks.

e Erratic: The choice is arbitrary such that it can progress or deadlock.

158

For JVML/CLDC, if a deadlock happens in one branch, the sum process deadlocks.
It is clear, from the above equation, that our semantics is demonic since if there is
a deadlock in one branch, the sum deadlocks (recall that the semantics of STOP is

T(([1,0),R)).

7.5.83 Strict Sequential Composition

By strict sequential composition, we mean that the left-process is executed before the
right-process. When the left-process needs resources for its continuation, the second
process is not executed.

We define the function Terminals, which computes the set of terminal events of a
finite map as follows:

Terminals 1 M- P(V)
a, if M=];
Terminals(M) = Usedom(ay{m2(a) | M(a) =[]} U
Terminals(M (a)), Otherwise.

Let op : Pp(V) x V. — Pp(V) x V be a family of substitutions that update the past
of an event by the terminals of the map M. This family is defined by

om(b) = (Terminals(M),ms(b))

We also define a substitution o over a map M. This substitution is applied just on
the initials of M. It will be used to update the right-hand process by the terminals of
the dependence map of the left-hand process.

Mo = [o(a)— M(a)|a € dom(M)]

Now, we are ready to define the strict sequential composition semantics.

g : CxC-—-C

{ (Mp, Xp), By Ures(@)), if Rp # 05
((S(Mp, Mg), A\p U Ag),Ry), Otherwise.

Where:

159

S : MxM-—-M
M, it M=)
S(M, M) = [a— S(M(a),M') | a € dom(M) A M(a) # []] 1
[a— Moy | a€ dom(M) A M(a) = []], Otherwise.
Examples:

For all the examples that we provide, we adopt the following notation to make the
presentation simple and clear: we write a D b if the actions a and b are dependent, i.e.
res(a) N res(b) # (. Otherwise, we say that a and b are independent. Note also
that an event a; is denoted by a when there is no need to tag the associated action.

In what follows, two examples are provided in order to illustrate the strict sequential
composition.

Example 1: In the first example, we outline the sequential composition between two
finite processes p and ¢q. Note that these processes are finite since their continuation
resource sets are empty. This makes the continuation resource set of the process, that
is the result of the composition, equal to the empty set.

MP = [(0,0) r# [({a‘}!b) = []1
({a}e) = [1
]
]

Ap = {(a,a),(b, b),(c,c)}

R, = 0
MQ = [(wid) = [({d}1e)H[]a
({d},f) =[]
J
]
Aq = {{dad)1(e=e)1(f!ﬂ}
Ry = 0

Terminals(M,) = {bc}

160

SN
NN

Figure 7.3: A strict sequential composition of two finite processes

Myq = [(0a) = [({a}d) — [({bchd) — [({dle) =~ [],
{dhf) =

]

[]

[]
],

({ate) ~ [({bchd) — [({dhe) +— |

[

({dh.f) ~
]

?

|
]

]
g = MU
Rpg = 0
Figure 7.3 outlines the sequential composition of these processes.
Example 2: In the second example, we outline the sequential composition of a finite

process p and an infinite process g. The continuation resources set of the process, that
is result of the composition, is equal to the continuation resources set of the process g.

M, = [(0a) — [({a}b) = []
]
]
’\P = {(a’a):(bsb)}
R, = 0
M, = [0a) — [({aher) = [({eahe) =][({62},63) -
J

161

(a"_"b ’ @) 3 (4q—=C —Cy « - .

(al-—bb—ba2—bcl-—bcz R | é)

o
N——
Il

Figure 7.4: A strict sequential composition of a finite and an infinite Process

/\q = {(0,3)1((:1:6)3(0210)" . }
R, =

(913

Mg =
[(0,a1) = [({ar},d) = [({b}a2) ~ [({a2}1) = [({erhea) = [({e2}ies) = ...

]
J

]
Mg = M UN
Rpq = ¢
Figure 7.4 outlines the sequential composition of the processes, which are provided
in the second example.

7.5.4 Hiding

By hiding, we mean that the events using a subset of some resource set become unob-
servable. These events are replaced by events that are instances of invisible actions.

Let R be a finite set of resources and V} = {e € £(r},) | res(A,(e)) C R} be the set
of events in p that use resources in R.

Let n : Act — Act, be an injective relabelling function that associates an action a
with an invisible action 7 such that n(a) = 7 = res(a) = res(r).

Let o : V — V be an injective relabelling function that associates an event e with a
fresh instance of an invisible action if e uses a subset of R. More precisely, ¢ is defined
as follows:

ole) = { (n(fst(e)), snd(e)), it res(fst(e)) C i

e, Otherwise.

162

Moreover, we denote by o™ the extension of o over event sets. o' is defined as
follows:
ot i P(V) > P(V)
o*(S) = {ole)|e € S}

Now, we are ready to provide the hiding semantics.

\ : CxPR)—C
pP\R = (rp, Rp\R
= (T‘;,_-,\R, Rp)
T'p\R = (HR(Mp)s’\p\R)
Hpg : M-—-M
(s if Mp=1[1];
Hp(Mp) =

(et (m1(a)), o(m2(a))) — Hr(Mp(a)) | @ € dom(Mp)], Otherwise.

Ap\R = (M \{(e;2p(e)) | e € VE}) U{(a(e), n(Ap(e)) | € € VE}

Note that when the hiding is applied on a process, it is not penalized at the level of
continuation resources. This is in order to ensure monotonicity of hiding.

Examples:

In what follows, we provide two examples that illustrate the semantics of hiding in our
model.

Example 1: The following example shows the hiding of events using the resource

set b from a process p. We suppose that res(Ay(a)) € b, res(\,(c)) € b and
res(Ap(d)) € b. In this context, the events, which are instances of the action b

become unobservable.

M, = [Ba) — [({a}d) — [({b}e) ~][({f—‘},d) =[]
]
]
Ap = {(a,a),(b,b),(c,c),(d,d)}

&
I

7 ()

163

(a—=h—>C—>(> 0) \B = (Q—>T—>C—>(d m)

Figure 7.5: A hiding of events using some resource set from a process
(Cl-—-—Cg—sCs P | 6) \a. — (Tl—-—?'z—-'rg R)

Figure 7.6: A hiding of events using a resource set from a recursive process that results
into a divergence

(o1

My, = [(0a) — [({ehy7) — [({rhe) = [({chd) — []
]
]

]

b = NGB} U A{(7.m(0))}
Epp = Be

Figure 7.5 outlines graphically the first example.

Example 2: Figure 7.0 outlines another example of resource hiding. In this example,
the hiding makes all the events of the hidden process unobservable. Besides, we see
in this example that we have a divergence, i.e. the hidden process performs infinite
invisible actions.

7.5.5 Weak Sequential Composition

A weak sequential composition means that the events of the composed processes can
be executed in parallel when there is no dependence. If there is a dependence between
an event e; in the left-hand process and another one e; in the right-hand process, e;
is executed before e;. For reasons of monotonicity, this operator allows the execution
of the maximal prefix of the right-hand process that does not use the continuation
resources of the left-hand one. The weak sequential composition is as follows:

164

o % CxC—-C
pogq = (rpe Ty R, U R, U res(r”?:rq)) where
Tp @ T, = (l"q:}wqR (Mp, ﬁq)?’“?rz,, (M“qRP, p) i "!qamj,2 (M#qn,,’rf’)’ Ap U)‘#?z,,)
K, = U{¢' Cq| res(m(g)) N Ry =0}
B, = {(exe) € Elry) x Elryg,) | resOup(e)) N res(hyg, (€)) # 0)
(1, if M= [];
98 (M,r) =4 [(m@)U{aell(r) | (a,m(b) € @}, ma(d)) —
99 (M(b),r) | b € dom(M)], Otherwise.
7 _ []s if M= 3;
Py (M, M) —{ la — Succ(a, M',®) 1 Pg (M(a), M’) | a € dom(M)], Otherwise.
[]1 it M= [];
Succ(a, M,®) =4 [br M(b)|be dom(M)A (m2(a), m2(b)) € ®] T
toedom(ary Suce(a, M (b), ®), Otherwise.
MM = Mtla— M'(a)|a € dom(M')A7i(a) =0]
Note that

e ‘g (M,r) updates the dependence map M by adding the events of the labelled
dependence map r, which are predecessors of any of its events in the relation ®.

e 'y (M, M') updates the dependence map M by adding the events of the de-
pendence map M’, which are successors of any of its events in the relation ®.
Particularly, Succ(a, M’,®) computes the successors in M’ of the event ms(a).
These successors are deduced from the relation ®.

e The operator | takes two maps as arguments and computes a dependence map
using these arguments, i.e. the computed map has a domain that contains only
initials. This is due to the fact that the second argument of the operator { is in
general an element of M and not of T.

Examples:

In the sequel, we present three examples that illustrate the weak sequential composition.

165

Example 1: The first example shows a case in which the maximal prefix of the right-
hand process, that is not using the continuation resources of the left-hand, is computed
in order to do the composition. In this case, the operator o allows independent events
to be executed in parallel while imposing an order between dependent events belonging
to the composed processes. The order of the sequential composition is in favor of the
left-hand process. To lighten the notation, we denote the set of direct predecessors of
an event t before the composition by X;.

= ((Mps)\p)na‘)

p
M, = [(0a) — [{a}b) = [({bher) = [({ahe) = [({eahics) — ...

]
]

]
A = {(a,a),(b,b),(c1,¢),(e2,), - .}
g = ((Mg2),0)

My = [0d) ~ [({dhe) = []

[

)
@.f) ~ []
]

)‘G = {(d,d),(e,e),(f,f)}
We suppose that a D d, b D dand ¢ D e.

My = (00 = (]

©.f) -~ [l

]
’\,u‘}!p = {(d'sd))(fsﬂ}
Rf‘gz,, = @
@ = {(a'ad)s(b!d))(cve)}
Tp® Tu%._p = (P(I)(Mpyﬁd)(My‘pr #TP)) i ﬁq’(M#}p!TP):AP U)\#%p)
‘-I‘b(Mp,qu wp) = [(XaU{adhd) — [],

(X5, f) =[]

]
Let X)=X4 U {a,b}. We have
r'rIv(Mpnﬁd’(Mp"RpaTP)) =

166

(Q—>=ph—>C —Cy - + -+ é) o (d—e > w) =
U

Q—>ph—+»Cl—=C - - « > cUeé
Vo
d f

Figure 7.7: Weak sequential composition of two processes

((Xcha‘) L {(Xbib) = [(Xcl 181) L [(XC2 :CZ) =
ls
(Xpd) =[]
Xod) (]
]

Tp L T"ul;zp =

[(Xasa) = [(Xpd) = [(Xeper) = [(Keic) = .o
l;

(Xad) = (]
]
(Xad) — []
J,
]
poq = (rpe r“%p,ﬁ'u &)

Figure 7.7 outlines the weak sequential composition of the processes that are pro-
vided in the first example.

Example 2: The following second example shows how the operator o allows parallel
execution of the events of the composed processes if they are independent.

Hereafter, we suppose that a,b,d and e are independent.

M, = [0a) — ([({a},0) — [({b}a) = [{ale) — [({e}ies)— ...
]
|

167

(a--—--b—-C]_——h-Cz $ % ¥ 5 &) o (d_____e___c 3 w)
a—h—C —C - - - ¢
d—e€

Figure 7.8: Another example of weak sequential composition of two processes

Ap = {(a’a)a(b’b):(clac)5(0210)3'"}
R, = ¢
My, = [0d) — [({dhe) — [({ehe) = []
]
J
]

Aq - {(d,d),(e,e},(c,c)}

R, = 0

® = 0

pe = (((@.d) — [{d}.e) = [A0):8)
Mo = {(d,d),(e,e)}

Myoq = [(0d) +— [({d}he) +— []
],
@a) — [({a}b) — [({bher) = [({abe) — [({eahies)...
]
]

]
)\p oq —)‘p U A;Lg
Rpog = ¢
Figure 7.5 outlines the weak sequential composition of the processes that are pro-

vided in the second example.

Example 3: The third example shows the emergence of transfinite dependencies. More
precisely, the event a is mapped to a transfinite successors set. Hereafter, we suppose
that a D cand a D b.

168

My = [(@a) — [({alb) ~ [({abihbe) — [({abe}bs) =

]
],
({aﬂb1}1b2) = [({aabz},ba) =L
J,

-
]

A‘p = {(a!a)'n(blab)u(bmb)v ' }
R, = b
My, = [(0c1) — [({a}e2) = [({e2hes) = ...
]
|
]
Ay = {(c1,0),(c2,0),. .}
Ry = @
& = {(a,c1)(ac2),(a,c3),. ..}
o= q
MP og = [(@,a) = [({a}abl} = [({asbl}:b2) = [({ﬂ,bz},bg) =
J
],
({abi}b2) = [({abe}bs) — ...
1,
{ahe) = [dacha) ~ [{oahe) — ...
1
L
({aahe2) = [({ae2hyes) = ...
s
j .
]
Mpog = MUl
R,oq = bue

Figure 7.9 outlines the weak sequential composition of the processes provided in the
third example.

169

bl_“bz“'*ba' .
% . 0(61_.'62__63,..,6) _

a

N
Cl—+Cy—Cg ™.

Figure 7.9: Example about the emergence of transfinite dependencies in the presence
of weak sequential composition of two processes

7.5.6 Parallel Composition

The parallel composition of two processes p and g mixes true concurrency and non-
determinism. Our semantics of parallelism introduces non-determinism only when two
actions, sharing some resources, are executed in parallel. This allows to avoid state
explosion, which is the main drawback of interleaving semantic models. The parallel
composition semantics is as follows:

I : CxC—-D

Py _
U‘l’ié‘l‘"rﬁ) T (T#x;iq @, r‘ug{p,Rq), if Ruﬁq n res(r#}zzp) =0 A

®
R 2 N res('rlu%q) =0;

plla = g
T(([),9),R), Otherwise.
Where:
rup Mo g, = (P (rug sy) O Pay (g 7un) A U A,)
Ry = RpyUR,U res(r#,;:rp) U res(rﬂg;qu)
wu’};q,uip = {y; UD(W(M#'&Q)) UD((p(Mﬂip)) | ¥; € ’D'u%q‘ a A the reflexive

MRy,
transitive closure of ¥; UD(p(M,e)) UD(p(M,s)) is
Rq Rp

a partial order relation}

170

{SQV”P UV,

q P
Rg .ﬂgp “R,,*D“'Rq

y
V(e,e') € V“%q’#r;ﬂp U V"?z,,x“?a.,'

| S#0 A

'D#g!q,u%p = (e,e') € SV (e,e) € S}, if V“faq:”?ep £)
{0}, Otherwise.
ana,,.#gz,, = {(e,€) € é(r‘u:;{q) X f(%“ﬁp) | res()\uiq (e))n res()\“;z% (e') # 0}
Van, = ()€l) <&y) [resthyg (@) NresOyg, (@) #0)
(], if M =[];
g (1) = [@ — Successors(a, Ng(r,r")) |
a € dom(g (m1(r),7"))], Otherwise.
[]1 if M = [];
o (M,r) = [(m1(b) U {a € &(r) | (a,m2(b)) € B}, ma(b)) —
e (M(b),r) | b€ dom(M]], Otherwise.
Ng(r,r") = (% (mi(r),) Ye(le (mi(r'),r))
Successors(a, No(r,7")) = [b+ Successors(b, No(r,7')) | b € Na(r,7") A
(m2(a), m2(b)) € @]
MQOM = la— M(a) | a € dom(M)Am(a)=0] 1
[a— M'(a) | a € dom(M') A mi(a) = 0]
Note that

e 9 (M,r) updates the dependence map M by adding the events of the labelled
dependence map r, which are predecessors of any of its events in the relation ®.

e %4 (r,7") updates the dependence map ‘s (m1(r),7’) by adding the events of
the labelled dependence map 7/, which are successors of any of its events in the
relation ®@.

e The operator () computes, from its arguments, a dependence map, i.e. a map
that has a domain containing only initials.

e For reasons of monotonicity, the maximal prefix of each of the composed processes,
that does not use the continuation resources of the other one, is computed.

It is worth to mention that there are two main differences between the parallel
and weak sequential composition. In fact, the parallel composition allows dependencies

1Tl

between the left and right-hand processes in both directions, while the weak sequen-
tial composition allows the dependencies only from the left to the right-hand process.
Another major difference is that the parallel composition is non-deterministic while
the weak sequential is deterministic (we speak about compositions over deterministic
processes, i.e. elements of C).

Examples:

In what follows, three examples are provided in order to illustrate the parallel compo-
sition.

Example 1: The first example shows that the parallel composition of two processes al-
lows parallel execution of independent events while imposing a sequential order between
dependent events. The sequential composition is not in favor of one of the composed
processes.

M, = [(@a) — [({a}b) — [{bhe) ~ []
]
]
]
)\;U == {(a,a),(b,b),(c,c)}
R, = ¥
Mg = [@0d) ~ [({d}e) — []
]
J
AQ = {(dad)’(e’e)}
R, =10
T#’;zq = Tp
T#anp e ‘i"q

We suppose that a D eand b D d.

The possible dependence sets between p and g are

o = {(a,e),(b,d),(a,b),(b,c),(d,e)}
Py {(e,a),(d,b),(a,b),(b,c),(d,e)}
q)3 {(0'16)1(dab)a(a’lb)r(bsc)s(die)}

tplley 7 = (e (TpTg) O oy (rerp)idp U Ag)

Il

Il

172

99, (Mprq) = [(Xaa) = [(Xpd) — [(Xee) =[]
]
I
J
98, (Mg,rp) = [(XaU{b}d) — [(XeUd{ale) — []
]
]
N‘I’J(TP’TQ) = Nd’](rqsrp)
= {(Xa,a),(Xp,b),(Xc,c),(Xq U {b},d),(Xe U {a},e)}
o, (rpyTq) =
[(Xa:a) = [(szb) =¥ [(XC,C) =3 []1
(XaU{bhd) — [(XeU{ale) — []
]
],
(Xe U{ale) — []
]]
bp, (rg,Tp) = [(Xa U {b},d) — [(XeU{ale) = []
]
I
p o, g =
([(Xa,a) = [(Xp,b) = [(Xee) =[],
(XaU {b}d) — [(XeU{ahe) — []
]
ki
(XGU{H‘}':e) s H
]
1 Ap U Ag)
T lles T7qg = (Fas(1piTq) O Py (Tgmp)idp U Ag)
G, (Mpirg) = [(XaU{eha) — [XpyU{d}d) — [(Xee) — []
]
]
]
qq’z(Mqu:P) = [(Xd%d) = [(Xe:e) k= []
]
]

Ng,(rprq) = Nay(re:rp)
= {(X, U {e}ha),(Xp U {d},b),(Xc,c),(Xa,d),(Xe,€)}

173

Pa,(rprg) = [(XaU{eha) — [(XpU{d}b) — [(Xeo) = []
]
]
]
Let X!=X, U {e} and X]=X, U {d}. We have

q"(bz(rq"r?) =
[(Xa,d) = [(Xpb) = [(Xee) =[]
s
(Xeie) = [(Xpa) — [(X50) — [(Xee) = []

]
]

|

Tp [l®2 Tq &=
([(Xd’d) i3 [(X{wb) s [(XC,C) = []
s
(Xese) = [(Xga) = [(Xpb) = [(Xee) = []
J
J

]

1iAp U Ag)
mp los 7q = (Pay(Mp,My) O Prag (Mg, Mp)dp U Ag)
s (Mpirg) = [(Xaa) = [(XpU{d}b) = [(Xee) — []
]
J
]
‘]41'3 (Mm'rp) = [(Xdld) == [(xe u {a},e) =% []
]
]

N¢3(Tp,Tq) = Nﬁ’a(rmrp}
= {(Xa,0),(Xp U {d},b),(Xes0),(Xayd),(Xe U {a}.e)}

174

(a—-b—“c’@) I (d—-—e*@)z-

(R T 9T)

d—=e d—=e d——e

Figure 7.10: A parallel composition of two finite processes

Py (rpsrg) = [(Xaa) — [(XpU{d}b) = [(Xee) = []

(Xe U {a}e) — []
J

]
Pay(rerp) = [(Xad) = [(XpU{d}b) = [(Xee) = []

(Xe U{ahe) — []
]
|

Tp |l@s Tq =
([(Xa@) = [(XpU{d}d) +~ [(Xee) — []

(Xe U {a}e) — []
I,
(ded) = [(Xb u {d}ib) = I(XC:C) = []

(Xe U {a}e) — []
J
1:Ap U Ag)
Example 2: The second example shows a case where we need to compute the maximal
prefixes in the composed processes in order to do the composition.

M, = [(0a) — [{a}d) — [({ohea) — [({ahe) = [({e2hies) ...
]
]
]

]

= {(aia)'n(bab)s(cl,C),(CQ,C),. q }
Ry = @

175

M, = [(0d) ~ [({dhe) — [({ehfi) — [{Aakf) — [({f2}.f3) = ...
]
]
]

]

i(d,d),(e,E),(fl,f),(fg,f),. i }
f

Aq
Ry

I

We suppose that we only have b D dand ¢ D f.

My = (00 ~ [dahp) = []
)
)

A = {(a,a),(b,b)}

»U—R'.‘,

R » = &

HRy

wh, = 04 = [{dhe) = I]
|
)

Mg, = {(dd) (o)
R”i;) = I
For this parallel composition, there are two possible dependence relations: ®; and

®,
o = {(ﬂ.,b),(b,d),(d,e)}
Tp%q ”"1'1 Tﬂﬂp =

]

hupq U)\uqu)
R = euf
o, = {(a#b)’(dsb)v(dse)}

T“’},Zq ”QQ TE'Rp =

176

(@—>bh—>ClL—>Cyn- é) | (d—se—fr—fo oo ?) =
a—p a—}h
T{(/ , éu}’),(/ * au}’)}
d—e

Figure 7.11: A parallel composition of two infinite processes

(((00) — [({ad}p) — []
]!

(ﬂ,d) 2 [({d}ae) =* {]:
({a,d},b) = []
]

hn’},q U A,)

p

R = ¢Uf
A graphical representation of the second example is outlined in Figure 7.11.

Example 3: The third example shows a case where the continuation resources of

the computed maximal prefixes are claimed by the process, which is the result of the
composition.

M, = [0a) — [{a}b) — [({b}e) — []
]
]!
(ﬂ,d) I [({d},e) = []
]
J

A = {(a,a),(b,b),(c,c),(d,d),(e,e)}
Ry = R
M,

[(@.f) ~ [({fhe) = [{a}g2) — [({g2}g3)
]
]

]

/\q = {(f:t)?(gl;g)i(Qng):‘ ’ }
R, = Ry

We suppose that we only have e D fand that Ry N g () and Ry N & # 0.

177

W, = (([(00) ~ [{a}d) - []
]1

@,d) ~— [{dhe) — []
]
hy’ﬁg)sRlUé)

Ar = {(G,&),(b,b)a(dad)l(eie)}

Hry
pay = (([0.6) = [TAug,)R2 U B)
Mg, = (U)

For this parallel composition, there are two possible dependence relations: ®; and
D,y

® = {(asb)!(d!e)v(e:f)}

g, o mg, = () — [({a}p) ~ []
I,
@.d) = [({d}e) — [({ehf) =[]
]
]

1\#5’;2 U)‘#?nq)
b, = {(avb)’(dve)v(fae)}
na, oy, = (00 = [(@n) =]

I
0d) ~ [({df}e) — []
];
(@sf) — [({daf}le) = H
J
M, U g,
Rf = RIURyUEUE
Finally, we get
plle = Hru, lo, rug 1 URUEUR), (rp llog g, U Rz U EU B)}

The third example is outlined in Figure 7.12.

7.5.7 Recursion

In what follows, we establish a proposition that is useful to define the recursion seman-
tics.

178

aQ—h—>c ” R
. R f—91—92 -+ » Ry =

g—>¢

' a—h f a—-}h i
/ . RiURyUBUE |’ / v RiUR:UBUgZ

d—e d—¢e

Figure 7.12: A parallel composition of two non-terminated processes

Proposition 7.5.1 Let Ord be the class of ordinals, P be a local cpo and E C P be
a cpo. Suppose that f : P — P is monotone and satisfies the property that there is
some monotone mapping F' : E — E withVy € E.f(y) C F(y), i.e. F dominates f
with respect to the order C. If F' has a postfized point z in E, i.e. z C F(z) and z is
a postfized point of f in P, then the directed set {f*(z) | « € Ord} has a least upper
bound in P.

Proof Let = be a postfixed point of F' and f. Since F is a cpo, the directed set
{F*(z) | « € Ord} has a least upper bound. Hence, | |,c0,q F'“(2) exists. Using the
fact that F' dominates f, we deduce easily that the set {f*(z) | @ € Ord} is bounded
by | ocora F*(x). Since D is a local cpo, every directed set, which is bounded, i.e. has
an upper bound, has a least upper bound. Hence, we deduce that | [{f*(z) | « € Ord}
exists. |

Let f: DD — D defined by
f¥) = [PIOX—Y)NT({[]0),R)

It is worth to mention that the intersection with T (([],0), R) allows f2, for a € Ord,
to satisfy the second healthiness condition. Moreover, §[X — Y] means that the
environment # is updated to have the value Y at X.

Let Z =7 (([],0),0) and X, =1 (([],0), res(f(Z))). The recursion semantics is
defined as follows:

[rec X. P(0) = Llaeora f*(X0)

As defined, the recursion semantics does not use the least element, T (([],0), R), as a
starting point. The reason underlying such a decision is that the resources specified for
this element are more than what it is actually required to do the recursion. Composing
this element with other processes leads to a non desired result. For instance, in this
case, a parallel composition of a recursive process that is executing infinite events,
which are instances of an action a, with another one executing infinite events, which
are instances of an action b, leads to a deadlock. Accordingly, we adopt a semantics

179

T(al—-ag—ba(i cee &)

Figure 7.13: The semantics of the process P

for the recursion where the resources of the starting point depend on the definition of
the recursive process.

Note that the proofs related to the fixed point existence are provided after those
dealing with the monotonicity of our semantic functions. The strategy consists of finding
for each semantic function @* a dominating function F' that satisfies the constraints
of proposition 7.5.1. We also prove later that the output of each semantic function
satisfies the two healthiness conditions.

Examples:

The following examples illustrate the recursion semantics in our model.

In the first example, we provide the semantics of a simple recursive process. Note
that a* denotes the dependence map having k nodes and where (0,a,) is the unique
initial of this map and V1 < j < k. a; is preceded only by a;-; and a* denotes an
infinite sequence of a.

P = reX aX

Xo = T1(aa)

Xl =t T(azva')

X, = T(aw,&)

Xg = UacpXa = T(a¥,a) for 8 a limit ordinal.

The semantics of the previous process is outlined in Figure 7.13.
In what follows, we suppose that a and b are independent.
Q = (recX. aX) | (recX. bX)
Figure 7.1/ provides the semantics of the process Q.
Hereafter, we also suppose that a and b are independent.
T = recX. ((a] b);e); X

Figure 7.15 outlines the semantics of the process T

180

T (Ay — g — (a3 s ’ % A
by—»by—vby .. OGUD
Figure 7.14: The semantics of the process @

aq ag
NN
5] e
/N7
b

2

2
c
S
-
o

9 - 3

by

Figure 7.15: The semantics of the process T
7.6 Details about the Construction of the Space M

In what follows, we give an overview of the transfinite recursive space construction
technique, proposed by Di Gianantonio et al. [53] and which we use to construct the
maps space M.

Let D be a recursive space to build and C the category where objects are cpos
and morphisms are w;-continuous functions. Let F' : ¢ — C be a functor. The
diagram outlined in Figure 7.16 defines a condition that should be satisfied by F. It
guaranties that for each chain (Dg,€q,8)a<g<r, Where A is a countable limit ordinal,
Dyy1 = F(Dg) and eqy1,8+1 = Flea,s) there exists a cone p : (Dy, €s8)acpecr — D
and a morphism ey such that Va < A. ey 0 ptaq1 = F(s). The space D is built through
the construction of a chain of spaces (Do, F'(Dy), F%(Dy), ...). Each space D, is related
to Dy4q by a morphism e, 41, which corresponds to e, in the diagram. More precisely,
the construction technique is defined as follows:

o Dl = F(D@) and €0,1 = €p
e Forg=p+2 05 >0
~ Dy=F(Dyss)

— egy1 = Fleg g41)

— €a,8 = E41,80 Ea @il VA < B

181

I'(eo)

Do —% F(Dy)) F?(Dg) — -+
y H M2 | F(p)...
Dy —A . Py

Figure 7.16: Cone Existence Diagram

e For 3 a limit ordinal, (e g)a : (Das Cayy)acy<p — Dpg is the cone whose existence
is ensured by the diagram,

e For = A+ 1 with A a limit ordinal,
— Dg=F(D»)
— exa+1 is the morphism whose existence is guaranteed by the diagram.

= Bahtl EAA4] O€aA VA < A

In what follows, we apply the already described technique to construct the space
M. Let —,, be the constructor of infinite maps in which an element can be associated
with a transfinite number of elements. The space M as follows:

M = PiV)xV =, M

The space M is a solution to the equation X = F(X) where F is a functor such
that VX € C. F(X) = Py(V) x V —,, X. This constructor is w;-continuous since it
is the composition of the functors x and —,,, which are w;-continuous as proved in
[53]. Moreover, the composition of these functors satisfies the condition defined by the
diagram of figure 7.10 as stated in [53)].

Let My = {L} ={[]} and t> be an ordering over M defined as follows:
Let M, M’ € M. We have

L[]l M
2. M> M < dom(M) C dom(M') AVa € dom(M). M(a) > M'(a)
The construction of M is as follows:

€o,1 ¢ Mo = M]_
e = Mz.{lm,}, where Mj = F(M) and Ly, =[]

For f=03+202>0:

182

® M'B = F(Mﬂ"-i-l)
e egi1p=Fleg gt1)
[] 60’5 = e,ﬂ"-l-l‘ﬁ (0] f"u,ﬁ'+1 VG’ S ﬁ

For 8 a limit ordinal, {eq g)a : {(Ma, €ay)a<y<g — Mg is the cone whose existence is
assured by the diagram.

For A= X\ + 1 with A a limit ordinal:

® Mﬁ — F(M,\)
® e))41 is the morphism whose existence is guaranteed by the diagram.

® €yl = ExAt+] O Var < A

Hence, we proved the existence of the space M. It is worth to mention that the
construction is limited to the subcategory where morphisms are embeddings (see [53]
for more details).

7.7 Algebraic Properties

In order to give a meaning to recursion, we have to establish some results about our
process space. Before this, we motivate for the need of a co-induction principle to
establish such results.

7.7.1 Definition of a Co-induction Principle over the Space M

The space M contains infinite maps. To compare two infinite maps using the order
>, we need to define a co-induction principle over M. Before discussing the need for
co-induction, we recall the following theorem.

Theorem 7.7.1 (Knaster-Tarski) Let (A,C) be a cpo and f : A — A a monotone
function then ™z € A | f(z) C z} is the least fived point of f andU{z € A |z C f(z)}
is the greatest fixed point of f.

Let U be the set of all (M, M) such that M, M’ € M. It is clear that (P(), C)
is a cpo. In fact, the least upper bound of a directed set in P(Uf) is the union of the
elements of this set.

183

Let F be a function defined as follows:

F ;o PU) —PU)
F(Q) = {(M,M')]| dom(M) C dom(M') AVa € dom(M). (M(a), M'(a)) € Q}

The function F has a greatest fixed point (gfp). To prove that this gfp exists, it is
sufficient to prove that F is monotone since (P(U), C) is a cpo.
Proposition 7.7.2 The function F has a greatest fized point.
Proof Let Q,Q" € P(U) such that @ C @', we claim that 7(Q) C F(Q'). In what
follows, we prove this claim.
Let ¢ = (M, M') € F(Q). We have
dom(M) C dom(M') AVa € dom(M). (M(a), M'(a)) € Q
This means that
dom(M) C dom(M') AVa € dom(M). (M(a), M'(a)) € Q' since Q C @'
This proves that ¢ € F(Q') and finally that F(Q) C F(Q').
By theorem 7.7.1, we conclude that vF = (J{Q € P(U) | @ € F(Q)}. Note that in
our proofs, »F will be denoted by F.

It is important to note that F captures all the sets of pairs composed by maps that
are related by the prefixing relation (>. Hereafter, we present an example showing that
the least fixed point of the function F cannot capture all the related elements.

Let @ = {([], M) | M € M}. Let g = ([(0,a) — []], M") such that (0,a) € dom(M").
We have ¢ € F(Q) but ¢ ¢ Q. Hence, it is clear that F(Q) € @ and consequently
q & pF.

Note that the co-induction technique, defined above, can be also applied over the
space T since it is a subspace of the space M.

7.7.2 Algebraic Properties: Claims and Proofs

In this section, we provide the details about the proofs related to the algebraicity of
the deterministic process space C.

(C,Cc) is a consistently complete partial order (ccpo)

Proof First, we claim that (R, =) is a ccpo. Let X be a consistent set that is
subset of R. In what follows, we prove that X has a least upper bound, which is

184

U= (Viex Mo, U, ex Az) where V is defined as follows:

MVM = [a— M(a)VvM(a)|ac dom(M)nNdom(M')] t
la— M(a) | a € dom(M)\ dom(M')] 1
la— M'(a) | a € dom{M')\ dom(M)]

First, we have to prove that w is an upper bound of X.
Let t € X. We have to prove that

M, > V.’.EEX M,
At g UmEX A:l’:

The proof of the last constraint is obvious.

For the first constraint, the proof is done using the coinductive principle that we
have already defined.

Let @ € P(U) such that

Q = {(MsVoez M) | ZeP(Mx (VX)) xP(R))Aze Z} U
{(M, M) € M?}

Let (M., V ez M,) € Q. We have to prove that (M., ., M) € F(Q).
We have dom(M,) C dom(\/, ., M) since we have
dom(V yez Ma) = Uz dom(Ms)

Moreover, let a € dom(M,) and J, = {z € Z | a € dom(M;) N dom(M,)}. If
Jo = {z}, then we have

(Vaez Ma)(a) = M.(a)
In this case, it is clear that (M,(a), M,(a)) € Q.
Otherwise, from the definition of the operator V, it follows that

(Vaez Mz)(@) = V ey, Mo(a)
Since we can find J; such that \/,.; Mi(a) = Ve p Mo and My = My(a), we
deduce that (M. (a), V,c;, Ms(a)) € Q.
Now, let (M, M) € Q. Since > is reflexive, we have M > M and we deduce that
(M, M) € F(Q). This concludes the proof @ C F(Q).

Now, since ¢ € X, it is clear that (M, \/,.x M) € Q by taking Z = X. Hence,
we deduce that we have particularly (M, \/ .x M,) € F(Q). This means that M, >
V.ex M, and proves that v is an upper bound of X.

After this, we have to prove that u is the least one of the upper bounds. Let y be

185

an upper bound of X. Let us prove that u < y.
First, we have [J,.x Az C Ay since Vz € X. A; C Ay. Second, let

Q = {(Vaez Mo, M) | Z € P((M x (V5E)) x P(R)) AVz € Z. My > M} U
{(M,M") e M2 | M > M"}

Let (V, ez Mz, M) € Q. Let us prove that (\/ ., My, M) € F(Q).

We have dom(\ ez Ma) = U,z dom(M,). Since Vo € Z. M, > M, we have
Ve € Z. dom(M,) C dom(M)

This means that dom(\/,., M,) C dom(M).

Moreover, let a € dom(\/,.; M,) then 32 € Z such that a € dom(M,). Let
Jo={z € Z | a € dom(M,) N dom(M,)}.

If J, = {z}, we have

(Vaez Ma)(a) = M.(a)
Hence, it is clear that (M,(a), M(a)) € Q since M,(a) > M(a).

zEZ

Otherwise, from the definition of the operator V, it follows that
(Vaez Mz)(a) = Ve, Mz(a)
Since Vz € Z. My(a) > M(a), it is clear that (\/, o, Ma(a), M(a)) € Q.
This means that (\/ ., Mz, M) € F(Q).
Besides, let (M, M") € Q. Since M > M', we have (M, M') € F.
From this, we deduce that @ C F(Q), which means that (\/ ., M., M) € F.

Now, it is clear that we have particularly (\/,.x M, M,) € @ since Vz € X. M, >
M,

Hence, we deduce that \/ .y M, > M, and we conclude that u is the least upper
bound of X. This proves the claim that (R, <) is a ccpo.

Now, let X be a consistent set that is subset of C.
We claim that UX = ((V,ex Mo, Uzex Az)s Neex Be)-
Let u = ((Vmex M, Umex Az), nmex Ry).

First, we have to prove that u is an upper bound of X, then that it is the least one.

186

Let t € X. We have to prove that

M >V ex Mo

A C U:cEX Az

R; 2 Nyex R Ures(ry'ry)
The first two constraints are verified in the previous proof. Therefore, we only have to
prove that Ry D (,cx Rz U res(ry r,). We know that R, D MNeex Bz and we have to
prove that R, D res(r;'ry,).

If r;, = r,, then the constraint holds since in this case res(r;'r,) = 0. Otherwise,
let R € res(r;'r,). We have 7, = Uyex7,. Hence, s € X and Ja € £(r,) such that
a & &(r) and R € res(X;(a)). Since X is a consistent set, there exists z = (r,, R,) such
that t C zand s C 2. Sincer, = r,, we have £(r;) C &(r,). Hence, R € res(r;'r,) C R;.
Consequently, we deduce that R, D res(r;'r,). This proves that is an upper bound
of X.

Let us prove that it is the least one. Let y be an upper bound of X. This means
that for all z € X, we have

M, > M,

Az C X

R, 2 R, Ures(r;'r,)
Since 7, is the least upper bound of the set {r, | z € X}, we have
(7.6) ru=ry

Since we have Vz € X. r, = ry, we deduce, using equation 7.3, that
res(r;lr,) = res(r;ir,) U res(ryir,)
This means that res(r;'r,) C res(r;'ry).
Hence, Vz € X. R, Ures(r;'r,) C RyUres(r;'r,) C R,.
Consequently, we have

(7.7) Neex Be 2 Ry U res(ry'ry)

Using 7.6 and 7.7, we deduce that v C y. Hence, u is the least upper bound of X
and this proves the claim that each consistent set X that is subset of C has a least
upper bound.

It is worth to note that we can show easily that D(p(M,)) = U cx P(p(M,)) and
that the reflexive transitive closure D(p(M,)) is a partial order relation using the fact
that X is consistent. Moreover, using equation 7.5, it is straightforward to prove that
for all z € X, we have resinf(r,) C R,. This means that resinf(r,) C (\,cx Re-
Hence, u satisfies the two healthiness conditions. [j

187

(C,C¢) is algebraic. The compact elements of C are processes having a finite
events set

Proof Let D be a directed set that is subset of C. Let v = UD and z be a finite
process such that z C . This means that
M, > \/wE 7 My

Az © UyGD Az
B DiNyep By Wrresiry)

Since z is finite, 7 is finite and M, is a finite map, i.e. @(M;) is finite (recall that
(M) denotes the set of elements of M,). Hence, we can find a finite subset F =
{Y0, Y15 .-, yn} of D such that o(M,;) C (‘D(Vwé r M,,). Moreover, it is straightforward
to prove that Az C [, cp Ay,

Let @ = {(M,M") | M is finite A p(M) C @(M’')}. We can easily prove that
Q C F(Q). Since (Mq, V. ep My,) € Q, we deduce that M, >V, p My,.

Now, since D is directed and F' C D is finite, F' has an upper bound ¢ in D. This
means that M, &> M, since VwE r My, > M;. Hence, we deduce that
M, > M,
)‘z g At

Now, we claim that there exists ' € D such that res(ry/) = res(rup) and Ry = Ryp.
The proof of this claim is inspired by [50].

Let R € res(rup). There exists zg € D such that R € res(ry,,). Since D is directed,
the finite family {zg | R € res(rup)} has an upper bound z; € D (this family is finite
since res(ryp) is finite). Hence, R € res(r,,) and we deduce that res(rup) C res(ry,).
Since z; C LD, we have res(ry,) C res(rup). Hence, we have res(ry,) = res(rup).

Let R € R, \ Rup. There exists g € D such that R ¢ R,,. Since D is directed,
there exists x5 € D such that 2z E x5 and ¢t C x5. This means that we have

Ra:z g Rt n (nReRt\RuD R-TR) Q RI_!D = nyeD Ru

Since D is directed, the finite set {z;, 2>} has an upper bound in D. Let z' be this
upper bound. Hence, we have z; C 2’ and z, C z'. We also have

Rup € Ry C Ry, € Ryp and res(rup) = res(ry,) C res(ry) C res(rup).
Hence, we conclude that R,y = Ry;p and res(ry) = res(ryup)

Let z € D be an upper bound of ¢ and z’. We have ¢ C z.

Hence, we have

(7.8) 71y, 2 r,sincer, 3

188

We can easily prove that R, = Ryp since Ryp C R,, Ry = Ryp and R, C R,.
Moreover, we have

(7.9) R,Ures(r;'r,) C Rup Ures(r;*rup) C R, since R, = Rp and ¢ C UD

From (7.3) and (7.9), it follows that = C z and we conclude that z is compact.

Now, let z € C and K(z) = {(rs, res(s~'z)) such that s is finite and r, < r,}. We
claim that z = | | K(x).

First, we have to prove that K(z) is a directed set in C. Let F' a finite subset
of K(z), y1 and y, € F such that y; = (ry,,res(y;'z)) and yo = (ry,, res(y; 'z)).
We have r,, =< r, and 7,, = 7. Hence, since (R, <) is a ccpo, the consistent set
{ry,,7y, } has a least upper bound 7, < r,. Moreover, we can find z, and z; such that
z = (r5,0) and z = (r,,, res(z;'z)). It is clear that 2, € K(z). Moreover, knowing
that res(r;'ry) = res(r;'r,,) U res(r;'ry), we get

res(yr') 2 res(z') Ures(yr') 2 res(s'a) U res(rylr.,)

We also have res(y; ') 2 res(z; 'z)Ures(y; 'z1) 2 res(z1 ') Ures(ry,'rs,). Hence,
2y is an upper bound of y; and y,. This can be generalized on the elements of F'. Hence,
F' has an upper bound in K(z) and consequently K(z) is a directed set.

It is easy to prove that r, = | |, -, 7s. In fact, it is clear that £(r.) = UU,, <, &(7s).
Hence, we deduce that res((| |, <., 7s)"'7z) = 0. Now, since |], -, rs < 7, by equation
7.2, we deduce that | |, o, s = Ts

Moreover, we have
Nry<r, T€8(s7'2) = (N, <p, (res(ryirz) U Ry)
= N, <5, T8 r)UR,

Since for all 7, < r,, r, is finite, we have
MNro<r, T€8(r5'72) = {res(rs™'re) | 7a 2 7z A7, finite} = resinf(ry)

Hence, res(s~'z) = resinf(r,) U R,.

Ta =Ty

We also know from the second healthiness condition that resinf(r,) C R,.
Hence, we deduce that (), -, res(s™'z) = R,.
This proves the claim that Vz € C. z = | | K(z).

We have to prove now that the compact elements are exactly the finite processes.
Let x be a compact element in C such that z is not a finite process. This means that
&(r;) is infinite. Since we have z = | | K(z), which means that z C | | K(z) and since
x is supposed to be compact and K (x) is directed, 3y € K(z) such that x C y. Hence,
3r, finite such that r, < r,. This means that &(r;) C &(ry). Knowing that &(r,) is

189

finite, we get a contradiction with the hypothesis: £(r,) is infinite. Hence, the compact
elements are exactly the finite processes. |}

7.8 Monotonicity Proofs

In this section we provide monotonicity proofs of our semantic functions. These proofs
are needed to establish the semantics of recursion.

The proofs of monotonicity are based on the following idea: let @ be a semantic
function operating on non-deterministic processes. Let P,Q,P',QQ' € D such that P C P’
and @ C @'. We have to prove that (P, Q) C @*(P", @), i.e. V¥ e o* (P, Q'). 3t €
wt(P,Q) such that ¢ C ¢. Let ¢ € @*(P,Q'). I’ € P and ¢ € @ such that
t' = &(p',¢'). Since P C P', 9p € P such that p C p’. We also have Q C @', thus
Jdg € @ such that ¢ C ¢'. Let t = @(p, g); the monotonicity proof is reduced to the proof
that t C ¢, i.e. that @ is monotone. This strategy is followed for the operators ; and o.
It is also followed for the unary operator \ by reasoning on deterministic processes.

In what follows, we need to establish two useful lemmas. These lemmas will be used
in proving the monotonicity of some of our semantic functions.

Lemma 7.8.1 Let M;, My € M such that M, > M, and M| > Mj.
if dom(My) N dom(Mj) =0 then My t M| > My t M}

Proof Let us prove that (M; t M{, Myt M}) € F. Let Q € P(I) such that
Q = {(MytM, Myt M) | M > MAM>M}U
{(Mi(a), M3(a)) | a € dom(My) A My > My} U
{(Mi(a), M3(a)) | a € dom(M{) A M{ > M}
We have
dom(My, T M]) = dom(M;)U dom{M])
dom(Myt M) = dom(Ms)U dom(M})
We also have
dom(M;) C dom(M,) and dom(M]) C dom(M,;). Hence,
dom(M; T M]) C dom(My t MJ)
if a € dom(My)\ dom(M7), we have a € dom(Ma) and since dom (M) N dom(M)}) =
(), we also have a ¢ dom(M}). Hence, we get
(Mt M{)(a) = M(a)and
(My 1 M3)(a) = My(a)

190

Otherwise, a € dom(M]) and we have

(My 1 Mi)(a) = M;i(a) and
(My t Mz)(a) = Mj(a)

Moreover, we have

Va € dom (M) \ dom(M;). (My(a), Ma(a)) € @ and
Va € dom(M;). (M(a), My(a)) € Q

Hence, we deduce that

Va € dom(My t M}). (M 1 MD)(a), (My 1 M)(a)) € Q

Let Q' = {(Mi(a), Ma(a)) | a € dom (M) A My > Mo}

Since M, > M,, we deduce easily that @' C F(Q") C F(Q).

Let @" = {(Mj(a), M}(a)) | a € dom(M]) A M] > Mj}.

Since Mj > M}, we deduce easily that Q" C F(Q") C F(Q).

This proves that (M; T M], Myt Mj) € F and consequently M; { M! t> Myt Mj,. [|

Lemma 7.8.2 Let My, My € M, 0: Pp(V) x V — Pp(V) x V be a substitution.
We claim that
Mleg = I\/I10[>Mga

Proof Let us prove that (Mo, Myo) € F.
Let @ € P(U) such that

Q = {(Mla, M2J) | M} > MQ} U
{(M](G.),Mz(a)) \ a € dom(Ml) A M]_ > MQ}

Let a € dom(M;). We have a € dom(My) since dom(M,) C dom(My).
We have
Myo = [o(a) — Mi(a) | a € dom(M;)]
Let b € dom(M,o). 1t is clear that Ja € dom(M;) such that b= o(a).
Since a € dom(M,) and dom(M,) C domn(Ms), we have o(a) € dom(Mao).
Hence, b € dom(M,o), which means that dom(Myo) C dom(Msa).
It is also clear that (My(a), My(a)) € @ and this means that
Vb € dom(Myo). (Mya)(b), (Mao)(b)) € @
This proves that (Mo, Mao) € F(Q).

191

Let Q' = {(Mi(a), Ma(a)) | a € dom (M) A My 1> My},

Since Va € dom(M;). Mi(a) > My(a), we have Q' C F(Q') C F(Q).
Hence, Ya € dom(M). (Mi(a), My(a)) € F(Q).

Consequently, we have (Mo, Myo) € F. |

7.8.1 Monotonicity of the Non-Deterministic Choice

Let I be an indexed set and 6 : (— D an environment,
We suppose that Vi € I. [P](0) T [P/](#).
This means that Vi € I. [P/](0) C [P;](¢) and hence we have
Uier[P100) S Uie [PI(6)
Finally, we conclude that

[®icrB)(0) T [®ierF1(6)

7.8.2 Monotonicity of the Strict Sequential Composition

We have to prove that p ; ¢ C p’ ; ¢'. This is equivalent to proving that

My > My
ApUXg C Ay Uy
Ry 2 Ryig U res(r4mw i)

Case R, =0
Since R, =), we get p’ = p using equation 7.2. This means that M, = M,.
We have to prove that My, > M,y i.e. S(M,, M,) > S(M,, My).
The proof uses the co-induction principle that we defined before.
First, if M, =[], then it is clear that
S(Mp, My) = My S(My, My) = My

Otherwise, let Q = {(S(M, Ms), S(My, M3)) | Ma > M3} U

{(M2JMU Méo-Ml) I M, > Mé}

Let (S(My, Ms), S(My, M;)) € Q. We have to prove that Q C F(Q). First, we have
to prove that

192

dom(S(My, Mz)) C dom(S(M,, M3))

Let a € dom(S(My,M,)). It is clear from the definition of the function S that
a € dom(S(M,, Mj)).

Moreover, we have

S(My(a), My), if Mi(a) # [];

Msop,, Otherwise.

S(Ml,Mg)(a) = {

s g = { M T 213
if M;(a) # [], then we have
(S(Mi(a), M), S(M(a), M3)) € @ since M;(a) > M;(a)
Otherwise, it is clear from the definition of Q) that (Maoas,, Myon,) € Q.
This proves that (S(My, My), S(M;, M3)) € F(Q).

On the other hand, let Q' = {(Maon, Mjor,) | Mo > Mj}. By lemma 7.8.2, we

oy

deduce that Q' C F(Q') C F(Q) (Since F is monotone). This proves that @ C F(Q).
Since M, 1> M, we have particularly (S(Mp, M), S(M,, My)) € Q.

Consequently, (S(Mp, My), S(Mp, My)) € F and we conclude that S(M,, M,) &>
S(MP?MQ')'

Now, let us prove that the resource constraint is satisfied. First, in this particular
case we have

Ryq = Rq, Ry.¢ = Ry and

Ryy Ures(ryiryy) = Ry Ures(riry.y)
Since p = p' and using equation 7.1, we get

""es("';;;'f'p’;q’) = Ueeg((rm)—x,-piq,) res(((Ap UAg) \ (A U Ag))(e))

Ueettr, et T6S(((Ae U Ag) \ (Ap U Ag))(€))

Moreover, we have

E(rpg) = dom(ApUAg)
= dom(),) Udom(A,)

= &(rp) UE(ry)

193

E(rpg) = dom(\,U Ag)
= dom(A,) U dom(Ay)

= £(rp) U(re)
Hence, we get
Erpe) \&(rpg) = (E(rp) UE(rg)) \ (€(rp) U &(rq))
Here, we recall some laws about set theory: let A, B and C' sets, we have

A\(BUC) = (A\B)N(A\0)

(AUB)\C = (A\C)U(B\C)

Knowing that &(ry) N&(ry) = 0, &(ry) NE(ry) = 0, &(rg) C &(ry) and by applying
set theory laws, we get

(E(rp) U&(ry)) \ (E(rp) UE(rg)) = ((&(rp) U&(re)) \ &(rp)) N
((€(rp) U&(re)) \ &(rg))

= ((&(rp) \ &(rp)) U (Elre) \ &(rp))) N
((€lrp) \ &(rq)) U (&(rg) \ £(rq)))

= &(rg) N (&(rp) U (&(rg) \ €(r)))

= (&(rg) N (&(rg) \ &(rg))) U
(&(rg) NE(rp))

= &(rg) N (&(rey) \ &(rg))

= &(rg) \&(ro)
By the same strategy, we get
(ApU ’\q’) \ (AU)\q) = A\
Since res(r, b)) = Uee(;’(‘rqr)\ﬁ(rq) res((Ag \ Ag)(e)), we deduce that
res(Tpatpy) = res(ry ry)
In addition, we have Ry U res(ry 7w,¢) = Ry Ures(r;'ry) C R, since ¢ C ¢'.
Hence, we conclude that R,y U res(rp 7p.q) € Rpyg.

Case R, # ()

194

We have two subcases:
Subcase Ry # 0

For this subcase, rp, = 7p, T,y = 7w and the first two constraints about the
dependence maps and labelling functions are verified since r, < 7.

For the resource constraint, we have

Ry = Ry Ures(q) and
Ry = Ry Ures()

We also have
Ry Ures(ry . Tpg) = Ry Ures(q') U res(ry;'rp)

Besides, since 7, < ry, we have
Ry Ures(r,'r,) C R,

Since ¢ C ¢/, we get res(q) 2 res(q’) by equation 7.1 and hence we get
Ry,q Ures(ryl rpg) € Ry Ures(q)

This concludes the proof since R, U res(q) = Rp,.

Subcase Ry =0

For this subcase, we already have M,, = M,. To prove that M,, > My.y, it is
sufficient to prove that My > My.,. The proof uses co-induction and is similar to the
one elaborated for the case R, = (). In fact, we have just to prove that S(My,[]) >
S(My, My).

Proving that A, U A; € Ay U Ay is straightforward since 7, = 7y and r, < 1.

For the resource constraint, we have

Rpy = RpUres(q)
Ry, = Ry

Tpq = Tpsince Ry, #0

Using the definition of the function res and set theory laws, we can prove that
res(ry) = Tes(r;'ry) U res(ry)

Moreover, we have

R, D res(ry'ry) and res(q) 2 res(q’) = R;If U res(ry)

195

Hence, we get R, U res(q) 2 Ry Ures(r,'ry) Ures(ry). Finally, we conclude that

Rpqy 2 Ry Ures(r irpq)

7.8.3 Monotonicity of Hiding

We have to prove that p\R C p’\R. This is equivalent to proving that
Mpgr > Mg
Ap\r © Ap\R
By\r 2 By\n U res(r pr\r)
Proving that Mg > My g is equivalent to proving that Hg(M,) > Hgr(My).
Let @ = {(Hr(M), Hr(M7)) | My> M}
We have to prove that Q@ C F(Q).
Let (Hp(M,), Hr(M7)) € Q. First, let us prove that
dom(Hg(My)) C dom(Hg(M;))

Let a € dom(Hg(M,)), then 3b € dom(M,) such that a = (ot (m, (b)), m2(D)).
Since M; > M7, dom(M,) C dom(M;). This means that b € dom(M]) and hence
(ot (m1(b)), m2(b)) € dom(Hg(M)). Therefore, we deduce that a € dom(Hg(M])).
This proves that dom(Hgr(M;)) C dom(Hg(M7)).

We claim that Ya € dom(Hg(M)). (Hr(M;)(a), Hr(M])(a)) € F(Q). In fact, let
a € dom(Hg(M,)), then 3b € dom(M,) such that a = (o7 (m1 (b)), m2(b)). Moreover,
we have

Hp(M;)(a) = Hg(M(b)) and
Hp(Mi)(a) = Hgr(M](b))

Since M;>Mj, we have M; (b)>>M;(b) and (Hg(M, (b)), Hr(M{(b))) € Q. Therefore,
we deduce that (Hg(M)(a), Hr(M;)(a)) € F(Q). This proves that @ C F(Q). Thus,
we conclude that Hgr(M;) > Hr(M]). -

Now, since M, > M, , we have particularly
(Hr(My), Hr(My)) € Q € F(Q)
Consequently, Hg(M,) > Hr(My).

For the labelling constraint, we have

Me = (B \{(eA(e)) | e € VEH U{(o(e),n(An(€)) | e € Vi} and

e = O\ {(e,M() | e € VENU{(a(e),n(Ap(e) | e € VE}

196

We also have
Ve = {e€é(ry) | res(My(e)) € R} and
VE = {ee&(ry) | res(hp(e) C R}

Since &(rp) C &(ry), it is clear that VE C Vg. Hence, it is straightforward to prove
that

(7.10) {(a(e,n(Mule) | e€ VEY € {(a(e),n(Ap(e))) | e € VE'}

Moreover, since A, C Ay, we have

Mw\{eAp(e) [e€VEY = WU\ X)) \{(e,2p(e) | ec VE}
(7-11) = M\ (M) [e€ VED U
(AW \ A\ {(&An(e) e VED

Using set theory laws, we also have

M\ {(e,2p(€) | e € VE) =

A\ ({(e, Ap(e)) | e € VR} U
{(e; Ap(e)) | e € Vg }\ {(e M) [e € VE})) =

(A \{(e, Ap(e)) | e € VRp}2 n
(A \ ({(e; Ap(e)) [e € VEF\ {(e, M(e)) | e € VD)

Since it is clear that

XN ({6, Ap(e)) | e € VEI\{(e,M(e) | e € VEY) =0
We get

M\ ({(eM(e) le e VEI\{(e2(e)) [e€VEY) = X,
Moreover, since X, \ {(e, A\,(e)) | e € VE} C A, we deduce that

M\ {edr@) leeVE} = M\ {(e(e) | e € VE}
Using 7.11, we deduce that

(7.12) M\ {(e,Ap(e)) | e € VE} 2 A\ {(e, Mple)) | e € VE}

Using 7.10 and 7.12 we conclude that A\ C A&

For the resource constraint, we have to prove that

197

Rp\r 2 Ry\r U res(r Tp\g)
By the definition of the operator \, we have Rz = R, and R,\g = R,.
We have
res(rparmi) = Ueeetrnmetrnm T8 ((r \ Anr) (€))
We also have
Erpe) = dom((0p \ {(e,\p(e)) | e € VED U{(o(e),n(Ap(e))) | e € VE'})
= (dom(\y)\VE)U{o(e) | e € VE}
= (Ery) \VE)U{o(e) e VE}

= ot ({(ry))

Moreover, we have

Ermr) = (E(rp) \VE)U{o(e) | e € Vi}

= o+ (&(rp))

Now, let e € &(ry) \ £(rp). It is easy to prove that o(e) € &(rp\g) \ €(rpr) using the
above equations.

This means that e € dom(\y) \ dom(},) and o(e) € dom(Ay\g) \ dom(Ap\g).
If res((M\y \ Ap)(e)) C R, then knowing that Ay r C Ap\g, We get
res((Anr \ Anr)(0(€))) = res(Anr(a(e)))

= res(n(Ap(e)))
= res(p(e))

= res((Ay \ Ap)(€))
Otherwise, if res((Ay \ Ap)(e)) € R, then e € {(ry\r) \ £(rp\r) and we have
res((AMnr \ Anr)(0(€))) = res((Amr \ Anr)(e))

= res(hale))
= res((e))

res((Ay \ Ap)(€))

198

Hence, we have
Ueeetr e T30 \ 2)(€)) € Uregtr pivetrmn) 765 (AR \ Apr)(€))
Since it is clear that ¢ is surjective, we can use the same strategy to prove that
Ue'ee(r,,f\R)\g(rp\R) res((Ap\r \ Anr)(€')) € Ueef('r‘pp)\f(r,,) res((Ap \ Ap)(e))
Hence, it is clear that res(r;\‘}?’rpr\g) = res(r;ry).

Since p C p/, we have R, DO Ry U res(r,'ry). Thus, the resource constraint is
satisfied.

7.8.4 Monotonicity of the Weak Sequential Composition

Hereafter, we prove that o is monotone. This means that we have to prove that

'

Ty®F jrpror#,,'

q
P “RP Rpf

{ RPURques(r;éprq))
Ry U Ry U res(rd m) U res((ry o)0 o)
o

\

First, we prove that r, e 7,0 . Sy e ol
P

This is equivalent to proving that
PG’ (M;D, ‘1‘1’ (M;_ﬁ}zparp)) i ‘}‘5 (M,ugzpyrp) >
Por (M, o (Mpgi’pfvrp’)) LY (M‘ug \Tp')

pf

Note that to lighten the notation, ®,, ¢ : is denoted by ® and & , is denoted by

’
a
W
Rp"

@' in the above constraints.

We have
L)

I

{(er¢) € Elry) x E(ryg,) | res(hg(e)) N res(yg, (¢)) # 0}

@J‘

{(e;e) € {rp) x £lr e) | reaiple)) N res(h e (€1) # 0}

We claim that
o (M#}’gpirp) Y (My‘}; ,Tp) and

J

P
Po (Mp, o (Mpg{p?rp)) > Por (My, Tor (ﬂ%% 3Tpr))
o

199

We recall that
o (Mg ,7p)

Il

[(m1(b) U {a € &(rp) | (a,m2(b)) € @}, m2(b))
(-I‘i' (Mqup(b)irp) | be dom(Mp%p)]

e (Mﬂg ’vrp') = [(m()U{a€&(ry) | (a,m(b)) € @'}, m2(b)) >
('lq,: (M#g , (b),rpf) | be dom(M”qu ’)]

The proof steps are the following:

1. We have to prove that Tg (Mg ,1p) > ‘g (M, & sTl
P ‘R,
f23

Let
Q@ = {(%e (M), % (M3,71)) | mi(r1) >m(r]) A My > My A D C @A
Vb € £(r2). Ve € £(r) \ &(r1). (e,b) & @'}
We claim that Q C F(Q).
Let (9 (M2,71), 9er (M3,71)) € Q-
First, we have to prove that dom(9e (Ms,r1)) C dom(9e (M3, r})).
Let b € dom(M>). Since ® C &', we have
Ve € £(r() \ &(r1). (e, m2(b)) & @
Hence, Vb € dom(M,), we have
{a € &(r)) | (a,m(b)) € ¥} ={a € &(r1) | (a,m2(b)) € @}
This means that ¥b € dom(M,), we have
(m(b) U{a € &(ry) | (a, m2(b)) € @'}, m2(b)) =
(m(b) U {a € &(r1) | (a,m2(b)) € ®}, ma(b))
This proves that dom(%1s (Ma,71)) C dom(fe (M3, 77)).
From the definition of the operator 9, it follows that
Va € dom(“lq, (Mg,’r'l)). db e dom(Mg) 99 (Mg,rl)(a) =% (Mg(b),?"l)
Moreover, we have
e (M3,71)(a) =% (M3(b),71)
Since M, > My, we also have M, (b) > My(b).
This means that (9 (Ma(b), 1), 9e (M3(b), 7)) € Q.
Consequently, (e (Ma,71)(a), 9o (Mj,71)(a)) € @, which proves that @ C F(Q).

Now, we claim that Tl =< T We have
P R_;
P

200

Wh, = U{tCa|res(m(t)n B, =0)

pr, = WEEJ | res(m(t))n Ry =0}
It is easy to show that

th, E{t T q | res(m(t)) N R, =0} and

ph, € {tEq | res(m(t) 0 Ry =0}
In fact, it is easy to prove that res(,u.‘}?ﬂ) N R, = 0 using the fact that res(u) N R, =
0 forue {t Cq | res(m(t) N R, =0}
Since R, 2 R,y and ¢ C ¢/, we have

Vue {tCq|res(m(t) NR,=0}. Fu' € {tC ¢ | res(m(t)) N Ry = 0}

such that v C o'

q q 3

Hence, g, E p Ry which means that Tl = Tﬁ‘?a’p,'
Consequently, we have M ut, > Mulg .

e
We also have

Vb € &(ryg,). Ve € §(ry) \ &(rp). (e,b) & &'
In fact, we have
Vb € E(rug{p). res(,\#qu (0)) NR, =0 and
Ry 2 res(ry lry) = Uegg(rp,)\g(r,,) res((Ap \ Ap)(€))
This means that
Vb € £(ryg,). Ve € Elry) \E(ry). (e,b) £ &
Moreover, since &(r,) C €(ry) and & (Tﬂia,, JICE (r#% 1), we have ® C @',

Hence, it is clear that we have particularly
((‘]‘I’ (Mu}cpﬁrp)) hrY (M#% rarp’)) € Q b f(Q)

P

Finally, we deduce that ‘g (M#qR 1 Tp) B o (MZ 2 o Bl
P “Rp,

. We have to prove that

Ya € dom(Mp). Succ(a, 95 (M

'ugzp,f'p),@) > Suce(a, g (Mu,.‘.r 7o)y @)

We recall that
Suce(a, M,®) = [b— M(@®)|b € dom(M) A (ma(a),m2(b)) € ®] §
Toedom(arySucc(a, M (b), ®)
Let U(a,M,®) =[b— M(D) | b € dom(M) A (ma(a), (b)) € @]

Since ‘g (Mg ,7p) & o (M" o Tp) and @ C @', it is easy to prove that
P B :

201

\Il(a, 9% (M'uqﬂp’ T‘p), (I’) > ‘I’(CL, NEY (M#%p’ 2 Tpf), (I)")

Let
Q = {(Suce(a, 1o (Ma,71)(b), D), Succ(a, o (Mg, 71)(0),®")) | @ € dom(my(r1)) A
be d()ﬂ’b(‘]gb (Mg,’r’l)) /\‘n‘l('ﬁ) > Tf](Ti) A My > Mé AP C @’} U

{(‘\q, (Mz,?‘l), 9 (]Mré,'r‘i)) | 71‘1(7‘1) > my (T‘;) A Ms > sz AP C PA
Vb € £(r2). Ve € £(r1) \ §(r1)- (e,b) & @'}
We have to prove that @ C F(Q).
Let
Q’ = {("Iq:. (J'sz,'f‘l), NFY (Mé,?‘i)) I W](T‘I) > 7!'1(?‘;_) N My > ﬂ{[é A®C DA
Vb € £(rz). Ve € £(ry) \ £(r1).(e,) & @'}
We know that Q' C F(Q'), hence
Ve € dom(%e (M2, 71)(b)). (e (M2,71)(b)(c), Y (M3,7)(b)(c)) € Q' C Q
Particularly, Ve € dom(9s (Ma,r1)(b)) such that (wa(a), m2(c)) € @, we have
Succ(a, 9 (Ma,r1)(b), ®)(c) =99 (Ma,71)(b)(c)
Since dom (g (Ma,m1)(b)) € dom(9e (M, 77)(b)), we have
Suce(a, Vo (Ms,71)(b), ®)(c) = (M3, 71)(b)(c)
Hence, we conclude that
(Succe(a, 99 (Ma,r1)(b), ®)(c), Succ(a, 9o (M5, r1)(b), ®")(c)) € Q
This concludes the proof that @ C F(Q).

Now, since it is clear that ¢(9e (Ma,71)) and (‘e (Ms, 1)) are disjoint, we
deduce that we have particularly dom(%s (Ma,r:1)) and dom(9e (M, 7})) are
disjoint. Hence, by lemma 7.5.1 (the lemma is also applicable for a countable set
of arguments), we deduce that

Thedom (e (Ma2,r))Suce(a, T (Ma, r1)(b), ®) >

toedom (g (Myrp)ySuce(a, o (Ma, 11)(8),)

Knowing that ¥(a, 9 (Ma,r1), ®) > ¥(a, 9e (M, 7}), d'), again by lemma 7.8.1,
we deduce that Succ(a, 1 (Ma, 1), @) > Succ(a, 9o (My,11), P').

Hence, since Mﬂqﬂ > Muqr , M, > M,y and
P Rpf
Vb € &(rys, JD). Ve € &(ry) \&(rp). (e,b) € ', we conclude that we have particularly

Succ(a, g (M2 1), ®) > Succ(a, Iar (M“gﬂ',rpr), ')

q
"'Rp’

3. We have to prove that Po (M), Ta (M, ,73)) > Par (My, T (M#qr 1))
Rp;

202

Let
Q = {(Ce (M1, My),Pe (My, M3)) | My > M] A My > My} U

{(Pe (Mi(a), M2) t Succ(a, My, ®),Pe (Mj(a), M3) § Succ(a, M3, 2")) |
a € dom(My) A My > My A Mp > My} U
{(Succ(a, M, ®), Succ(a, M, ®')) | My> MjA D C &'}
We have to prove that @ C F(Q).

Let (Pe (My, My),Pe (M7, M;)) € Q. From the definition of the operator P, it
follows that

dom(Pe (My, M)) C dom(Pe (M], M})) since dom(M;) C dom(M;)
Moreover, we have

Va € dom(Pe (M1, Ms)). Ps (M1, M3)(a) =g (Mi(a), M2) t Succ(a, My, ®)
Since a € dom(P'g (M7, M})), we also have

Par (M, Mp)(a) = s (Mi(a), M5) + Suec(a, My,)
This means that (e (M, M2)(a),Pe (M7, Mj)(a)) € Q.
Consequently, ("' (M, My),Pe (M], M3)) € F(Q).
Besides, we have

(Po (Mi(a), M) t Succ(a, Ma, ®))(b) =

Po (My(a), M)(b), if b€ dom(Ps (Mi(a), My));
Succ(a, My, ®)(b), if b € dom(M,).

We also have
(Por (Mi(a), M3) T Succ(a, M3, ®))(b) =
o (MU(@), MY(E) , i b€ dom(Per (M(a), M);
Succ(a, M3, ®')(b), if b € dom(M}).
Let Q" = {(Succ(a, My, ®), Succ(a, My, ®')) | Ma> MjA® C &'}
We know that Vb € dom(Ps (My(a), M2)). (Pe (Mi(a), Ma)(b),Pe (M](a), M3)(b)) €
Q.
Moreover, since (Succ(a, My, ®), Succ(a, My, ®")) € F(Q') C F(Q), we have
Vb € dom(Ms). (Suce(a, My, ®)(b), Suce(a, Mj, ®')(b)) € Q
This means that
(Pe (Mi(a), Ms) t Succ(a, Ms, ®),rs (M](a), M3) t Succ(a, M3, ®')) € F(Q)
This concludes the proof that @ C F(Q).

Now, it is clear that we have particularly

203

(P‘I) (Mp;(-kﬁ (My‘}aplrp))l Y (Mp’a *]Gb’ (MP"?; 37'19'))) € Q

Hence, we conclude that
r’!b (Mp,qah (M“ T'p)) > |+e_r;r (Mpf, +|¢,w (M i ,'n"‘pf))

Rp? 75
= o'
4. We have to prove th&t

Fo (MP’ o (Mu'}zp’rﬂ)) P (Myqﬂpvrp) >
Pd:f (Mpf?ﬁ(bl (M#;“; l,?“pi)) :I: ﬂ@r (Mﬁﬂ ’,'T'pr)

P P

We have
Po (Mp, To (Mu‘gpa'rp)) I % (Mu‘}tparr:) =
o (My, s (Mg 1) 1
[a—9% (M, ,mp)(a) | a € dom(Ys (M#'hp’ri’)) A mi(a) = 0] and

q
b
Rp

l"q,f (Mpr,ﬁq,; (M,u‘g "I'pl)) _JI_' "I(I,J (M.‘-ﬁ:{; ,'f'p;) =
o’ o
P (Mpr, Nt (M 7 ,rp;)) T

KR ,

o % (M,y ,1y)(a) | @€ dom(e (Mg 7)) Ami(a) = 0]
Since Pe (Mp, T (MHqu,r,,)) > Pe (My, e (M”% ,Tp)), we only have to prove
that ’

[a —Ag (M#%p,rp)(a) | a € dom(g (M#gip,rp)) Ami(a) =0] >

% (Mg ,7y)(a) |a € dom(ta (Mg ,ry)) Am(a) = 0]

! Byt

After that, we use lemma 7.5.! to conclude the proof.

Let a € dom(%s (M ,7p)) such that m(a) = 0.
P
Since ‘1 (Mprﬁp,rp) > g (Mﬁ,};p’,rpf), it is clear that a € dom(‘s (Myﬂpl,rp,)).

Since we have g (M#«}:% ,Tp)(a) > g (Mpqr ,Tp')(a), we conclude easily that
Ry

[a —9% (M#a}zﬁ,r,,)(a) | @ € dom(Yp (Mﬂgzp,rp)) Ami(a) =0] >
(@ — 9 (M#% ',rpa)(a) | @ € dom(“gr (Mﬂfé ’,rpr)) Ami(a) =0

This concludes the proof about the prefix constraint.

Proving that A,U A#'fz,, C)\prU/\“q: is straightforward since r, = 7,y and 7,2 , < T -

R
P’ By

For the resource constraint, from the definition of the semantic function o we get

res(roirpoy) = res((rp ® Tu}”g,,)_l("'p‘ orﬂ.},{fpr))

204

Now, we have to prove that

R, U Ry U res(r;?i rq) 2 RyURgU res(r;ql, rg) U
4 R,

(7.13))
res((rp ® r“%p) Yryp o e)
We have
E(rpe Tugqp) = dom{iU)‘#?zp)
= dom(Ap) U dom(A,z)
— &) UE()

Besides, we have

frpory) = &ry)Uelry)

b
Knowing that £(r,) N&(r,e p) = and &(r,)NE ('ru%) = () and using set theory laws
pl

(we omit details), we have

E((rp @ T“r}{?)‘l(v'p- ° Tﬂ,‘fg'p,) = Elrpe T'”gp’) \E(rp o Tp,‘j??)

Il

Elry +r g I\ ECpoT,)

(Ey) V€l D\ (ED) UElryg,)
(E0) \E0a) U (€0) \E (g,))

o

Using the same strategy, it is easy to show that
O Udg NWUNL) = O AWMUl)
Hence, we get

~1 =
res((rp ® r#h) (rpr ® r#%p’) =

 Noporg, 0 7es((O U I\ U)(E) -

“h

UeGE({rp: or
P

UEE(E(TE,:)\‘E(TP))U(E(T“% Nelryg,) res((Ay \ Ap) U (A#?;p, \)‘u‘}z,,))(e))
»
Now, it is easy to prove that Vp, ¢ € C such that dom()\,) and dom()\,) are disjoint,

we have

(7.14) res(rp)Ures(ry) = Ueceimpueiny T65((Ap U Ag)(€)) where

_ {)\p(e), if e € £(ry);

(A U A)(e) Af(e), Otherwise.

It is obvious that the two processes p~'p' and (p‘}?@)*lpgp, are labelled differently.
Hence, using equation 7.14, we get

205

res((7y 078,) " 0 97,0) = Useerynetn T80 \ 2p)(€)) U

Ueee(rﬂgﬂl Nelr,g,) TBS((}‘,,;}IJI \ Az)(e))

= res(r, try)U res(r”g;lrug r)
P

We have res(r . 'r »)Ures(r 7
J“‘Rp H - ,LL%

L. -1
R T = res('r#g{p Tq):

pf

-1 _ -1 <
We also have ?"e.s(vr“lgz J) = 1f'es(7"“;,z] 1) Wires(r).
Since Ry 2 Ry U res(r;'ry), we deduce that

(7.15) £, U TES(THGR?%) 2 Ry Ures(ry'ry) U TES(T%;%)

We also have
(7.16) R, 2 Ry Ures(r, ry)

Hence, the constraint (7.13) is satisfied by taking the union of the constraints (7.15)
and (7.16).

7.8.5 Monotonicity of the Parallel Composition

Hereafter, we prove the monotonicity of the parallel composition operator ||.

To lighten the notation, \Il#f? b 18 denoted by ¥ and \Ilypr o 1s denoted by W',
q 1d

Ry "uRp’
Moreover, we remove the index from ®; € V.

Let p C p' and g C ¢’. We are dealing with the case where

R“qu n res(rpgzp) = and R“%P n res(r”%q) =0

and also

Ry Nres(r y)=0and R o Nres(r »)=0
"‘Rq; “Rpl 'uRpl #Rqr

The monotonicity in the other case is obvious since the semantic function is constant.

We recall that

206

pl = Usew 10, llo 7, . B) where
T‘“%q ”q; Tf""fa:p — (q—’qs (TPPRQ’T“QRP) O %+a (T#%p,?'“rkq),)\#%q UAF‘%‘:,,)

q s =1 ~1
Ry = Ruﬁq u R#‘:’ap U res(rugq o) W 'res('r”h Tq)

ot = r r A Ui R?)) where
g Usrew T ((s, (Y “3{,,:’ 2 “"nfp,)’ &)
T oo STk = St (7t 7 Qq—»@r: i Ay UM
u!j}q’ ” 'u%p’ ((n%q.'v -”’qRFr) 1 (”}I‘?pf, 'u'%ql),l M};qu #l}{p’)
R? = R, UR , Ures(r 7try)Ures(r Tlry

v Wr, MR, (u‘;’;q, ») (uf’q'p, 7)

Proving that p || ¢ C p’ || ¢’ is equivalent to proving that

/

Vo' e U, 3b € . (T‘#gq “q;. r#?zp’ Rg) cC (T-u%'q, ”q,f T‘”%p’,Rf;,)

Hence, we have to prove that

V&' e U, 3 € T, T#ﬁq o T#?%,, = Tﬁﬂf “q,f 'r#}q; and
q P’

R,UR,U res(rﬁilrp) U res(rﬂgqu) 2

=4 | _
Ry URy U res(r'up,) U res('rﬂq, rg) U res((?”#:;zq o T“‘fzp) I(Tﬂif ’ P ra ,))
q »

' Ryt

First, we have to prove that

T‘u%q Hd’ T,u.?zp = Tf-*j-"f‘qf “d]' Tlu'g;pl

This is equivalent to proving that
Fa (T,u.’;a']) T“_'JRP) O o ('r,u,qnp ’ T»U'I}’{'q) >
G pr {'n""u.pl ,Tf‘%p,) O Gt (T‘#qa o7 o)

R R “r
q ' q

A#’EQUAH% C A.u’{; UA ¢

In
o R_s

P
P

Let us prove the first constraint. The proof is done through the following steps:

1. First, it is easy to prove that r,» >7 , andr,e >r ¢ . The proof is similar
Rq »“Rq, Rp “Rp,

to the one done in the weak sequential composition monotonicity section (first
item).
Let ® be a relation in ¥'. We define ® C @' such that & = ‘I)if(‘"ui’gq xelr,g) It is

clear that the transitive closure of ® is a partial order relation since it is a subset
of @', Besides, we define the predecessors of an event e in a relation ® as follows:

predecessors(e,®) = {€' | (¢,e) € O}

We claim that Ve € £(r,»). predecessors(e, ®) = predecessors(e, ®').
q

In fact, we have
R

b, n TeS(T.uﬁgp) =(and Rl*?ap N 'res('rﬂ%q) ={)
Moreover, we have

Rﬂ;},{ N res() =0 and R“%p; N res(r“,f Y=l

Tuq’
o Rpl qu

This means that

—1 _ .]
1'"65(1"11#z) 'f'“?;p’) n res(rﬂﬁq) = () since Tes(ru‘({z] r“gp,) C Ry ' and

sl — 1 —1
T'ES(T”;;R qT#’é'q,) N res(?"#c}{p) = () since ?‘BS(T,L;qTﬂgq’) = Ru%q

Hence, it is clear that
Ve € {(r“:;[q). Ve' € g(?ﬂ”%p,) \‘S(TML’R,,)‘ (¢/,e) & &

207

This proves the claim that Ve € {(r,»). predecessors(e, @) = predecessors(e,).
q

We also have

Ve € &(rye,). predecessors(e, ®) = predecessors(e, @)
P
In fact, Ve € 5(7"“?%). Ve € f(rﬁgqr) \g(%q). (€,e) & .
Now, we have to prove that
9% (Mﬁ‘iq’rﬁ‘gﬁ,) > g (M“%rq’,’r'ﬂgpl) and

"o (Mg, i) & e (Mg 7z)

Let

Q = {(%e (M1,12), % (M{,r3)) | My > M{Ami(r2) > mi(ry) A
Vb € £(r1). Ve’ € &(r3) \ §(r2). (¢/,0) & @'}

Q= {(e (Mz,r1), % (Mz,r1)) | M2 &> My A m(ri) > m(ri) A

Vb € £(rz). Ve' € £(r1) \ £(r). (¢',b) & &'}
We have to prove that @ C F(Q) and Q' C F(Q").
Since Va € £(r1). Ve' € £(rh) \ &(r2). (€/,a) € @', we have
Vb € dom(M;). Ve' € &(ry) \ &(r2). (¢/,ma(b)) & &

This means that

Vb € dom(M,). predecessors(ma(b),®) = predecessors(my(b), ')

Hence, we have

Vb € dom(M,). {a € &(r2) | (a,m2(b)) € P} = {a € £(r3) | (a, ma(b)) € ¥}

By the same strategy, we prove that

Vb € dom(My). {a € £(r1) | (a,m2(b)) € @} ={a € {(r) | (a,m2(b)) € @'}

208

Moreover, we have
dom(‘p (My,73))

Il

{(m1(b) U {a € &(r2) | (a,ma(b)) € @}, ma(b)) | b € dom(M1)}

dom(e (M1,13)) = {(m(b)U{a€&(ry) | (a,m2(b)) € &'}, ma(b)) | b € dom(M])}
dom((Mz,m1)) = {(m(b)U{a€&(r1) | (a,m2(b)) € @}, 72(b)) | b € dom(Mz)}
dom(gr (M3,m1)) = {(m(b)U{a€&(ry) | (a,m2(b)) € 2}, m3(b)) | b € dom(M3)}

Since dom(M;) € dom(M;) and dom(Ms;) € dom(MJ}), it is clear now that
dom(9e (M, r3)) C dom(e (M, r3)) and
dom(9e (Mz,r1)) C dom(er (M3, 17))
The rest of the proof is the same as the one done in the weak sequential compo-
sition (first item).
Since we have
(‘1@(-‘-‘R 2Tyl),ﬁ@’ (M ,,f ,T‘“q};p,)) = Q and
(Y (Mg, Tz,)s ‘1¢:(Mq R ;;qr))EQ
We conclude that
‘-fq)(M?-‘,” [>"I¢(M,,f ,rqr)a,nd
ﬁ@(Mq ,‘T'lup)Dﬁ@l(Mq ,1",,1)

. We have to prove that

Ya € dom(ﬂq, (Mpp Ty 7))

Successors(a, No(r,», Tl)) &> Successors(a, Ne/(r, pf T)
R+

Let
Q = {(Successors(a, No(r1,72)), Successors(a, No:(r},75))) | @ € Ng(r1,m2) A
1 37 Ao 2 HA 9 (mi(r1),72) B e (mi(r)),75)}

We have to prove that @ C F(Q).
Let (Successors(a, Ng(r1,72)), Successors(a, Na:(1],75))) € Q. We have
No(ri,r2) = (e (mi(r1),r2)) U (e (m1(r2),m)) and

N(riyry) = @(%e (m1(r1),m3)) U ¢(Tar (mi(ry), 1))
Since g (m1(r1),72) & e (m1(r}), %), we can prove easily that
©(9a (m1(r1),r2)) € (e (m1(r1),73)) and
P(%e (mi(r2),m1)) € @(%ar (m1(ra), 1))
We conclude that Ng(ry,r2) € No(r], r5).

209

Now, let b € dom(Successors(a, Ny(ry,72))). Hence, we have
b € Ng(r1,m2) and (ma(a), ma(b)) € @
Since Ng(ry,72) € Na(ry,75) and & C &', we also have
b € Ng/(r{,rs) and (ma(a), mo(b)) € '
This means that
b € dom(Successors(a, No:(r],15)))
Hence, dom(Successors(a, No(r1,72))) C dom(Successors(a, Ne:(1,75))).
From the definition of the function Successors, it follows that

Successors(a, Ng(r1,72))(b) = Successors(b, Ns(r1,72)) and
Successors(a, Ng:(r],75))(b) = Successors(b, No/(r],753))

Therefore, Vb € dom(Successors(a, No(r1,72))).

(Successors(a, No(r1,72))(b), Successors(a, No:(ry,75)) (b)) € @
This means that (Successors(a, No(r1,72)), Successors(a, No/(r},75))) € F.
Since dom(‘s (Mr, ,,’Tﬂ?z,,)) C Ns (Tu’éq’rﬂ?zp)! we conclude that we have particu-
larly

Va € dom (9 (Mﬂ?zq’rﬂk,,))'

Successors(a, Nq,(:r'p:‘;!q,'r;‘}L p)) > Successors(a, Ng: (Tu’}{q,)Tl)

Rp,l

3. We have to prove that
RRl) (T#%q,ryqp) B o (T#;},;q’,'r‘#%)

R
o

e (T,u{}ipvrnﬁq) B> S (T”%P’a"'“rﬁ’)

qu
Let
R = {(&a (r,r2), e (r1,73) | m(r1) & m(ry) A mi(rz) > m(rg)} U
{(Successors(a, Ng(ri,72)), Successors(a, No:(r1,75))) [@ € Nag(ri,re) A
1 2T ATre 275 A e (mi(r1),72) B g (ma(r]),5)}
Q= {(%a(r2,m), Par (ry,r1)) | m(r1) > m(r) A m(rz) > mi(ry)} U

{(Successors(a, No(ra2,m1)), Successors(a, No:(rh,7]))) | @ € Ng(ra,r1) A
T 21 Aty 2 rh A g (mi(re),m1) D e (mi(rh),71)}

We have to prove that @ C F(Q) and @' C F(Q').
Let us prove that @ C F(Q).
Let (%e (r1,72), Par (r1,73)) € Q.

210

Since we have ‘g (71(r1),72) > e (m(r]),75), we get
dom(fg (m(r1),m2)) C dom(fe (mi(ry),r3))

This means that dom(%¢ (r1,72)) C dom(%a (r],75)) (see the definition of the
operator). By the same strategy, we also get dom(%s (r2,71)) C dom(Tre

(rg,71)).
Now, we claim that

Va € dom(%+g (ra,m)). (% (ra,r)(@), Soar (rh,7)(0)) € Q
We use the already done proof stating that

(Successors(a, Na(r1,72)), Successors(a, Ns(r},15))) € F
In fact, we have

Va € dom(Ye (m1(r1),72)). e (11,72)(a) = Successors(a, Ny(r1,72)) and
Va € dom(Yg (m1(r1),72)). e (11, 15)(a) = Successors(a, No(r1,75))

This proves that Q@ C F(Q).

Proving that @' C F(@') is similar to proving that @ C F(Q).

Hence, it is clear now from all the previous reasoning that we have particularly
Yy (T'”gzq,r'#%p) > G=qr ('r”,;q’ , Tﬂ%p,) and

L (T”glp’r“%q) ke (Tﬂﬂpr,r”ﬁqa)

. We have to prove that |
o (r1,72) O Pa (r2,71) > Par (r1,75) O o (r5,77)
We have

G (r1,72) O o (r2,11) =
[a —%s (r1,m2)(a) | a € dom(Fo (11,72)) A mi(a) =0] t
[a —%s (re,71)(a) | @ € dom(%s (r2,71)) A m(a) = 0]

P (r1,73) O Por (ry,) =

[> (r],m5)(a) | @ € dom(Se (11,73)) A mi(a) =0] 1

[a =% (r3,m1)(a) | @ € dom(ber (ry,1)) A mi(a) =0
Let a € dom(%+4 (r1,72)) such that mi(a) = 0, i.e. a is an initial.
We have a € dom(%e (r],75)) since Pg (r1,72) D> Frar (7], 75).
From this, we deduce that

[a %4 (r1,72)(a) | @ € dom(%s (r1,72)) A mi(a) =0] >
[a —%e (1}, 75)(a) | a € dom(ar (4, 75)) Ami(a) = 0]
By the same strategy, we get

211

[a =% (r2,71)(a) | a € dom(%s (r2,71)) A m1(a) = 0] >

la —=%e (rh,71)(a) | @ € dom(Pa (r5,71)) A mi(a) =0
Since dom(mi(ry)) and dom(my(r})) are disjoint, we can prove easily, from the
definition of the operator 9=, that dom(3+¢ (r1,72)) and dom(e (rh,77)) are
disjoint.
By Lemma 7.5.1, we conclude that

So (r1,72) O Pa (12,71) B> P (11,73) O Prar (13, 71)
This means that ry ||¢ 72 &> 7] || 75

Proving that)\ﬂiq U)\,ug111 - /\M,},;q’ U /\f‘fzfp; is straightforward since r, A = T)
and i, = r“g;p’.

Hence, we conclude that we have particularly
-< ! ;. ’ .
il o 7, 27y Mo 7
For the resource constraint, we have to prove that
R,UR,Ures(r ,J“Irp) U res(r q‘qu) >
‘?
Ry U Ry Ures(r p, Yy) U res(r Ty)U

Rr pf
res((rug, llo 7ug)7 (e Nlorr,e)
Ry By
We have
E(T“iq ||l® ?"#'JRP) = dom()\“%q UAMHRP)
= dom(Ae) U dom(Aue)
= £(T;L%q)UE(T;A§1P)
In addition, we have
g, lorg) = S Jutlng)

Since E(T“ﬁ') ﬂ{-’(r“gtp) = () and {(rug{)n 5(7"#’;’1,;) = {), we have

£, o) g lorryg) = g Loy)\Elg, larig,)
= (el YUE(r,g N\ €y,) Ve,)

= (60)\ VU el)\E0,)

Following the same strategy, we also get

212

Oz, U)N O Ug) = O Adg JUGg A)
Hence, like what we did for the weak sequential composition and using equation

7.1, we deduce that

=1
'r‘es((T“r;tq llo T.u}'gp) (7"”%";’ (E% Tn‘fép,))
= T = ry and using equation 7.3, we get
Ry

_ = =3
- res(rﬂi] Tuﬂq,) U res(rﬁqﬂp T»‘*f‘z’,,f)

Since T, = ' = ry and Tl
q

-1 -1 _ -1
res(r“,},z] r“;},;q’) U 'r"es(ﬂr"‘l};;qr Ty) = res(ru%q Ty

=4 | _ 4
res(quR) Tﬂ?{p,) U res(r”%pf i) = ?"68(?"“%) Tq)

We also have

-1
res(r“,:‘))

- | _1
res(r#%q Tp) U res(r, ~'ry) and

=k _ = _
Tt Pa) = res(r“qR) rg) Ures(r, ~'ry)
Since we have

R, 2 Ry Ures(r, "'ry) and Ry 2 Ry Ures(r, ~'ry)

res(

We deduce that
. = |
RpU R Ures(r,y “rp) Ures(r,g rg) 2
Ry U Ry Ures(r, ~'ry)U res(r“,},;lrp) Ures(r, ~trg) U Tes('r#.};;qu)

Finally, we conclude that
-1 ot
R,UR,U res(ru%q Tp) U res(r#%pqu) 2
g =4 =
RyURyU res(rui , Tpr) U Tes(r#% ’ Te) U T'es((v‘,ugq [lo T“%p) 1(7~M,},€q’ || & 'r#%ﬂ))

7.8.6 Fixed Point Existence

Let Pe L, 0:(— Dand f:D— D be a function defined by
f¥) = [PIOX—-Y)NT(([]0),R)
Let E be a subspace of D and defined as follows:

E = {XCC|X#0A3zeC. X =1z}
It is easy to prove that (E,LC) is a cpo where C is the reverse containment order.

The proof uses the fact that (C, C¢) is a ccpo.
In what follows, we define a recursive semantic function over the space E and which
dominates the function f. Let 6’ be an environment associating process variables with

213

elements in E. Let []-: £L — ¢ — E be a semantic interpretation function that
associates each term of the language £ with an element of the space E.

Let Pe L, 0 :(— FE and g: E — E defined by
g(¥) = [PIOX~Y)NT(([]0),R)

The function g is the semantic function used to define the recursion semantics over
E (the equivalent of f over D).

In the sequel, we define the semantics of each term of the language £ over the space
E and we prove that VY € E. f(Y) C g(Y) by structural induction on the term P.

For SKIP, STOP, a and X, the semantics of these terms over E are defined in the
same way as over [D. The proof is straightforward for SKIP, STOP and a. In addition, it
is clear that if P = X, we have VY € E. f(Y)=Y Cg(Y) =Y.

For the case P = ®;¢; F;, the induction hypothesis states that
VY € E.Viel. [B]O[X — Y]) C [B](@[X — Y])

We define the semantics of the non-deterministic choice in E as follows:
[®ier PY (0'[X = Y]) = [Pyl (¢'[X +— Y]) where

x : Po(J) — I is a choice function, J is an index set containing I and
Po(J) denotes the set of non-empty subsets of J.

Hence, it is clear in this case that VY € E. f(Y) C g(Y) by induction hypothesis.

Now, we deal with hiding, strict sequential, weak sequential and parallel composi-
tion. Let F'* be a semantic function operating on the elements of £ and defined using
F in the same way in which @ is defined using @ (see Section 7.5). For strict sequen-
tial, weak sequential and parallel composition, proving that VY € E. f(Y) C g(Y), is
equivalent to proving that

VY € E. & ([P]([X — Y]), [QI(O[X — Y])) C
FH[PY(O'[X — Y]), [Q)(¢'[X — Y])), ie.
F* dominates @' with respect to the order C.

To prove this, we have only to prove that F' dominates @. In the following, we define
a dominating semantic function F' for each semantic function w.

For hiding, the strategy is similar with the consideration of unary semantic functions.

214

w F

; (the semantic function defined in section 7.5.3)

\ \ (the semantic function defined in section 7.5.4)
o o (the semantic function defined in section 7.3.5)
I F : € x C — C defined by

((Mﬂfzq (E3 M‘u%p’)\“’ﬁq U /\ugp), R‘S), if R”:;lq n 7"88(1‘#3{?) =0 A

R 8 n res(rﬂiq) =0;

Flp,q) = -
(([1,0),R), Otherwise.
Where:
R = RiUR,W res(r#,é‘qirp) U res(ru.};qu) and
i) = {(e,€) € §(ru%q) X g(r%) | res{)\ﬁiq (e))n res(/\”aﬂp(e’)) #0} U

Dlp(M,,) UD(p(M,3,)

For the strict sequential composition, hiding and weak sequential composition, it is
straightforward to prove that if F' dominates @, then F* dominates @*. Moreover, for
the parallel composition F* is more deterministic than @*. Hence, since F'* dominates
w*, we deduce that g dominates f.

Moreover, we claim that all the functions F' are monotone. In fact, the proofs are
already done for some operators (like ;, \ and o) while the proof of the monotonicity
of the dominating function F' for the parallel composition is similar to what we did in
section 7.8.5. This means that F* is also monotone and consequently g is monotone.

Let Z =1 (([],0),0) and Xo =1 (([],0), res(f(Z))). We claim that
{f*(Xo) | @ € Ord} is directed and that it has a least upper bound.

To prove this claim, we have to prove that X is a postfixed point of g, i.e. Xy C
g(Xo) and also of f. After that, we use the fact that g dominates f and the proposition
7.5.1 to conclude that {f*(Xy) | @ € Ord} has a least upper bound.

Hereafter, we prove that Xy C g(Xy). The proof is done by structural induction on
P

e Case P = SKIP. In this case, we have

XD =T (([]1 0)1 ﬂ) a*nd Q(Xu) =T (([],@),@)
We deduce that X, C g(Xj) since C is reflexive.

215

e Case P = STOP.
The proof is similar to the case P = SKIP with Xy = g(Xo) =1 (([],0), R).

e Case P = a. In this case, we have

Xo =T (([],0), res(a)) and g(Xo) = {(([(9,a1) = []]. {(a1, 2)}),0)}
Since (([],0), res(a)) C (([(9, @1) — []], {(a1, a)}), D), we deduce that X, C g(X,).

Case P = X. In this case, g(Xy) = Xy and we deduce that X, C g(Xy).

Case P = P\R.
The induction hypothesis states that
Xo E [P(6]X — X))

Moreover, we can easily prove that Xy C X\ R and since the semantic function
\ is monotone, we deduce that

Xo C Xo\R C [P]([X — Xo|)\R
Since g(Xo) = [P](8]X — Xo])\ R, we conlcude that X, C g(Xp).

e Case P = @ P,
The induction hypothesis states that Vi € I. X C [B](0[X — Xg)).
We suppose that x(I) = jo, then g(Xo) = [P;,](8[X — Xy]). Using the induction
hypothesis, we deduce that X, T g(Xo).
e P= P, ; P,. We have g(Xp) =[P ; P](8[X — Xo]).
We have to prove that Xo C [P ; PJ(0[X — Xj)).
The induction hypothesis states that
Xo C [RI(O1X 1 Xg]) and Xo T [BI(O1X - Xo])
By compositionality of the semantics, we have
[P 5 PI(OIX — Xo]) = [P](0[X — Xol) 5 [PR](0]X — Xo)

We can prove easily that Xy ; Xy = X, and by the monotonicity of the strict
sequential composition, we deduce that

Xo = Xo; Xo E g(Xo) = [P](6[X — Xo]) 5 [P](O[X — Xo])
e The cases P = Pyo P, and P = P, || P, are handled in a similar way as the

previous case.

Using the fact that g is monotone, we deduce that the set {g%(Xo) | @ € Ord} is
directed. Since E is a cpo, we conclude that | | . ,,, 9%(Xo) exists.

216

Moreover, we claim that X, is a postfixed point of f. The proof of this claim is
similar to the one done for g.

Now, since g dominates f and X is a postfixed point of f and g and by proposition
7.5.1, we deduce that | | ¢ o,q f*(Xo) exists. Moreover, since the set {f*(Xy) | a € Ord}
is indexed over all o and bounded by | |, co.q 9*(Xo), we deduce that I\ € Ord such
that fA(Xo) = f2*!(Xo). This means that | | o,q f*(Xo) is a fixed point of f.

7.9 Healthiness Conditions

Hereafter, we prove that the output of each semantic function satisfies the two health-
iness conditions of our model.

7.9.1 First Healthiness Condition Verification
The first healthiness condition states that for each process p, the reflexive transitive
closure of D(p(M,)) is a partial order relation.
First, we provide the following results:
VM, M' € M such that dom(M) N dom(M") = (), we have
o(M 1 M') = (M) U (M)
We also have VA, B € P(Ps(V) x V). D(AUB) = D(A) UD(B)

The proofs of these results are obvious. Moreover, it is simple to prove that D is
monotone with respect to C.

The aforementioned two results and the monotonicity of D are needed for verifying
the first healthiness condition. The proofs related to the first healthiness condition use
a co-induction principle defined as follows:

Let U’ be the set of all (S,5") such that S, 8" € P(Ps(V) x V).

Let
H : PUY — PU)
H(Q) = {(p(M),X)|MeMAdom(M) C X AVa € dom(M). (p(M(a)), X) € Q}

It is easy to show that H is monotone. Since U’ is a cpo, H has a greatest fixed
point. In what follows, we omit the details about the co-induction proofs in order to
make the presentation clear. The proofs are similar to those we did for the monotonicity
of the semantic functions.

217

e For strict sequential composition:
We have D(p(Mpyg)) = D(p(Mp)) if R, # 0.
In this case, the reflexive transitive closure of D(¢(Mp,,)) is a partial order relation
since this is true for D(p(M,)).

Otherwise, we have
©(Mpyg) @ (S (Mp, M)
o([a — S(Mp(a), M) | a € dom(Mp) A My(a) # []] T
la = Mgowm, | @ € dom(My) A Mp(a) = []])

]

Let @ = {(p(S(M", M")), o(M) U p(M'on)) | o(M") € (M)}
We have (p(S(M,, My)), (M) U @(Myon,)) € Q. By co-induction, we get
‘P(Mp;q) c W(Mp) U W(MqO'Mp)

We also have
o(Mgor,) = Uaedam{M,,) p(My(a)) U

{(Terminals(Mp) U m(a),m2(a)) | a € dom(M,)}
Hence, we get
D(p(Mpq)) S Dlp(My)) U D(p(My)) U

{(e,m2(b)) | e € Terminals(Mp,) Ab € dom(M,)}

It is clear that the reflexive transitive closure of D(p(M,,)) is a partial order
relation since this property is satisfied by D(¢(M,)) and D(p(M,)) and their
union also satisfies this property since £(r,,) and &(r,) are disjoint. Moreover, the
relation {(e, m2(b)) | e € Terminals(M,)Ab € dom(M,)} introduces dependencies
only from £(r,) to &(r,)-

e For hiding:

Let R be a finite set of resources. We have

p(Hr(Mp)) = @([(c*(mi(a)),o(n2(a))) — Hpr(Mp(a)) | a € dom(M})])
Let
Q = {(p(Hr(M)),0"* (p(M"))) | (M) C p(M’)} where

o’ : Pp(V)x V= Py(V) x V defined by
o'(a) = (07 (m(a)),o(m2(a)))

Note that o is the substitution defined in Section 7.5.1.

We have (¢(Hgr(M,)), o™ (p(M,))) € Q. Using co-induction, we get

o(Hr(Mp)) € o™ (p(Mp))

218

From this, we get

D(p(Hr(Mp))) € o"(D(p(M,))) where

d"(D(e(Mp))) = {(o(a),a(b)) | (a,b) € D(p(Mp))}
Since o is injective and the reflexive transitive closure of D(p(M,)) is a partial
order relation, we deduce that the reflexive transitive closure of o”(D(p(M,))) is
a partial order relation too.

Finally, we conclude that the reflexive transitive closure of D(p(Hg(M,))) is a

partial order relation since this property is satisfied by o”(D(yp(M,))).

For weak sequential composition:

Let ® = {(e, ') € &(rp) x &(rq) | Tes(Ap(e)) Nres(Aq(e))) # 0}. We claim that
D(p(Pey (My, Yo (Mg, 1)) 1 8 (Mg, 1)) S D(p(Mp)) U D(p(M,)) U &

In fact, we have
el (8 (Mpaqi’ (Mq}rp)) I e (Mg, 7)) =

w(Pe (Mp, Y9 (Mg,rp)) 1
[a =Yg (My,7p)(a) | @ € dom(9e (Mg, 75)) A mi(a) = 0]) =

o(Pe (Mp, p (Mg, 1p))) U
o([a =% (Mg, rp)(a) | a € dom(a (Mg, rp)) A mi(a) = 0])

We also have
(o (Mp: o (Mq: T}J))) = Uaedom(Mp){a} U

o(Suce(a, o (Mg, rp), ®) t Po (Mp(a), 96 (Mg, 7p)))
Moreover, from the definition of the function Suce, it follows that

p(Suce(a, o (Mg, 7p),®)) € (T2 (Mg,7p))

Let
Q = {(eCs (M, % (M',r)),p(M) U ¢(la (M',7))) | (M) C @(m(r))} U
{(p(Suce(a, 6 (M',7), @) t Pe (M(a), e (M’',7))),@(x1(r)) U ©(9e (M’,r))) |
a € dom(M) A @(M) C @(mi(r))}
We have

(p(Pe (M, 96 (Mg, 1)), 0(Mp) U (e (Mg, 7p))) € Q and

Va € dom(Mp).
(p(Succ(a, I3 (Mg, 1), @) T Ta (Mp(a) & (Mg, 7p)))s 9 (Mp) U ¢(a (Mg,73))) € Q
By co-induction, we get

‘P(be (Mp, Yo (Mq,rp))) c @(Mp) U (9% (MQa Tp))
We also have

219

w(la 9 (Mg,mp){(a) | a € dom(e (My,7p)) | mi(a) =0]) C (% (Mg,7p))
Hence, we get

(P(P‘I’ (-M{Pﬁ‘]@ (Mq’rp)) i ﬂ"i’ (MG)TP)) € @{Mp) U (P(m:ﬁ (M%TP))
Moreover, we have

o(e (Mg, 7p)) = {(m(b)U{a € &(rp) | (a,m2(b)) € B}, m3(D)) | b € o(My)}
Hence, we deduce that

D(p(a (My,7p))) = Dlp(My))ue
D(p(Pe (Mp, 2 (Mg,71p)))) € Dl(p(Mp)) U D(p(% (Mg, 7p)))

This proves the claim that

'D((P(P'P (Mp:‘]@ (Mq:""p))i 9 (Mq>"'"p))) c ’-D(‘P(Mp)) U D(‘P(Mq)) u e
The reflexive transitive closure of D(¢(Ps (M, a6 (Mg, 7)) I e (M,,75))) is a
partial order relation since this property is satisfied by D{(p(M,)) and D(p(M,))
and their union also satisfies this property since £(r,) and &(r,) are disjoint. In
addition, the relation ® = {(e, €) € £(rp) X &(ry) | res(Ay(€)) N res(A,(€))) # 0}
introduces dependencies only from &(rp) to &(ry).

e For parallel composition:

We claim that D{p(Ps (1p,74) O o (1g,7p))) € .
In fact, we have

oo (Tparq) O %o (Tqa'rp)) =

w(la =% (rp,7q)(a) | @ € dom (e (rp,7q)) A m(a) = 0]) U

@(la P (rg,mp)(a) | a € dom(Pe (rg,mp)) A mi(a) =0])
From this equation, we deduce that

(o (rp,7g) O P (re,m) S @(Fa (tp7g)) U 0(Ta (rgs7p))

gt = {(e(®e (rr"),Na(r,r')) | r 20} U
{(Successors(a, No(r,7’)), No(r,7")) | a € No(r,7") A 7 <r'} U
{(¢(+a (r',7)), No(r',r)) | r 27} U
{(Successors(a, No(r',r)), No(r',7)) | @ € Np(v/,r) A v =7'}
We have

(p(a (rp,7q)), Na(rp, 1)) € Q and
Va € Ng(rp,rq).(Successors(a, No(rp,7q)), Nao(rp, 7)) € Q

220

Also, we have

(tp(Q—rq, (TQ’TP))-IN(I’(TW (rp)) € Q and
Va € Ng(rq,7p)-(Successors(a, Ng(rq,rp)), No(re,mp)) € Q@

Using co-induction, we get
(e (rpyrg)) € Na(rp,rg)
Y(Pa (rg,mp)) C Nol(rg,mp) = Na(rp,7q)
Hence, we deduce that
Y(Pe (rp,79) O P& (Tesmp)) € Nalrp,7g)
Since Ng(rp,7q) = #(le (Mp,7q)) U (s (Mg, 7p)), we get
OB (1p,79) O Pa (Tep)) € 998 (Mp,7g)) U @(a (Mg, 1))
This means that

D(p(a (rp,7g) O Pa (rg:7p))) € D(p(a (Mp,7g))) U D(e(a (Mg, 7))

We also have

e(e (Mp,7q)) = {(m(d) U {a € &(rg) | (a,m2(b)) € @}, ma(b)) | b € (M)}
(s (Mg,1p)) = {(m(b) U {a € &(rp) | (a,m2(b)) € @}, ma(b)) | b € (M)}
D{p(e (Mp,7q))) U D(p(s (Mg,1p))) = Dp(Mp)) U D(p(My)) U

{(e,€') € &(rp) x &(rg) | (e,€') € @} U
{(e.€') € &(rg) x &(rp) | (es€') € @}
= &

Hence, we conclude that

D(p(*e (Tparq) O % (remp)) S @
In the definition of the operator ||s, the reflexive transitive closure of ® is a partial
order relation. This also means that the reflexive transitive closure of the relation
D(p(Fa (15, 7q) O Pa (r4,7p))) is a partial order relation.

7.9.2 Second Healthiness Condition Verification

We have to prove that the deterministic processes x, which are output of our semantic
functions, satisfy the condition resinf(r;) C R;. To make the proof simple, we provide
an equivalent definition to the function resinf. First, we define, the set of actions
occurring infinitely often in a process = by the function alphinf();). Hence, we have
the following equation:

(7.17) Vzx €C. resinf(r,) = res(alphinf();))

Moreover, we have:

alphinf(AU X)

221

alphin f(\) U alphinf(N)

Besides, it is easy to prove that

(7.18) VA,BeP(L). res(AUB) = res(A)Ures(B)

Now, we provide the proofs related to the second healthiness condition. These proofs
are established using equations 7.17 and 7.1%.

e For strict sequential composition, we have

resinf(rpg)

Otherwise, we have

resinf(rp,)

N

resinf(ry) € Rpq=R,if R, #0

res(alphinf (M)
res(alphinf(A, U Ag))
res(alphinf(X,) U alphinf()))
resinf(ry) U resinf(r,)

R, U Ry = Ry = Ry,

e For hiding, let R be a finite set of resources and
o' . ¥ — X defined by
n(a), if res(a) C R;

o'(a) = {

a,

Otherwise.

Note that 7 is the injective substitution defined in Section 7.5.1.

By the same strategy as that followed to prove the monotonicity of the hiding
operator, we can prove that alphinf(Angr) = o™ (alphinf(),)).

Knowing that Va € X. res(a) = res(n(a)), we have

resinf(ryr)

Il

Nl

res(alphinf(Ap\r))
res(a"t (alphinf(X,)))
res(alphinf(A,))
resinf(ry)

R, = BRpnr

e For weak sequential composition, we use the same strategy as the strict sequential
composition and we get

resin f(Tpoq)

res(alphinf(), U)‘H"np))
res(alphinf(A,)) U res(alphinf(,\”h))
resinf(r,) U resinf(r#%p)

R, U Rqup =R, U Ry U res(r;.iprq)

222

e For parallel composition, like the strict and weak sequential composition, we have

& r#qu) = resz’nf(r,_‘pﬁq) U resinf(r%p)
C RF‘?::,, U R#;'z,, = Rj

resinf(r,e 3 |

7.10 Conclusion

In this chapter, we presented a new semantic model for true concurrency with un-
bounded non-determinism. The model is denotational and rests on an extension of the
resource pomsets semantics of Gastin and Mislove. We presented the construction of
the process space and exhibited its algebraic properties. Moreover, we provided the
semantic interpretation of some useful concurrency operators. This led to a fixpoint
semantics of recursion. Currently, an accommodation of this model for JVML/CLDC
is carried out [66]. Once this extension is performed, we will be able to provide opti-
mization correctness proofs of JVML/CLDC programs.

Chapter 8

Towards A Framework for
Validating Optimizations of
JVML /CLDC Programs

8.1 Introduction

In the previous chapter, we presented a semantic model for true concurrency with
unbounded non-determinism. As mentioned before, the intent of this work is to prepare
for the development of a framework in which we can assess the correctness of the
optimizations that can be performed on JVML/CLDC programs. To establish such
correctness, it is unpractical to do proofs by hand. Moreover, such strategy can be
error-prone. For instance, Don Syme [127] discovered some errors when he tried to
embed a Java type system [43] in a theorem prover called Declare. Accordingly, proof
assistants are strongly recommended.

There are several proof assistants such as Isabelle [100], COQ [129], PVS [98]. These
theorem provers have been used for the automation of proofs about system verification
and validation. It is worth to note that Isabelle is the most adopted one for embedding
the semantics of the Java and JVML languages. This statement is corroborated by the
publication of several research initiatives about the embedding of the Java language,
compilers and virtual machines in this theorem prover [94, 97, 123].

8.2 Related Work

In the sequel, we provide the related work about embedding Java/JVML in Isabelle and
the research initiatives about proving optimization correctness and validating compilers.

224

Nipkow et al. [97] formalized a subset of Java in Isabelle/HOL'. The primary
objective of their work is to prove the type safety for this subset. In another project,
Nipkow et al. [94] formalized a subset of JVML in Isabelle/HOL. The main goal of this
formalization is to prove that the verifier is sound and also that the Java compiler is
correct. Their strategy is based on an operational semantic style.

Strecker [123] proved the correctness of a Java compiler in an operational small
step style. The compiler translates Micro-Java source code” into Micro-JVM bytecode.
The correctness of the compiler is defined as a commuting diagram (See Figure 6.1 of
Chapter). The commutation is as follows: suppose that the execution of a statement
¢ transforms a Micro-Java state s into a state &', then for any Micro-JVM state s;
corresponding to s, the execution of the bytecode resulting from the translation of ¢
yields a state s| corresponding to s’. The designed framework is based on an operational
semantic style.

Glesner et al. [14] formalized the generation of code from Static Single Assignment
(SSA) form * in Isabelle/HOL. They show the correctness of this generation process.
The correctness proofs give also checkable correctness criteria characterizing correct
compilation results obtained from different implementations of code generation algo-
rithms. This work is also based on an operational semantic style.

Siveroni [117] investigated in his thesis the correctness of optimizations that can be
performed on programs written in a functional language. He proved, in an operational
big step style, the semantic equivalence between a source program and its optimized
version for some basic optimizations (useless variable and expression removal). In a big
step style, an optimization is valid if the original and optimized programs return the
same value.

Jones et al. [68] proved the optimization correctness for programs written in a
simple imperative language using a temporal logic. Each optimization is considered
as a rewrite rule guarded by a formula defined in a temporal logic. The correctness
proof is reduced to finding an equivalence relation between the source program and the
optimized one.

Chambers et al. [70] designed a flow-based optimization framework to prove opti-
mization correctness. The framework consists of defining a language in which optimiza-
tion can be written, deduce the conditions that should hold in the program in order to
perform a specific optimization and verify the semantic equivalence between the source
and optimized program.

Our strategy, as discussed before, is denotational. The motivations and justifications

sabelle/HOL [95] is the specialization of Isabelle for HOL, which is a Higher Order Logic
2A small subset of Java
3Tn such form, a variable is assigned just once in the program

225

behind this choice were presented in previous chapters.

8.3 Isabelle at a Glance

In what follows, we provide a quick overview of the assistant proof in which we did the
embedding of the main features of our semantic model.

Isabelle is a generic and interactive theorem prover that provides a logical framework
in which theorems about programming languages and programs can be established.
Isabelle/HOL is the specialization of Isabelle for HOL. It is written in the Standard
ML language (SML). In the sequel, we present some of Isabelle/HOL notations in order
to make the understanding of the embedding of the main elements of our semantic
model very clear.

8.3.1 Theories

A theory file is a collection of types, functions and theorems. The definition of a theory
file is done through the following declaration:

theory T'= By + By ... + By:
declarations, definitions and proofs
end

This declaration means that a theory file T is defined. It has By, By, ... and B, as
direct parents. Hence, all the declarations in these theory files can be used inside 7.

8.3.2 Datatypes

A datatype is declared as follows:
datatype(al, whi Ctn) t= Cl Ti1 oo Tiky | S I Cm Tml -+« Tmkm

Note that «; are distinct type variables, C; are distinct constructor names and 7;
are types. The following example outlines a definition of a list as a datatype:

datatype 'a list = Nil | Cons’a “a list”
8.3.3 Function Declaration

In Isabelle/HOL, total functions are specified using the symbol =. A function f:
o = [3 takes a parameter whose type is « and returns a result whose type is 3. Partial

226

functions are specified using the keyword option. More precisely, a partial function f
has the signature: a = [option, where o and [are type variables and 3 option =
None | Some 3.

A recursive function is specified using the keyword primrec or recdef, which is
more general than primrec. The keyword primrec indicates that each recursive call
strips off a datatype constructor from one of the arguments. The keyword recdef means
that recursion does not necessarily involve datatypes.

8.3.4 Tactics

Isabelle comes with many built-in tactics. A tactic is a specific strategy intended to
make proofs. The more powerful tactic in Isabelle is aufo. This tactic tries to apply all
the simplification rules that already exist in this proof assistant.

A simplification rule is an equation that allows to rewrite terms. For instance, the
term “xs @ []”, which is a concatenation between a list “xs” and the empty list, can
be simplified into “xs”. The corresponding simplification rule is: “xs @ [] = xs”. To
simplify all the subgoals in a proof, the user can use the tactic simp_all.

Induction is another interesting tactic in Isabelle. This tactic is called induct_tac.
In a proof by induction, the user should specify the variable on which the induction is
performed.

The use of a tactic in Isabelle is done as follows: apply(tacticname). To get a
full description of Isabelle/HOL, the reader is encouraged to see an interesting tutorial
about Isabelle/HOL [95].

Isabelle can be used under Linux or Windows. The development interface, which
is the most recommended, is based on the Xemacs text editor. Figure %.1 presents the
interface of the environment in which the embedding of our model is performed.

8.4 Embedding the Semantic Model

In what follows, we present an overview of the embedding of our semantic model. More
precisely, we consider in this embedding two kinds of actions: Lock and Unlock. These
actions are performed on objects, which are considered as resources. The resource
mapping between actions and resources is represented by a constant called resMap. A
dependence map is embedded as a list of infinite branching graphs that captures the
dependence between events, which are embedded as occurrences of actions. An infinite
branching graph is represented by a datatype called M. The prefix relation between

s Leabipllpflsar Froof Genaral, -DytecodeNotiack, thy

Be £ Yo Cpdi ook Qptirs Dffers proof Geosrd jeebelfisar

el |
& Nimcodne (adip] i)

el fama e RS TR S
Ppiy (Rudube bae
pppiy (simp_all)

apply (1nduce_tac[!] d)

nrply (auto)
A mia Y- =
Ray---~XEoncs; BycecodaNoBack.thy tisax scrape FousTBEEIMAAGH

[proa? (prove): scep 1
Zixed varimuies: ins, 4, bl, p

jooni (lemmwe {liacsire), 17 stbgoals):

= Nac.2ize bl
4. 'lincitIncdef.int, Hat.pize (sad
e Yar i

exen (By

1. 'inati:pat. Nat.sixe (snd axec |Byt ILOAD nat) d bl p)) <= Nat.s1d
xe bl
. 'rpaviinec. Hec.sine (and (Byr exen (By de. ISTORE net) 4 bl p)) < Nac.o@
it bl

3. 'tinciiTncdet, inc, Nat.oize {snd | exec (Byt JICONET dnt) 4 bl p)) <&

BIPUBH tnty d bl p)) <F

Figure 8.1: Development Environment,

227

two dependence maps is established using a function called F, which is defined co-

inductively, while the deterministic process space is represented by a set called C.

The embedding of the main features of our model is as follows:

typedecl
datatype
types
types
types
datatype

types
consts
types
datatype
types
types

consts
recdef
"res P =

consts
recdef
"resdiff

classType
fields = "int list"
lockCounter = "int"
object = "classType x fields x lockCounter"
resources = "object set"
action = Lock object |
Unlock object
event = "action X nat"
resMap :: "action = resources"
PEvent = "event set X event"
M = Bot | Node PEvent "nat = M"
lab = "(event x action) set"
process = "(M list X lab) X resources"

res :: "process = resources"
res u{}n
(IJ e € Domain (snd (fst P)). resMap (fst e)) U (snd P)"

resdiff :: "process X process = resources"
resdiff "{}"
P,Q) =

(U e € (Domain (snd (fst P)) - Domain (snd (fst Q))). resMap (fst

B))"

228

consts dom :: "M = ’a set"
defs dom_def:
"dom M == (case M of Bot => {} | (Node a F) = {x. 3 y. y=F x})"

(*Prefix relation)
consts F :: "(M x M) set = (M x M) set"
coinductive "F(Q)"
intros
BOT_I:
"(Bot,T) € F(Q"
TRACE_I:
"[l]a=b; M= Node aG ; N=DNode bH; Vi€ dom(M).
3j € domW). (Gi,H j) € Q Il = (M,N) € F(QD"

consts prefixRel :: "M list x M list = bool"
defs prefixRel_def:
"prefixRel R S == V¥ x € set R. 3 y € set S. 3 H. (x,y) € F(H)"

(*First healthiness condition#)
consts por :: "’a list = bool"
primrec "por [] = True"
"por (1#ls) = (if (antisym 1) then (por 1s) else False)"

constdefs C :: "(process) set"
"¢ == {x. por (fst (fst x))}"

After the embedding of the main features of our semantic model, we provide the sub-
set of the JVML/CLDC language for which we provide later a denotational semantics
based on this model.

8.5 JVML/CLDC Subset Syntax

Hereafter, we present the JVML/CLDC subset, which we consider in this embedding.

bytecode = ILOAD index
| ISTORE index
| ICONST val
| BIPUSH val
| IADD
| IMUL
| IFEQ index
| IFICMPEQ index
| IFICMPNE index
| IFICMPLE index

229

| GOTOF index
| RETURN

| IRETURN

| ALDAD index
| ASTORE index
| DUP

| MONITORENTER

| MONITOREXIT

The informal semantics of each bytecode is as follows:

e ILOAD index: the value of the local variable at the position “index” of the local

variable table is pushed into the stack. The ALOAD bytecode has the same
semantics but the loaded value is an address of an object.

ISTORE index: the value on top of the stack is stored in the local variable at
the position “index” of the local variable table, then popped from the stack. The
ASTORE bytecode has the same semantics but the stored value is an address of
an object.

ICONST val: the constant value “val” is pushed into the stack.

BIPUSH val: the value “val” is pushed into the stack after its conversion to an
integer.

DUP: the value that figures on the stack is duplicated.

TIADD: the two values that figure on top of the stack are popped in temporary
variables then added. The result is pushed into the stack.

IMUL: the two values that figure on top of the stack are popped in temporary
variables then multiplied. The result of the multiplication is pushed into the
stack.

IFEQ index: a conditional branch to the instruction at the position “index” of
the program. The jump is performed if the top of the stack is equal to 0.

IFICMPEQ index: a conditional branch to the instruction at the position “index”
of the program. The jump is performed if the two values on top of the stack are
equal.

IFICMPNE index: a conditional branch to the instruction at the position “index”
of the program. The jump is performed if the two values on top of the stack are
not equal.

230

e [FICMPLE index: a conditional branch to the instruction at the position “index”
of the program. The jump is performed if the value on top of the stack is equal
or greater than the value that is just below it on the stack.

e GOTOF index: an unconditional branch to the instruction at the position “index”
of the program.

e RETURN: there is no returned value by the executed method.
e IRETURN: the integer value, which is on top of the stack is returned.

e MONITORENTER: the current thread tries to lock the object on top of the stack.
If this is possible, the lock counter is incremented by one. Otherwise this thread
waits the release of the lock.

e MONITOREXIT: the current thread tries to unlock the object. If this is possible,
the lock counter is decremented by one. If the lock counter reaches zero, the object
is released.

8.6 A Case Study about the Validation of Optimiza-
tions of JVML/CLDC Programs

In this section, we present some basic optimizations that can be performed on JVML/-
CLDC programs. To clarify the presentation, we present first the Java source program,
which corresponds to the JVML/CLDC program on which the optimization can be
performed. We describe how the optimization is done on the source program and we
suppose there exists a similar transformation that can be performed on its compila-
tion output i.e. this optimization can be performed on the compiled file, which is a
JVML/CLDC program. Note that the representation of JVML/CLDC programs in
Isabelle/HOL is the result of an abstraction at the instruction level. Moreover, we
deal here just with intraprocedural optimizations i.e. optimizations that are performed
inside one method.

8.6.1 Constant Propagation

A constant propagation transformation is performed if a variable is assigned to a con-
stant value. If there is no other future assignment of this variable, it can be replaced
by the constant value in order to avoid more computations. The following Java method
contains a code on which compilers can perform constant propagation.

231

public int foo() {
int x,y;
x = 3;
y=x+ 4
return y;

The definition in Isabelle/HOL of the JVML/CLDC code, which is the compilation
output of the already presented Java code, is the following:

constdefs orprogl :: "prog"
"orprogl == [ICONST 3, ISTORE 1, ILOAD 1, ICONST 4, IADD, ISTORE 2, ILOAD 2,
IRETURN]"

In the Java source, we see that the variable x can be replaced by 3 in the expression
x + 4. The optimized Java code is the following:

public int foo() {
int x,y;
x = 3;
R
return y;

The associated compiled code is the following:

constdefs opprogl :: "prog"
"opprogl == [ICONST 3, ISTORE 1, BIPUSH 7, ISTORE 2, ILOAD 2, IRETURN]"

As mentioned previously, we assume that we have a transformation between orprogl
and opprogl, which is a constant propagation optimization. For instance, detecting that
the variable x is constant at the bytecode level can be done as follows: there is no store
instruction after the instruction ISTORE 1. This means that the value of the variable
at position 1 (which is “x”) is not changed. So any load of this variable, coming after
this store instruction, can be replaced by the value of “x” i.e. the instruction ILOAD 1
is replaced by ICONST 3*. In a second step, the addition is performed and the sequence
“ICONST 3,JCONST 4,IADD” is replaced by BIPUSH 7. This scenario is an example
that shows how the constant propagation can be performed at the bytecode level. More
fancy analysis can also be used to perform this optimization.

Proving that this constant propagation optimization is correct means that orprogl
and opprogl are associated with the same denotation. This is proved later when we
present the semantics.

4For a subset without backward jumps

232

8.6.2 Dead Assignment Elimination

A dead assignment elimination is an optimization targeting the removal of dead vari-
ables. These variables are never used after their assignment.

The following Java code contains a dead assignment for the variable “x” in the
statement “x = 3”.

public int foo() {
int x,y;
y=0;
X =3
y=y+2;
return y;
}
The associated compiled code, as presented in Isabelle, is the following:
constdefs orprog2 :: "prog"
"orprog2 == [ICONST O, ISTORE 2, ICONST 3, ISTORE 1, ILOAD 2, ICONST 2, IADD,
ISTORE 2, ILOAD 2, IRETURN]"

The removal of this statement, gives the following code:

public int foo() {

The associated compiled code is the following;:

constdefs opprog2 :: "prog'"
"opprog2 == [ICONST O, ISTORE 2, ILOAD 2, ICONST 2, IADD, ISTORE 2, ILOAD 2,

IRETURN] "

8.6.3 Common Subexpression Elimination

Common subexpression elimination consists of finding a redundant expression and re-
placing this expression with a temporary variable in which the evaluation of the expres-
sion is stored. Future uses of this expression are replaced by the temporary variable.

The following Java code shows a redundant expression “a + b”. This expression is
assigned to the variable “x” and used again in the expression “y > a + b”.

233

public int foo() {
int a,b;
int x,y;
a = -2;
b= 3;
X =a+ b;
y = axb;
if (y > at+b) return 0;
else return 1;

The representation of the associated compiled code is the following:

constdefs orprog3 :: "prog"

"orprog3 == [BIPUSH -2, ISTORE 1, ICONST 3, ISTORE 2, ILOAD 1, ILOAD 2, IADD,
ISTORE 3, ILOAD 1, ILOAD 2, IMUL, ISTORE 4, ILOAD 4, ILOAD i, ILOAD 2,
IADD, IFICMPLE 19, ICONST O, IRETURN, ICONST 1, IRETURN]"

To avoid redundant computation of “a + b”, optimizing compilers can replace the
expression “y > a + b” with “y > x”". The following Java code is the output of this

optimization:

public int foo() {
int a,b;
int x,y;
a = -2;
b= 3;
X =a+ b;
y = akb;
if (y > x) return 0;
else return 1;

The representation of the associated compiled code in Isabelle is the following:

constdefs opprog3 :: "prog"

"opprog3 == [BIPUSH -2, ISTORE 1, ICONST 3, ISTORE 2, ILOAD 1, ILOAD 2, IADD,
ISTORE 3, ILOAD 1, ILOAD 2, IMUL, ISTORE 4, ILOAD 4, ILOAD 3,
IFICMPLE 17, ICONST O, IRETURN, ICONST 1, IRETURN]"

5This is better than using a temporary variable

234

8.6.4 Denotational Semantics

In the sequel, we present the embedding of a denotational semantics for a subset of
JVML/CLDC. The studied subset excludes backward jumps. Note that an entire re-
search thesis targeted studying just loops in JVML programs [108] using Isabelle. More-
over, we suppose that we are in the context of just one thread to avoid more technical
problems. First, we give a version excluding the use of our semantic domain in order to
be able to execute the specification. Then, we provide the extension of this semantics
with our process space definition.

Semantics of one Bytecode

The semantics of one bytecode is specified by a semantic function called exec. This
function computes a pair composed of a denotation and a continuation for one byte-
code. The denotation is a tuple composed of a stack, a local variable table and the
returned result. The continuation represents the remaining code of the program to be
executed. Before presenting the embedding of the semantic function exec, we present
the embedding of the language syntax.

types index = nat types
val = int

types stack = "val list"
types locvars = "val list"

bytecode = ILOAD index
| ISTORE index
| ICONST val

| BIPUSH val

| IADD

| IMUL

| IFEQ index
| IFICMPEQ index
| IFICMPNE index
[

[

[

I

|

IFICMPLE index

GOTOF index
ALOAD index
ASTORE index
IRETURN

(*A Program is a list of bytecodes*)
types prog = "bytecode list"

235

In what follows, we present the embedding of the semantic function exec in Is-
abelle/HOL.

datatype result = NoValue | Value "int"
types denotation = "stack X locvars x result"

(*Execution continuation*)
types cont = "prog"

consts exec :: "bytecode = denotation = cont = prog = denotation X cont"
primrec
"exec (ILOAD ind) d cp =
(let (sk,lv,rs) =d
in (((lv ! ind) # sk,lv,rs)),c)"

"exec (ISTORE ind) d cp =
(let (sk,lv,rs) =d
in (((tl sk),lv[ind:=hd sk],rs)),c)"

"exec (ICONST v) d cp=
(let (sk,lv,rs) =d
in ((vi#sk,1lv,rs)),c)"

"exec (BIPUSH v) d cp
(let (sk,lv,rs) =d
in ((vi#tsk,lv,rs)),c)"

"exec IADD d cp

(let (sk,lv,rs) = d;
(a,b)=(hd sk, hd(tl sk));
v=a+b

in ((v#(tl(tl sk)),lv,rs),c))"

"exec IMUL d cp=
(let (sk,lv,rs) = d;
(a,b)=(hd sk, hd(tl sk));
v=ax*bh
in ((v#(t1(tl sk)),lv,rs),c))"

"exec (IFEQ ind) d cp=
(let (sk,lv,rs) = d;
v = hd sk;
vl = (length p) - (length c);
disp = (ind - vi)
in if (v # 0)
then ((tl sk,lv,rs),c)
else ((tl sk,lv,rs),drop disp c))"

236

"exec (IFICMPEQ ind) d ¢ p =
(let (sk,lv,rs) = d;

vl = hd sk;

v2 = hd (tl sk)
in if (vl # v2)

then ((t1l (t1 sk),lv,rs),c)

else (let v = (length p) - (length c);

disp = (ind - v)
in ((t1 (tl sk),lv,rs),drop disp c)))"

"exec (IFICMPNE ind) d c p =
(let (sk,lv,rs) = d;
vl = hd sk;
v2 = hd (t1 sk)
in if (vl1 # v2)
then (let v = (length p) - (length c);
disp = (ind - v)
in ((t1 (%1 sk),lv,rs),drop disp c))
else ((t1 (1 sk),lv,rs),c))"

"exec (IFICMPLE ind) d c p =
(let (sk,lv,rs) = d;
vl = hd sk;
v2 = hd (tl sk)
in if (v2 < v1)
then (let v = (length p) - (length c);
disp = (ind - v)
in ((tl (tl sk),lv,rs),drop disp c))
else ((tl (tl sk),lv,rs),c))"

"exec (GOTOF ind) d cp =

(let v = (length p) - (length c);
disp = (ind - v)

in (d,drop disp c))"

"exec (ALOAD ind) d cp =
(let (sk,lv,rs) = d
in (((lv ! ind) # sk,lv,rs)),c)"

"exec (ASTORE ind) d cp =
(let (sk,lv,rs) =d
in (((tl sk),lv[ind:=hd sk],rs)),c)"

"exec RETURN d cp=
(let (sk,lv,rs) = 4d
in ((sk,lv,NoValue),c))"

237

"exec IRETURN d cp=
(let (sk,lv,rs) =4d ;

v = hd sk
in ((tl sk,lv,Value v),c))"

JVML/CLDC Program Semantics

Before providing the semantics of a JVML/CLDC program, we present two lemmas
that prove that the continuation argument is decreasing in size during execution. In
these lemmas, induction, auto tactics and simplification are needed.

declare Let_def[simp] option.split[split]

lemma listsize_eq: "(length (snd (exec ins d bl p)) < Suc (length bl)) =
(length (snd (exec ins d bl p)) < length bl)"

apply (auto)

done

lemma listsize [simp]: "length (snd (exec ins d bl p)) < length bl"
apply(induct_tac ins)

apply(simp_all)

apply (induct_tac[!] d)

apply (auto)

done

The semantics of a JVML/CLDC program is specified by a semantic interpretation
function called sem, which is defined recursively and which uses the function exec. Its
termination depends on the size of the first argument that refers to the continuation
and which should decrease. To help the prover doing the full proof, we give a “hint”
that suggests the use of the previous lemmas as simplification rules. In the sequel, we
present the embedding of the function sem.

consts sem :: "prog X denotation X prog = denotation"
recdef sem "measure (A(xs,a). length xs)"

"sem ([],d,p) = d"
"sem ((b#bl),d,p) = (sem (snd (exec b d bl p), fst (exec b d bl p),p))"

(hints recdef_simp: listsize_eq)

238

Equivalence Relations

In the following, we provide two possible relations that can be used to establish the
semantic equivalence between JVML/CLDC programs:

e Strong equivalence: the original and optimized program are strongly equivalent if
they are associated with the same denotation i.e. are associated to the same stack,
the same local variable table and return the same value after their execution. As
defined, this relation is too restrictive. In fact, two equivalent programs can
return the same value without doing the same treatments on the stack or without
having the same local variable table. Henceforth, we provide another definition
of an equivalence relation, which is a weakened form of the strong equivalence.

e Weak equivalence: the original and optimized programs are weakly equivalent if

they return the same value when they are executed.

Hereafter, we suppose that the stack, the local variable table are empty before the
execution of any program:

constdefs d:: "denotation"
vg ==([0,0,0,0,0,0,0],[0,0,0,0,0,0,0],NoValue)"

The strong equivalence is defined in Isabelle/HOL as follows:

constdefs equivalent :: "prog = prog = bool"

"equivalent pl p2 == (sem (pl,d,pl) = sem (p2,d,p2))"

The weak equivalence is defined in Isabelle/HOL as follows:

constdefs weakequivalent :: "prog = prog = bool"

"weakequivalent pl p2 ==
(snd (snd (sem (p1,d,p1))) = snd (snd (sem (p2,d,p2))))"

Executing the Specification by Code Generation

Isabelle offers a way to execute a specification. This means, in our case, that given a
JVML/CLDC program, we can see the output of this program. Note that the code

239

generation capabilities of Isabelle (version 2004) are limited. More development of this
feature will be incorporated in future versions.

The code generation of the semantics of orprogl and opprogl is specified in Isabelle
as follows:

generate_code
testl = "sem (orprogl,d,orprogl)"
test2 = "sem (opprogl,d,opprogi)"
test3 = "equivalent orprogl opprogl"

The execution of these tests under ML is defined as follows:

ML * testl *
ML * test2 =
ML * test3 =*

The output of testl is the following:

val it =
(fo,0,0,0,0,0,0], ([0,3,7,0,0,0,0] ,Value 7))
: int list * (int list * result)

The output of test2 is the following:

val it =
([o,0,0,0,0,0,0]1,([0,3,7,0,0,0,0] ,Value 7))
: int list * (int list * result)

The strong equivalence testing of the original and the optimized program provides
the following result:

val it = true : bool

Now, we consider the following Java code:

240

public int foo() {
int x,y;
int b = 6;
if (b != 5)

The representation of the associated compiled code for this program in Isabelle is
the following:

constdefs branchprogl :: "prog"

"branchprogl == [BIPUSH 6, ISTORE 3, ILOAD 3, ICONST 5, IFICMPEQ 12, ICONST 3,
ISTORE 1, ILDAD 1, ICONST 4, IADD, ISTORE 2, GOTOF 14, ICONST 2,
ISTORE 2, ILOAD 2, IRETURN]"

The semantics of this program is the following:

val it =
(fo,0,0,0,0,0,01,([0,3,7,6,0,0,0],Value 7))
: int list * (int list * result)

This program returns the same value as the program orprogl. However, the strong
equivalence test returns false i.e. it considers these programs to be not semantically
equivalent. The strong equivalence test rejects these two programs since the two pro-
grams modify in different ways the local variable table. However, the weak equivalence

test succeeds.

The programs orprog2 and opprog2 are weakly equivalent. In fact, the semantics of
orprog2 is the following:

val it =
([o,0,0,0,0,0,01,([0,3,2,0,0,0,0],Value 2))
: int list * (int list * result)

While the semantics of oprpog2 is the following:

241

val it =
([0,0,0,0,0,0,0],([0,0,2,0,0,0,0],Value 2))
: int list * (int list * result)

The programs orprog3d and opprog3 have the same semantics:

val it =
(fo,0,0,0,0,0,01,([0,72,3,1,76,0,0] ,Value 1))
¢ int list * (int list * result)

The programs orprog3d and opprogd are strongly equivalent.

The presented examples show that the equivalence relation depends indeed on the
performed optimization.

Extending the Semantics with Synchronization Bytecodes

In this section, we modify the semantics by handling two important bytecodes, which
are: MONITORENTER and MONITOREXIT, which are meant to perform synchronization
operations. The strong equivalence relation now requires also that the original and
optimized programs do the same lock/unlock actions on the same objects and the two
heaps are the same after the execution of these programs. Here, we consider that we
observe just actions that lock or unlock objects but it is worth to mention that other
abstractions can be considered. In fact, we can observe exceptions or communications.
This means that two programs are strongly equivalent if they lock and unlock the same
objects or/and throw the same exceptions or/and do the same communications and are
associated with the same stack and local variable table and return the same result after
their execution.

The grammar of actions is already presented in Section 5.4. The denotation is
extended with two types: process and heap. The latter is specified as a partial map
between addresses and objects.

Hereafter, we present the datatypes that are needed to elaborate the extended ver-
sion of the semantics.

242

types stack = "val list"

types locvars = "val list"

types heap ="int = object option"

types prog = "bytecode list"

datatype result = NoValue | Value "int"

types denotation = "process x heap X stack X locvars X result"

types cont = "prog'"

The embedding of the semantic function exec is as follows.

consts exec :: "bytecode = denotation =- cont = prog = denotation X cont"
primrec

"exec (ILOAD ind) d cp =
(let (pr,he,sk,lv,rs) =d
in ((seqcomp (pr,(([1,{}),{})),he,(lv ! ind) # sk,lv,rs),c))"

"exec (IFEQ ind) d cp=
(let (pr,he,sk,lv,rs) = d;
v = hd sk;
vl = (length p) - (length c);
disp = (ind - v1)
in if (v # 0)
then ((seqcomp (pr,(([1,{}),{})),he,tl sk,lv,rs),c)
else ((seqcomp (pr,(([1,{}),{})),he,tl sk,lv,rs),drop disp c))"

"exec MONITORENTER d c p =
(let (pr,he,sk,lv,rs) =d ;
v = hd sk
in (case he(v) of
None = (d,[]) |
Some (cl,fs,lc) =
(let 1lcl = 1c + 1;
hel = he(v |-> (c¢l,fs,lcl));
prl =(([Node ({},(Lock (he v),1)) (X i. Bot)],
{((Lock (he v),1),Lock (he v))}),{}P
in ((seqcomp (pr,pri),hei, tl sk,lv,rs),c))))"’

243

"exec MONITOREXIT d cp =
(let (pr,he,sk,lv,rs) =d ;
v = hd sk
in (case he(v) of
None =(d,[1) |
Some (cl,fs,lc) =
(let lel = 1lc - 1;
hel = he(v |-> (cl,fs,lcl));
pri (([Node ({},(Unlock (he v),1)) (A i. Bot)],
{((Unlock (he v),1),Unlock (he v))}),{}
in ((seqcomp (pr,pri),hel,tl sk,lv,rs),c))))"

]

The function seqcomp performs a sequential composition of two processes. This is
the embedding of the strict sequential composition semantic operator, which is defined
in the previous chapter. It is embedded as follows:

consts seqNodes :: "M = M = event set = M"
primrec
"seqNodes Bot H S = H"
"seqNodes (Node a G) H S =
(if (G = (A i. Bot))
then (case H of Bot =+ (Node a G) |
Node (P,e) K = (Node a (fun_upd G 0 (Node (P U S,e) K))))
else (Node a (A i. (case H of Bot = (G i) |
Node (P,e) K =
(case (G i) of
Bot = Bot |
(Node b T) =
(let (T = Node (P U S,e) K)
in (seqNodes (G i) T 8)))))))"

consts segMap :: "M = M list = event set = M list"
primrec
"seqMap x [] S = [x]"

"seqMap x (y#ys) S = (segNodes x y S)#(seqMap x ys S)"

consts final :: "M = event set"
primrec
"final Bot = {}"
"final (Node a G) = (if (G = (A i. Bot)) then snd a
else (|J i. final (G i)))"

244

consts terminals :: "M list = event set"
primrec

“terminals [1 = {}"

"terminals (x#xs) = (final x Un terminals xs)"

consts seqMapList :: "M list = M list = event set = M list"
primrec

"seqMapList [] TS = T"

"seqMapList (x#xs) T 8 = concat [(seqMap x T 8),(seqMapList xs T S)]"

consts seqcomp :: "process X process = process"
recdef seqcomp "{}"
"seqcomp (P,Q) =
(if (snd P = {})
then ((seqMapList (fst (fst P)) (fst (fst Q)) (terminals (fst (fst P))),
(snd (fst P)) U (snd (fst Q))),snd Q)
else (fst P, (snd P) U (res Q)))"

Note that a terminal node has no successor. In our embedding, the function A 4.
Bot is used to mark a terminal node. Note also that the semantics of MONITORENTER
and MONITOREXIT are more complicated than what presented. In fact, the exception
NullPointerExpection is raised if the synchronized object, which figures on top of the
stack, is null. Moreover, in the case of multithreaded programs, waiting and notification
mechanisms are used to manage the synchronization process. In our semantics, if the
synchronized object is null, the program terminates, at this verification point, by having
an empty list of instructions as continuation. Moreover, we consider monothreaded
programs, avoiding by this more technical issues related to the embedding of waiting
and notification mechanisms. The semantics of MONITORENTER and MONITOREXIT are
provided just to show the emergence of observable actions in the denotation and the
use of our semantic model to prove program equivalence.

In the sequel, we present two programs that are strongly equivalent. In fact, they
are associated with the same dependence map, the same heap, the same stack, local
variable table and return the same result.

constdefs orprog4 :: "prog"

"orprogd == [ALOAD O, DUP, ASTORE 3, MONITORENTER, ICONST 3, ISTORE 1, ILOAD 1,
ICONST 4, IADD, ISTORE 2, ILOAD 2, ALOAD 3, MONITOREXIT, IRETURN]"

constdefs opprogé4 :: "prog"

"opprog4 == [ALOAD 0, DUP, ASTORE 3, MONITORENTER, ICONST 3, ISTORE 1, BIPUSH 7,
ISTORE 2, ILOAD 2, ALOAD 3, MONITOREXIT, IRETURN]"

245

The program opprog4 is the transformation of orprogd by constant propagation.
These two programs are associated with the same following denotation:

val it =

((([Node ({},(Lock this,1)) (fun_upd (X i. Bot) 0 Node ({(Lock this,1)},
(Unlock this,1)) (XA i. Bot))1,{((Lock this,1),Lock this),
((Unlock this,1),Unlock this)}),{}), map_of [(0,this)],
[0,0,0,0,0,0,01,([0,3,7,6,0,0,0] ,Value 7))
: int list * (int list * result)

Note that the variable “this” refers to the instance on which a given method was
called. We suppose that this object is stored at the memory address zero to simplify
the presentation.

8.7 Conclusion

In this chapter, we provided a case study that shows how our model can be embedded in
a theorem prover such as Isabelle. Moreover, we defined some definitions of equivalence
relations between programs, which are coded in a subset of JVML/CLDC. We discussed
the impact of their definitions on the correctness of optimizations. We think that the
equivalence relation should be defined with respect to the specificities of the optimiza-
tion. These specificities allow to know the required abstractions to be performed in
order to prove that original and optimized programs have the same semantics.

Chapter 9

Conclusion

In the current decade, we witness a wide proliferation of embedded devices. In this
context, Java is the defacto standard language for developing mobile and embedded
applications. Thanks to the platform J2ME/CLDC, Sun Microsystems is becoming a
major player in the world of embedded and mobile computing. An important fact that
corroborates this statement is that more than 1 billion of Java-enabled phones will be
deployed in the market [84]. A successful deployment of Java, on these devices, relies
on a fast and lightweight execution environment. Our research provides practical and
theoretical solutions for the design, implementation and validation of the acceleration
techniques of the defacto standard embedded Java platform: J2ME/CLDC.

At the practical level, we provided a design and an implementation of a fast and
lightweight dynamic compiler for J2ME/CLDC. The compiler is built on top of KVM,
which is the virtual machine coming with J2ME/CLDC. Our compiler is the first aca-
demic work that targets CLDC Java virtual machines optimization by dynamic com-
pilation. The other unpublished compilation techniques are integrated in commercial
products such as CLDC HotSpot [84] and Jbed [113]. Moreover, our solution, besides
the compilation of all kinds of bytecodes, covers several issues related to the integra-
tion of a dynamic compiler into a virtual machine such as multi-threading support,
exception handling, garbage collection, switching mechanism between the compiler and
the interpreter modes, etc. Furthermore, the results show that the optimized virtual
machine is fast. In fact, our solution allows to improve the performance of KVM by a
factor of 4 while the memory footprint does not exceed 138 KB. In another practical
aspect of this research, we presented a design of a unified strategy that combines fast
interpretation and lightweight compilation together with a fast, dynamic and flexible
acceleration technique for the method lookup mechanism. The aforementioned designed
techniques together with the E-Bunny compiler constitute our practical contribution.

247

At the theoretical side, we provided a semantic model for true concurrency with un-
bounded non-determinism. This semantic model is currently accommodated to JVML/-
CLDC in the thesis of Ms Lamia Ketari [66] and is intended to be used to validate
optimizations of JVML/CLDC programs. The model is denotational and rests on an
extension of the resource pomsets semantics of Gastin and Mislove [50]. We presented
the construction of the process space and exhibited its algebraic properties. Moreover,
we provided the semantic interpretation of some useful concurrency operators. As a
downstream result, this led to a fixpoint semantics of recursion.

We also provided an interesting overview about the validation of JVML/CLDC
program optimizations using the theorem prover Isabelle. The use of a theorem proving
tool allows to automate, to some extent, the validation of optimizations. Moreover,
by having machine-checked proofs, we avoid possible faulty proofs. The motivation
behind using Isabelle/HOL is that it was widely used for providing a semantics for Java
or JVML/CLDC. In fact, many prominent researchers such as Tobias Nipkow [94],
David Von Oheimb [97] used Isabelle/HOL for providing semantics for small subsets
of Java and JVML/CLDC. In these projects, the elaborated semantics are operational.
QOur strategy is based on a denotational approach. More precisely, we presented an
embedding of our deterministic process space and a sketch of a denotational semantics
for a subset of JVML/CLDC. The objective of this embedding is to show that our
model can be used for optimization validation.

Future Works There are some possible improvements that can be introduced as com-
plementary solutions to what we proposed. More precisely, the following enhancements
can be considered:

e The design and implementation of static analysis techniques (offline) in order to
enhance the prediction of hotspot methods. For instance, the static detection of
loops can improve the compilation rate of hotspot methods. These techniques can
be relevant for J2ME APIs since the source code of these applications is available.

e The design and implementation of fast and lightweight multi-level optimizing
compilers in order to enhance the generated code quality and tune the degree of
optimizations. The memory and power limitations of embedded devices should
be taken into consideration.

e The design and implementation of compact data structures for storing information
about JVM programs such as the structure of objects, threads and the constant
pool. This will minimize the required memory.

248

Moreover, it is worth to investigate the following research directions, which will pave
the way for a fully-fledged acceleration validation framework for JVML/CLDC:

e The full embedding of our semantic model for JVML/CLDC in Isabelle, which
includes recursion-related issues. This requires the embedding of the theory of
local cpos in Isabelle,

e The investigation of more case studies about the validation of JVML/CLDC pro-
gram optimizations.

We think that providing a fully-fledged semi-automatic environment for the vali-
dation of optimizations of object-oriented programs and specifically of JVML/CLDC
programs is a very interesting future challenge. In fact, many aspects such as exception
handling, method lookup and multi-threading are, without any doubt, important issues
to be investigated. We think that these issues are very interesting for the research com-
munity since there is no work, in our best knowledge, that targets the use of theorem
provers in order to validate optimizations of JVML/CLDC programs. Our embedding
is a step towards handling these issues.

Finally, our future work will be oriented mainly to provide a complete framework in
which we can validate automatically or systematically several kinds of JVML/CLDC
program optimizations and also prove the correctness of some mechanisms, which are
implemented in a Java virtual machine. For instance, the embedding of our seman-
tic model in Isabelle can be used to verify the correctness of the exception handling
mechanism.

Bibliography

[1] Intel VTune Performance Analyzer 7.1. http://www.intel.com.

[2] S. Abramsky and A. Jung. Domain Theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1-168. Clarendon Press, 1994.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[4] B. Alpern, C. Attanasio, J. Barton, M. Burke, P. Cheng, J. Choi, A. Cocchi,
S. Fink, D. Grove, S. Hummel M. Hind, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. Russell, V. Sarkar, M. Serrano, J. Shepherd, S. Smith, V. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeno Virtual Machine. IBM Systems
Journal, 39(1):211-238, February 2000.

[5] J. Alves-Foss and F. Lam. Dynamic denotational semantics of java. In Jim Alves-
Foss, editor, Formal Syntaz and Semantics of Java, volume 1523, pages 201-240.
Springer-Verlag, June 1999.

[6] K. Apt and G. Plotkin. Countable Non-Determinism and Random Assignment.
Journal of the ACM (JACM), 33(4):724-767, January 1986.

[7] ARM. http://wuw.arm. com.

[8] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive Optimization
in the Jalapefio JVM. ACM SIGPLAN Notices, 35(10):47-65, October 2000.

[9] M. Arnold, M. Hind, and B. Ryder. An Empirical Study of Selective Optimization.
In Proceedings of the 13" International Workshop on Languages and Compilers
for Parallel Computing, volume 2017, pages 49-67, Yorktown Heights, New York,
USA, August 2000. Lecture Notes in Computer Science.

[10] A. Azevedo, A. Nicoleau, and J. Hummel. Java Annotation-aware Just-in-Time
(AJIT) Compilation System. In Proceedings of the ACM Java Grande Conference

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

250

(JAVA’99), pages 142-151, San Francisco, California, USA, June 1999. ACM
Press.

M. Azzam. A selective dynamic compiler for embedded java virtual machines
targeting arm processors. Master’s thesis, Computer Sience and Software Engin-
nering Department, Laval University, 2004.

D. Bacon, S. Fink, and D. Grove. Space and Time-Efficient Implementation of the
Java Object Model. In Proceedings of the 16" European Conference on Object-
Oriented Programming (ECOOP’02), volume 2374 of Lecture Notes in Computer
Science, pages 111-132, Malaga, Spain, June 2002. Springer-Verlag.

M. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University of
Sussex, 1988.

J. Blech, S. Glesner, J. Leitner, and S. Mlling. Optimizing Code Generation
from SSA Form: A Comparison Between Two Formal Correctness Proofs in Is-
abelle/HOL. In Proceedings of the Workshop on Compiler Optimization meets
Compiler Verification (COCV’05), Edinburgh, Scotland, April 2005. Elsevier.

D. Bolignano and M. Debbabi. A Semantic Theory for Concurrent ML. In
Proceedings of the International Conference on Theoretical Aspects of Computer
Software (TACS’94), volume 789 of Lecture Notes in Computer Science, pages
T766-785, Sendai, Japan, April 1994. Springer-Verlag,.

H. Boom. A Weaker Precondition for Loops. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4:668-677, October 1982.

E. Borger and W. Schulte. A Programmer Friendly Modular Definition of the
Semantics of Java. In Jim Alves-Foss, editor, Formal Syntaz and Semantics of
Java, volume 1523, pages 353-404. Springer-Verlag, June 1999.

S. Brookes, C. Hoare, and A. Roscoe. An Improved Failures Model for Com-
municating Processes. In Seminar on Concurrency, Carnegie-Mellon University,
volume 197, pages 281-305. Springer-Verlag, 1985.

S. Brooks, C. Hoare, and A. Roscoe. A Theory for Communicating Sequential
Processes. JACM, 31(3):560-599, January 1984.

D. Buytaert, F. Arickx, and J. Acunia. A Profiler and Compiler for the Wonka
Virtual Machines. In Works-in-Progress Session of the 2" Java Virtual Machine
Research and Technology Symposium (JVM’02), San Francisco, CA, USA, August
2002. USENIX Association.

Bytecodes. Method Call Overhead. http://www.bytecodes.com, 2003.

251

[22] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An Event-Based Structural
Oprational Semantics of Multi-Threaded Java. In Jim Alves-Foss, editor, Formal
Syntax and Semantics of Java, volume 1523, pages 157-200. Springer-Verlag, June
1999.

[23] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and P. Markstein.
Register Allocation Via Coloring. Computer Languages, 6:47-57, January 1981,

[24] Chicory. www.chicorysystems.com.

[25] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing JUDO: Java under Dynamic
Optimizations. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Languages Design and Implementation (PLDI’00), pages 13-26, Vancouver,
Canada, June 2000. ACM Press.

[26] G. Comeau. Java Companion Processors versus Accelerators.
http://wuw.e~sim. com/corporate/press/year_2000/000501 . htm.

[27] Nazomi Communications. Bootsing the Performance of Java Software on Smart
Handheld Devices and Internet Appliance. http://www.nazeni. con.

[28] Imagix Corporation. http://www. imagix.com.

[29] Intel Corporation. Intel Architecture Software Developer’s Manual, September
1997. White paper.

[30] Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.specbench.org/osg/ ivnd8/, 1998.

[31] B. Cox. Object-Oriented Programming, An Evolutionary Approach. Addison-
Wesley, MA, USA, 1987.

[32] T. Cramer, R. Friedman, T. Miller, D. Seherger, R. Wilson, and M. Wolczko.
Compiling Java Just in Time. IEEE Micro, 17(3):36-43, May 1997.

[33] D. Bacon and R. Konuru and C. Murthy and M. Serrano. Thin Locks: Feath-
erweight Synchronization for Java. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’98), pages
258-268, Montreal, Canada, June 1998.

[34] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’95), volume 952 of Lecture Notes in
Computer Science, pages 77-101, Arhus, Denmark, August 1995. Springer-Verlag.

252

[35] M. Debbabi, M. Erhioui, L. Ketari, N. Tawbi, H. Yahyaoui, and S. Zhioua.
Method Call Acceleration in Embedded Java Virtual Machines. In Proceedings of
the International Conference on Computational Science (ICCS’03), volume 2659
of Lecture Notes In Computer Science, pages 750-759, Melbourne, Australia, June
2003. Springer-Verlag.

[36] M. Debbabi, M. Erhioui, L. Ketari, N. Tawbi, H. Yahyaoui, and S. Zhioua.
Method Call Acceleration in Embedded Java Virtual Machines. In Proceedings of
the International Conference on Computational Science (ICCS’08), volume 2659
of Lecture Notes in Computer Science, pages 750-759, Melbourne, Australia, June
2003.

[37] M. Debbabi, A. Gherbi, L. Ketari, C. Talhi, N. Tawbi, H. Yahyaoui, and S. Zhioua.
A Dynamic Compiler for Embedded Java Virtual Machines. In Proceedings of the
34 ACM Conference on Principles and Practice of Programming in Java (ACM
PPPJ04), pages 100-107, Las Vegas, USA, June 2004. ACM Press.

[38] M. Debbabi, A. Gherbi, L. Ketari, C. Talhi, N. Tawbi, H. Yahyaoui, and S. Zhioua.
A Synergy between Efficient Interpretation and Fast Selective Dynamic Compi-
lation for the Acceleration of Embedded Java Virtual Machines. In Proceedings
of the 8 ACM Conference on Principles and Practice of Programming in Java
(ACM PPPJ’04), pages 108-115, Las Vegas, USA, June 2004. ACM Press.

[39] P. Dencker, K. Durre, and J. Heuft. Optimization of Parser Tables for
Portable Compilers. ACM Transactions on Programming Languages and Systems
(TOPLAS), 6(4):546-572, October 1984.

[40] L. Deutsch and A. Schiffman. Efficient Implementation of the Smalltalk-80 Sys-
tem. In Proceedings of the 11" Symposium on Principles of Programming Lan-
guages (POPL’84), pages 297-302, Salt Lake City, UT, January 1984. ACM Press.

[41] K. Dixit and W. Bays. Frequently Asked Questions (FAQs) About the
SPECjvm98 Benchmark. http://www.specbench.org/osg/ jvm98/qanda . html,
February 2001.

[42] K. Driesen. Selector Table Indexing and Sparse Arrays. In Proceedings of
the Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’93), Washington, DC, September 1993. ACM Press.

[43] S. Drossopoulou and S. Eisenbach. Is the Java Type System Sound. In Proceedings
of the 4 Workshop on Foundations of Object Oriented Languages (FOOL’97),
pages 41-82, January 1997.

253

[44] S. Drossopoulou and S. Eisenbach. Describing the Semantics of Java and Proving
Type Soundness. In Jim Alves-Foss, editor, Formal Syntaz and Semantics of
Java, volume 1523, pages 41-82. Springer-Verlag, June 1999.

[45] M. Ertl. A Portable Forth Engine. In Proceedings of the European Forth Confer-
ence (EuroFORTH’93), Marienbad, Czech Republic, October 1993.

[46] Esmertec. http://www.esmertec.com.

[47] S. Freund and J. Mitchell. The Type System for Object Initialization in the Java
Bytecode Language. ACM Transactions on Programming Languages and Systems
(TOPLAS), 21(6):1196-1250, November 1999.

[48] E. Gagnon and L. Hendren. Effective Inline-Threaded Interpretation of Java
Bytecode Using Preparation Sequences. In Proceedings of the 12" International
Conference on Compiler Construction (CC’03), volume 2622 of Lecture Notes in
Computer Science, pages 170-184, Warsaw, Poland, April 2003. Springer-Verlag.

[49] P. Gastin and M. Mislove. A Truly Concurrent Semantics for a Simple Parallel
Programming Language. In Proceedings of the Annual Conference of the European
Association for Computer Science Logic (CSL’99), volume 1683 of LNCS, pages
515-529, Madrid, Spain, September 1999. Springer-Verlag,

[50] P. Gastin and M. Mislove. A Truly Concurrent Semantics for a Process Algebra
using Resource Pomsets. Theoretical Computer Science (TCS), 281(1-2):369-421,
June 2002.

[51] P. Gastin and A. Petit. The Book of Traces, chapter Infinite traces, pages 393-486.
World Scientific, 1995.

[52] P. Gastin and D. Teodosiu. Resource Traces: A Domain for Processes sharing
Exclusive Resources. T'CS, 278:195-221, May 2002.

[53] P. Di Gianantonio, F. Honsell, and G. Plotkin. Uncountable Limits and the
Lambda Calculus. Nordic Journal of Computing, 2(2):126-145, Spring 1995.

[54] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, MA, USA, 1985.

[55] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, CA, USA, 1996.

[56] C. Gunter and D. Scott. Semantic Domains. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, pages 633-674. Elsevier Science
Publishers, Amsterdam, The Netherlands, 1990.

254

[57] P. Havlak. Nesting of Reducible and Irreducible Loops. ACM Transactions On
Programming Languages and Systems, 19(4):557-567, July 1997.

[58] M. Hennessy. Acceptance Trees. Journal of the ACM (JACM), 32(4):896-928,
January 1985.

[59] U. Holzle, C. Chambers, and D. Ungar. Optimizing Dynamically—Typed Object-
Oriented Languages With Polymorphic Inline Caches. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming (ECOOP’91), volume 512 of
Lecture Notes in Computer Science, Geneva, Switzerland, July 1991. Springer-
Verlag.

[60] C. Hsieh, J. Gyllenhaal, and W. Hwu. Java Bytecode to Native Code Translation:
The Caffeine Prototype and Preliminary Results. In Proceedings of the 29" annual
IEEE/ACM International Symposium on Microarchitecture, pages 90-99, Paris,
France, December 1996. IEEE Press.

[61] Bytecodes Inc. Just In Time Compilers. http://www.bytecodes. com.
[62] Insignia. http://www.insignia.com.
[63] Insilicon. www.insilicon.com.

[64] K. Ishizaki, T. Yasue, M. Kawahito, and H. Komatsu. A Study of Devirtualiza-
tion Techniques for a Java Just-In-Time Compiler. In Proceedings of the ACM-
SIGPLAN Conference on Object-Oriented Programmimg Systems, Languages and
Applications (OOPSLA’00), pages 294-310, Minneapolis, Minnesota, USA, Oc-
tober 2000. ACM Press.

[65] J. Katoen. Quantitative and Qualitative Eztensions of Event Structures. PhD
thesis, University of Twente, 1996.

[66] L. Ketari. Techniques Dynamiques d’Optimisation de Plateformes Java Em-
barquées. PhD thesis, Université Laval, 2006. Forthcoming,.

[67] M. Kwiatkowska and G. Norman. Metric Denotational Semantics for PEPA. In
Proceedings of the 4" Workshop on Process Algebras and Performance Modelling
(PAPM’96), pages 120-138, Torino, Italy, July 1996. CLUT.

[68] D. Lacey, N. Jones, E. Wyk, and C. Frederiksen. Proving Correctness of Com-
piler Optimizations by Temporal Logic. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL’02), pages 283-294,
Portland, OR, USA, January 2002.

[69] C. Laneve. A Type System for JVM Threads. Theoretical Computer Science
(TCS), 290(1):741-778, January 2003.

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]

[81]
[82]

255

S. Lerner, T. Millstein, and C. Chambers. Automatically Proving the Correctness
of Compiler Optimizations. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’03), pages 220-231,
San Diego, California, USA, June 2003.

S. Liang and D. Viswanathan. Comprehensive Profiling Support in the Java Vir-
tual Machine. In Proceedings of the 5% Conference on Object-Oriented Technolo-
gies and Systems (COOTS’99), pages 229-240, Berkeley, CA, USA, May 1999.
USENIX Association.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second Ver-
sion. Addison-Wesley, CA, USA, 1999.

M. Lindwer. Java in Embedded Systems. Xootic Magazine, pages 14-24, May
2001.

S. Majercik and M. Littman. Using Caching to Solve Larger Probabilistic Plan-
ning Problems. In Proceedings of the 15" National Conference on Artificial In-
telligence (AAAI’98) and of the 10" Conference on Innovative Applications of
Artificial Intelligence (IAAI’98), pages 954-960, Menlo Park, July 1998. AAAI

Press.

G. Manjunath and V. Krishnan. A Small Hybrid JIT for Embedded Systems.
SIGPLAN Notices, 35(4):44-50, April 2000.

F. Maruyama. OpenJIT 2: The Design and Implementation of Application Frame-
work for JIT Compilers. In Proceedings of the Java Virtual Machine Research and
Technology Symposium (JVM’01), Berkeley, CA, USA, April 2001. USENIX As-

sociation.
Sun Microsystems. httyp://www.sun.com.

Sun Microsystems. The Java HotSpot Performance Engine Architecture, April
1999. White paper.

Sun Microsystems. Connected, Limited Device Configuration. Specification Ver-
sion 1.0, Java 2 Platform Micro Edition, May 2000. White paper.

Sun Microsystems. Java 2 Platform Micro Edition Technology for Creating Mobile
Devices, May 2000. White paper.

Sun Microsystems. KVM Porting Guide, September 2001. White paper.

Sun Microsystems. MIDP APIs for Wireless Applications: A Brief Tour for
Software Developers, February 2001. White paper.

(83]

(84]

[85]

(86]

[87]
[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

256

Sun Microsystems. The Jain APIs: Integrated Network APIs for the Java Plat-
form, June 2001. White paper.

Sun Microsystems. CLDC HotSpot Implementation Virtual Machine, 2002. White
paper.

Sun Microsystems. Java 2 Platform, Standard Edition, Version 1.4.2 API Speci-
fication. Sun Microsystems Inc., version 1.4.2 edition, April 2003.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag, Secaucus,
NJ, USA, 1982.

R. Milner. Concurrency and Communication. Prentice-Hall, 1989.

M. Mislove. Denotational Models for Unbounded Nondeterminism. FElectronic
Notes in Theoretical Computer Science, 1, April 1995.

M. Mislove, A. Roscoe, and S. Schneider. Fixed Points without Completeness.
Theoretical Computer Science (TCS), 138(2):273-314, February 1995.

F. Morris. Advice on Structuring Compilers and Proving them Correct. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL’73), pages 144-152, Boston, Massachusetts, USA, October 1973.
ACM Press.

A. Muir. Zucotto — FEmbedding the KVM in Hardware.
http://www.microjava.com/jvm/hardware/native/zucotto2?content _id=725.

S. Muthukrishnan and M. Muller. Time and Space Efficient Method Lookup
for Object-Oriented Programs. In Proceedings of the 7 Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 42-51, Atlanta, Georgia, January 1996.
ACM Press.

A. Mycroft, P. Degano, and C. Priami. Complexity as a Basis for Comparing
Semantic Models of Concurrency. In Proceedings of the Asian Computing Science
Conference (ACSC’95), volume 1023, pages 141-155, Pathumthani, Tailand, De-
cember 1995. Springer-Verlag.

T. Nipkow, D. Oheimb, and C. Pusch. upJava: Embedding a programming lan-
guage in a theorem prover. In Proceedings of the Summer School on Foundations
of Secure Computation, volume 175 of NATO Science Series F: Computer and
Systems Sciences, pages 117-144. IOS Press, 2000.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

257

[96] M. Nunez, D. de Frutos, and L. Llana. Acceptance Trees for Probabilistic Pro-
cesses. In Proceedings of the 6™ International Conference on Concurrency Theory
(CONCUR'95), pages 249-263, Philadelphia, PA, August 1995.

[97] D. Oheimb and T. Nipkow. Machine-Checking the Java Specification: Proving
Type Safety. In Jim Alves-Foss, editor, Formal Syntaz and Semantics of Java,
volume 1523, pages 119-156. Springer-Verlag, June 1999.

[98] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. Pvs system guide.
Technical report, Computer Science Laboratory, SRI International, 1999.

[99] M. Paleczny, C. Vick, and C. Click. The Java HotSpot Server Compiler. In
Proceedings of the Java Virtual Machine Research and Technology Symposium
(JVM’01), pages 1-12, Monterey, California, April 2001. USENIX Association.

[100] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer-Verlag, 1994,

[101] I. Piumarta and F. Riccardi. Optimizing Direct-Threaded Code by Selective Inlin-
ing. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’98), pages 291-300, Montreal, Canada, June
1998. ACM Press.

[102] G. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

[103] G. Plotkin. An Operational Semantics for CSP. In Proceedings of the IFIP TC
2-Working Conference on Formal Description of Programming Concepts, pages
199-225, Amsterdam, Netherland, 1983.

[104] M. Poletto and V. Sarkar. Linear Scan Register Allocation. ACM Transactions
on Programming Languages and Systems, 21(5):895-913, September 1999.

[105] V. Pratt. Modelling Concurrency with Partial Orders. International Journal of
Parallel Programming, 15(1):33-71, May 1986.

[106] T. Proebsting, G. Townsend, P. Bridges, J.Hartman, T. Newsham, and S. Wat-
terson. Toba: Java for Applications: A Way Ahead of Time (WAT) Compiler. In
Proceedings of the 3® Conference on Object-Oriented Technologies and Systems
(COOTS’97), pages 41-54, Berkeley, USA, June 1997. USENIX Association.

[107] Z. Qian. A Formal Specification of Java Virtual Machine Instructions for Ob-
jects, Methods and Subroutines. In Jim Alves-Foss, editor, Formal Syntaz and
Semantics of Java, volume 1523, pages 271-312. Springer-Verlag, June 1999.

258

(108] C. Quigley. A Programming Logic for Java Bytecode Programs. PhD thesis,
University of Glasgow, 2004.

[109] R. Radhakrishnan, N. Vijaykrishnan, L. John, A. Sivasubramaniam, J. Rubio,
and J. Sabarinathan. Java Runtime Systems: Characterization and Architectural
Implications. IEEE Transactions on Computers, 50(2):131-146, February 2001.

[110] R. Radhakrishnan, N. Vijaykrishnan, L. Kurian John, A. Sivasubramaniam,
J. Rubio, and J. Sabarinathan. Java Runtime Systems: Characterization and
Architectural Implications. IEEE Transactions on Computers, 50(2):131-146,
February 2001.

[111] A. Roscoe and G. Barrett. Unbounded Nondeterminism in CSP. In Proceedings
of the 5™ International Conference on Mathematical Foundations of Program-
ming Semantics (MFPS’89), volume 442, pages 160-193, Tulane University, New
Orleans, Louisiana, USA, March 1989. Springer-Verlag.

[112] V. Sassone, M. Nielsen, and G. Winskel. Models for Concurrency: Towards a
Classification. Theoretical Computer Science (TCS), 170(1-2):297-348, January
1996.

[113] K. Schmid. Esmertec’s Jbed Micro Edition CLDC and Jbed Profile for MIDP,
Spring 2002. White paper.

(114] B. Shannon. Java 2 Platform Enterprise Edition, Version 1.3. Sun Microsystems
Inc., version 1.3 edition, July 2001.

[115] N. Shaylor. A Just-in-Time Compiler for Memory-Constrained Low-Power De-
vices. In Proceedings of the 2™ Java Virtual Machine Research and Technology
Symposium (JVM’02), pages 119-126, San Francisco, CA, USA, August 2002.
USENIX Association.

[116] K. Shudo. Performance Comparison of JITs.
http://waw.shudo.net/jit/perf/, January 2002.

[117] I. Siveroni. Correctness of Analysis-based Program Transformations of Functional
Programming Languages. PhD thesis, College of Computer Science, Norhteastern
University, 2002.

[118) Pendragon Software. CaffeineMark. http://www.pendragon-software.com,
1996.

[119] V. Sreedhar, G. Gao, and Y. Lee. Identifying Loops using DJ Graphs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 18(6):649-
658, November 1996.

259

[120] V. Sreedhar, G. Gao, and Y. Lee. Identifying Loops in almost Linear Time. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21(2):175-
188, March 1999.

[121] B. Steensgaard. Sequentializing Program Dependence Graphs for Irreducible Pro-
grams. Technical Report MSR-TR-93-14, Microsoft Research, Redmont, Wash.,
October 1993.

[122] K. Stephenson. Compiler Correctness using Algebraic Operational Semantics.
Technical Report CSR 1-97, University of Wales Swansea, 1997.

[123] M. Strecker. Formal Verification of a Java Compiler in Isabelle. In Proceed-
ings of the Conference on Automated Deduction (CADE’02), volume 2392 of Lec-
ture Notes in Computer Science, pages 63-77, Copenhagen, Denmark, July 2002.
Springer-Verlag.

[124] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler.
IBM Systems Journal, 39(1):175-193, February 2000.

[125] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,
H. Komatsu, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler.
IBM Systems Journal, 39(1):175-193, January 2000.

[126] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A Dynamic
Optimization Framework for a Java Just-In-Time Compiler. ACM SIGPLAN
Notices, 36(11):180-195, November 2001.

(127] D. Syme. Proving Java Type Soundness. In Jim Alves-Foss, editor, Formal Syntaz
and Semantics of Java, volume 1523, pages 83-118. Springer-Verlag, June 1999.

(128] R. Tarjan. Testing Flow Graph Reducibility. Journal of Computer and System
Sciences, 9:355-365, August 1974.

[129] Coq Development Team. The Coq Proof Assistant Reference Manual, Version
8.0. Technical report, INRIA, 2004.

[130] J. Thatcher, E. Wagner, and J. Wright. More Advice on Structuring Compilers
and Proving them Correct. Theoretical Computer Science (TCS), 15:223-249,
1981.

[131] S. Vijay, H. Laurie, R. Chrislain, V. Raja, L. Patrick, G. Etienne, and G. Charles.
Practical Virtual Method Call Resolution for Java. In Proceedings of the ACM-
SIGPLAN Conference on Object-Oriented Programmimg Systems, Languages and

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

260

Applications (OOPSLA’00)), pages 264-280, Minneapolis, Minnesota, USA, Oc-
tober 2000. ACM Press.

M. Walicki and S. Meldal. Algebraic Approaches to Nondeterminism-An
Overview. ACM Computing Surveys, 29(1):30-81, 1997.

M. Wand. Compiler Correctness for Parallel Languages. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture
(FPCA’95), pages 120134, La Jolla, CA, USA, June 1995. ACM Press.

M. Weiss, F. Ferriere, B. Delsart, C. Fabre, F. Hirsch, E. Johnson, V. Joloboff,
F. Roy, F. Siebert, and X. Spengler. TurboJ, A Java Bytecode-to-Native Com-
piler. In Proceedings of the ACM SIGPLAN Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES'98), volume 1474, pages 119-130, Mon-
treal, Canada, June 1998. Springer-Verlag.

G. Winskel. Events in Computation. PhD thesis, University of Edinburgh, 1980.

G. Winskel. Synchronization Trees. Theoretical Computer Science (TCS), 34:32-
82, 1984.

G. Winskel and M. Nielsen. Handbook of Logic in Computer Science, volume 4,
chapter Models for Concurrency. Clarendon Press, 1995.

P. Wolper and P. Godefroid. Partial-Order Methods for Temporal Verification. In
Proceedings of the 4% International Conference on Concurrency Theory (CON-
CUR’93), volume 715 of Lecture Notes in Computer Science, pages 233-246,
Berlin, Heidelberg, August 1993. Springer-Verlag.

B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. Chung, S. Kim, K. Ebcioglu,
and E. Altman. LaTTe: A Java VM Just-in-Time Compiler with Fast and Ef-
ficient Register Allocation. In Proceedings of the IEEE Conference on Parallel
Architectures and Compilation Techniques (PACT’99), pages 128-138, Califor-
nia, USA, October 1999, IEEE Press.

B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park, Y.C. Chung, S. Kim,
K. Ebcioglu, and E. Altman. LaTTe: A Java VM Just-in-Time Compiler with
Fast and Efficient Register Allocation. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT’99), pages
128-138, Newport Beach, California, October 1999. IEEE Press.

F. Yellin. Inside the K Virtual Machine (KVM). In JavaOne 2000, Moscone
Convention Center, San Francisco, California, June 2000.

