

Copyright

by

Robert John Ascott

2014

The Dissertation Committee for Robert John Ascott Certifies that this is the

approved version of the following dissertation:

JAVAFLOW: A JAVA DATAFLOW MACHINE

Committee:

Earl E. Swartzlander Jr., Supervisor

Anthony P. Ambler

Derek Chiou

Lizy K. John

Keshav K. Pingali

JAVAFLOW: A JAVA DATAFLOW MACHINE

by

Robert John Ascott, BS; MSEE

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December, 2014

Dedication

To my wife Virginia, David (1985-2009) and to Colin, Mason, Sofia, Cian, Quentin, and

Laurelin whose world of technology will be far different than today.

 v

Acknowledgements

Sincere thanks to Professor Earl Swartzlander Jr. for his encouragement, patience,

and continuously positive attitude which made this research enjoyable and productive.

Also thanks to the myriad of technical and fellowship groups which maintained and

expanded my mental, physical, and spiritual fitness over the past several years.

 vi

JAVAFLOW: A JAVA DATAFLOW MACHINE

Robert John Ascott, PhD

The University of Texas at Austin, 2014

Supervisor: Earl E. Swartzlander Jr.

The JavaFlow, a Java DataFlow Machine is a machine design concept

implementing a Java Virtual Machine aimed at addressing technology roadmap issues

along with the ability to effectively utilize and manage very large numbers of processing

cores. Specific design challenges addressed include: design complexity through a common

set of repeatable structures; low power by featuring unused circuits and ability to power

off sections of the chip; clock propagation and wire limits by using locality to bring data

to processing elements and a Globally Asynchronous Locally Synchronous (GALS)

design; and reliability by allowing portions of the design to be bypassed in case of failures.

A Data Flow Architecture is used with multiple heterogeneous networks to connect

processing elements capable of executing a single Java ByteCode instruction. Whole

methods are cached in this DataFlow fabric, and the networks plus distributed intelligence

are used for their management and execution. A mesh network is used for the DataFlow

transfers; two ordered networks are used for management and control flow mapping; and

multiple high speed rings are used to access the storage subsystem and a controlling

General Purpose Processor (GPP). Analysis of benchmarks demonstrates the potential for

this design concept. The design process was initiated by analyzing SPEC JVM benchmarks

which identified a small number methods contributing to a significant percentage of the

 vii

overall ByteCode operations. Additional analysis established static instruction mixes to

prioritize the types of processing elements used in the DataFlow Fabric.

The overall objective of the machine is to provide multi-threading performance for

Java Methods deployed to this DataFlow fabric. With advances in technology it is

envisioned that from 1,000 to 10,000 cores/instructions could be deployed and managed

using this structure. This size of DataFlow fabric would allow all the key methods from

the SPEC benchmarks to be resident.

A baseline configuration is defined with a compressed dataflow structure and then

compared to multiple configurations of instruction assignments and clock relationships.

Using a series of methods from the SPEC benchmark running independently, IPC

(Instructions per Cycle) performance of the sparsely populated heterogeneous structure is

40% of the baseline. The average ratio of instructions to required nodes is 3.5. Innovative

solutions to the loading and management of Java methods along with the translation from

control flow to DataFlow structure are demonstrated.

 viii

Table of Contents

List of Tables ... xi

List of Figures .. xiv

Chapter 1: Introduction ...1

Section 1.1 - Computing Challenges ..1

Section 1.2 - Hardware Background ...3

Section 1.3 - Software Background ..4

Chapter 2: JavaFlow Problem Statement ..8

Section 2.1 - Summary ..8

Section 2.2 - Included Topics ...8

Section 2.3 - Excluded Topics ..9

Chapter 3: Related Work ..10

Section 3.1 - Related Work Summary ..10

Section 3.2 - General Purpose Processors...10

Section 3.3 - Compilation Techniques ..12

Section 3.4 - Special Purpose Java Machines ...14

Section 3.5 - Dataflow Machines ..18

History and concepts: ...18

Monsoon, Manchester ..23

TRIPS ...24

WaveScalar ..27

Section 3.6 - JAVA ...29

Section 3.7 – Summary ...36

Chapter 4: JavaFlow Overview ...37

Section 4.1 - Overview ...37

Section 4.2 - Instruction Nodes ...41

Section 4.3 - Limitations ...45

 ix

Chapter 5: Benchmarks ...46

Section 5.1 - Overview ...46

Section 5.2 - Dynamic Mix Methodology and Results48

Section 5.3 - Static Mix Methodology and Results55

Section 5.4 - DataFlow and ControlFlow Analysis58

Section 5.5 - Summary ..60

Chapter 6: JavaFlow Detailed Description ...63

Section 6.1 - Functional Units ..63

Serial Network ...65

DataFlow Fabric (Mesh Network) ...70

Memory – General Purpose Processor Interface72

Section 6.2 - DataFlow Fabric Management ..73

Loading a Method ..73

DataFlow Address Resolution ...78

Initialization and Execution Start...84

Management and Cleanup..85

Section 6.3 - Method Execution ..86

Instruction Group – Arithmetic/Logical/Move Operations87

Instruction Group – Register Operations ...89

Local Read Instructions ..89

Local Writes ..90

Local Increment ..90

Instruction Group – Storage Operations ..91

Instruction Group – Service Operations ..92

Instruction Group – Control Flow Operations93

Instruction Group – Special Instructions ...96

Anchor Node ..96

Exceptions ..97

Section 6.4 - Enhancements ..98

Section 6.5 - Summary ..100

 x

Chapter 7: Results ...101

Section 7.1 - Results Overview ...101

Section 7.2 - DataFlow Analysis ..102

Section 7.3 - Performance Analysis ..105

Measurement Strategy ...105

Baseline configuration ..105

Measurements ...106

Configurations...107

Method Execution ...109

Filters on methods ...109

Simulation Structure ...110

Detailed Assumptions ..112

Measurements ..117

Coverage ...117

Instructions per Cycle and Figure of Merit119

Parallelism...123

Measurements vs Top 4 Spec Benchmark Methods123

Chapter 8: Conclusions ...127

Appendices ...129

Appendix A - ByteCode Instructions ..129

Appendix B - Data from top 90% Methods ..140

Appendix C - Sample analysis from one method145

Appendix D - Benchmark Descriptions ..151

Glossary ...154

References ..162

 xi

List of Tables

Table 1 Method Utilization in SPEC Benchmarks ..50

Table 2 Dynamic Instruction Mix of 90% Methods ..51

Table 3 SpecJvm2008 - Top 4 Methods ..53

Table 4 SpecJvm98 - Top 4 Methods ..54

Table 5 Impact of Quick Instructions ..55

Table 6 Static Mix Analysis ...57

Table 7 Benchmark DataFlow and Control Flow Analysis60

Table 8 Analysis Summary ..61

Table 9 General Data Flow Analysis – Filter 1 ...102

Table 10 DataFlow FanOut and Arc Analysis - Filter 1103

Table 11 DataFlow Resolution Queue Analysis – Filter 1104

Table 12 DataFlow Merge Analysis - Filter 1 ...104

Table 13 DataFlow Jump Forward Analysis - Filter 1 ..105

Table 14 DataFlow Jump Backward Analysis - Filter 1105

Table 15 Benchmark Configurations ...108

Table 16 Filters on Methods ..110

Table 17 Execution Cycles per Instruction ..113

Table 18 Execution Coverage – All Methods ...117

Table 19 Ratio of Instructions to Max Node ...118

Table 20 Heterogeneous Addressing Detail – Filter 1 ...119

Table 21 Raw IPC Data - All Methods ..120

Table 22 Figure of Merit – Filter All ...120

Table 23 Correlations with FM Hetero2 – Filter All ...121

 xii

Table 24 All Data - Filter 1 ..122

Table 25 All Data - Filter 2 ..122

Table 26 Parallelism - All Methods ...123

Table 27 Figure of Merit on Top 4 SpecJvm2008 Benchmarks125

Table 28 Figure of Merit on Top 4 SpecJvm98 Benchmarks126

Table 29 ByteCode Floating Point Conversion Instructions130

Table 30 ByteCode Arithmetic/Integer Instructions ..131

Table 31 ByteCode Arithmetic/Move Instructions ..132

Table 32 ByteCode Floating Point Arithmetic Instructions133

Table 33 ByteCode Control Flow Instructions ..134

Table 34 ByteCode Call Instructions ...134

Table 35 ByteCode Return Instructions ...135

Table 36 ByteCode Memory Constant Instructions...135

Table 37 ByteCode Memory Read Instructions...135

Table 38 ByteCode Memory Write Instructions ...136

Table 39 ByteCode Local Read Instructions ...137

Table 40 ByteCode Local Write Instructions ..138

Table 41 ByteCode Special Instructions ..139

Table 42 Top 90% methods - part 1...141

Table 43 Top 90% methods - part 2...142

Table 44 Top 90% methods - part 3...143

Table 45 Top 90% methods - part 4...144

Table 46 SpecJvm98 Benchmarks ...151

Table 47 SpecJvm2008 Benchmarks Included ..152

Table 48 SpecJvm2008 Benchmarks Excluded ...153

xiii

List of Figures

Figure 1 Tiobe Programming Community Index [2] ...5

Figure 2 IEEE Spectrum 2014 Language Ranking [3] ..6

Figure 3 Pico Java Configuration [14] ...15

Figure 4 JOP Machine Structure [15] ..15

Figure 5 An Elementary DataFlow Program [30] ..20

Figure 6 TRIPS Machine Organization [41] ..24

Figure 7 WaveScalar Processing Element [46] ...28

Figure 8 JavaFlow DataTypes ...30

Figure 9 Invalid Stack Example ...32

Figure 10 Java Memory Organization ...35

Figure 11 Machine Architecture Layers ..38

Figure 12 JavaFlow System Diagram ..40

Figure 13 Instruction Data Unit Resources ..42

Figure 14 JavaFlow Network Commands..64

Figure 15 JavaFlow DataTypes ...65

Figure 16 Serial Message Structure ...66

Figure 17 Serial Network Interface ..69

Figure 18 JavaFlow Mesh Network ...71

Figure 19 Memory-General Purpose Processor Interface73

Figure 20 Loading a Method..77

Figure 21 Simple Address Resolution Example ..80

Figure 22 DataFlow Address Resolution ...83

Figure 23 Token Bundle ..87

xiv

Figure 24 Simulator Class Structure ..111

Figure 25 Network Transit Times ...114

Figure 26 Heterogeneous DataFlow Configuration ...116

Figure 27 Sample Analysis for nextDouble() ..145

Figure 28 Method code from JAVAP – nextDouble()...146

Figure 29 DataFlow code - nextDouble() ..147

Figure 30 DataFlow Analysis - nextDouble() ..148

Figure 31 Simulation results - nextDouble() ...150

 1

Chapter 1: Introduction

SECTION 1.1 - COMPUTING CHALLENGES

JavaFlow, a Java DataFlow Machine employs high levels of both innovation and

invention to address a series of computing challenges being faced by those attempting to

implement modern computing platforms. The challenges addressed in this project include:

 Design complexity and associated design resource requirements

 Power consumption and cooling constraints

 Limited performance of wires across the chip

 Reliability in large system on chip implementations

 Management of software in multi-core structures

Innovation is achieved through the integration of a series of currently trending

technologies:

 Virtually unlimited number of circuits on a chip

 Advanced on chip networks

 Dataflow architectures

 Java Virtual Machine Specification

Inventions are applied to the concepts of a DataFlow machine which allow the

dynamic loading of a Java ByteCode method and execution of this procedural language

structure within the dataflow framework. The two key inventions in this design are:

 The use of a self-organizing system to dynamically load and perform

address resolution of Java methods.

 Additions to a traditional DataFlow machine to allow whole procedural Java

methods to be resident in a DataFlow fabric and execute with high

 2

performance and power efficiency exploiting higher levels of locality than

in other computing structures.

In his book “The Smart Swarm” [1] Peter Miller described behavior of leaderless

groups achieving great results. Examples included bees, geese, ants all of whose

populations achieve a series of common goals without centralized leadership. These

techniques are applied to the distribution of a Java ByteCode method into a DataFlow

fabric in order to prepare for computation. The assignment of specific instructions to

specific locations is not made centrally, but rather developed as the program is deployed

throughout the network of DataFlow processing elements.

DataFlow machines exploit locality for working variables, but traditionally have

had difficulty implementing loops and registers for communications across basic blocks.

Dynamic DataFlow machines have used extensive hardware to both handle this looping

and achieve high levels of parallel execution of loops. The JavaFlow machine

demonstrates low cost structures to effectively deploy local registers locally to the

processing elements and to implement both forward and loopback branches without adding

traditional Dataflow switch/merge/predication functions.

The machine utilizes a minimalist approach to the design of the processing elements

in the DataFlow fabric so that the maximum number of nodes can be realized on a chip.

By utilizing the DataFlow fabric itself to load and resolve producer/consumer addresses,

constraints on the instruction set encoding can be relieved with data expansion in the

processing elements. One example of this is fan out from one producer to a number of

consumer nodes.

 3

SECTION 1.2 - HARDWARE BACKGROUND

Price and performance have been the two factors used to measure the effectiveness

of computing systems since they were first created. While these two factors have at times

been combined into a single metric, the largest change in the measurement of effectiveness

has come in the components that make up these factors. In the early days of computing the

system cost was primarily associated with financial cost of the materials used to implement

the hardware of the computer. Similarly, the performance was initially measured as the

frequency of the clocking circuit that drove the hardware machine. Even in the early years

the cost of development was a consideration in the overall price of the system, and system

clock speeds needed adjustments to account for instruction set differences.

In later years the components of these factors have changed dramatically. Cost

measurements now start with area of a semiconductor chip and include the cost of the

design. However; the increasing cost of complexity, verification, and testing plays an

increasing factor in the overall ability to implement a processor design. The power

dissipation from a traditional design on a modern semiconductor chip may yield a design

that is either not feasible due to cooling or requiring significant cost in cooling technology.

With the differences in performance of components such as memory, circuitry, and

I/O; clock speed-up on traditional micro-architectures has not led to comparable system

performance increases. This is where advances in architecture and micro-architecture have

combined with technology speed-up to improve system performance. Specifically, areas

such as cache memory, pipelining, and parallel execution of some instructions have

provided most of the system performance gains over the past 10 years.

Details of these various hardware alternatives are described in Chapter 3: Related

Work.

 4

SECTION 1.3 - SOFTWARE BACKGROUND

The original programming model was coding in either machine or assembly

language to achieve the optimal performance for a specific application. The very high

development costs of this machine level programming strategy has led to a plethora of high

level languages over the past 50 years. All of these languages were aimed at increasing

the productivity of the programmer while not sacrificing too much performance versus the

hand coded assembly/machine language.

The Java language became popular in the late 1990’s and its popularity remains

today. Tiobe BV [2] has attempted to measure ‘popularity’ of programming languages by

applying metrics to web search results. While this does not necessarily demonstrate the

business usage of these languages, it does offer one measure of ‘popularity.’ Figure 1

demonstrates this ‘popularity’ measurement with Java shown as the top graph. The second

most ‘popular’ language is C with the recent cluster of C++, Visual Basic, and PHP

showing in third place.

 5

Figure 1 Tiobe Programming Community Index [2]

A more recent review of programming languages was published in July, 2014 [3]

and again, Java is the achieved the highest ranking as shown in Figure 2. This latest ranking

used metrics from 10 sources including IEEE, Xplore, GitHub, and Google to attempt to

quantify the popularity of languages.

6

Figure 2 IEEE Spectrum 2014 Language Ranking [3]

Java is one of the later languages aimed at standardizing the complex world of

programming. Despite advocates of alternative languages, the Java language has achieved

some level of standardization. This is due the definition of the "Java Virtual Machine"

(JVM) [4, 5] which has become ubiquitous on all modern computing platforms. There are

multiple computing scenarios where Java is utilized:

 7

One scenario is the internet and a computing model which distributes software over

the network to a remote computer/browser for a specific computing assignment. The JVM

represents an intermediate, machine level architecture which has been implemented on

almost all current hardware platforms for the execution of downloaded programs over the

network. Key attributes of this JVM are that programs cannot negatively affect the

computing platform, and a series of processes are in place to insure the integrity of the

distribution of these programs. With these two factors in place, the scope of computing

platforms for which the JVM can be effective expands to include cell phones and the ever

increasing set of small computing machines which previously may have been considered

'hard coded' by their original designers.

At the other end of the application spectrum, Java is a major component of

Enterprise Computing Systems. The programmer productivity from levels of abstraction

and software reuse is key to this popularity. The JavaFlow machine with its focus on

managing large numbers of cores is more likely targeted towards this application area than

the more cost sensitive personal device marketplace.

The JVM is a stack based architecture whose instructions are called ByteCodes.

Each instruction contains a single byte operation code and a variable number of operands.

Due to the stack nature of this architecture, instruction level parallelism has been difficult

to obtain.

 8

Chapter 2: JavaFlow Problem Statement

SECTION 2.1 - SUMMARY

This section offers a brief statement of the problem addressed in this research and

a summary of the solution. The following section describes the related work, and the last

section presents details of the proposed solution. Chapter 1: Introduction introduced a

series of problems being addressed by computer architects.

The specific problem addressed in this research is focused on the general problems

identified in Chapter 1 in the context of a Java Virtual Machine executing ByteCode

instructions. The specific direction of this solution is the definition and analysis of a Java

Dataflow machine. This machine combines the basic concepts of DataFlow machines

along with recent developments in this field to implement a hardware ByteCode execution

subsystem.

The overall goal is to use a minimalist approach to implement a JVM while

implementing complete methods inside a DataFlow Fabric. This will address performance

issues of traditional ByteCode approaches and exploit the advantages of a DataFlow

machine which can capitalize on the data locality of the Java ByteCode program.

An additional goal of this machine is the automation of the loading and

management of the DataFlow Fabric to relieve the operational systems from these tasks.

With the number of cores anticipated to grow to between 1,000 and 10,000, the importance

of this automation task will expand in the future.

SECTION 2.2 - INCLUDED TOPICS

The research effort includes the analysis of comparable hardware and software

solutions and the analysis of SPEC benchmarks to gain understanding of the dynamic and

 9

static behavior of key Java Methods. The DataFlow machine is described and the ability

to load/unload/manage/execute ByteCode instructions is demonstrated. A baseline

machine configuration is identified and comparisons to a series of DataFlow configurations

is made against the baseline. Instructions per Cycle, DataFlow node utilization, and

method DataFlow parameters are measured.

Discussion is provided for handling of all instructions and special cases such as

exceptions are addressed. The management of the Java Method Area and Heap is discussed

and ways of performing garbage collection is addressed.

SECTION 2.3 - EXCLUDED TOPICS

As described in the Proposal for this Dissertation, a series of items are not included

in the scope of this research:

 Detailed logic design of DataFlow Nodes

 Semiconductor analysis of power management techniques

 Specific bus widths and implementations

 Complete JVM implementation and hence the ability to completely execute

benchmarks on this proposed machine.

o Detailed implementation of Heap management including Garbage

Collection

o ClassLoader implementations

 Memory subsystem details

 General purpose processor details

 10

Chapter 3: Related Work

SECTION 3.1 - RELATED WORK SUMMARY

Other than the original paper [6], there is no specific previous work on a Java

DataFlow Machine. As JAVA has become increasingly popular over a wide range of

applications, there are existing architecture structures that successfully implement the

JVM. Just as JavaFlow is a combination of hardware and software, most existing solutions

have both components. Most solutions employ a combination of:

 General purpose processors

 Compilation techniques

 Special purpose hardware

In addition selected DataFlow machines and other tiled architectures are described.

SECTION 3.2 - GENERAL PURPOSE PROCESSORS

Most implementations of Java Virtual Machines are done with a general purpose

processor using various compilation techniques. Modern processors have evolved through

many stages:

 Simple single instruction execution

 Pipelined instruction execution

 SuperScalar (multiple instruction issue)

 Multi-core systems

 11

Each stage of this evolution was aimed at both advancing performance, and only at

the last step has minimizing power consumption and design effort become significant

concerns Modern processors have mostly stabilized on the x86 or ARM ISA (Instruction

Set Architecture) and have focused on technology and micro-architecture enhancements to

achieve system performance improvements.

SuperScalar is the term applied to micro-architectures that have multiple

instructions being issued simultaneously. Sometimes SuperScalar implies out of order

execution and deep pipelines. Another key component of the performance gain is in the

area of branch prediction. As stated earlier, cache memories are critical to the overall

system performance.

A problem with superscalar implementations [7] is that the control logic necessary

to support the out-of-order execution is: complex; power consuming; and can be distributed

across the entire chip. The complexity translates into increased development cost with its

associated risk of design failure. Wiring is becoming a limiting factor as propagation times

across the chip have become an increasing percentage of a processor's clock cycle. An

additional observation from the effect of the current design strategy is that less than 10%

of a modern processor chip is dedicated to arithmetic execution vs. 90% utilized for

complex control functions and storage [7]. This 10% utilization and with global wiring

delays not scaling as technology scales [8], future designs are focusing on

compartmentalizing functions on the chip and optimizing power consumption.

Current approaches to achieve more performance using current technology include

focusing on coarser level parallelism. Examples of this include multiple processing cores

on a single chip. A key advantage to this structure is that design costs can be reduced

through the re-use of existing SuperScalar designs. A further advantage is that whole cores

can be powered off when work load decreases, which could result in significant power

 12

savings. The challenge in these systems is that typical desktop applications do not present

much parallelism. Extracting parallelism to utilize the increased computing power is

another very complicated challenge. Note that for server implementations multiple cores

or Sun's Niagara [9] advanced Simultaneous Multi-Threading (SMT) structure represent

solutions to highly parallel workloads.

With current multi-core designs at 10-100 cores, JavaFlow’s simple Instruction

Node should provide at least an order of magnitude increase in the total number of

Instruction Nodes available to be applied to an application.

While multi-core designs do provide savings in design complexity due the

repetition of a single core design, the challenges are in the effective usage and management

of these many cores. Since most applications are not designed with parallelism in mind,

the partitioning of a single application into multiple threads running on multiple cores is

complex, and has been the subject of much research. In addition to the effective execution

on multiple cores, the management of these applications is also complex. JavaFlow

attempts to address these challenges by allowing a single application to consume a variable

number of cores and for the deployment of the program to these cores to be managed by

the DataFlow fabric.

SECTION 3.3 - COMPILATION TECHNIQUES

Current Java virtual machines utilize a combination of compiler techniques. All

Java programs are initially compiled to the Java ByteCode architecture which offers a

series of security and program distribution advantages over other languages.

The simplest way to implement the JVM is on a general purpose processor that first

loads the compiled ByteCode class and then interprets the instructions as required to

 13

execute the defined method. Modern systems use heuristics to identify methods which are

executed repeatedly. Then advanced compilation technology is employed to optimize the

execution. This is called Just-In-Time compilation (JIT). Obviously these compilers are

specific to the target machine architecture. Finally several specific JVM hardware

implementations have been created with the objective of further improving the

cost/performance of Java byte code execution.

Even with a JIT compiler, the interpretation of ByteCodes initially remains a key

component of most JVM’s. Nicolaescu and Veidenbaum [10] analysis of the SpecJVM98

benchmarks showed the compiler performed at between 1.75 and 13.9 times as fast as a

baseline interpreter. One of the performance challenges of interpreters is the use of

program switch structures to decode ByteCode instructions and the effect on branch

prediction in modern SuperScalar processors. Casey, Ertl, Wien, and Gregg [11] showed

that branch prediction using BTB (Branch Target Buffers) mispredict 81% to 98% of the

indirect branches in switch dispatch interpreters, and 57%-63% in an alternative structure.

Their work attempts to further optimize this performance. The JavaFlow machine with its

control flow to data flow translation system described in Chapters 4 and 6 does not utilize

branch prediction hardware and therefore optimizes this aspect of the JVM in an alternative

manner.

In addition to compiler techniques to execute the Java Virtual Machine, it should

be noted that a significant aspect of the overall performance of Java programs comes in the

Garbage Collection strategy. Note that one of the many advantages of the Java language

is that memory management is not a user function, but rather delegated to the JVM. This

function is outside the scope of this dissertation, but is mentioned for completeness.

One example of this Garbage Collection strategy has been demonstrated by Azul,

Inc. [12]. Azul originally developed a hardware JVM but recently have focused primarily

 14

on the Garbage Collection. In enterprise Java applications, where the overall memory

usage is beyond the benchmarks used in this analysis, the effectiveness of the Garbage

Collection becomes an increasing factor in overall performance.

SECTION 3.4 - SPECIAL PURPOSE JAVA MACHINES

Traditionally a Java Virtual Machine (JVM) [4] is either interpreted or compiled

‘just in time’ (JIT) on a general purpose processor. However over the past years, several

hardware designs have been proposed to implement the JVM and from these designs

several key characteristics of the JavaFlow machine can be found.

In general, these machines are aimed at the low cost/power application space,

although some employ special hardware for application specific optimization.

The earliest design was the JEM1 [13] processor developed by Rockwell. Its

instruction set was modeled after the JVM ByteCode definitions and used traps to execute

more complex ByteCodes.

Another early design was Sun’s PicoJava [14]. This machine implemented the Java

stack in hardware and introduced the concept of ‘instruction folding.’ This reduces the

number of ByteCode instructions executed by optimizing movements of operands from the

local storage to the top of the stack. A configuration diagram of PicoJava is shown in

Figure 3

Schoeberl defined the Java Optimized Processor (JOP) [15] and reviewed six

additional designs targeted towards embedded systems [16]. The JOP dataflow is shown

in Figure 4 [15]. While Java optimization is performed, the machine is a traditional von

Neuman architecture.

 15

Figure 3 Pico Java Configuration [14]

Figure 4 JOP Machine Structure [15]

The Molen FemtoJava Engine [17] expanded on a traditional Java hardware core

to perform application specific functions outside of the main Java execution unit.

 16

Radhakrishnan defined further optimizations to the folding algorithm of PicoJava

and also defined ‘Hard_Int’ [18, 19] which optimized ByteCode execution by performing

folding offline and by combining instructions into hardware macros.

Other efforts continued to seek optimizations on the execution of ByteCodes by

eliminating, re-ordering, and translating ByteCode instructions [20-22].

In [23] Wang and Yuen demonstrated instruction level parallelism by using data

flow concepts to tag JVM stack operands to realize both folding and out of order execution

in a VLIW structure.

In [24] Vijaykrishnam, Ranganathan and Gadekarla extended the focus of the

hardware implementation to include support for the object-oriented aspects of the Java

programs. In addition to folding techniques implemented elsewhere, this machine used

new cache constructs to assist the access of both fields and methods of Java objects.

Although not a specific Java machine, a recent multicore offering is relevant to see

the potential for a machine like JavaFlow. Adapteva, Inc. released its Epiphany 64 core

processing chip [25] where a general purpose processor is used in conjunction with a tiled

fabric of processors. Each node has a full processing capability and the mesh network

implements a single memory address space accessible by all cores. An interesting aspect

of this design was part of a conversation with the company president which indicated the

entire design was completed in a relatively short period of time by a very small design

team. This design was released to the Global Foundry’s semiconductor facility and sample

parts with 16 or 64 cores are available. This architecture is claimed to scale to 4096 cores

which is the magnitude envisioned for the JavaFlow machine.

Another special purpose hardware solution entering the Java space has been defined

by the Heterogeneous Systems Architecture Foundation [26]. This system architecture

utilizes the combination of a set of general purpose processing cores combined with a

 17

Graphics Processing Unit which contains potentially thousands of cores. The GPU cores

execute in a SIMD (Single Instruction, Multiple Data) configuration where an extreme

level of parallelism is available for tasks that can be partitioned to exploit this system. The

target application for these systems, as contained in their name is the processing of graphic

images for high performance display rendering. Recent research has been targeted in

exploiting this high level of parallel processing capability towards parallel applications. In

addition to the limitations of the SIMD structure, traditional GPU’s require the transfer of

data between local memories and the shared main memory of the general purpose

processing cores.

The HSA architecture overcomes a significant limitation of traditional GPU’s by

allowing each processor to directly access the large memory space of the general purpose

processor cores. This capability combined with the structures supported in the latest

release of Java (Java 8 [27]) which explicitly identifies parallelism through Lambda

expressions allows performance enhancements of specific parallel applications through the

execution on HSA GPU systems. This work is part of the Sumatra Project of the OpenJDK

foundation [28]. These systems are aimed explicitly at improving the performance of

highly parallel applications rather than the general applications targeted by the JavaFlow

machine.

An additional demonstration of hardware enablement can be found in IBM’s

TrueNorth “neuromorphic chip” [29]. While not aimed at Java processing, it demonstrates

the “unlimited number of circuits” referenced in the Introduction. This 2014 chip claims

5.4 billion transistors, 4096 “neurosynaptic” cores, 1 million programmable neurons, and

256 million programmable synapses. They also claim a system of 16 chips. A key aspect

of this design is the power density claim of 20mW per square centimeter; or 70 mW for

the chip.

 18

SECTION 3.5 - DATAFLOW MACHINES

History and concepts:

In 1975 Dennis [30] proposed a computing architecture as an alternative to the

traditional von Neumann model. The term applied to this architecture was a ‘DataFlow

Machine’ because it was structured according to the dataflow graph of the underlying

computing algorithm. Conceptually this structure could employ significantly more circuits

for arithmetic and logical operations versus control. Practically, however; this was not the

focus of early dataflow implementations due to the overall scarcity of circuitry. Modern

technology has reopened the door for the implementation of DataFlow machines where

much of the complex control circuitry could be turned into additional arithmetic and logical

operators with less global control requirements.

There has been recent work in the area of DataFlow machines. Some key problems

with the earlier designs, such as memory ordering have been overcome by the modern

machines enabling them to be considered for modern general purpose computing problems.

A key reason for an interest in a tiled DataFlow machine versus a SuperScalar

alternative is that the DataFlow machines exploits ‘data locality’ in the program. For

example a tiled DataFlow machine can capitalize on the physical relationship between

instructions that produce data and those instructions that consume the same data.

SuperScalar machines through general purpose register renaming ignore this relationship

and consume significant circuitry and power to allow parallelism and out-of-order

execution.

In addition to the work of Dennis, another reference to this technology is available

from an earlier Thesis and follow-on publication by D. A. Adams at Stanford in 1968 [31-

 19

33]. Adams was focusing on ways to improve parallel processing and proposed the use of

the dataflow graph of the program to sequence instructions. Also, Rumbaugh [34]

proposed an early DataFlow machine.

These initial machines were all based on the dataflow graph of a program, but

differed in number of tokens that could be present on each dataflow graph edge, on whether

execution could begin before all tokens were present, and in the definition of the control

nodes in the dataflow graph.

 The concept of this machine is to move from the traditional von Neumann

computer definition where each instruction is executed in an order specified by a program

counter to a machine executing operations in an order based on the availability of data. By

basing execution on the availability of data, the expectation is increased performance; and

with availability of more hardware, increased parallelism.

DataFlow machines execute according to the data flow graph of a program. Each

node of the dataflow graph represents an operation in the program, and the arcs represent

paths that data travels between operators. In the pure sense of a DataFlow machine, there

is no concept of a program counter or program control. Each operator obeys ‘dataflow

firing rules’ which are defined as having all operands present at its input terminals. All

DataFlow machines reviewed so far have nodes with 1 or 2 data operands as inputs and 1

or more nodes as outputs. Terminology used in these structures is ‘producer-consumer’

where each node consumes data, and then produces a result which is subsequently

consumed by another node in the dataflow graph. Figure 5 from Dennis [30] shows a

dataflow representation of a simple program. Note that links L1 and L2 are initially

enabled. L1 and L2 are links that are ‘fired’ and make copies of data available to

downstream consumers. Operation A1 can ‘fire’ first. When A1 produces its result, A3

can ‘fire.’ Subsequently A4 can ‘fire’ which produces the final result ‘x.’ Finally this

20

result is sent to A2 which can then ‘fire’ to produce the final result ‘y.’ This example

showed the firing rules and some parallelism that can be achieved. No conditional

operations are shown in this example.

Figure 5 An Elementary DataFlow Program [30]

 One of the first challenges of a DataFlow machine is implementation of program

control in this data only environment. One of the techniques utilized is predication which

translates control dependencies into data dependencies. Different DataFlow designs use

different variants to realize this predication. Examples include PHI and inverse-PHI

instructions. These have also been called T-Gate, F-Gate, and Switch instructions. The

 21

PHI instruction consumes either of the two operands and passes to the producer side of the

node based on a third predication value passed in the dataflow graph. The inverse PHI

instruction directs one of the operands to either of two consuming nodes based on a similar

Boolean signal. There are many variants on the implementation of predication in DataFlow

machines. The WaveScalar machine implements both functions but designates the inverse-

PHI function as a Steer instruction [35].

TRIPS uses a different form of predication called “Dataflow Predication” [36]

where each instruction has extra bits to identify whether a third predicate operand is

required before ‘firing’ can occur.

Beck, Johnson, and Pingali [37] demonstrated the “Access Token” to order memory

references in a DataFlow Machine. This structure is used as the MEMORY_TOKEN in

the JavaFlow machine, and additional serial tokens are defined in Chapter 6 forming a key

aspect of JavaFlow.

Early examples of DataFlow machines were created with technology constraints

limiting the number of functional units available to implement the DataFlow graph.

Original proposals [38] called for only a single functional unit with the DataFlow 'nodes'

saved in an array whose execution order was determined by the DataFlow firing rules.

There were several problems with these designs that precluded a practical solution.

First the single functional unit precluded any level of instruction level parallelism,

but did allow increased occupancy of the processor. This was consistent with most modern

processors in the 1970's where a single functional unit (arithmetic and logical unit) was

commonplace. Second, the logic of early DataFlow machines to determine the firing rules

consisted of a large associative array to match the availability of an operand from one

operation to the requirements of other operands. These arrays were not only expensive but

inserted delay into the overall processing pipeline.

 22

Another differentiating characteristic of DataFlow machines is how multiple values

of a variable are handled. This is key to loop structures and high levels of parallelism. A

Static DataFlow machine allows only one variable to be present on any arc in the control

flow graph. While this avoids the problem of multiple values in loop iterations; potential

parallelism is lost. The alternative is to add a tag to each token (variable) to distinguish

values in different iterations of a loop. This “dynamic tagged token” approach is utilized

in the initial MIT machine [38] and also in WaveScalar [35].

One aspect of early DataFlow machines was the challenge/opportunity regarding

the ordering of memory operations. With a traditional von Neumann architecture, the

program counter implies an order to the memory operations. On the other hand, a

DataFlow machine following only DataFlow firing rules might create an unexpected

ordering of memory load and stores. The solution to this challenge has been the topic of

much research over the years and two solution areas have emerged. The initial focus of

DataFlow machines was in the use of Functional Languages [39]. These languages offered

parallelism, but were significantly different from traditional languages and they have not

seen widespread use among programmers. A characteristic of the memory used in these

languages is that after initialization, it can only be written once so that read-after-write data

hazards are eliminated.

Recent DataFlow implementations have imposed an ordering on memory

operations so that traditional imperative languages can be executed. WaveScalar, TRIPS,

and the JavaFlow machine all employ memory ordering which may preclude some

parallelism to insure program integrity.

 23

Monsoon, Manchester

Early research and resulting implementations of DataFlow machines focused both

functional languages and maximizing the parallelism while deploying a relatively small

number of processing units. These implementations were targeted for large scale scientific

processing. Each implementation required extensive matching logic for a significant

number of tokens which would then be dispatched to the execution unit(s). Each

implementation used dynamic tagging of the operands.

The Manchester machine [40] demonstrated parallelism on programs written in the

single assignment language SISAL. Tokens are carried in data packets around a pipeline

ring structure where a matching unit looks for pairs of tokens that can be sent to an

execution unit. The Manchester machine has a microcode controlled pipeline while the

Monsoon machine is implemented exclusively in hardware.

The original MIT architecture was called TTDA (Tagged Token DataFlow

Architecture) and was followed by the ETS (Explicit Token Store) architecture [38]. This

latter architecture formed the basis for the Monsoon implementation. These machines

exploited the functional language Id [39]. The TTDA architecture had the same challenges

as the Manchester machine where the matching of the dynamically generated tokens was

very expensive in both logic and cycle time. The ETS/Monsoon extended the architecture

to replace the matching functions with an explicit location where the first argument to a

binary instruction is saved and presence bits set to non-empty. Upon the arrival of the

second argument, the presence bits for the location are read indicating that the first

argument has arrived. Then the first argument is read and the instruction is fired. The

presence bits are then reset to empty.

24

TRIPS

The TRIPS project at the University of Texas [41, 42] is focused on “EDGE”

Explicit Data Graph Execution. The project is a combination of a static DataFlow machine

with a program counter to maintain control flow. Because of this approach towards the

execution of a traditional program structure, this machine is the closest comparison to the

JavaFlow design. A system diagram of the TRIPS machine is shown in Figure 6.

Figure 6 TRIPS Machine Organization [41]

 25

This processor breaks down the control graph of a program into ‘hyperblocks’

which can contain up to 128 instructions. The DataFlow fabric consists of 16 Processing

Elements (PEs) and the instructions of the hyperblocks are distributed across the PEs. Each

PE contains up to 64 instructions which are addressable as consumer nodes from producer

and predicating instructions. This combination shows that up to 1024 instructions can be

dispatched or ‘in flight’ during program execution, although at most 16 could be executing

in parallel. Each of these processing elements follows the DataFlow firing rules with

predication having been included in the compiled code to implement branching.

Hyperblocks are defined as blocks of code where no loops are allowed.

The key to the execution of programs is that inter-block communications is handled

primarily through the register banks which eases the pressure on memory references. The

intra-block data communications is handled with the DataFlow producer-consumer

transfers using the edges of the dataflow graph. A further key to execution is the ‘block

atomic’ execution of each hyperblock. A hyperblock is a segment of code that executes

atomically where there is a single entry point, possibly multiple exit points, and no internal

looping. Once a hyperblock is initiated, the system can deterministically know when it is

complete independent of the path taken through the block. Each hyperblock is allowed to

make 32 register reads and writes and the completion of the block is defined by the

completion of all register writes.

A critical factor in the successful implementation of TRIPS is the compiler [43].

Since the hyperblock size is 128 instructions and most program blocks are significantly

smaller, the compiler is responsible for loop unrolling to fill the instruction space.

Furthermore, the compiler is responsible for address assignment to minimize the distance

between producer and consumer nodes and the proper handling of all register reads and

writes. A challenge for the instruction set of the TRIPS is that limiting the instruction

 26

width to 32 bits allows only 2 possible consumers for the data that is produced at a

processing element. This limitation requires the insertion of move or fan-out instructions

that takes a single data element and moves it to two additional consumers.

 TRIPS implements a memory ordering scheme similar to WaveScalar which

insures proper handling of data dependencies. TRIPS utilizes a series of on chip networks

optimized to handle the producer-consumer operand transfers; the instruction loading;

register read/write; and access to the L2 data cache.

The TRIPS machine was implemented using standard cell 130 nanometer

technology. Analysis of the implementation showed mixed results when compared to other

SuperScalar machines. [44] The largest challenge in the analysis was to normalize the

technology and design resources when attempting to compare this project with commercial

processors. Code benchmarks were analyzed compared to an Alpha architecture to

measure instructions executed, parallelism, storage accessed, and instructions per cycle

using both compiled and hand optimized code.

The conclusion of the analysis was that the EDGE execution structure offered no

clear advantage over a traditional architecture nor advantage over a modern technology

implementation. Several areas were cited as weakness areas which have been incorporated

into the design of the JavaFlow machine. The following issues were reported: [44]

1. The fan-out limitation of two consumer addresses caused 20% of the

instruction count to be the special move instructions which was larger than

expected.

2. The hyperblock size had issues of both oversized block headers and many

NOPs required to fill the block. This consumed storage but not processing.

Variable sized blocks and block headers would save significant storage and

 27

resulting instruction fetches. This requirement also place significant

pressure on the compiler to maximize the block sizes.

3. Since the blocks did not allow looping, branch prediction was key to

optimizing the instruction fetches. This added complexity and miss-

predictions added execution time to the results.

In summary, the analysis concluded that TRIPS could sustain 10 IPC showing a

three-fold cycle count speedup over an Intel Core 2 process with hand optimized kernels.

However with compiled benchmarks the cycle counts were not competitive. While

technology improvements may show improved results, the change of ISA to this new

structure is unlikely to change desktop systems. However, this architecture may apply to

systems where high performance and low power are both required such as mobile and data

center applications.

WaveScalar

WaveScalar represents another recent DataFlow architecture and implementation

and has solved several problems of historical machines. This processor, developed at the

University of Washington [7, 35, 45] exploits advanced semiconductor technology to

implement a true DataFlow machine with processing elements across a single chip.

Processing Elements (PEs) are combined into domains and clusters to support different

routing protocols over increasing distances. This fabric of PEs is called the WaveCache.

The simplest DataFlow machine would allocate a single instruction to a PE,

WaveScalar assigns 64 instructions to each PE. The goal in the assignment for producer-

consumer instructions to be close to each other to avoid network delays while not in the

same PE to allow parallelism. A single cluster WaveScalar implementation contains 32

 28

PEs and can store 2048 instructions. A four cluster machine would contain 128 PEs and

8192 instructions. An example of the WaveScalar configuration is shown in Figure 7.

Figure 7 WaveScalar Processing Element [46]

Each Domain consisting of 8 PEs has a section of a banked L1 data cache, store

buffers, and a floating point unit. On the periphery of the chip is an L2 cache. Cache

coherency is maintained using a MSEI protocol.

The machine was targeted to execute the Alpha instruction set which is then

translated to the native DataFlow instruction set. Performance is measured in equivalent

Alpha instructions per second.

WaveScalar introduced the concept of ‘Waves’ which are segments of a program’s

control flow graph and the ordering of memory operations within waves. This key element

 29

allows the WaveScalar machine to execute traditional languages compiled to the Alpha

ISA.

The ‘Wave Cache’ also supports the transition of unused instructions from the PE’s

to the memory to make room for required executions. WaveScalar implements a ‘Dynamic

DataFlow Machine’ similar to the original machines previously described. This structure

allows multiple instances of loops to be executing concurrently which is key to increases

in levels of parallelism. The challenge with this architecture is the increase in design

complexity and circuit count to handle the dynamic allocation of machine resources to

implement the parallel loop execution.

SECTION 3.6 - JAVA

The JAVA programming language and its associated Java Virtual Machine has

some characteristics that invite implementation on a machine like JavaFlow. The Java

Virtual Machine is described in an original edition [4] and then updated for Java 8 [47].

While the stack-based architecture has some limitations, there are several

characteristics that can be exploited to optimize performance. All local variables and

working registers are part of the stack. All accesses to this stack are explicitly addressed

by ‘ByteCode’ instructions. This means that at instruction decode time, all stack addresses

are available, and optimizations can be performed.

The Java Language is strongly typed, which means all data is identified according

to one of the language types as shown in Figure 8. This removes any ambiguity regarding

how to handle specific data elements. The following is a list of specific characteristics of

the Java Virtual Machine which key to the success of the JavaFlow machine:

30

Figure 8 JavaFlow DataTypes

1. The JAVAC compiler provided by Oracle is traditionally used to create the

architecturally defined Java Class Files which are eventually loaded into the

Java Virtual Machine.

2. Java Byte Code programs have the maximum number of local registers

utilized and the maximum number of stack elements defined at compile

time. This allows the JavaFlow machine to know if a program would extend

beyond the register/stack capacity in the DataFlow Fabric.

3. Although not optimized, the JAVAC compiler utilizes the stack for

communications inside a basic block of code and uses local registers for

communications between blocks and other methods.

4. Part of the JVM definition is that every instruction must have the same stack

configuration from any entry point. An example of this restriction is in the

case of a control flow merge. If instructions A and B have instruction C as

their next instruction, then the numbers and types of elements of the stack

 31

after the execution of both instructions A and B must be identical. Figure 9

provides an example of this where a ByteCode program starts with a single

‘value’ on the stack. The example shows only a forward branch, but this

situation can become more complicated in the case of back branches or

loops.

5. Local Storage addressing is never indirect. All register accesses are

specified as absolute values as either part of the opcode or part of the

operand. No calculations are allowed which simplifies the interface

between the Serial Network and the Mesh Network during Local Register

operations.

6. Java programs are organized into Classes and each Class is compiled into a

data structure called a ClassFile. Each ClassFile has several components

including:

a. Constant Pool. The Constant Pool is the collection of all constants

used by the Class along with definitions/references to all

components of the Class such as the Fields and Methods.

b. Methods. A Method of a Java Class is the actual program consisting

of a list of ByteCode instructions. A Java Class may have many

Methods and all are contained in the ClassFile.

c. Additional debugging information and tools to assist in the

development and execution of the Class.

 32

Figure 9 Invalid Stack Example

Two key elements of the Java language are the use of abstraction via object oriented

programming and the use of automatic memory management provided by the Java Virtual

Machine. The allocation and management of memory in a Java system is not architected

by the Java machine specification, but rather is left up to specific implementation decisions.

Venners [5] described several options for managing both the Method Area and the Heap.

Tradeoffs in terms of performance and optimized garbage collection are necessary in order

to realize an optimized system. The translation process from the symbolic references

included in Java Class files to the actual pointers to data is complex and offers both

 33

opportunities and challenges to the JavaFlow machine configuration. The affected

instructions include memory ‘get,’ ‘put,’ and ‘invokes’ for both static and instance

references. The ByteCode instruction definitions [4, 47] call for the operand of these

instructions to point to an offset in the Class ‘Constant Pool’ where another pointer into

the Class data or the Object instance data is found. The translation from the symbolic

reference to this offset can be done by the Linkage process before the method is loaded

into the machine or when the data is first accessed, although the details of this process are

machine dependent. Once the actual pointer is found, interpreter systems change the

opcode by prefacing the code with a ‘_Quick’ modifier to avoid the architected indirection

to access the Class or Instance data. This latter approach is the basis for the simulation and

performance analysis data reported in Chapter 7. Vijaykrishnan [24] describes this process

for both gets and calls in a Java hardware machine which does not have the level of

distributed processing capability of JavaFlow.

However; each of the 3 steps to the address resolution process offers potential

opportunities for overall performance improvement with associated expense in circuitry.

The opportunities involve the utilization of the Instruction Nodes with memory access

instructions to resolve these addresses in parallel. The cost is the additional logic required

in each node.

 The Class File with symbolic references requires the linking of these

references with other Classes that are already loaded or will be loaded.

While doing this in the Fabric could offer offload of the General Purpose

Processor, the initial judgment is that this function requires visibility to the

entire state of the Java Machine and is best left to the GPP. Also, sending

the symbolic references to the individual Instruction Nodes would require

network traffic and storage in the nodes.

 34

 A more interesting option is to include the architected offset into the

Constant Pool as the operand of storage operands and then utilize the

Instruction Nodes to resolve these to actual memory pointers by accessing

this Class Constant Pool data. While the linking process would still need to

resolve all references to other classes, each memory access Instruction Node

would be able to find and save the pointer into the Heap or Class area either

at load time or memory operation execution time. Note that accesses to

static fields are made directly into the Class data area of the Method area,

while accesses to objects are first referenced by an object reference variable

passed via local registers or the stack.

Figure 10 shows an example of the Constant Pool, Method Area and Heap in a Java

memory system. Note that since constants including memory reference information are

part of the Constant Pool which is loaded prior to execution, the JavaFlow machine can

perform unordered parallel accesses to gather constants for upcoming instruction

execution. The Method Area is used to house the actual code in interpreted systems and

the Class variables. The Heap is used to house object instantiations of Classes and is clearly

subject to Garbage Collection during execution.

 35

Figure 10 Java Memory Organization

Two example instruction are shown accessing Class and Instance data. For Class

data, the instruction contains an offset into the Constant Pool where an offset is found into

the Method or Class data area. For instance data, a similar lookup is performed into the

Constant Pool, however the offset is with respect to the instance data on the heap which is

found by an address reference pointer. Note that to ease access in the current method, any

non-static method has its local register 0 containing the reference to the method’s instance

area on the heap.

 36

Since this research began, Java has realized is version 8 release. Throughout all

Java releases, the JVM has remained very constant, and so far this holds for Java 8. The

new JVM does provide support for a new type of dynamic method invocation which can

be exploited by other languages, the strongly typed Java language still does not allow such

structures.

For reference a complete list of the Java ByteCode instructions is provided in

Appendix A. The instructions are categorized by group whose processing functions are

similar. For each instruction, the contents of the JVM Stack before and after execution is

described along with the ‘Pop’ and ‘Push’ counts. These counts are the number of stack

elements removed and replaced for each instruction.

SECTION 3.7 – SUMMARY

This chapter reviewed a broad spectrum of the technologies available for the

execution of Java programs. General Purpose Processors represent a significant area of

computer architecture research, and therefore were addressed as they face challenges in

technology scaling in the future. Compilation techniques which are the current way Java

programs are primarily executed would be limited by the scaling issues facing General

Purpose Processors. Special purpose Java machines demonstrated techniques to optimize

the execution of ByteCode instruction streams which is key to JavaFlow and its proposed

enhancements. DataFlow machines were originally conceived to realize high levels of

instruction parallelism and often exploit alternative programming languages. This

architecture forms the basis for the JavaFlow machine and modifications in both structure

and objective are key to the success of the design. Finally the Java language offers a

combination of complexity through its abstractions and also the opportunity for the

JavaFlow machine to achieve optimizations due to its distributed processing capabilities.

 37

Chapter 4: JavaFlow Overview

SECTION 4.1 - OVERVIEW

Before presenting a system diagram and associated descriptions, Figure 11

describes the overall process of translating a computing problem (application) to the

circuitry which ultimately implements the solution. The focus/scope of this system

includes the interface language, instruction set architecture, and machine structure. In this

system, this intermediate language is the Java Virtual Machine (JVM). Similarly, the logic

design, network implementation, and cache structures which are critical to the performance

of any computing system are not the focus of this research.

 38

APPLICATION

LANGUAGE

COMPILER

INTERFACE LANGUAGE (JVM)

INSTRUCTION SET ARCHITECTURE

MACHINE STRUCTURE (MICRO ARCHITECTURE)

LOGIC / NETWORK / CACHE DESIGN

CIRCUIT / DEVICE DESIGN

F
O

C
U

S
/S

C
O

P
E

 O
F
 J

A
V

A

D
A

T
A

F
L
O

W
 M

A
C

H
IN

E

Figure 11 Machine Architecture Layers

Chapter 3 provided a basic description of several DataFlow machines in addition

to specific similar machine structures. In addition some key characteristics of the Java

Virtual Machine have been described. Chapter 5 provides an analysis of Java Benchmarks

demonstrating the characteristics of two sets of benchmarks and how a Java DataFlow

machine might provide an effective execution platform. This chapter provides an overview

description of this machine while Chapter 6 provides additional details. Note that since

 39

this machine description is still at a high level, there are some technology related decisions

and details that are not fully defined. Examples of these are specific bus widths, tag widths,

and machine state storage sizes. The advantage of combining the General Purpose

Processor with the DataFlow Fabric is that when DataFlow technology limitations are met,

processing can still proceed using the GPP.

Figure 12 shows the overall machine configuration with the 3 types of networks,

the DataFlow fabric, the GPP, and Memory. To address the challenges of global wiring

not scaling as technology [8], a Globally Asynchronous / Locally Synchronous (GALS)

[48, 49] design is utilized. Each Instruction Node can have its own synchronous clock to

control processing functions; however data transfers between Instruction Nodes can be

asynchronous and can proceed a different rates on each network and on sections of each

network. Furthermore, the transfer protocols of the serial networks can be optimized for

the lack of requirement for routing to reduce data transfer delays.

 40

Figure 12 JavaFlow System Diagram

 41

SECTION 4.2 - INSTRUCTION NODES

The basic element in the DataFlow Fabric is the Instruction Node. Each Instruction

Node has a unique (x, y) address in the Fabric and contains the following components:

 Instruction Execution Unit. This is the actual processor that executes the

decoded instructions in the node. This unit interfaces to both the routers

and to the Instruction Data Unit(s).

 Instruction Data Unit(s). Each Instruction Node has one or more Instruction

Data Units which house the actual ByteCode instructions and all the

associated state information for the ByteCode instruction. Figure 13 shows

the resources for each Instruction Execution Unit which are explained as the

overall instruction processing is described.

 Serial Network Router. The interface to the forward and reverse serial

networks which connect each Instruction Node and is used to manage the

DataFlow Fabric and insure proper control flow is maintained with the

DataFlow machine structure. Serial Tokens are used to communicate

between Instruction Nodes on behalf of each Instruction Data Unit.

 Mesh Network Router. The interface to each of the four adjacent Instruction

Nodes and the function that sends mesh messages throughout the DataFlow

Fabric.

 GPP/Memory Interface. For selected Instruction Nodes this function is the

interface between the Instruction Execution Node and the high speed ring

networks to carry memory data and request/responses to the GPP

 42

Figure 13 Instruction Data Unit Resources

 43

Each Instruction Data Node knows its own physical (x, y, p) Mesh address where

‘p’ represents the number of the Instruction Data Unit internal to the Instruction Node.

When instructions are loaded they know their own serial address (offset from the first

instruction of the method) and the addresses of the next instructions to be executed. If the

next instruction is sequential, then the next instruction is the current instruction number

incremented by one. If the instruction has a non-sequential next address, then the next

serial address is included as part of the instruction. In the architecture for the ByteCode

instructions, each instruction may have variable lengths, and instruction addressing is based

on byte addresses in the loaded instruction stream. At this level of the JavaFlow design,

all instructions are a single length and the linear addresses are independent of the size of

the ByteCode instructions. Each Instruction Data Unit has its own unique serial address

which is the absolute number of the ByteCode instruction.

The sourceLinearAddresses contained in the Instruction Data Unit are the addresses

of instructions that transfer control to that Instruction Data Unit. These

sourceLinearAddresses are used in the address resolution where the operand addressing is

translated to the DataFlow Fabric addresses. The resulting set of target DataFlow addresses

are stored in an array in the Instruction Data Unit. This address resolution process is

described in Section 6.2.

The various status items are set when specific Serial and Mesh messages arrive and

when the instruction actually executes or ‘fires.’ The ‘pop’ value is the number of stack

elements that are consumed by the instruction. The push value is the number of stack

(DataFlow) elements that are produced by the instruction. The’PopsReceived’ value is a

count of the number of data elements received so that when ‘pop’==’PopsReceived’, the

instruction can fire.

 44

The simplest case would be for each Instruction Node to house only a single

ByteCode instruction. This would minimize any run time instruction decode and would

allocate all resources in the Instruction Node to a single Instruction Execution Unit.

However like previous distributed DataFlow machines each node is expected to house n

instructions. A simple and reasonable value for this value is 64, although technology

decisions may allow larger or smaller numbers. Note that these instructions could be from

different methods or even different threads, as instructions are tagged with thread-method

identifiers. The larger the number of instructions housed in each Instruction Node, the

more complicated the control at each element becomes. If the number of instructions

housed in each element were reduced to 1, then there would be more opportunity for single

thread parallelism but with potentially longer mesh network transit times between

Instruction Nodes. Allowing the number to grow to a very large number of instructions

creates an implementation more similar to a modern multi-core machine where each core

executes an entire instruction stream.

Instruction Nodes in the DataFlow Fabric can be heterogeneous. For example, for

each 10 Instruction Nodes, 6 could be general purpose logic/arithmetic, 1 floating point, 2

storage, 1 control. Using a heterogeneous set would increase the transit times for data over

the mesh network as would be distributed over a larger area of the chip. Results of methods

loaded in this specific configuration are included in the performance analysis section of the

Results: Chapter 7.

The goal of the JavaFlow machine is to implement the maximum number of

Instruction Nodes consistent with technology ground rules. In addition, housing more

instructions may be achieved with reasonable numbers of Instruction Data Units inside

each Instruction node. For simplicity and to stress the DataFlow Fabric, the simulations

in Chapter 7 utilize a single Instruction Data Unit in each Instruction Node.

 45

SECTION 4.3 - LIMITATIONS

One of the key advantages of the JavaFlow machine is that the state data for each

method is distributed throughout the DataFlow Fabric. Since this state data is finite and

small, there are several side effects that may limit some of the methods that can be

deployed. Like the TRIPS machine, each method must execute atomically. This means

that the Anchor node, which is the first node of a method may not allow any subsequent

execution of the method until the current thread exits. Furthermore, recursive calls are not

allowed. A thread may be executing multiple methods at any given time, but each

individual method may have only one thread active at a time.

The ByteCode instruction set has a series of special instructions that cannot be

directly executed by the elements in the DataFlow Fabric. These special instructions must

send messages to the GPP for assistance. The instruction mix data indicates that this should

occur infrequently and have minimal impact on system performance. Specific instructions

are described in Section 6.3.

 46

Chapter 5: Benchmarks

SECTION 5.1 - OVERVIEW

Prior to the detailed definition of the JavaFlow machine, it was necessary to

understand the basic structure of Java Methods in real applications and to determine if a

DataFlow structure could be defined and optimized for their execution. The benchmark

analysis had several major components:

 Size of method

 Each method’s effect on the overall benchmark performance

 Dynamic instruction mix

 Static instruction mix

 Number of jumps (control flow events)

 Maximum register and stack requirements for each method

The size of each method will determine if the entire method could be resident in

the DataFlow fabric. With each method being invoked a different number of times during

the total benchmark, some selected methods were expected to account for the majority of

the execution time of the overall benchmark. The following results demonstrated a

surprisingly small number of methods had major leverage in the overall benchmark

performance. The dynamic instruction mix will have a major role in the overall method’s

performance, while the static mix will determine which computing elements are needed to

load the method.

Heterogeneous nodes in the DataFlow fabric will allow the best optimization of

silicon real estate. For example a floating point arithmetic node would be significantly

larger than an integer arithmetic or logical node. Therefore the static instruction mix allows

the establishment of the proper number of each nodes in the fabric.

 47

As described in the following section, branches and especially backwards branches

in the control flow require special handling in the DataFlow Fabric. The number and

location of these branches have higher impact on the method’s performance than in a

typical von Neuman processor.

Finally, a characteristic of the Java language is that the maximum number of

registers and stack elements are known before the ClassFile is loaded. Since one of the

key aspects of the JavaFlow machine is to maintain machine state throughout the DataFlow

Fabric, this number is key to defining some of the intermediate storage requirements that

certain nodes must possess.

While an understanding of these parameters are key to the overall effectiveness of

the JavaFlow machine, unusual values for some methods means that those methods must

be executed in a more traditional manner utilizing the General Purpose Processor.

The Standard Performance Evaluation Corporation (SPEC) [50] publishes a series

of performance benchmarks for use in a wide variety of computing applications. For the

JVM implementation of the JavaFlow machine, the SpecJVM98 and SpecJVM2008

benchmarks were utilized. The older SpecJVM98 was used to compare against existing

literature while the modern SpecJVM2008 was also analyzed. These benchmarks provide

a series of Java Class files to measure the performance of the JVM. In addition each release

provides a ‘harness’ which executes the series of benchmarks and reports results.

Appendix D provides lists of all the included and excluded benchmarks from each set along

with brief descriptions of each benchmark.

 48

SECTION 5.2 - DYNAMIC MIX METHODOLOGY AND RESULTS

To both develop design parameters for the JavaFlow machine and to evaluate its

performance, an existing JVM was instrumented to provide analysis of both SPEC JVM

benchmarks. JAMVM [51] is a relatively small JVM offering both an interpreter and JIT

variant. Release 1.5.3 was modified to collect method usage and ByteCode instruction mix

information. JAMVM uses the GNU Classpath code which results in the reported

benchmarks being a subset of the total SpecJVM2008 set [52].

The methodology of this analysis was to establish a 256 element array for each

method signature which was executed. Each element in the array is a counter for the

corresponding ByteCode instruction. These arrays are generated while the program is run

and then processed after the benchmark completes to generate the data presented here. For

the primary analysis, the JAMVM machine was used in its interpreter mode and the

benchmark configured to run a single thread. The SPEC2008 runs were run only for 2

iterations and therefore are not fully compliant, but since only mix data was being

generated, cache warmup characteristics were not critical. Also the dominant processing

was in the actual benchmark code even though the ‘harness’ methods were also included

in the analysis. This may skew the number of methods invoked, but the mix analysis

remains valid.

Since this analysis was focused on capturing significant amounts of instruction

executions over several iterations of each benchmark, trace data was not gathered. This

results in assumptions being made in the Results: Chapter 7, regarding branch behavior.

Based on work by Radhakrishnan [53] and confirmed with this analysis, the

majority of the total number of ByteCode instructions executed are found in a small number

of methods invoked in the benchmark. Table 1 shows selected SPEC benchmarks with the

total instructions executed; the total number of methods utilized; and finally the number of

 49

methods that encompass 90% of the number of instructions executed. There is no hard

scientific rationale for choosing the 90% number for the data in the last column in Table 1.

The number of methods contributing to the 90% of the overall performance appear to be

small enough to analyze more completely, and results in future Sections shows that these

will fit inside a DataFlow Fabric.

Note that the more modern SpecJVM2008 benchmarks have fewer methods at the

90% level than SpecJVM98, and that all 5 of the scientific benchmarks have only 1 or 2

methods which determine the overall performance.

The implication of this result is that deploying a few types of methods in an

application to a special purpose hardware subsystem like the DataFlow Fabric can have a

significant effect on the overall performance. This is the same strategy which is used by

JIT compilers which focus on compiler optimizations on only those methods with highly

repetitive execution.

 50

Table 1 Method Utilization in SPEC Benchmarks

Table 2 shows the dynamic instruction mix for those methods comprising the 90%

of the execution cycles of the benchmarks. This is the dynamic mix that would be executed

in the DataFlow fabric.

 51

Table 2 Dynamic Instruction Mix of 90% Methods

Analysis of the dynamic instruction mix is key to JavaFlow performance since one

of the follow on enhancements to the JavaFlow machine is an expected performance

advantage through reduction of ByteCode instructions. This process of folding has been

demonstrated [18], and due to the nature of the data flow machine, instructions moving

data to/from the stack and local storage could be eliminated directly. Also stack movement

instructions could be eliminated. The analysis reported in Chapter 7 does not account for

this folding enhancement.

The ‘Locals+Stack’ column which represents 26% to 54% of the total instructions

are all candidates for being combined or ‘folded’ into other instructions. This is a suggested

 52

follow-on enhancement described in Section 6.4. The arithmetic instructions are split by

fixed and floating point to understand allocation of arithmetic resources. The

SpecJVM2008 benchmarks utilize fewer calls than the older SpecJVM98 benchmark.

The ‘Constants-Stg’ represents constants coming from the local variable pool and

can be unordered accesses to memory where the larger number of array and field memory

operations must be ordered. The ‘Object+Special’ instructions represent a small number

of operations that require the support of the general purpose processor.

To further amplify the point about a small number of methods contributing to a

major percentage of the performance, Table 3 and Table 4 show the contribution to the

performance of the top 4 methods in both the SpecJvm2008 and SpecJvm98 benchmarks.

The classes and methods are listed with the percentage for each method. The percentage

to the right of the table is the sum of these 4 methods against the total number of operations

executed in each benchmark. There is a wide range, however in 7 of the 14 benchmarks,

the top 4 methods account for over 80% of the instructions, and in 3 benchmarks, a single

method accounts for 99% of the performance.

 53

Table 3 SpecJvm2008 - Top 4 Methods

BM Class-Method Total Ops % Top 4

SpecJvm2008 2.82E+11

9.96E+09 55%

spec/benchmarks/compress/Compressor .compress 2.59E+09 26%

java/util/zip/CRC32 .update 1.16E+09 12%

spec/benchmarks/compress/Decompressor .decompress 9.20E+08 9%

spec/benchmarks/compress/Compressor .output 8.22E+08 8%

1.85E+10 83%

gnu/java/math/MPN .submul_1 4.58E+09 25%

gnu/java/security/hash/Sha160 .sha 4.47E+09 24%

gnu/java/security/hash/Sha256 .sha 3.57E+09 19%

gnu/java/math/MPN .mul 2.71E+09 15%

1.90E+10 31%

javazoom/jl/decoder/LayerIIIDecoder .dequantize_sample 1.76E+09 9%

javazoom/jl/decoder/LayerIIIDecoder .inv_mdct 1.55E+09 8%

javazoom/jl/decoder/huffcodetab .huffman_decoder 1.32E+09 7%

javazoom/jl/decoder/LayerIIIDecoder .hybrid 1.31E+09 7%

8.81E+09 96%

spec/benchmarks/scimark/fft/FFT .transform_internal 7.69E+09 87%

spec/benchmarks/scimark/fft/FFT .bitreverse 4.78E+08 5%

spec/benchmarks/scimark/utils/Random .nextDouble 1.67E+08 2%

spec/benchmarks/scimark/fft/FFT .inverse 1.01E+08 1%

9.26E+10 100%

spec/benchmarks/scimark/lu/LU .factor 9.18E+10 99%

spec/benchmarks/scimark/utils/Random .nextDouble 1.67E+08 0%

spec/benchmarks/scimark/utils/kernel .matvec 1.26E+08 0%

spec/benchmarks/scimark/utils/kernel .CopyMatrix 8.61E+07 0%

1.72E+10 99%

spec/benchmarks/scimark/utils/Random .nextDouble 1.33E+10 77%

spec/benchmarks/scimark/monte_carlo/MonteCarlo .integrate 3.65E+09 21%

gnu/java/math/MPN .submul_1 2.99E+07 0%

gnu/java/security/hash/Sha160 .sha 2.02E+07 0%

3.80E+10 100%

spec/benchmarks/scimark/sor/SOR .execute 3.75E+10 99%

spec/benchmarks/scimark/utils/Random .nextDouble 1.67E+08 0%

spec/benchmarks/scimark/utils/kernel .RandomizeMatrix 6.29E+07 0%

gnu/java/math/MPN .submul_1 2.99E+07 0%

3.80E+10 99%

spec/benchmarks/scimark/sparse/SparseCompRow .matmult 3.75E+10 99%

spec/benchmarks/scimark/utils/Random .nextDouble 1.67E+08 0%

spec/benchmarks/scimark/sparse/SparseCompRow

.measureSparseMatmult

5.78E+07 0%

spec/benchmarks/scimark/utils/kernel .RandomVector 4.20E+07 0%

scimark.sor.large

scimark.sparse.large

compress

crypto.signverify

mpegaudio

scimark.fft.large

scimark.lu.large

scimark.monte_carlo

 54

Table 4 SpecJvm98 - Top 4 Methods

A final piece of information derived from the dynamic mix analysis involved the

utilization of ‘_Quick’ instructions. These instructions referenced in Section 3.6 are not

part of the official JVM definition but are utilized by interpreters to optimize the

performance of storage instructions. Specifically these instructions include the actual

pointer to data after the process of resolving this pointer by accessing the Constant Pool

and any other Heap storage management functions have been performed. The JavaFlow

machine simulation is based on the use of these resolved addresses, so it is key to

SpecJvm98-100cmd 3.02E+10

1.13E+10 76%

spec/benchmarks/_201_compress/Compressor .compress 3.96E+09 35%

spec/benchmarks/_201_compress/Decompressor .decompress 2.65E+09 24%

spec/benchmarks/_201_compress/Compressor .output 1.01E+09 9%

spec/benchmarks/_201_compress/Input_Buffer .getbyte 9.41E+08 8%

1.69E+09 43%

spec/benchmarks/_202_jess/jess/Node2 .runTests 2.15E+08 13%

spec/benchmarks/_202_jess/jess/ValueVector .equals 1.94E+08 12%

spec/benchmarks/_202_jess/jess/Value .equals 1.82E+08 11%

spec/benchmarks/_202_jess/jess/Token .data_equals 1.34E+08 8%

3.27E+09 84%

java/lang/String .compareTo 1.35E+09 41%

spec/benchmarks/_209_db/Database .shell_sort 8.89E+08 27%

java/util/Vector .elementAt 3.15E+08 10%

java/util/Vector .checkBoundExclusive 1.80E+08 6%

1.08E+10 62%

spec/benchmarks/_222_mpegaudio/q .l 4.70E+09 43%

spec/benchmarks/_222_mpegaudio/q .m 8.07E+08 7%

spec/benchmarks/_222_mpegaudio/lb .read 6.30E+08 6%

spec/benchmarks/_222_mpegaudio/cb .Ä£ 5.30E+08 5%

1.80E+09 48%

spec/benchmarks/_205_raytrace/OctNode .Intersect 3.44E+08 19%

spec/benchmarks/_205_raytrace/Point .Combine 2.00E+08 11%

spec/benchmarks/_205_raytrace/OctNode .FindTreeNode 1.98E+08 11%

spec/benchmarks/_205_raytrace/Face .GetVert 1.22E+08 7%

1.29E+09 17%

spec/benchmarks/_228_jack/RunTimeNfaState .Move 7.41E+07 6%

spec/benchmarks/_228_jack/TokenEngine

.getNextTokenFromStream

5.11E+07 4%

java/lang/String .<init> 5.07E+07 4%

java/util/Hashtable$EntryEnumerator .nextElement 4.71E+07 4%

_227_mtrt

_228_jack

_201_compress

_202_jess

_209_db

_222_mpegaudio

 55

understand the ratio of their use in the dynamic mix versus the original instructions that

would require lookup actions.

Table 5 shows that 97% and 99% of the dynamic storage access instructions have

been resolved and executed as ‘_Quick’ instructions. This provides assurance that the

assumptions in the Results: Chapter 7 are valid by excluding the time to resolve the

addresses from the overall execution time. Note that in the machine description, the

assertion is made that the distributed processing capability of the JavaFlow machine can

resolve these addresses more effectively than traditional means is key to the continued use

of cached methods with different objects that would require additional translations.

Table 5 Impact of Quick Instructions

Benchmark Total Ops Storage Base Storage Quick Percentage

SpecJvm2008 2.82x1011 3.38x108 1.08x1010 97%

SpecJvm98 3.02x1010 3.83x107 5.90x109 99%

SECTION 5.3 - STATIC MIX METHODOLOGY AND RESULTS

The generation of static mix data along with other control and dataflow analysis

was conducted on the class files of the benchmarks. Since the class file format is complex,

three tools were utilized to extract information from the archive files (JAR files) from the

benchmarks:

1. BCEL [54] (Byte Code Engineering Library)

2. ASM [55] from the ObjectWeb Consortium

3. JAVAP – Oracle Java ClassFile disassembler which is part of the Oracle

Java Development System.

 56

The first two tools are Java Programs which accept Java ClassFiles as input and

provide as series of analysis capabilities. Each also provides the opportunity to modify the

ClassFile which can be the final stage of an optimization process. The newer, ASM system

uses either an inheritance pattern or a delegation pattern to analyze and manipulate the Java

ClassFiles. The JAVAP program simply outputs the disassembled ByteCode instruction

stream and analysis was done with external software written for this project.

The static analysis performed on the benchmarks has primarily used both the ASM

and the JAVAP software. In each case the class files were translated into readable

assembly language files that could be processed. The ASM system outputs to the Jasmine

[56] Java assembler format while JAVAP outputs to human readable format only. The

Jasmine language which is described in Meyer’s book is a way to learn and manipulate

Java ByteCode statements without the complexity of the class file format. In both cases,

analysis software was written to consume the output text files.

The goals of this part of the static benchmark analysis were to analyze each of the

Java Methods in the benchmark, while focusing on those methods which comprise 90% of

the performance impact as shown by the previous work. The desired results included static

instruction mix, maximum stack and local variable usage, and control flow information

associated with the number of basic blocks in the method and the number of back branches.

Back branches are the result of loops and must be handled specially in the JavaFlow

machine, so the number of these are key to the overall system performance. Finally, some

data flow analysis was performed to understand the amount of stack information which is

‘live’ (valid) between basic blocks of code. Again, the JavaFlow machine would require

some special handling for situations like this.

57

Table 6 Static Mix Analysis

The instructions have been grouped into 4 primary types which may be the types

of heterogeneous elements in the DataFlow Fabric. The detailed results are shown for the

methods that comprise 90% of the performance as described in the previous analysis for

each benchmark and then summarized for the two benchmark groups. The conclusion line

shows an approximate average of all the data indicating the mix of elements that should be

implemented in the DataFlow Fabric, assuming that all homogeneous elements was

impractical.

The final column of Table 6 shows the total number of instructions in each of these

benchmarks. Notice that of the 14 benchmarks, 9 have instruction counts less than 1000,

while 5 have greater than 1000 instructions. Depending on the expected level of multi-

threading, it appears reasonable that each of the 9 benchmarks could be resident, and

Combined Static Mix Numbers:

Benchmark %Arith %Float %Control %Storage Total Ops

SpecJvm2008 69% 14% 5% 19% 12,652

compress 63% 11% 14% 23% 766

crypto.signverify 91% 37% 1% 8% 2,998

mpegaudio 62% 7% 5% 24% 8,082

scimark.fft.large 73% 11% 7% 11% 337

scimark.lu.large 69% 7% 12% 15% 162

scimark.monte_carlo 51% 5% 14% 23% 110

scimark.sor.large 70% 9% 8% 14% 111

scimark.sparse.large 64% 7% 17% 15% 86

SpecJvm98-100cmd 55% 3% 15% 23% 10,083

_201_compress 65% 11% 11% 24% 783

_202_jess 53% 2% 28% 18% 844

_209_db 63% 8% 16% 22% 209

_222_mpegaudio 55% 2% 3% 28% 4,169

_227_mtrt 50% 0% 28% 16% 1,917

_228_jack 55% 5% 23% 21% 2,161

Total 63% 9% 9% 21% 22,735

Conclusion: 60% 10% 10% 20%

 58

perhaps all simultaneously. If the entire 23K instructions were to be resident in the

DataFlow Fabric, then the approximate cube root of the total would yield a 30 by 30

element fabric with each Instruction Node holding 30 instructions. This would support

27,000 resident instructions.

Finally, although the 90% of the performance is driven by 23,000 instructions, the

total number of static instructions in all benchmarks number 128,929. That means that

20% of the static instructions account for 90% of the dynamic performance.

SECTION 5.4 - DATAFLOW AND CONTROLFLOW ANALYSIS

The final stage of the benchmark analysis focused on the DataFlow and

ControlFlow of the top 10% of the Spec benchmarks. The objective is to translate the

ByteCode methods into a DataFlow graph and understand the way data is transferred

among the instructions and to identify any serious problems that may preclude an optimal

design of the JavaFlow machine. This analysis was conducted by implementing a

simulation of the JavaFlow class loader so that the ByteCode methods were actually

installed into a DataFlow fabric and then messages passed serially up the control flow of

the method to resolve addresses. This is the translation required to implement the

DataFlow representation of the program when starting with the procedural method. Note

that the specific implementation of this process is described in detail in Section 6.1 where

the JavaFlow machine description is provided.

The JavaFlow machine handles register transfers via a serial bus to order their read

and write actions based on the control flow of the machine. A challenge is the stack

variables that may be passed to multiple forward destinations (e.g., a dataflow merge) or

one or more back destination (e.g., dataflow back). Dataflow merges can be handled by

 59

implementing multiple destination addresses in each instruction, but back merges present

a serious problem.

A DataFlow merge is where a DataFlow instruction side has 2 source instructions.

A DataFlow back merge is a DataFlow merge where one of the source instructions is

further down the control flow of the instruction stream. The only way this could possibly

occur is in with a jump back. However, with the restrictions on the stack described in

Section 3.6, it is unlikely that a valid Java program could create such a condition. However,

the analysis was performed to insure this condition.

Table 7 shows the results of the JavaFlow class loader simulator in the area of

branches, merges and back branches. Note that in the benchmarks, there are NO back

merges which means that only registers are used to bring data back through the control

flow. This might be expected from both compiler design experience and the restrictions

on the Java Virtual Machine. Compiler optimizations typically utilize registers for

transferring data between basic blocks while using stack variables for transfers within

blocks. Furthermore the JVM restricts all inputs to a block to have the same stack signature

which further enforces the above compiler design.

The ‘Total Instructions’ column is similar to Table 6, and the ‘Forward’ and ‘Back’

columns count the number of control flow branches in each method. (Note: As in previous

tables, this is a summary of all the methods within each benchmark which comprise the top

10% of the dynamic performance). The ‘Total DFlows’ column represents the number of

times translations are required from the procedural steps to the DataFlow instructions. The

‘Total DFlows Merge’ are examples of where stack variables need to be sent to multiple

downstream branches. The key element in this analysis is that there are no instances of

back merges ‘Total DFlows Back.’

 60

Finally the ‘Total Cycles’ column is the result of an initial simulation of the address

resolution process and shows that by using the serial busses described in the next section,

that this critical process can be completed in approximately twice the number of byte code

instructions loaded.

Table 7 Benchmark DataFlow and Control Flow Analysis

SECTION 5.5 - SUMMARY

Table 8 summarizes the analysis which shows the performance of complex

benchmarks is dependent on a small number of methods, and further investigation showed

that the number of instructions, registers, and branches would fit within the DataFlow

fabric.

Benchmark Forward Back
Total

Insts

Total

Cycles

Total

DFlows

Total

DFlows

Merge

Total

DFlows

Back

SpecJvm2008 320 116 12652 25552 10659 17 0

compress 47 10 766 1591 572 2 0

crypto.signverify 19 15 2998 6034 2628 0 0

mpegaudio 218 71 8082 16275 6847 15 0

scimark.fft.large 9 6 337 686 270 0 0

scimark.lu.large 10 5 162 331 123 0 0

scimark.monte_carlo 8 1 110 228 83 0 0

scimark.sor.large 4 4 111 230 81 0 0

scimark.sparse.large 5 4 86 177 55 0 0

SpecJvm98-100cmd 492 71 9885 20255 7423 32 0

_201_compress 43 7 783 1602 600 0 0

_202_jess 64 13 645 1358 384 2 0

_209_db 15 5 209 435 141 2 0

_222_mpegaudio 52 13 4169 8429 3682 10 0

_227_mtrt 119 8 1917 3905 1215 0 0

_228_jack 199 25 2162 4526 1401 18 0

Sum 812 187 22537 45807 18082 49 0

 61

Table 8 Analysis Summary

Dynamic Methods Executed 18,479

Dynamic Instructions Executed 2.7*1011

Methods taking 90% total Time 181

Methods Analyzed 160

Avg. Inst/Method 71

Avg. Registers/Method 6

Static Mix

Arithmetic 60%

Floating Pt 10%

Control 10%

Storage 20%

Average # Forward Branches 4.6

Average # Back Branches

1

The analysis preceding the design of JavaFlow is based on the use of a set of

industry standard benchmarks to understand both the dynamic execution profile of Java

methods and their ByteCode instructions along with static analysis of the same methods.

A small number of methods comprise a significant percentage of the instructions executed

in each benchmark, and some of the more obscure Java ByteCode instructions are not

present in the code. DataFlow and ControlFlow analysis demonstrates that entire methods

 62

can be housed in the DataFlow fabric with need for assist from the General Purpose

Processor to handle special control flow issues.

 63

Chapter 6: JavaFlow Detailed Description

SECTION 6.1 - FUNCTIONAL UNITS

This section of the Machine Description goes into more detail of each of the

functional units of the JavaFlow machine. In all subsequent descriptions of the resources

of the JavaFlow machine, Java Class and Enum structures are used to describe the

components. For example, both the Serial and Mesh Network have a field in their messages

for commands. A summary of the command values is described by a Java Enum as in

Figure 14. The use of these commands is described in the following sections.

64

Figure 14 JavaFlow Network Commands

Similarly both Serial and Mesh messages also contain a field describing the type of

data in the payload which is shown in Figure 15. This is key to the strongly typed aspect

of Java and insures that no dangerous pointer manipulation is allowed. There may be a

need to expand this value to add qualifiers to the reference type to protect against aliasing

 65

which is where a class is reassigned to another class, and there may be both memory

conflicts and possible type violations.

Figure 15 JavaFlow DataTypes

Serial Network

The Serial Network is the key element of the machine which preserves the

necessary control flow ordering of processing functions while allowing other operations to

proceed with only data flow dependencies. It is also critical to the management of the

DataFlow Fabric by loading instructions and resolving addresses. The key data transfer

element in the Serial Network is a Token which is a specific type of Serial Message.

Serial Messages are described in Figure 16. As was described in the section on

Java, each ByteCode instruction has only a linear address and in the case of jump and GoTo

instructions, the linear address of the taken path. All other paths implicitly proceed to the

next sequential instruction in the linear address space. The only routing function on the

Serial Network is to send a message to the next Instruction Node in the linear sequence.

 66

Figure 16 Serial Message Structure

Therefore the Serial Messages do not have to carry the larger x, y, p coordinates of

the DataFlow Mesh Fabric. A special ‘toLinearAddress’ of ‘Next’ would be used for most

communications. Control flow changes would then use the actual target address contained

in the instruction for the ‘toLinearAddress.’

In all cases the instanceID tag must be included in messages so that only those

instructions involved in the current Thread, Class, Method, and Instance receive the

command and data. Since this network is used to propagate all local registers to Instruction

Nodes, the target register must be identified. For efficiency, this value may be combined

with the command field. Finally a type field is include for run time validation. This insures

that data of the proper type and width is being directed to specific Instruction Nodes, and

allows exceptions to be generated in the case of mismatches.

Finally the payload of the message is envisioned to be a 32 bit element. Some

technology implementations might support a 64 bit payload in a single transfer, but more

likely any 64 bit entries would be broken in to multiple messages with the special command

of SUBSEQUENT_MESSAGE used. Since both the Serial and DataFlow Mesh Networks

 67

used fixed routing schemes, there is no chance that the ordering of two consecutive

messages from Node ‘a’ to Node ‘b’ would be violated.

There are a series of Tokens used for key tasks performed in the DataFlow Fabric.

Tokens are defined primarily by the command field. The major groups of Tokens along

with specific examples are:

 Instruction Load and Address Resolution

o INSTRUCTION_TOKEN. The data element(s) that actually

contains instructions that are loaded in to the Instruction Data Unit

of Instruction Nodes.

o ADDRESS_RESOLUTION_TOKEN. The set of commands to

resolve addresses listed in Figure 14.

 Instruction Execution. These are described in the subsequent sections and

are used to execute each instruction.

o HEAD_TOKEN

o MEMORY_TOKEN

o REGISTER_TOKEN

o TAIL_TOKEN

 Special Conditions and Management. These were not simulated, and are

part of the overall management of the DataFlow Fabric and in handling

special conditions

o EXCEPTION_TOKEN

o QUIESE_TOKEN. (To stop execution to allow Garbage collection

or other special event.)

 68

o RESETADDRESS_TOKEN. Part of the process of re-accessing the

Constant Pool to get new pointers after a Garbage Collection event.

Figure 17 shows the way the Forward and Reverse Ordered Networks interface to

the Instruction Node. The key aspect of this configuration is that all serial messages can

interact with all Instruction Nodes for the specific Thread Class-Method-Instance being

executed at a given time. Detailed message sequences are described in both the section on

DataFlow Fabric Management where instructions are loaded and unloaded from the

system, and again in the section describing the instruction execution.

Note that the Serial Network connects all nodes in the DataFlow Fabric. The top

instruction in each method would be loaded immediately after the anchor node. Each

instruction when loaded would have special flag indicating whether it was the bottom

instruction of the method so that the Serial Network for the method would appear as a loop.

As the size of the DataFlow Fabric increases, creative topologies can be explored on how

to most effectively route the Serial Network to maximize both the utilization of all nodes

and achieve maximum performance.

 69

Figure 17 Serial Network Interface

 70

DataFlow Fabric (Mesh Network)

The mesh network shown in Figure 18 is used for the traditional DataFlow

Producer-Consumer data transfers. X-Y routing is used to insure no deadlocks. Unlike

many on-chip networks, the length of data transfer is usually small. Initial simulations

showed that a simple mesh performed better than a toroid if the addresses were assigned

programmatically. The automatic routing in the JavaFlow should still work best with a

simple network, although follow-on simulations with more complex structures may

eliminate data edge transfer delays.

Since the routing function in the Mesh Network is more complex, it is envisioned

that the data would move more slowly than in the Serial Network. Sensitivity to these

clock relationships are part of the performance analysis in Chapter 7. Since the Serial

Network is used to maintain appropriate control flow ordering and loops involve a control

flow stall, the number of messages destined for a specific mesh node is finite and small.

This means that a message level ACK protocol is not necessary which enhances

performance and relieves network congestion.

 71

Figure 18 JavaFlow Mesh Network

 72

Memory – General Purpose Processor Interface

Selected elements are connected to rings that interface to the GPP and Memory.

Memory ordering is achieved through the MEMORY_TOKEN described in Section 6.3

which is sent on the forward ordered network.

This allows the memory subsystem to receive read and write requests in proper

order and to deliver resulting data back to the DataFlow elements. Memory subsystems

have received significant research and this design does not place any specific requirements

on this subsystem. Figure 19 shows the memory to the side of the DataFlow fabric;

however, it could be envisioned in the middle of the chip to achieve shorter paths to the

Load/Store Instruction Nodes. Vertical chip stacking could also be used to minimize the

delays between the memory and the consuming elements.

Identified by the ‘A’ in the node in the system diagram, Figure 12, one of the key

points of interface between the GPP and the DataFlow Fabric is a series of Anchor Nodes.

These are placed like normal Instruction Nodes, but likely closest to the GPP. They form

the anchor point for all methods and serve as the instruction load point between the Fabric

and the General Purpose Processor. All Serial commands sent to the downstream

Instruction Nodes are generated from these Anchor Nodes under distributed control of the

General Purpose Processor and the Anchor Node.

 73

Figure 19 Memory-General Purpose Processor Interface

SECTION 6.2 - DATAFLOW FABRIC MANAGEMENT

Loading a Method

Before a method can be loaded into the DataFlow Fabric, the General Purpose

processor must perform the initial functions for all Java classes [5]:

 74

1. Preparation

2. Verification

3. Resolution

There are series of verification steps that must be performed to insure the method

complies with the JVM architecture. The resolution step links the symbolic references

from Java Class files into references to addresses on either the JVM Method Area or Heap.

One way some JVM’s implement this address resolution is through ‘Quick’

instructions [5]. This process places the actual heap/method area offsets in the method

code for the specific instance. The use of the Serial Network and special commands to

load new pointers will allow resident methods to be executed for different instances of

Class objects without reloading the method.

A fundamental assumption regarding the JavaFlow machine is that since whole

methods can be loaded into the machine and kept resident for multiple Object Instances,

then the load time is not critical to the overall performance. In contrast, it is assumed that

management of the DataFlow fabric and GPP offload is more important, and hence the

loading and address resolution process is more relaxed than if the method or a portion of a

method had to be loaded for each execution.

Although the translation from control flow instructions to dataflow (Producer-

Consumer) instructions will be performed by the DataFlow Fabric, there are 2 steps that

can be performed by the General Purpose Processor to relieve some hardware from each

node. In addition to the opcode, the DataFlow node will need to know how many data

elements the instruction would ‘Pop’ from the stack and also how many elements it would

‘Push’ back onto the stack. In the case of all instruction except Calls, this is a direct

translation from the opcode. Calls have multiple ‘pops’ from the stack depending on the

signature of the called program. This can be determined from the ByteCode instruction in

 75

the Class File and requires analysis of the operand field of the instruction. The values of

‘pops’ and ‘push’ for each instruction are described in Appendix A.

Like a JIT (Just in Time) compiler, it is envisioned that a method would be executed

interpretively until it becomes clear that it is a candidate for deployment to the DataFlow

Fabric. Obviously other strategies can be used to decide which methods are deployed

when, and that is beyond the scope of this research.

There are three steps required to load a method and to resolve the addresses from

the original ByteCode stream to a Producer/Consumer DataFlow addressing scheme:

 Load the method into the DataFlow Fabric

 Send Source Linear Addresses down the serial network so that Instruction

Data Units know the control flow source.

 Send ‘Needs Requests’ up the serial network from each Instruction Data

Node to its source Instruction Data Node so that the Producer/Consumer

linkage can be established. (Note that in this case the information provided

to the source node is the mesh (x, y, p) address so that DataFlow routing

can be performed with the produced data.)

Loading a method from the General Purpose Processor memory is a serial process

of retrieving the resolved ByteCode instructions and sending them serially into the

DataFlow Fabric. Instructions are the payload of Serial messages with a command of

CMD_LOAD_INSTRUCTION. The Anchor node acts as the first interface point between

the General Purpose Processor and the Fabric. The Anchor node would likely have a DMA

like access to the memory subsystem so that it could retrieve the instructions in a manner

consistent with the DataFlow fabric to absorb the data. The only decision that the General

Purpose Processor must make is which specific Anchor Node to deploy the method.

 76

The Serial Network accepts each instruction and as it passes through an Instruction

Node, a decision is made whether the node is the proper match for the instruction and is

the node busy or not. Figure 20 demonstrates this process. The ‘greedy’ allocation process

means that a matched non busy node accepts the instruction, marks itself busy and then

continues to send subsequent instructions down the network. In Chapter 7, several

configurations are proposed including some with all nodes capable of accepting all

instructions (homogeneous nodes) and with nodes optimized to the static instruction mix

described in Chapter 5 (heterogeneous nodes).

 77

Figure 20 Loading a Method

After the instruction load process, all ByteCode instructions from the method are

resident in nodes of the DataFlow Fabric. Instructions know their own linear address from

the original stream, and the control flow modification instructions know the target linear

address of the taken path. Since the Serial Network can be used to send messages to just

the adjacent node, only those nodes that are non-sequential must be explicitly identified.

All other instructions implicitly proceed to the next sequential linear address. The Anchor

Node is made aware of the completion of this process by the bottom instruction in the

 78

method passing a TAIL_TOKEN message back up the Serial Network to be received by

the Anchor.

DataFlow Address Resolution

The next function in the loading process is to perform the translation from the

control flow oriented ByteCode instructions to a DataFlow Producer-Consumer system.

Although the descriptions will indicate actions performed by an Instruction Data Unit, in

all cases the Instruction Execution Unit performs these function on behalf of each

Instruction Data Unit.

The first step of this function is for each Instruction Data Unit with a non-adjacent

subsequent Instruction Data Unit to generate and send a message down the Serial Network

identifying itself. Since this is exclusively performed on the Serial Network, mesh

addresses are not necessary at this point. The process is initiated from the Anchor Node

(GPP) via a CMD_SEND_ADDRESSES_DOWN message.

Note that since some targets can be behind the existing instruction, either the Up

Serial Network could be used or the Network must wrap at the bottom instruction. In line

with the execution strategy to be described in the next section, the simulation of these two

processes use the CMD_SEND ADDRESSES_DOWN followed by a TAIL_TOKEN and

monitor the receipt of the TAIL_TOKEN back to the Anchor node indicating a complete

cycle of all instructions.

At this point in the process each Instruction Data Unit has an awareness that it has

at least one upstream source instruction and it also has explicitly received the address of

any jump or GoTo instructions that would transfer control to it.

Step two of the function now begins with the Anchor node sending the

CMD_SEND_NEEDS_UP. This command tells an Instruction Data Unit to generate as

 79

many messages as the ‘Pop’ value of the instruction and send messages up the Serial

Network. The critical factor in this process is that each instruction must send its messages

up before propagating any messages from below. This might stall the Serial Network or

require buffering at each node for these messages. Section 7.2 shows the average and

maximum buffer queues needed in the simulation of this process. In most cases the

‘toAddr’ field in the Serial message would a special value of ‘Previous Instruction.’ The

payload of these messages is the Mesh Address of the sending instruction. This is the

process of translating the stack ‘Pops’ in the normal ByteCode execution to Producer

DataFlow addresses in the upstream instructions. For nodes with ‘Pop’>1, the ‘Side’ value

is inserted into the Serial message so that the Producer knows which side of target to

address messages after execution.

If the upstream node has a ‘Push’ value, then the instruction captures the message

and uses the Mesh Address and Side for its target address. If the upstream instruction has

no ‘Push’ value or if the ‘Push’ value had been previously satisfied, then the message is

resent to the next upstream node.

Figure 21 provides an example of a very simple program and how the address

resolution process may be accomplished. The simple method receives 3 register values

and then adds them and places the result into register 4. In this example there are no

forward or backward jumps so all serial addressing is done using the ‘nextAddress’ or

‘previousAddress’ special destination codes.

 80

Figure 21 Simple Address Resolution Example

The first three iLoad ByteCode instructions load data from the corresponding

register number and will place it into the DataFlow Fabric. The iAdd instruction will pop

 81

2 values and push one result. The iStore instruction will pop one value and push none.

The return pops zero (void) and transfers back to the calling method.

When the command CMD_SEND_NEEDS_UP is received by each of the example

Instruction Data Units, a message is sent to the immediate upstream node for each pop

required. Instruction #5 which requires 1 pop will send a message to Instruction #4 who

produces 1 push. Based on this match, the curved link between the Instruction Data Units

#5 and #6 is created. Instruction #4 requires 2 pops and therefore sends 2 messages up the

network. The first message is seen by Instruction #3 whose push value is 1 and therefore

the linkage between #3 and #4 is established. When the second message from #4 is

received by instruction #3, the push has already been satisfied. Therefore the message is

forwarded to the source for #3, which is instruction #2. Since all messages must be sent

before any are transferred, instruction #2’s single push had been resolved with a link to

instruction #3. Therefore this second message from #4 must be sent further up the chain

until an open push is found. In this example, instruction #0 is finally found to have an open

push, and the linkage from #0 to #4 is established. While this example is trivial, it

demonstrates the key elements of the resolution process. The process becomes more

complicated with jumps back (loops) and DataFlow merges where Instruction Data Units

may have multiple source nodes. This requires a number of messages equal to the product

of the pops and the number of source nodes.

In the case of a DataFlow merge where an instruction has 2 or more upstream nodes,

then an additional complexity must be handled. As part of the message payload or possibly

another portion of the Serial message, there must be a ‘Branch ID’ tag. The results shows

this need be only a single bit in the analyzed methods, but the multiple sources must be

both sent messages and also those messages must be tagged indicating that they multiple

messages from a single node. As long as the paths are separate the ‘Branch ID’ tags are

 82

used to link addresses. These can pass through normal instructions and through ‘GoTo’

instructions. However when a jump instruction which is a control flow split, then only the

Branch ID==0 tag is propagated. This is based on the Java Virtual Machine restriction that

all paths to any instruction must have the same stack configuration.

Like the forward address resolution process, this should continue for a full cycle

around all the instructions. Analysis has shown that there are no back merges. That means

all dataflow references are forward in the existing data and according to JVM restrictions.

Checking for this might require a full cycle however.

At the end of this process each instruction which has any ‘Push’ value, has one or

more Mesh Addresses as the consumer for the data. Note that unlike other machines, these

‘Push’ addresses are generated automatically and not part of the instruction set stored in

the General Purpose Processor’s memory. This allows multiple fan out targets depending

on the resources of the Instruction Node. The DataFlow Results section demonstrates these

values.

There are 2 validation measures that can be performed to insure the initial ByteCode

instruction stream was valid. If any instruction with a non-zero ‘Push’ value has less

DataFlow targets than the ‘Push’ value then an error can be logged. Similarly if the top

instruction sends any requests for linkage to the Anchor node, another error could be

logged.

 83

Figure 22 DataFlow Address Resolution

Figure 22 demonstrates a more complex example of a code segment from the

method ‘gnu\java\math\MPN\sub_n([I[I[II)I.’ Linear instructions 32 through 44 are shown

with the original ByteCode inset and the resolved DataFlow addresses inside the

instructions. This example shows the effect of a dataflow merge as both instructions 40

and 42 push data to side one of instruction 43. Note that instruction 32 pushes a value for

side 2 of instruction 43 as part of the DataFlow merge.

 84

Given that the JAVAC compiler uses a strategy to maintain all interblock

communications with registers, it is hard to imagine a scenario when a valid merge back

would occur. If it is discovered, the method would have to be excluded from the DataFlow

Fabric or a design enhancement to translate this stack transfer into a pseudo register. The

complexity of this latter process is inconsistent with the minimalist strategy for the

JavaFlow machine.

For completeness, the following describes the values shown for each instruction in

the list in Figure 22:

 (x) Control direction where (0) is normal next instruction, (-) is a possible

jump back, and (+) is a jump forward.

 A1, A2, A3. A1 is the serial address of the current instruction, A2 is the

next instruction (not taken), and A3 is the next instruction (taken)

 >> A4, mb,s,i << For each push, A4 is the destination serial address, ‘m’ is

a flag with ‘M’ indicating a dataflow merge at the destination; ‘b’ is a flag

with ‘B’ indicating a back merge; ‘s’ is the side of the destination node; and

‘i’ is the Branch ID tag.

 ‘Pop’ and ‘push’ values for the current instruction

 Abbreviated instruction group

Initialization and Execution Start

After the method has been loaded and resolved, it is ready for execution. Each node

can enter the STATUS_READY state and await serial and mesh messages as part of the

execution process.

 85

Management and Cleanup

While the General Purpose Processor is not involved in the actual assignment of

instructions to specific nodes, it obviously has to have some idea about how many methods

are deployed and how they are being utilized. As mentioned in the initial section on Java,

one of its key advantages is JVM management of all machine resources such as both the

Method Area and the Heap. As Classes become de-referenced, then it is possible to remove

methods from the DataFlow Fabric. Assuming that the Class would not be re-loaded, the

GPP can issue the CMD_UNLOAD_INSTRUCTION to the Anchor node and this serial

message would propagate to all previously loaded instructions and make them free for use

in another method.

With multiple Anchor Nodes methods can be reasonably distributed across the

DataFlow Fabric and with the objective that the number of spanned nodes is in line with

the original measurements presented in Chapter 7. An observation point on this is that

unused Instruction Nodes are not necessarily a detraction from overall machine operation.

One of the objectives of the JavaFlow machine is to manage the power dissipation of the

system, and to that end nodes not housing instructions can have sections of the node

powered down to conserve power. Note that only the serial and mesh routers must be

active on all nodes and then only consume power when messages are routed through them.

In each Instruction Node, the instruction execution unit and any instruction data units can

be powered off if no instruction is loaded. This concept is a radical departure from

traditional processor performance optimizations. Note that the serial network router and

mesh network routers must remain powered due to their simplistic design, unless whole

contiguous sections of the chip are powered down.

 86

SECTION 6.3 - METHOD EXECUTION

The key strategy for executing the previously loaded instructions is to start a bundle

of tokens in the form of messages down the Serial Network. The first element in this

bundle is the HEAD_TOKEN. The HEAD_TOKEN is the ‘rabbit’ which leads the way

and is the primary translator between dataflow processing and control flow ordering. This

token proceeds as fast as possible through all nodes in the network until a possible control

flow change is encountered. Depending on the direction of the possible control flow

change, and when the decision is made, the token either proceeds to the target instruction

or is buffered at the jump or GoTo node.

The second token is the MEMORY_TOKEN which is used to achieve memory

ordering. The payload of this token is a sequential memory order number which is

incremented for each ordered memory operation and then handled by the memory

subsystem.

The next tokens are REGISTER_TOKEN types. These tokens contain the register

number along with the register data. Note that the invocation of a method has the calling

method place its parameters in the local registers of the called method. In the case of

methods that are class instances, register 0 is set to the pointer to the instance data in the

heap.

Finally the TAIL_TOKEN ends the token bundle. This TAIL_TOKEN may never

pass any other token, and it is often used as a barrier to handle branch backs in the method

execution.

Figure 23 shows this bundle as it is ready to propagate through a method.

 87

Figure 23 Token Bundle

Instruction Group – Arithmetic/Logical/Move Operations

The first type of operations to be described are the Arithmetic/Logical/Move

operations which consist of a significant number of the overall set of ByteCode

instructions. Note that while each opcode performs significantly different operations, the

way these work with respect to both the Serial and Mesh networks is the same.

 88

Once one of these instructions is made ready through loading or the completion of

a loop (which is described in the Control Flow Instructions), the only condition for the

execution or ‘firing’ is the receipt of the HEAD_TOKEN and the number of operands

identified by the opcode. When the HEAD_TOKEN arrives, the status of the instruction

is set to ‘headTokenReceived.’ All serial tokens except the TAIL_TOKEN are

unconditionally passed down the Serial Network. The TAIL_TOKEN is only passed after

the instruction fires.

The criteria for firing is that the number of received mesh messages matches the

number of ‘Pops’ expected by the instruction. Note that many of these instructions have a

‘pop’ value of zero which means the instruction can fire upon receipt of the

HEAD_TOKEN.

Mesh Messages bringing the number of ‘Pops’ to the node may occur at any time.

When they arrive, they are stored in the specified ‘side’ of the instruction and the

‘PopsReceived’ counter is incremented. If the ‘PopsReceived’ counter reaches the ‘Pop’

value of the instruction, and the instruction has not fired, the instruction continues to wait

for the HEAD_TOKEN so that both criteria are available for firing.

When the instruction executes or ‘fires’ the processing is performed on the input

data and the result data is then inserted into one or more Mesh Network messages for

routing to consumer nodes in the network. As described earlier, the array of destination

addresses is limited only by the buffering in each node as opposed to limitations on the

architectural definition of the instruction layout.

When the TAIL_TOKEN arrives, it is passed down the Serial Network if the

instruction has fired. If the instruction is still awaiting Mesh Data, then the TAIL_TOKEN

is held at the Instruction Node until it fires. This is to insure that the Token Bundle

represents the entire span of execution of the current method. Note that all Instruction

 89

Nodes must be capable of buffering or recreating the TAIL_TOKEN message for

subsequent passing after the node fires. Control flow nodes must buffer more tokens.

Instruction Group – Register Operations

Register operations in the ByteCode instruction set are responsible for transferring

data between the local registers and the stack which in the JavaFlow machine is the arcs of

the DataFlow Fabric. Local Read instructions take register data and send it to Mesh Node

consumers. Local Writes take data from the Mesh Node and transfer to the Serial Network

overwriting the value of register data. There is one special register instruction that simply

modifies a register by incrementing the value and re-sending down the Serial Network.

Like the all instructions, the HEAD_TOKEN must arrive before execution. Also the

TAIL_TOKEN cannot be propagated until the instruction fires.

Local Read Instructions

For Local Reads, by definition the HEAD_TOKEN arrives before any register

tokens. The instruction logic must compare the register number from each subsequent

REGISTER_TOKEN with the register required. When a match in the

REGISTER_TOKEN and the operand is achieved, then the state becomes

‘myRegisterTokenReceived’ and the Local Read instruction can fire.

In the case of the Local Read, the firing takes two actions:

 Like the Arithmetic instructions, one or more Mesh Messages are generated to

send the register data to downstream nodes.

 Since the data in the register is unaltered and is likely to be used subsequently,

the REGISTER_TOKEN must also be sent down the serial network.

 90

Since the only requirement for ‘firing’ is the receipt of the specific

REGISTER_TOKEN the REGISTER_TOKENS are never re-ordered as a result of a Local

Read Operation.

Local Writes

The Local Write operations are slightly more complicated in that two conditions

must be met for firing

 The receipt of the required number of Mesh Messages indicated by the ‘Pop’

value in the instruction. Note this could be 0 if an immediate operand value is

being transferred to the register or 1 if stack data is being written to the register.

 The receipt of the HEAD_TOKEN.

Since these events can occur in any order, the instruction must be able to buffer the

data from the Mesh Message. Note that this instruction ‘kills’ the value of a register and

hence does not have to save or propagate the register value. This can result in the re-

ordering of the REGISTER_TOKEN messages.

The result of this instruction ‘firing’ is a Serial Network message with the updated

register data send down the network.

Local Increment

The Local Increment instruction is a combination of the Read and Write local

instructions. No Mesh Network data is involved, so the only condition for firing is that the

REGISTER_TOKEN with the specified register arrive at the node. When the instruction

fires, the value of the operand is added to the value of the register and the

REGISTER_TOKEN send down the Serial Network. This instruction is used for loop

counting in methods.

 91

Instruction Group – Storage Operations

JavaFlow storage instructions combine data from messages internal to the

DataFlow Fabric with messages to and from the Storage Subsystem. The Storage

Subsystem is reached through a ring network which to which each Storage node interfaces.

Note that this interfacing becomes more challenging in the case of homogeneous nodes

where every node must interface the Storage rings.

If a homogenous node assignment approach is required for better node

management, then still, only selected nodes would have the interface to the Storage

Subsystem and, messages intended for Storage would have two hops: one from a

homogeneous Instruction Node implementing a storage operation, to a special node with

an interface to the Storage rings, and then the message to and from the memory system.

There are three types of read and write storage operations performed by ByteCode

Instructions:

 Unordered constant access to the Method Area. Specific op codes are defined

to access constants, and these are loaded before the method is deployed and are

not modified during execution. This allows unordered access to these constants.

 Ordered access to the Method Area for Class data (static)

 Ordered access to the Heap Area for Object (instantiated Class) data

The memory subsystem is responsible for the ordering of memory operations, and

the DataFlow fabric utilizes the MEMORY_TOKEN to facilitate this strict ordering

system. In normal Instructions the MEMORY_TOKEN is simply passed along like the

other tokens. With ordered Storage instructions, this MEMORY_TOKEN is first

incremented and then the new value used along with the address/data to send to the memory

subsystem. While WaveScalar [35] uses a particularly elegant system for memory

 92

ordering, the JavaFlow approach is consistent with the minimalist design and does maintain

strict memory order.

With the exception of the variants discussed above, the memory access instructions

work similar to other instructions in JavaFlow. The HEAD_TOKEN must arrive before

the instruction fires. The number of ‘Pops’ must be received from Mesh Network, and

when ‘Pops’ equals ‘PopsReceived’ and the HEAD_TOKEN is present, then the

instruction can initiate firing. Unlike other instructions a message is first generated to the

memory subsystem and the Instruction can enter the state of ‘waitingForService’

For memory reads, obviously the node must remain in the ‘waitingForService’ state

until the memory system returns the result. At that time the appropriate number of Mesh

Messages are generated to send the resulting data do downstream nodes. The instruction

is not considered ‘fired’ until the Service message is received.

For memory writes, JavaFlow processing continues and is only stalled if another

memory read operation is encountered. With the memory subsystem having the

MEMORY_TOKEN order tags, it can manage the ordering of memory accesses. The write

instruction is considered ‘fired’ when the service message is sent to the memory subsystem.

As in all instructions, the TAIL_TOKEN must be held until the instruction has

completely fired.

Instruction Group – Service Operations

Service instructions are very similar to Memory Read/Write instructions except the

Service message is sent to the General Purpose Processor. Examples of Service

instructions are instantiations of new Objects or Arrays and tests of properties of these

objects. There are some instructions that are both very infrequently executed and also

 93

inconsistent with the minimalist design approach of JavaFlow and are delegated to the

General purpose processor.

Depending on the nature of the memory subsystem, the MEMORY_TOKEN value

may have to be sent to the General Purpose Processor to insure that no memory ordering

is violated between the General Purpose Processor and the DataFlow Fabric.

Instruction Group – Control Flow Operations

The coarse group of instructions that modify the control flow of the program are

the most complex to implement in this hybrid DataFlow machine. This group of

instructions include many different groups of operations:

 GoTo

 Conditional Jumps

 Calls (invoke)

 Returns

Like the instructions described above, these must have the HEAD_TOKEN and the

‘PopsReceived’==‘pop’ in order to fire. However since these instruction modify the

control flow of the program there are strict conditions for passing tokens down the Serial

Network.

 Before the instruction fires, all tokens must be buffered and not passed along

the Serial Network

 When the instruction fires, and the next address is forward (i.e.

linearAddressThis < linearAddressTarget) then tokens can be routed to the

target next address. Note that in this case the messages on the Serial

Network will have an explicit address which is ignored by all intervening

 94

nodes. Upon receipt by the target node, the tokens are then processed as

usual.

 When the instruction fires, and the next address is backwards (i.e.,

linearAddressThis > linearAddressTarget) then all tokens must still be

buffered until the TAIL_TOKEN arrives. At that time the Upstream Serial

Network is used to route all tokens to the target Instruction Node. As the

HEAD_TOKEN passes up the Serial Network, each instruction from the

same thread/class/method must also reset to the ‘stateReady’ in case any

data had been received by a node that was not fired in the previous loop.

The reason for this stall in the execution of the instructions is to allow any

processing in the loop to complete before the loop is re-executed. This buffering and

instruction stall is the key element of allowing complete methods to be resident in the

DataFlow Fabric and avoids the pressure on the instruction fetch subsystem where only

partial methods can be loaded. .

While each group of the control flow instruction is basically the same, there are

some differences:

 The GoTo instruction is an unconditional jump either forward or backward.

If the target is forward, then this instruction can fire immediately upon

receipt of the HEAD_TOKEN. If backwards, then the TAIL_TOKEN is

required to fire.

 Jumps pop 1 or 2 values for comparisons and have 2 options for the next

address. If not-taken, then instruction processing resumes at the next linear

address. If taken, instruction processing resumes at the identified target

linear address.

 95

 Return. These are a series of instructions that end the execution of the

current method. To insure that all processing is complete, the Returns must

function like a back jump where the TAIL_TOKEN is necessary for firing.

The data that would be sent to another Mesh Network node is passed back

to the GPP where it is then placed on the stack of the calling method. Note

the enhancement option is described in Section 6.4 where calls and returns

could be handled internal to the DataFlow Fabric.

 Call (invoke). These are a series of instructions that transfer control to

another method and resume execution when that method completes. While

the JVM specification is not precise, and since the subsequent instruction is

always forward, most tokens can be passed while this instruction is

executing. The instruction may fire when the HEAD_TOKEN is received

if ‘pop’==0 or when the ‘PopsReceived’==‘pop.’ Note, these instructions

can have high ‘pop’ values as large number of parameters can be passed

during the call process. Since another method is being executed, the

MEMORY_TOKEN must be sent to the new method, or at least buffer this

token until the other method returns. This would be required to preserve

memory ordering between methods. The receipt of the TAIL_TOKEN is

then used to dequeue any buffered tokens. (For the simulation, only the

TAIL_TOKEN is buffered until the instruction fires.)

 Special Instructions. There are several instructions that can affect the

control flow of the method which are not implemented in the simulation due

to lack of usage in the benchmark methods. These instructions are discussed

in the next paragraph.

 96

Instruction Group – Special Instructions

In addition to the service instructions that are implemented in the General Purpose

Processor, the ByteCode instruction set has a series of special operations whose frequency

is sufficiently small to be ignored in this simulation, but is discussed briefly in this section.

To assist in the implementation of the ‘Finally’ clause in the Java language, a ‘Jump

Subroutine (jsr)’ and ‘Return from Subroutine (ret)’ have been defined. The benchmarks

had little to no usage of these instructions, however there are several options for their

implementation should it be necessary. Rather than utilize the GPP to handle this, another

token could be created (RETURN_TOKEN) whereby the ‘jsr’ instruction simply writes its

linearAddress +1 into the token which then passes down the Serial Network. Any ‘ret’

instruction would then capture this token and when fired would act like a jump to the

address presented in the RETURN_TOKEN.

The ‘Lookup Switch’ and ‘TableSwitch’ instructions are control flow modification

instructions implemented the equivalent of Java or C ‘switch’ structures. A key value is

used to fire the instruction and then based on a series of comparisons, one of multiple next

instructions is invoked as a jump. Implementing these function in the DataFlow fabric is

counter to the minimalist strategy being used for JavaFlow. The GPP might assist in

execution, or methods with these instructions might be ignored for execution in the

DataFlow Fabric as was done in the simulation results. The data in Chapter 5 indicates a

minimal impact for this decision.

Anchor Node

Anchor nodes shown in Figure 12 and Figure 20 are Instruction Nodes like the

Control Flow Operation nodes, except that they form the primary interface between the

loading of the method into the DataFlow Fabric and the General Purpose Processor. These

nodes for the head of the Serial Network for each method and could be completely

 97

responsible for the commands sent down the network to resolve the DataFlow addresses.

These nodes would also maintain the status of a deployed method so that if a different

thread in the GPP or the DataFlow Fabric attempted to execute the method, the proper

busy/available signal could be returned.

Exceptions

The Java Virtual Machine has a wide range of exception conditions defined, and

many of these must be detected by the DataFlow Fabric and the Instruction Nodes.

Obviously each node must report arithmetic exceptions by halting operations and sending

messages to the GPP for handling. The tag structure described in Section 3.6 called for

hashed representations of the object signatures in storage operations to insure that no

improper casting/aliasing was being performed.

The handling of array bounds checking is an example of how the balance of the

minimalist design of the Instruction Nodes can be balanced with the opportunity of

parallelism of memory accesses. As part of the address resolution process, those

instructions involved with accessing Java array elements would access the array boundary

information from the Constant Pool in addition to the actual pointer to the array. In this

way, when the instruction is executed at a later time, the array bounds are available to

create an exception if they are being violated by the runtime method.

In general the strategy for handling exceptions is to use the DataFlow Fabric when

necessary to detect errors and always rely upon the General Purpose Processor to handle

the exception conditions. Usually the method will be terminated and with execution

resumed at another method or at a point in the current method which would be a ‘Finally’

clause. The handling of this construct was discussed in the section on Special Instructions.

 98

SECTION 6.4 - ENHANCEMENTS

In addition to the described functions of the Java DataFlow machine, there are

several enhancements that could be considered for is implementation.

Predication can be used to not only enable instructions following branches, but can

also be used to allow speculative execution. Although not currently envisioned as part of

the distributed intelligence in the current DataFlow Fabric, being able to fire multiple target

instructions and hold the storing (or rolling back) data could be a design enhancement to

increase performance. This method of performance enhancement does come at the price

of increased and wasted power consumption.

Although complete methods are deployed to the fabric and all address and operand

resolution is done by the distributed intelligence, inter method communication is still

performed by the GPP. By deploying additional information about called methods, the

ByteCode instructions invoking other methods could directly transfer the register values to

another method resident in the Fabric. Implementing this capability could reduce the call

time significantly but additional communication would be required to insure that only one

thread/class/method is executing in a method at one time. Therefore even if the called

method is resident in the DataFlow Fabric, a message requesting service would have to be

sent by the calling node prior to sending any parameters. If the called anchor node is not

busy, then it would be marked busy, and an ACK message send back to the calling method

which would then send parameters. Upon completion, the called routine would execute its

Return instruction and a Mesh Message with the returned data passed back to the calling

method.

Since many of the JVM ByteCode instructions simply move data in the stack or in

the registers, there is the opportunity to eliminate instructions by having a node declare

itself void. This is the ‘folding’ process referred to in previous machines and could be

 99

performed automatically via the distributed DataFlow Fabric. This additional function

would be performed after the linkage process described in Section 6.2. Nodes that perform

only data transfers would send messages up to their producer nodes to change the producer

node targets to the targets of the redundant nodes. The redundant nodes could then be

returned to the unoccupied state for use by another method.

Obviously compiler enhancements could be used to create more efficient code.

Traditional compiler techniques could optimize the code while replacing calls to small

methods simply getting and setting fields with get and put instructions would reduce the

overall pressure on method calls with associated overhead.

An opportunity exists with the parallelism of the JavaFlow Data Fabric to assist in

the area of Garbage Collection. Some implementations utilize an additional level of

indirection to access both Heap and Method area data [5]. While the details of these

implementations are dependent on the overall JVM system, the objective is to insert an

additional level of indirection so that a single pointer can reference for all of the data for

an instance so that it can be moved easily during Garbage Collection. The parallelism and

communications capability of the JavaFlow machine has the ability to quiese the execution

of a method and pass serial commands through the Serial Network to force re-calculation

of memory pointers as a result of Garbage Collection.

Network enhancements can be employed to improve performance. The effect of

serial clocking is measured in Chapter 7 and clearly impacts performance. More

parallelism in the serial networks or enhance routing techniques could improve the system

towards the case where the delay of the serial network was removed. Similarly since the

size of the data transfer arc between Producer and Consumer nodes is small, there may be

network configurations optimizing small arc data transfers that could improve

performance.

 100

Further enhancements to the serial network could be applied in the area of

InstanceID matching. Since this matching is key to the performance of the network, some

level of network segmentation and hashing might get the number of matching elements to

a very small number of bits. If only one copy of a method were to be allowed to be loaded

at a time, then further reduction in the size of the InstanceID could be realized.

An obvious area of enhancement would be in the memory subsystem and the ability

of Instruction Nodes deep inside the DataFlow Fabric to present memory requests quickly.

While a ring network is proposed for selected Instruction Nodes, this system would seem

to be a great candidate for a 3D memory system where memory requests could be presented

to the subsystem vertically from within the Fabric.

SECTION 6.5 - SUMMARY

The JavaFlow machine has been described to a level to allow a simulation to

demonstrate the results in the following chapter and to insure viability. All Java ByteCode

instructions are addressed, and all affecting the performance of the benchmarks have been

precisely defined. Special case instructions and situations have been described along with

options for their implementation. Precise bus sizes and tag encoding are not defined at this

time, as significant silicon level optimizations are possible in that area. A series of

enhancements are described which can offer even further levels of performance

enhancements.

 101

Chapter 7: Results

SECTION 7.1 - RESULTS OVERVIEW

In the previous description chapters, a series of qualitative advantages for the

JavaFlow system have been described. These include design simplification, automatic

management of the DataFlow Fabric, power reduction through unused nodes, and the

ability to handle many threads simultaneously. A quantitative measurement process must

be defined to establish a performance figure of merit so the various system configurations

can be compared and then matched against alternate implementations. A key aspect of this

process is to neutralize the effects of technology on these measurements along with

minimizing dependencies on some key design trade-offs that are beyond the scope of this

current research. Two examples of this latter point include the configuration and

performance of the memory subsystem and the exact performance of the individual

processing nodes.

This Results section is broken into two segments: DataFlow Analysis and

Performance. The DataFlow Analysis is the results of performing the loading and

resolving the dataflow producer/consumer addresses described in the previous chapter.

The Performance Analysis is the results of simulation analysis against a defined baseline

configuration.

Note that even though the interactions of all the nodes in the system is described as

GALS (Globally Asynchronous, Locally Synchronous [48, 49]), the measurement strategy

still implies a clocking structure for both the Mesh and Serial Networks. The simplicity

and asynchronous nature of the Serial Network supports the assertion that multiple serial

messages can be transferred between a single Mesh Cycle. The Mesh Cycle is envisioned

for performance analysis to be based on both the processing function inside the node and

the router functions transferring data between nodes.

102

SECTION 7.2 - DATAFLOW ANALYSIS

Although initial results of the dataflow analysis was included in the Chapter 5,

Benchmarks, this section summarizes these results. This data was obtained as the methods

were loaded into the simulated environment, and the resolution process described in

Section 6.2 was completed.

With a filter (Filter 1) restricting the size of the methods to between 10 and 1000

instructions, Table 9 shows the sizes of the methods, registers and stack. With a median

of 29 instructions, the JavaFlow DataFlow Fabric could house many methods in a 1000 to

10,000 node system. The median and average number of stack elements and local registers

appear reasonable for nodes described in Chapter 5. Those methods with the maximum

number of registers are likely to be excluded from the DataFlow Fabric due to buffer

limitations on each node, however,

Table 9 General Data Flow Analysis – Filter 1

Static Inst Local Regs Stack Back Merge

Mean 56 4.45 3.88 0

Std Dev 86 3.42 1.70 0

Median 29 3.00 4.00 0

Max 931 31.00 14 0

Min 10 0.00 1.00 0

Table 10 demonstrates the characteristics of the actual DataFlow execution by

analyzing the FanOut and Arc sizes. The FanOut is the number of consumer nodes to

which a producer node sends data. Due to the lack of optimization in the JAVAC compiler,

these numbers are very small. While the ability to support larger FanOut than in the TRIPS

 103

machine is a feature of JavaFlow, this data indicates that this feature might have more use

with a higher level of compiler optimization.

The Arc is the linear length of the data transfer from the producer to the data

consumer. The Arc Average is the average for all arcs in the method while the Arc Max

column only includes the maximum arc in each method.

This data led the design assumption towards a 10 wide node structure as a segment

of the DataFlow Fabric. The goal is to compress the linear method into x-y coordinates

that minimize the overall arch length when using the DataFlow fabric.

Table 10 DataFlow FanOut and Arc Analysis - Filter 1

 FanOut Avg. FanOut Max Arc Avg. Arc Max

Mean 1.04 1.53 1.88 6.88

Std Dev 0.07 0.65 0.68 7.69

Median 1.00 1.00 1.70 5.00

Max 1.40 4.00 7.20 187.00

Min 1.00 1.00 1.00 1.0

Table 11 shows the size of queues necessary to resolve addresses from the original

ByteCode structure to the DataFlow Producer/Consumer addressing. Section 6.2 described

the process of sending messages up the Serial Network in order to establish the proper

linkages. The key aspect of this process is that each node must send all its requests upwards

before processing or sending any received requests from below. This implies a level of

buffering at each node. The mean and median values appear reasonable, although some

methods may have to abort due to an overflow in buffer requirements.

104

Table 11 DataFlow Resolution Queue Analysis – Filter 1

Max Q Up

Mean 3.03

Std Dev 1.36

Median 3.00

Max 11.00

Min 1.00

Table 12 shows the analysis of DataFlow merges. In the context of the JavaFlow

machine a DataFlow merge occurs when a single Instruction Node has multiple source

nodes each passing a data element. Note that this occurs infrequently in methods and is

the driving force for the buffering described in Table 11.

Table 12 DataFlow Merge Analysis - Filter 1

Merges

Mean 0.29

Std Dev 0.93

Median 0.00

Max 9.00

Table 13 shows the analysis of forward jumps in the set of methods in Filter 1.

These are control flow jumps and therefore do not require a complete stall on the Serial

Network. The average length of these jumps shows that there may be an opportunity to

utilize the Mesh Network to transfer this data rather than the Serial Network. For the

simulated results where variable speeds are used in the Serial Network, this option was not

utilized.

 105

Table 13 DataFlow Jump Forward Analysis - Filter 1

 Forward Jumps Avg. Length Max Length

Mean 3.07 12.04 22.48

Std Dev 4.94 24.91 54.48

Median 2.00 7.00 7.00

Max 58.00 175.00 803.00

Table 14 shows a similar analysis for backward jumps. As described in Section

6.3, until the direction of the jump is confirmed and then always if backward, all Serial

Network Tokens must be buffered at the jump instruction. This could be damaging to the

performance of the system, but it is noted the number of back jumps is significantly smaller

than forward jumps.

Table 14 DataFlow Jump Backward Analysis - Filter 1

 Back Jumps Avg. Length Max Length

Mean 0.61 13.11 16.17

Std Dev 1.09 30.27 40.79

Median 0.00 0.00 0.00

Max 11.00 293.80 567.00

SECTION 7.3 - PERFORMANCE ANALYSIS

Measurement Strategy

Baseline configuration

The baseline configuration to compare a series of JavaFlow configurations is

defined as a similar hardware system with minimal times between processing nodes. The

106

fundamental structure of the JavaFlow machine is that many processing functions can be

deployed across a chip, with the cost of that distribution being the time required to transfer

data from one node to another. The baseline machine assumes all the same processing

capability with the assumption that each node is adjacent to each other. Obviously this

baseline machine could not be physically implemented, but simulation tools can create

such an instance. The operation of the simulation is to allow all serial clocks to proceed

until there are no more serial messages queued for any nodes. This eliminates the effect of

the distance between nodes on the serial network. Mesh messages are then set to transition

from one node to another in only one cycle independent of the actual distance in the

DataFlow Fabric. This baseline machine performs instructions in dataflow order.

The goal of this baseline definition is the assertion that its performance would

approximate that of an optimized Java hardware system or an optimized compiled or JIT

(Just in Time) compiled configuration. Due to the complexities of the overall

implementation of the Java Virtual Machine and the challenges of technology

normalization, proof of this assertion is beyond the scope of this research.

Measurements

The primary performance measurement will be to execute a series of methods

described in the following section and measuring the Instructions per Cycle (IPC) by

counting the number of instructions executed from the start of a method until a ‘Return’

instruction is reached, and then dividing by the number of Mesh Cycles. The number of

serial clocks between each mesh clock is one of the configuration parameters varied across

configurations.

 107

To compare configurations, the IPC for the baseline configuration is normalized to

a unity Figure of Merit. Each subsequent measurement is normalized against this baseline

to present a Figure of Merit representing a percentage of the baseline IPC.

Configurations

In addition to the Baseline, five system configurations have been proposed and

utilized in the performance measurement process. Over 1600 methods are candidates for

execution in the simulation environment, and while filters are employed to focus on the

most frequently utilized methods, all methods are demonstrated to evaluate the maximum

number of instruction paths. Table 15 describes the six configurations used in the

measurement processes.

 108

Table 15 Benchmark Configurations

ID Description

0- Baseline Collapsed DataFlow machine where dataflow distance is 1 and all

serial traffic is moved before next mesh clock.

1 - Compact10 DataFlow mesh 10 units wide, up to 10 serial clocks between each

mesh clock

.

2 - Compact4 DataFlow mesh 10 units wide; up to 4 serial clocks between each

mesh clock

3 - Compact2 DataFlow mesh 10 units wide; up to 2 serial clocks between each

mesh clock

4 - Sparse2 DataFlow mesh 10 units wide, up to 2 serial clocks between each

mesh clock; each Instruction Node separated by a blank node

5 - Heterogeneous DataFlow mesh 10 units wide, up to 2 serial clocks between each

mesh clock, mesh nodes configured on static instruction mix base

(6 arithmetic, 1 floating point, 2 storage, 1 control flow/jump) and

automatically assigned

 109

Method Execution

Since the benchmark analysis in Chapter 5 focused on the overall frequency of

methods and the individual instructions, the instruction paths were not traced and recorded.

Therefore in order to demonstrate the execution of the 1600 methods a pre-established

branch prediction methodology was employed to when simulating the method execution.

Each method was executed twice with different branch characteristics.

The Branch/Jump predictions applied to the simulation was not complex and used

consistently across all 6 configurations. For all forward jumps, the taken/not-taken ratio

was 50%. BP1 started with the first forward jump taken while BP2 started with the first

jump not taken. In all cases back jumps had a taken percentage of 90%. That means the

first 9 executions of a potential jump backwards were taken and then only the 10th execution

was not taken or a forward progression through the code.

Filters on methods

Although all 1600 methods were executed in both branch prediction scenarios, the

results are filtered by the viability of actually fitting the methods into the DataFlow Fabric.

With a large DataFlow Fabric methods with less than 10 instructions were judged

to be not worth the overhead of allocating an Anchor Node and managing their execution.

Furthermore methods with greater than 1000 ByteCode instructions would not fit into a

DataFlow Fabric unless its size reached 10K nodes.

Therefore three filters were defined and used in the results presentation and are

described in Table 16.

 110

Table 16 Filters on Methods

 Selection # Executions # Methods

Filter All All Methods 3210 1605

Filter 1 10< Inst < 1000 1830 915

Filter 2 Top 90% (Dyn)

10 < Inst < 1000

214 107

Simulation Structure

The simulation structure to execute these methods was established in a manner to

allow internal configuration parameters to create the 6 configurations described above.

While BCEL [54], ASM [55] were used for initial analysis, the basic JAVAP program

provided as part of the Java Development environment was used to capture the ByteCode

information from the Java ClassFile. This text version of the ByteCode Instruction Stream

was then used in the simulation system which both resolved the DataFlow addresses and

simulated execution.

The simulation engine shown in Figure 24, shows each ByteCode instruction as an

element of an array of ‘Instruction Objects.’ Both the Serial and Parallel Networks are

collapsed into a single static Network object which handles all messages between

Instruction Objects. The static Configuration Class is used to maintain configuration

metrics and gather results for the measurement processes.

The process is started by a driver which creates a series of Serial Messages for the

initial Instruction Object in the array. These serial messages consist of the Tokens

described in Chapter 6 with the number or REGISTER_TOKENS equal to the maximum

number of registers used by the method. Data from the calling function would then be

 111

placed in these registers. These initial serial messages are configured to arrive at the initial

Instruction Object sequentially starting with the first serial clock cycle.

Figure 24 Simulator Class Structure

 112

The Instruction Objects then behave in the manner described in Chapter 6 with the

exception of sending messages directly to adjacent nodes or through their own routers, all

messages are directed to the Network object who then establishes the processing time and

the transit times based on configuration information.

For example, the receipt of a specific serial message may cause an Instruction Node

to ‘fire.’ The result may be the generation of a Mesh Node message to another Instruction

Node. This message is sent to the Network where first a lookup is performed to determine

the length of processing time necessary for this function. These times are shown in Table

17. The source and destination addresses are used by the Configuration Object to calculate

the number of mesh cycles necessary to move the message. These times are then summed

to create the total Network time for the message.

The message is then queued inside the Network object and each subsequent mesh

or serial cycle causes the appropriate network time to be decremented. Upon reaching zero,

the message is then de-queued from the Network and passed along to the appropriate

Instruction Object whose ‘eMsgToInst’ method accepts messages from the network.

This process repeats until a ‘Return’ instruction is encountered or a timeout occurs.

Note that with the branch prediction strategy described above there a few methods which

enter an endless loop and do not reach a ‘Return’ node. To avoid including data from what

could be a tight loop, these methods have been filtered from the results.

Detailed Assumptions

Each processing node accomplishes its function within a design dependent number

of mesh cycles.

 113

Table 17 Execution Cycles per Instruction

Instruction Groups Mesh Cycles - Execution

Move 1

Floating point arithmetic 10

Integer-Float conversion 5

Special, Logical, Register, Memory 2

Since these assumptions apply to all configurations, the absolute precision of the

design detail is not critical. These numbers appear consistent with the ‘minimalist’ strategy

being suggested for the Instruction Nodes. There may be variances in these numbers with

word lengths. Some of the more basic register operations may be implementable in a single

cycle like the moves. Note that these times do not account of the service times associated

with memory, special, or call operations. Note also, that unlike traditional pipelined

machines, the instruction decode process has been completed many cycles before any

actual processing work is begun.

114

Figure 25 Network Transit Times

The network transit times account for the time between nodes where the messages

are contained in routing circuitry. Figure 25 shows the assumptions used in the

performance analysis. Serial messages transition from node to node in one serial clock

cycle. The mesh transfer times are dependent on the configuration, and the service times

were messages are sent to/from external units are assumed to be constant. The memory

times are clearly dependent on the performance of the memory subsystem and may be

optimistic. Getting memory data from the inside of the chip to the memory subsystem is a

 115

challenge for all designs, and the JavaFlow proposed ring structure provides a high speed

transfer from the storage processing nodes to and from the memory subsystem. These are

not instruction fetch times as the instructions are already loaded into the Fabric, but rather

load and store accesses to the memory subsystem. As described in the previous chapter,

normal store operations proceed, while read operations are held up by the service time.

The simulation does not highlight any advantages achieved by the separation of the normal

heap accesses from the non-ordered method area constant accesses.

116

The Heterogeneous configuration is perhaps the most interesting in that it does not

require each node to process all instructions. This can save significant amounts of

hardware although can cause assignment issues with instructions requiring a specific node

type having to bypass several nodes in order to match. Furthermore the heterogeneous

configuration might have issues as multiple threads are deployed, removed and then

reassigned to new methods.

Figure 26 Heterogeneous DataFlow Configuration

Figure 26 shows a configuration of nodes in a 10 wide segment of the DataFlow

Fabric where the nodes are assigned by the static instruction mix presented in Chapter 5.

The relative width of the nodes indicates the projected amount of circuitry and buffering

necessary to implement the function.

As discussed earlier, the Anchor Nodes are set to the side of the DataFlow Fabric

and represent the interface point between the General Purpose Processor and the Fabric.

By having many Anchors distributed throughout the linear serial network, multiple

methods can be loaded without significant interference.

 117

Measurements

Coverage

The first area of measurements is that of coverage. Since the execution is not based

on actual trace data, but rather branch predictors, it is necessary to understand the

percentage of the instructions which are actually fired in the method to avoid trivial

executions. Table 18 shows that for both branch cases, the average coverage is 80% or

more of the static instructions in the method.

Table 18 Execution Coverage – All Methods

Inst Exe / Inst Static – 2 Branch Cases

 BP-1 BP-2

All Cases 83% 80%

Another static measurement is that of the ratio between the number of instructions

and the maximum number of DataFlow nodes that are passed in order to house the method.

For the Baseline and initial 4 cases this number is fixed due to the homogeneous structure

of the DataFlow Fabric. In the case of the Heterogeneous structure, the maximum number

of nodes traversed is on average 3.11 times the maximum number of ByteCode Instructions

loaded.

118

Table 19 Ratio of Instructions to Max Node

Case Inst/MaxNode

Baseline 1.0

Compact10 1.0

Compact4 1.0

Compact2 1.0

Sparse2 2.0

Hetero2 3.11

Table 19 and Table 20 show the details of this Max Node analysis. Table 20 focuses

on the Filter 1 case and demonstrates that the mean and median are close and the Standard

Deviation is 1.8, although there are some outlying cases were the ratio gets large.

 119

Table 20 Heterogeneous Addressing Detail – Filter 1

Case Inst/MaxNode

Average 3.11

Median 3.09

Std Dev 1.81

Max 6.53

Min 1.35

Instructions per Cycle and Figure of Merit

Table 21 shows the raw data for the performance runs on the ‘All Method’ case of

methods. Because of the different instruction mixes in each method, the median is a better

representative IPC number as the Standard Deviation across the IPC’s is very large. Due

to the wide variances, Figure of Merits are calculated for each method and then shown in

Table 22. Here the normalization to a Figure of Merit of 1 is shown for the Baseline case

and the other Figure of Merits are shown. The standard deviations for the Figure of Merits

appear more consistent for a single data set.

Note that for the Baseline configuration, some methods have few jumps and many

register operations. The configuration of allowing an unlimited number of serial clocks to

occur before advancing the Mesh clock, demonstrates some cases where many instructions

are able to fire in parallel within a mesh cycle.

 120

Table 21 Raw IPC Data - All Methods

 Raw IPC Data – Filter All

Case IPC-Mean IPC-StdDev IPC-Median IPC-Max IPC-Min

Baseline 0.61 0.84 0.50 19.67 0.13

Compact10 0.54 0.43 0.47 7.26 0.07

Compact4 0.48 0.29 0.43 3.55 0.03

Compact2 0.39 0.19 0.36 1.9 0.02

Sparse2 0.29 .012 0.27 0.99 0.01

Hetero2 0.23 0.11 0.21 1.26 0.01

Table 22 Figure of Merit – Filter All

 Figure of Merit – All Methods

Case IPC-Mean FM FM StdDev

Baseline 0.61 1.00

Compact10 0.54 0.96 0.19

Compact4 0.48 0.88 0.19

Compact2 0.39 0.75 0.19

Sparse2 0.29 0.58 0.18

Hetero2 0.23 0.47 0.17

Although not surprising, Table 23 shows that there is minimal correlation between

the IPC’s in the Heterogeneous configuration and some other measured values such as

static and dynamic instruction count, maximum node required, and number of back jumps.

 121

This further supports the point that the variances in the IPC’s is dependent on the actual

instruction mix and the time utilized to process and transfer the data inside the DataFlow

Fabric.

Table 23 Correlations with FM Hetero2 – Filter All

Factor Correlation

Total I -0.25

Executed I -0.21

Max Node -0.27

Back Jumps -0.10

Table 24 applies the first filter to the data so that only methods whose size is greater

than 10 instructions and less than 1000 are included. Both raw IPC and Figure of Merit

data are presented and the conclusion is that there is not much difference between this filter

and the data for all methods.

Table 25 shows the same data for Filter 2 where only the methods contributing to

90% of the dynamic processing time are included with the same 10-1000 instruction limits.

Again, the IPC for the Baseline improves slightly thus bringing the Figure of Merit for the

other cases down a small percentage. Appendix B shows more detailed data for Filter 2

methods.

 122

Table 24 All Data - Filter 1

 Raw IPC Data – Filter-1 (1829 samples)

All methods with Static Instructions >10 and <1000

Case IPC-Mean IPC-Median FM FM StdDev

Baseline 0.64 0.50 1.00

Compact10 0.53 0.42 0.86 0.14

Compact4 0.45 0.38 0.77 0.15

Compact2 0.37 0.32 0.66 0.16

Sparse2 0.27 0.25 0.50 0.16

Hetero2 0.23 0.22 0.44 0.15

Table 25 All Data - Filter 2

 Raw IPC Data – Filter-2 (214 samples)

Top 90% Methods with Static Instructions >10 and <1000

Case IPC-Mean IPC-Median FM FM StdDev

Baseline 0.72 0.48 1.00

Compact10 0.53 0.39 0.82 0.14

Compact4 0.44 0.35 0.74 0.17

Compact2 0.36 0.30 0.63 0.18

Sparse2 0.26 0.24 0.49 0.17

Hetero2 0.23 0.22 0.43 0.17

 123

Parallelism

Traditional DataFlow machines were designed to achieve parallelism in the

execution of instructions. Although this was not a primary design objective of JavaFlow,

the basic level of parallelism was assessed for each method execution. For each Mesh

Cycle during the execution of a method counters were kept to identify if there was a single

instruction executing or if there were 2 or more instructions executing. Only execution

times were used with service times not included in this analysis. Table 26 shows the

average percentage of mesh clock cycles where 2 or more Instruction Nodes were

performing execution.

Table 26 Parallelism - All Methods

Case Average % Mesh Cycles with 2 or

more Instructions Executing

Baseline 40%

Compact10 37%

Compact4 33%

Compact2 24%

Sparse2 13%

Hetero2 12%

Measurements vs Top 4 Spec Benchmark Methods

With the measurements of IPC and resulting Figure of Merit, it is now possible to

go back to the data presented in Chapter 5 to project how the JavaFlow machine would

handle the SPEC benchmarks. Table 27 and Table 28 show are comparable to Table 3 and

 124

Table 4 from Chapter 5. Some benchmarks were eliminated due to size or timeouts

in the simulation. The identified methods comprise 31% to 100% of the SpecJvm2008

ByteCode executions and 17% to 84% of the SpecJvm98 ByteCode executions.

The columns in Table 27 and Table 28 are:

 Benchmark, method

 Total I - Total static instruction count for the method

 Sparser N - Ratio of instruction count to maximum node required in

Heterogeneous configuration

 fmM The Figure of Merit for each configuration N

The total number of instructions and total nodes spanned in the Heterogeneous case

are totaled. The Figures of Merit as described above are displayed and averaged. The

conclusion is that these critical methods can be resident in a 10,000 Instruction Node fabric,

and when considering individual benchmarks, a significantly smaller DataFlow Fabric

could be effective in executing the methods.

The average Figure of Merit on the Heterogeneous is slightly smaller than the

averages shown above, but still above 35%. The reasons for the decrease is that the

baseline IPC for the two cases are 0.60 and 0.52 vs the 0.72 shown in Table 25

 125

Table 27 Figure of Merit on Top 4 SpecJvm2008 Benchmarks

Total I Sparser N fm0 fm1 fm2 fm3 fm4 fm5

SpecJvm2008

compress

compress()V 165 398 100% 78% 66% 52% 34% 30%

output(I)V 208 448 100% 67% 54% 40% 27% 25%

decompress()V 119 338 100% 76% 71% 61% 44% 37%

update([B)V 10 18 100% 92% 88% 85% 73% 65%

crypto.signverify

mul([I[II[II)V 72 148 100% 69% 60% 50% 34% 33%

submul_1([II[III)I 73 148 100% 67% 61% 53% 39% 39%

sha(IIIII[BI)[I 315 578 100% 65% 54% 42% 28% 30%

sha(IIIIIIII[BI)[I 288 518 100% 55% 45% 33% 21% 23%

mpegaudio

dequantize_sample([[FII)V 551 1358 100% 74% 59% 44% 29% 25%

huffman_decode(II)V 399 1058 100% 81% 77% 67% 51% 45%

hybrid(II)V 580 1288 100% 54% 32% 19% 11% 10%

scumark.fft.large

bitreverse([D)V 86 168 100% 77% 56% 39% 23% 23%

transform_internal([DI)V 251 608 100% 90% 69% 50% 47% 39%

nextDouble()D 71 178 100% 83% 78% 71% 56% 47%

inverse([D)V 31 68 100% 79% 71% 61% 45% 43%

scimark.lu.large

factor([[D[I)I 162 358 100% 64% 46% 31% 19% 18%

nextDouble()D 71 178 100% 83% 78% 71% 56% 47%

scimark.monte_carlo

submul_1([II[III)I 73 148 100% 67% 61% 53% 39% 39%

sha(IIIII[BI)[I 315 578 100% 65% 54% 42% 28% 30%

integrate(I)D 39 118 100% 72% 64% 55% 43% 40%

nextDouble()D 71 178 100% 83% 78% 71% 56% 47%

scimark.sor.large

submul_1([II[III)I 73 148 100% 67% 61% 53% 39% 39%

nextDouble()D 71 178 100% 83% 78% 71% 56% 47%

execute(D[[DI)D 111 258 100% 36% 18% 10% 6% 5%

scimark.sparse.large

nextDouble()D 71 178 100% 83% 78% 71% 56% 47%

Sum/Mean 4276 9640 72% 62% 52% 38% 35%

 126

Table 28 Figure of Merit on Top 4 SpecJvm98 Benchmarks

Total I Sparser N fm0 fm1 fm2 fm3 fm4 fm5

SpecJvm98

_201_compress

compress()V 178 398 100% 78% 69% 58% 41% 39%

output(I)V 216 438 100% 69% 55% 40% 25% 26%

decompress()V 181 408 100% 100% 87% 68% 52% 31%

getbyte()I 24 58 100% 100% 86% 66% 45% 38%

_202_jess

runTestsVaryRight(Lspec/benchmarks/_202_jess/jess/Token;)V51 128 100% 81% 73% 62% 47% 46%

data_equals(Lspec/benchmarks/_202_jess/jess/Token;)Z24 68 100% 76% 70% 59% 50% 40%

equals(Lspec/benchmarks/_202_jess/jess/Value;)Z46 158 100% 117% 100% 70% 54% 35%

equals(Ljava/lang/Object;)Z 37 118 100% 117% 100% 70% 54% 35%

_209_db

compareTo(Ljava/lang/String;)I 77 178 100% 74% 64% 52% 36% 34%

shell_sort(I)V 88 218 100% 77% 67% 55% 38% 34%

elementAt(I)Ljava/lang/Object; 23 108

_222_mpegaudio

Ä£(Lspec/benchmarks/_222_mpegaudio/g;)Z100 208 100% 90% 80% 69% 46% 46%

read([BII)I 66 158 100% 71% 58% 43% 28% 26%

l([SI)I 346 888 100% 58% 45% 32% 20% 17%

_227_mtrt

FindTreeNode(Lspec/benchmarks/_205_raytrace/Point;)Lspec/benchmarks/_205_raytrace/OctNode;97 408 100% 86% 84% 79% 64% 57%

Intersect(Lspec/benchmarks/_205_raytrace/Ray;Lspec/benchmarks/_205_raytrace/Point;F)Lspec/benchmarks/_205_raytrace/OctNode;701 2608 100% 71% 60% 46% 32% 23%

Combine(Lspec/benchmarks/_205_raytrace/Point;Lspec/benchmarks/_205_raytrace/Vector;FF)Lspec/benchmarks/_205_raytrace/Point;35 158 100% 77% 75% 70% 61% 65%

_228_jack

<init>([C)V 17 38 100% 84% 79% 68% 56% 49%

nextElement()Ljava/util/Map$Entry;43 118 100% 74% 67% 57% 44% 36%

Move(CLjava/util/Vector;)I 156 468 100% 70% 55% 40% 26% 20%

getNextTokenFromStream()Lspec/benchmarks/_228_jack/Token;360 1038 100% 73% 66% 51% 44% 38%

Sum/Mean 2866 8368 82% 72% 58% 43% 37%

 127

Chapter 8: Conclusions

Although JavaFlow is not a complete machine implementation, the concepts

established and the results obtained suggest that it has met the objectives set forth and

should be seriously considered as an approach for future system implementations.

Attaining 40% of the baseline performance target with a set of heterogeneous cores

in the DataFlow fabric with a 3.1 ratio of instructions to nodes is demonstration of success.

In addition to achieving acceptable performance in general, the results of the performance

measurements are tied back to the Benchmark analysis and show that key methods can be

made resident in the DataFlow Fabric and similar performance can be achieved.

With the ability to load multiple methods into the DataFlow Fabric at the same

time, these methods can be executing simultaneously. Since the network traffic is localized

to the area of the Fabric of each method it is reasonable to use an argument of superposition

to claim that the overall Instructions per Cycle for the system would be the sum of the

individual Instructions per Cycle for each method.

The demonstrated capability to manage the loading and address resolution of

ByteCode instructions without centralized control represents a novel approach for future

tiled architecture systems like JavaFlow.

The performance, parallelism, and instruction execution unit utilization parameters

measured in Chapter 7 show attractive performance, which then allows the focus on the

non-quantified objectives of reducing design complexity, power constraints, on-chip

wiring issues, data locality, and management of a large number of Instruction Nodes.

Finally enhancement items described along with continued tuning of the DataFlow

Fabric configuration should allow further performance gains.

 128

The evaluation of the non-quantifiable aspects of this system requires a new set of

metrics. Replicating a minimalist design of a core thousands of times across a chip saves

development expense and complexity. Leaving many of these cores unused and

unpowered (e.g., dark silicon) while executing a program represents power savings that

would not otherwise occur. The globally asynchronous, locally synchronous design

removes the requirement for precise clock control across a chip and can minimize skew

when transferring over short distances.

 129

Appendices

APPENDIX A - BYTECODE INSTRUCTIONS

Appendix A provides a series of tables listing all ByteCode instructions architected

in the Java Virtual Machine [4]. Each table shows a group of instructions whose behavior

is similar. The instruction groups are defined in the captions of each table.

Each table has the following columns:

 OpCode: The abbreviation of the operation code of the ByteCode

instruction

 Stack Before > After: The contents of the Java Stack before and after the

execution of the instruction. The ‘Before’ values are consumed by the

instructions and the ‘After’ values represent the results of the computation.

 Pop: The number of variables that are ‘popped’ or consumed by the

instruction as inputs. In the JavaFlow machine, these values are provided

by producer nodes elsewhere in the DataFlow Fabric

 Push: The number of variables ‘pushed’ or produced by the instruction as

a result of the computation. In the JavaFlow machine these values are sent

to other nodes in the DataFlow fabric.

 Description: A brief description of computation implemented by each

instruction.

 130

Table 29 ByteCode Floating Point Conversion Instructions

OpCode
Stack

Before > After
 pop push Description

d2f value → result 1 1 convert a double to a float

d2i value → result 1 1 convert a double to an int

d2l value → result 1 1 convert a double to a long

f2d value → result 1 1 convert a float to a double

f2i value → result 1 1 convert a float to an int

f2l value → result 1 1 convert a float to a long

l2d value → result 1 1 convert a long to a double

l2f value → result 1 1 convert a long to a float

i2b value → result 1 1 convert an int into a byte

i2c value → result 1 1 convert an int into a character

i2d value → result 1 1 convert an int into a double

i2f value → result 1 1 convert an int into a float

i2l value → result 1 1 convert an int into a long

i2s value → result 1 1 convert an int into a short

l2i value → result 1 1 convert a long to a int

Fl
o

at
in

g
P

t
C

o
n

ve
rs

io
n

 131

Table 30 ByteCode Arithmetic/Integer Instructions

OpCode
Stack

Before > After
 pop push Description

iadd value1, value2 → result 2 1 add two ints

iand value1, value2 → result 2 1 perform a bitwise and on two integers

idiv value1, value2 → result 2 1 divide two integers

imul value1, value2 → result 2 1 multiply two integers

ineg value → result 1 1 negate int

ior value1, value2 → result 2 1 bitwise int or

irem value1, value2 → result 2 1 logical int remainder

ishl value1, value2 → result 2 1 int shift left

ishr value1, value2 → result 2 1 int arithmetic shift right

isub value1, value2 → result 2 1 int subtract

iushr value1, value2 → result 2 1 int logical shift right

ixor value1, value2 → result 2 1 int xor

ladd value1, value2 → result 2 1 add two longs

land value1, value2 → result 2 1 bitwise and of two longs

lmul value1, value2 → result 2 1 multiply two longs

lneg value → result 1 1 negate a long

lor value1, value2 → result 2 1 bitwise or of two longs

lrem value1, value2 → result 2 1 remainder of division of two longs

lshl value1, value2 → result 2 1 bitwise shift left of a long value1 by int value2 positions

lshr value1, value2 → result 2 1
bitwise shift right of a long value1 by

int value2 positions

lsub value1, value2 → result 2 1 subtract two longs

lushr value1, value2 → result 2 1
bitwise shift right of a long value1 by

int value2 positions, unsigned

lxor value1, value2 → result 2 1 bitwise exclusive or of two longs

A
ri

th
m

et
ic

/I
n

te
ge

r

 132

Table 31 ByteCode Arithmetic/Move Instructions

OpCode
Stack

Before > After
 pop push Description

aconst_null → null 0 1 push a null reference onto the stack

bipush → value 0 1 push a byte onto the stack as an integer value

dconst_0 → 0.0 0 1 push the constant 0.0 onto the stack

dconst_1 → 1.0 0 1 push the constant 1.0 onto the stack

dup value → value, value 1 2 duplicate the value on top of the stack

dup_x1
value2, value1 → value1,

value2, value1
3 5

insert a copy of the top value into the stack two values

from the top

dup_x2

value3, value2, value1 →

value1, value3, value2,

value1

4 6
insert a copy of the top value into the stack two or three

values from the top

dup2

{value2, value1} →

{value2, value1}, {value2,

value1}

2 3 duplicate top two stack words

dup2_x1

value3, {value2, value1} →

{value2, value1}, value3,

{value2, value1}

3 4 duplicate two words and insert beneath third word

dup2_x2

{value4, value3}, {value2,

value1} → {value2,

value1}, {value4, value3},

{value2, value1}

2 4 duplicate two words and insert beneath fourth word

fconst_0 → 0.0f 0 1 push 0.0f on the stack

fconst_1 → 1.0f 0 1 push 1.0f on the stack

fconst_2 → 2.0f 0 1 push 2.0f on the stack

iconst_0 → 0 0 1 load the int value 0 onto the stack

iconst_1 → 1 0 1 load the int value 1 onto the stack

iconst_2 → 2 0 1 load the int value 2 onto the stack

iconst_3 → 3 0 1 load the int value 3 onto the stack

iconst_4 → 4 0 1 load the int value 4 onto the stack

iconst_5 → 5 0 1 load the int value 5 onto the stack

iconst_m1 → -1 0 1 load the int value -1 onto the stack

lconst_0 → 0L 0 1 push the long 0 onto the stack

lconst_1 → 1L 0 1 push the long 1 onto the stack

pop value → 1 0 discard the top value on the stack

pop2 {value2, value1} → 1 0 discard the top two values on the stack

sipush → value 0 1 push a short onto the stack

swap
value2, value1 → value1,

value2
2 2 swaps two top words on the stack

A
ri

th
m

et
ic

/M
o

ve

 133

Table 32 ByteCode Floating Point Arithmetic Instructions

OpCode
Stack

Before > After
 pop push Description

dadd value1, value2 → result 2 1 add two doubles

dcmpg value1, value2 → result 2 1 compare two doubles

dcmpl value1, value2 → result 2 1 compare two doubles

ddiv value1, value2 → result 2 1 divide two doubles

dmul value1, value2 → result 2 1 multiply two doubles

dneg value → result 1 1 negate a double

drem value1, value2 → result 2 1 get the remainder from a division between two doubles

dsub value1, value2 → result 2 1 subtract a double from another

fadd value1, value2 → result 2 1 add two floats

fcmpg value1, value2 → result 2 1 compare two floats

fcmpl value1, value2 → result 2 1 compare two floats

fdiv value1, value2 → result 2 1 divide two floats

fmul value1, value2 → result 2 1 multiply two floats

fneg value → result 1 1 negate a float

frem value1, value2 → result 2 1 get the remainder from a division between two floats

fsub value1, value2 → result 2 1 subtract two floats

lcmp value1, value2 → result 2 1 compare two longs values

ldiv value1, value2 → result 2 1 divide two longs

Fl
o

at
in

g
P

t
A

ri
th

m
et

ic

 134

Table 33 ByteCode Control Flow Instructions

Table 34 ByteCode Call Instructions

OpCode
Stack

Before > After
 pop push Description

goto [no change] 0 0 goes to another instruction at branchoffset

goto_w [no change] 0 0 goes to another instruction at branchoffset

if_acmpeq value1, value2 → 2 0
if references are equal, branch to instruction

at branchoffset

if_acmpne value1, value2 → 2 0
if references are not equal, branch to instruction

atbranchoffset

if_icmpeq value1, value2 → 2 0 if ints are equal, branch to instruction at branchoffset

if_icmpge value1, value2 → 2 0
if value1 is greater than or equal to value2 , branch to

instruction at branchoffset

if_icmpgt value1, value2 → 2 0
if value1 is greater than value2 , branch to instruction

atbranchoffset

if_icmple value1, value2 → 2 0
if value1 is less than or equal to value2 , branch to

instruction at branchoffset

if_icmplt value1, value2 → 2 0
if value1 is less than value2 , branch to instruction

atbranchoffset

if_icmpne value1, value2 → 2 0 if ints are not equal, branch to instruction at branchoffset

ifeq value → 1 0 if value is 0, branch to instruction at branchoffset

ifge value → 1 0
if value is greater than or equal to 0, branch to

instruction atbranchoffset

ifgt value → 1 0
if value is greater than 0, branch to instruction

atbranchoffset

ifle value → 1 0
if value is less than or equal to 0, branch to instruction

atbranchoffset

iflt value → 1 0
if value is less than 0, branch to instruction

at branchoffset

ifne value → 1 0 if value is not 0, branch to instruction at branchoffset

ifnonnull value → 1 0
if value is not null, branch to instruction

at branchoffset

ifnull value → 1 0 if value is null, branch to instruction at branchoffset

C
o

n
tr

o
l F

lo
w

 C
h

an
ge

OpCode
Stack

Before > After
 pop push Description

invokeinterface
objectref, [arg1, arg2, ...]

→
n 0 invokes an interface method on object objectref

invokespecial
objectref, [arg1, arg2, ...]

→
n 1 invoke instance method on object objectref

invokestatic [arg1, arg2, ...] → n 1 invoke a static method

invokevirtual
objectref, [arg1, arg2, ...]

→
n 1 invoke virtual method on object objectref

C
al

l

 135

Table 35 ByteCode Return Instructions

Table 36 ByteCode Memory Constant Instructions

Table 37 ByteCode Memory Read Instructions

OpCode
Stack

Before > After
 pop push Description

areturn objectref → [empty] 1 0 return a reference from a method

athrow
objectref → [empty],

objectref
1 0 throws an error or exception

dreturn value → [empty] 1 0 return a double from a method

freturn value → [empty] 1 0 return a float

ireturn value → [empty] 1 0 return an integer from a method

lreturn value → [empty] 1 0 return a long value

return → [empty] 0 0 return void from method

R
et

u
rn

OpCode
Stack

Before > After
 pop push Description

ldc → value 0 1
push a constant #index from a constant pool onto the

stack

ldc_w → value 0 1 push a constant #index from a constant pool

ldc2_w → value 0 1 push a constant #index from a constant pool

M
e

m
o

ry

C
o

n
st

an
t

OpCode
Stack

Before > After
 pop push Description

aaload arrayref, index → value 2 1 load onto the stack a reference from an array

baload arrayref, index → value 2 1 load a byte or Boolean value from an array

caload arrayref, index → value 2 1 load a char from an array

daload arrayref, index → value 2 1 load a double from an array

faload arrayref, index → value 2 1 load a float from an array

getfield objectref → value 1 1
get a field value of an object objectref , where the field

is identified by field reference in the constant

pool index (index1 << 8 + index2)

getstatic → value 0 1
get a static field value of a class, where the field is

identified by field reference in the constant

pool index (index1 << 8 + index2)

iaload arrayref, index → value 2 1 load an int from an array

laload arrayref, index → value 2 1 load a long from an array

saload arrayref, index → value 2 1 load short from array

M
em

o
ry

 R
ea

d

 136

Table 38 ByteCode Memory Write Instructions

OpCode
Stack

Before > After
 pop push Description

aastore arrayref, index, value → 3 0 store into a reference in an array

bastore arrayref, index, value → 3 0 store a byte or Boolean value into an array

castore arrayref, index, value → 3 0 store a char into an array

dastore arrayref, index, value → 3 0 store a double into an array

fastore arrayref, index, value → 3 0 store a float in an array

iastore arrayref, index, value → 3 0 store an int into an array

lastore arrayref, index, value → 3 0 store a long to an array

putfield objectref, value → 2 0
set field to value in an object objectref , where the field

is identified by a field reference index in constant pool

(indexbyte1 << 8 + indexbyte2)

putstatic value → 1 0
set static field to value in a class, where the field is

identified by a field reference index in constant pool

(indexbyte1 << 8 + indexbyte2)

sastore arrayref, index, value → 3 0 store short to array

M
em

o
ry

 W
ri

te

 137

Table 39 ByteCode Local Read Instructions

OpCode
Stack

Before > After
 pop push Description

Lo
ca

l I
n

cr
em

en
t

iinc [No change] 0 0 increment local variable #index by signed byte const

aload → objectref 0 1
load a reference onto the stack from a local

variable #index

aload_0 → objectref 0 1 load a reference onto the stack from local variable 0

aload_1 → objectref 0 1 load a reference onto the stack from local variable 1

aload_2 → objectref 0 1 load a reference onto the stack from local variable 2

aload_3 → objectref 0 1 load a reference onto the stack from local variable 3

dload → value 0 1 load a double value from a local variable #index

dload_0 → value 0 1 load a double from local variable 0

dload_1 → value 0 1 load a double from local variable 1

dload_2 → value 0 1 load a double from local variable 2

dload_3 → value 0 1 load a double from local variable 3

fload → value 0 1 load a float value from a local variable #index

fload_0 → value 0 1 load a float value from local variable 0

fload_1 → value 0 1 load a float value from local variable 1

fload_2 → value 0 1 load a float value from local variable 2

fload_3 → value 0 1 load a float value from local variable 3

iload → value 0 1 load an int value from a local variable #index

iload_0 → value 0 1 load an int value from local variable 0

iload_1 → value 0 1 load an int value from local variable 1

iload_2 → value 0 1 load an int value from local variable 2

iload_3 → value 0 1 load an int value from local variable 3

lload → value 0 1 load a long value from a local variable #index

lload_0 → value 0 1 load a long value from a local variable 0

lload_1 → value 0 1 load a long value from a local variable 1

lload_2 → value 0 1 load a long value from a local variable 2

lload_3 → value 0 1 load a long value from a local variable 3

Lo
ca

l R
e

ad

 138

Table 40 ByteCode Local Write Instructions

OpCode
Stack

Before > After
 pop push Description

astore objectref → 1 0 store a reference into a local variable #index

astore_0 objectref → 1 0 store a reference into local variable 0

astore_1 objectref → 1 0 store a reference into local variable 1

astore_2 objectref → 1 0 store a reference into local variable 2

astore_3 objectref → 1 0 store a reference into local variable 3

dstore value → 1 0 store a double value into a local variable #index

dstore_0 value → 1 0 store a double into local variable 0

dstore_1 value → 1 0 store a double into local variable 1

dstore_2 value → 1 0 store a double into local variable 2

dstore_3 value → 1 0 store a double into local variable 3

fstore value → 1 0 store a float value into a local variable #index

fstore_0 value → 1 0 store a float value into local variable 0

fstore_1 value → 1 0 store a float value into local variable 1

fstore_2 value → 1 0 store a float value into local variable 2

fstore_3 value → 1 0 store a float value into local variable 3

istore value → 1 0 store int value into variable #index

istore_0 value → 1 0 store int value into variable 0

istore_1 value → 1 0 store int value into variable 1

istore_2 value → 1 0 store int value into variable 2

istore_3 value → 1 0 store int value into variable 3

lstore value → 1 0 store a long value in a local variable #index

lstore_0 value → 1 0 store a long value in a local variable 0

lstore_1 value → 1 0 store a long value in a local variable 1

lstore_2 value → 1 0 store a long value in a local variable 2

lstore_3 value → 1 0 store a long value in a local variable 3

Lo
ca

l W
ri

te

 139

Table 41 ByteCode Special Instructions

OpCode
Stack

Before > After
 pop push Description

anewarray count → arrayref 1 1 create a new array of references

arraylength arrayref → length 1 1 get the length of an array

checkcast objectref → objectref 1 1 checks whether an objectref is of a certain type

instanceof objectref → result 1 1 determines if an object objectref is of a given type

jsr → address 0 1 jump to subroutine at branchoffset

jsr_w → address 0 1 jump to subroutine at branchoffset

lookupswitch key → 1 0
a target address is looked up from a table using a key and

execution continues from the instruction at that address

monitorenter objectref → 1 0 enter monitor for object

monitorexit objectref → 1 0 exit monitor for object

multianewarray
count1, [count2,...] →

arrayref
1 1 create a new array

new → objectref 0 1 create new object

newarray count → arrayref 1 1 create new array

nop [No change] 0 0 perform no operation

ret [No change] 0 0
continue execution from address taken from a local

variable#index

tableswitch index → 1 0
continue execution from an address in the table at

offsetindex

wide

[same as for

corresponding

instructions]

execute opcode , where opcode is either iload, fload,

aload, lload, dload, istore, fstore, astore, lstore, dstore,

or ret, but assume the index is 16 bit; or execute iinc,

where the index is 16 bits and the constant to

increment by is a signed 16 bit short

Sp
ec

ia
l

 140

APPENDIX B - DATA FROM TOP 90% METHODS

The following Tables show the raw data from the simulations of the methods

contributing to the top 90% of the operations in the SPEC benchmarks.

The columns in these tables represent:

 Name of the method. (Note that to save space, the name of the class to which

the method belongs is eliminated)

 Total number of static instructions

 Total number of nodes in the Heterogeneous configuration

 Ratio of nodes to static instructions

 Number of instruction executed in Branch case 0

 Mesh cycles required;

 IPC (Instructions per cycle) for the 6 configurations (Note that the Figure

of Merit reported in Chapter 7 is the ratio of each of these values to the value

in IPC-0.

 141

Table 42 Top 90% methods - part 1

M
et

h
o

d
To

ta
l

In
st

H
et

er
o

N
o

d
es

N
/I

In
st

Ex
ec

M
es

h

C
yc

le
s

IP
C

-0
IP

C
-1

IP
C

-2
IP

C
-3

IP
C

-4
IP

C
-5

d
iv

id
e(

[I
I[

II)
V

1
3

4
2

4
8

1
.8

5
2

2
3

2
9

3
0

.7
6

0
.3

1
0

.2
1

0
.1

3
0

.0
8

0
.0

8

su
b

m
u

l_
1

([
II

[I
II)

I
7

3
1

4
8

2
.0

3
6

1
1

8
9

5
0

.6
8

0
.4

6
0

.4
1

0
.3

6
0

.2
6

0
.2

7

sh
a(

II
III

[B
I)

[I
3

1
5

5
7

8
1

.8
3

2
3

6
5

1
9

8
0

1
.1

9
0

.7
7

0
.6

5
0

.5
0

0
.3

4
0

.3
6

sh
a(

II
III

III
[B

I)
[I

2
8

8
5

1
8

1
.8

0
1

9
9

3
1

1
1

6
1

.7
9

0
.9

8
0

.8
0

0
.5

9
0

.3
7

0
.4

1

eq
u

al
s(

Lj
av

a/
la

n
g/

O
b

je
ct

;)
Z

1
5

5
8

3
.8

7
1

1
3

8
0

.2
9

0
.2

9
0

.2
8

0
.2

6
0

.2
1

0
.1

7

<i
n

it
>(

)V
1

3
2

8
2

.1
5

1
3

2
0

0
.6

5
0

.4
8

0
.4

6
0

.4
2

0
.3

6
0

.3
5

ch
ar

A
t(

I)
C

1
9

5
8

3
.0

5
1

4
5

2
0

.2
7

0
.2

6
0

.2
5

0
.2

4
0

.1
7

0
.1

5

co
m

p
ar

eT
o

(L
ja

va
/l

an
g/

St
ri

n
g;

)I
7

7
1

7
8

2
.3

1
3

9
5

8
0

.6
7

0
.5

0
0

.4
3

0
.3

5
0

.2
4

0
.2

3

eq
u

al
s(

Lj
av

a/
la

n
g/

O
b

je
ct

;)
Z

4
8

1
1

8
2

.4
6

5
7

0
.7

1
0

.8
3

0
.6

2
0

.3
8

0
.3

3
0

.2
3

ge
tB

yt
es

(I
I[

B
I)

V
5

5
1

5
8

2
.8

7
7

2
0

0
.3

5
0

.3
3

0
.3

0
0

.2
6

0
.2

0
0

.1
6

ge
tC

h
ar

s(
[C

I)
V

1
0

2
8

2
.8

0
1

0
2

0
0

.5
0

0
.4

3
0

.4
2

0
.3

8
0

.3
4

0
.2

8

h
as

h
C

o
d

e(
)I

3
8

7
8

2
.0

5
1

0
3

9
0

.2
6

0
.2

4
0

.2
2

0
.1

8
0

.1
3

0
.1

1

to
Lo

w
e

rC
as

e(
Lj

av
a/

u
ti

l/
Lo

ca
le

;)
Lj

av
a/

la
n

g/
St

ri
n

g;
2

4
6

6
6

8
2

.7
2

6
2

0
0

.3
0

0
.3

0
0

.2
5

0
.2

1
0

.1
8

0
.1

3

<i
n

it
>(

III
I)

V
6

0
2

4
8

4
.1

3
2

2
4

6
0

.4
8

0
.4

1
0

.3
8

0
.3

3
0

.2
8

0
.2

5

<i
n

it
>(

III
I[

B
I)

V
2

4
5

8
2

.4
2

2
3

2
6

0
.8

8
0

.8
5

0
.7

4
0

.5
9

0
.4

3
0

.3
8

w
ra

p
([

B
II)

Lj
av

a/
n

io
/B

yt
eB

u
ff

er
;

1
2

4
8

4
.0

0
7

1
7

0
.4

1
0

.3
7

0
.3

5
0

.3
2

0
.3

2
0

.2
4

<i
n

it
>(

[B
III

IIZ
)V

1
3

2
8

2
.1

5
1

3
1

5
0

.8
7

0
.5

9
0

.5
4

0
.4

8
0

.4
8

0
.4

2

ge
t(

)B
2

3
5

8
2

.5
2

9
3

4
0

.2
6

0
.2

6
0

.2
6

0
.2

5
0

.2
1

0
.1

8

p
u

t(
[B

II)
Lj

av
a/

n
io

/B
yt

eB
u

ff
er

;
3

5
8

8
2

.5
1

1
1

3
7

0
.3

0
0

.2
5

0
.2

5
0

.2
4

0
.2

1
0

.1
9

ge
t(

)C
2

3
5

8
2

.5
2

9
3

4
0

.2
6

0
.2

6
0

.2
6

0
.2

5
0

.2
1

0
.1

8

ch
ec

kN
am

e(
Lj

av
a/

la
n

g/
St

ri
n

g;
)V

8
1

3
5

8
4

.4
2

6
2

9
6

0
.6

5
0

.4
7

0
.4

1
0

.3
6

0
.2

6
0

.2
2

<i
n

it
>(

Lj
av

a/
n

io
/c

h
ar

se
t/

C
h

ar
se

t;
FF

[B
)V

6
1

1
7

8
2

.9
2

2
6

3
4

0
.7

6
0

.5
9

0
.5

4
0

.4
6

0
.3

7
0

.3
4

en
co

d
e(

Lj
av

a/
n

io
/C

h
ar

B
u

ff
er

;L
ja

va
/n

io
/B

yt
eB

u
ff

er
;Z

)L
ja

va
/n

io
/c

h
ar

se
t/

C
o

d
er

R
es

u
lt

;
1

3
2

5
1

8
3

.9
2

2
2

3
7

0
.5

9
0

.4
9

0
.4

0
0

.3
1

0
.2

3
0

.1
8

eq
u

al
s(

Lj
av

a/
la

n
g/

O
b

je
ct

;)
Z

6
7

2
9

8
4

.4
5

5
7

0
.7

1
0

.8
3

0
.6

2
0

.4
2

0
.3

3
0

.2
3

fi
ll(

[J
J)

V
1

5
3

8
2

.5
3

1
8

3
0

0
.6

0
0

.5
0

0
.4

2
0

.3
5

0
.2

7
0

.2
3

ge
t(

Lj
av

a/
la

n
g/

O
b

je
ct

;)
Lj

av
a/

la
n

g/
O

b
je

ct
;

4
3

1
4

8
3

.4
4

5
1

0
0

.5
0

0
.5

6
0

.5
0

0
.3

6
0

.3
1

0
.1

9

<i
n

it
>(

Lj
av

a/
u

ti
l/

H
as

h
ta

b
le

;)
V

1
5

3
8

2
.5

3
1

5
3

5
0

.4
3

0
.4

3
0

.4
1

0
.3

7
0

.3
0

0
.2

6

 142

Table 43 Top 90% methods - part 2

M
et

h
o

d
To

ta
l

In
st

H
et

er
o

N
o

d
es

N
/I

In
st

Ex
ec

M
es

h

C
yc

le
s

IP
C

-0
IP

C
-1

IP
C

-2
IP

C
-3

IP
C

-4
IP

C
-5

n
ex

tE
le

m
en

t(
)L

ja
va

/u
ti

l/
M

ap
$

En
tr

y;
4

3
1

1
8

2
.7

4
8

3
3

0
.2

4
0

.2
4

0
.2

4
0

.2
2

0
.1

9
0

.1
6

<i
n

it
>(

Lj
av

a/
u

ti
l/

H
as

h
ta

b
le

;)
V

1
2

2
8

2
.3

3
1

2
2

1
0

.5
7

0
.4

6
0

.4
4

0
.4

1
0

.3
5

0
.3

2

n
ex

tE
le

m
en

t(
)L

ja
va

/l
an

g/
O

b
je

ct
;

1
4

3
8

2
.7

1
1

4
5

5
0

.2
5

0
.2

3
0

.2
2

0
.2

1
0

.1
9

0
.1

7

ad
d

El
em

en
t(

Lj
av

a/
la

n
g/

O
b

je
ct

;)
V

2
4

3
8

1
.5

8
2

4
4

6
0

.5
2

0
.4

0
0

.3
9

0
.3

6
0

.2
7

0
.3

5

el
em

en
tA

t(
I)

Lj
av

a/
la

n
g/

O
b

je
ct

;
2

3
1

0
8

4
.7

0
1

9
7

1
0

.2
7

0
.2

4
0

.2
4

0
.2

2
0

.1
8

0
.1

7

re
m

o
ve

A
llE

le
m

en
ts

()
V

2
3

4
8

2
.0

9
2

7
5

8
0

.4
7

0
.3

4
0

.3
2

0
.2

8
0

.2
3

0
.2

3

n
ex

tE
le

m
en

t(
)L

ja
va

/l
an

g/
O

b
je

ct
;

3
7

9
8

2
.6

5
2

4
6

7
0

.3
6

0
.3

1
0

.3
0

0
.2

8
0

.2
3

0
.2

1

h
ge

t1
b

it
()

I
2

2
4

8
2

.1
8

2
2

3
4

0
.6

5
0

.5
4

0
.5

0
0

.4
5

0
.3

7
0

.3
9

h
u

ff
m

an
_d

ec
o

d
er

(L
ja

va
zo

o
m

/j
l/

d
ec

o
d

er
/h

u
ff

co
d

et
ab

;[
I[

I[
I[

IL
ja

va
zo

o
m

/j
l/

d
ec

o
d

er
/B

it
R

es
e

rv
e;

)I
3

0
5

7
3

8
2

.4
2

1
5

1
9

0
.7

9
0

.7
9

0
.6

5
0

.4
7

0
.3

9
0

.3
1

d
eq

u
an

ti
ze

_
sa

m
p

le
([

[F
II)

V
5

5
1

1
3

5
8

2
.4

6
2

2
2

6
8

5
0

.3
2

0
.2

4
0

.1
9

0
.1

4
0

.0
9

0
.0

8

h
u

ff
m

an
_d

ec
o

d
e(

II)
V

3
9

9
1

0
5

8
2

.6
5

2
0

2
5

3
4

0
.3

8
0

.3
1

0
.2

9
0

.2
5

0
.1

9
0

.1
7

re
o

rd
er

([
[F

II)
V

2
3

9
5

1
8

2
.1

7
4

8
1

5
4

0
.3

1
0

.2
4

0
.2

0
0

.1
5

0
.1

0
0

.0
9

ap
p

en
d

Sa
m

p
le

s(
I[

F)
V

5
0

1
0

8
2

.1
6

5
0

1
3

6
0

.3
7

0
.3

1
0

.2
9

0
.2

5
0

.1
8

0
.1

8

co
m

p
u

te
_p

cm
_s

am
p

le
s0

(L
ja

va
zo

o
m

/j
l/

d
ec

o
d

er
/O

b
u

ff
er

;)
V

1
8

8
5

3
8

2
.8

6
1

9
1

2
5

4
0

.7
5

0
.6

8
0

.5
6

0
.4

5
0

.2
9

0
.2

2

co
m

p
u

te
_p

cm
_s

am
p

le
s1

(L
ja

va
zo

o
m

/j
l/

d
ec

o
d

er
/O

b
u

ff
er

;)
V

1
8

8
5

3
8

2
.8

6
1

9
1

2
5

4
0

.7
5

0
.6

8
0

.5
6

0
.4

5
0

.2
9

0
.2

2

co
m

p
u

te
_p

cm
_s

am
p

le
s1

5
(L

ja
va

zo
o

m
/j

l/
d

ec
o

d
er

/O
b

u
ff

er
;)

V
1

8
8

5
3

8
2

.8
6

1
9

1
2

5
4

0
.7

5
0

.6
8

0
.5

6
0

.4
5

0
.2

9
0

.2
2

co
m

p
u

te
_p

cm
_s

am
p

le
s3

(L
ja

va
zo

o
m

/j
l/

d
ec

o
d

er
/O

b
u

ff
er

;)
V

1
9

0
5

3
8

2
.8

3
1

9
3

2
5

4
0

.7
6

0
.6

8
0

.5
6

0
.4

4
0

.2
9

0
.2

2

co
m

p
u

te
_p

cm
_s

am
p

le
s5

(L
ja

va
zo

o
m

/j
l/

d
ec

o
d

er
/O

b
u

ff
er

;)
V

1
8

8
5

3
8

2
.8

6
1

9
1

2
5

4
0

.7
5

0
.6

8
0

.5
6

0
.4

5
0

.2
9

0
.2

2

in
p

u
t_

sa
m

p
le

s(
[F

)V
1

9
5

8
3

.0
5

2
1

5
0

0
.4

2
0

.4
0

0
.3

4
0

.2
9

0
.2

0
0

.1
6

o
u

tp
u

t(
I)

V
2

1
6

4
3

8
2

.0
3

8
8

1
1

6
0

.7
6

0
.5

1
0

.4
4

0
.3

6
0

.2
7

0
.2

6

d
ec

o
m

p
re

ss
()

V
1

8
1

4
0

8
2

.2
5

9
1

3
0

.6
9

0
.6

9
0

.6
0

0
.4

7
0

.3
6

0
.2

1

ge
tc

o
d

e(
)I

1
7

2
3

2
8

1
.9

1
1

4
7

2
4

2
0

.6
1

0
.5

4
0

.5
1

0
.4

5
0

.3
1

0
.3

4

ge
tb

yt
e

()
I

2
4

5
8

2
.4

2
2

2
5

3
0

.4
2

0
.3

1
0

.3
1

0
.2

9
0

.2
9

0
.2

6

p
u

tb
yt

e(
B

)V
1

2
1

8
1

.5
0

1
2

2
5

0
.4

8
0

.4
8

0
.4

6
0

.4
3

0
.2

9
0

.3
1

C
al

l(
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

V
al

u
eV

ec
to

r;
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

C
o

n
te

xt
;)

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

e;
2

3
7

8
3

.3
9

1
2

3
2

1
2

0
.5

8
0

.3
9

0
.3

5
0

.2
9

0
.2

3
0

.1
7

cl
o

n
e(

)L
ja

va
/l

an
g/

O
b

je
ct

;
2

5
5

8
2

.3
2

2
5

5
2

0
.4

8
0

.4
5

0
.4

2
0

.4
0

0
.3

3
0

.3
0

Ex
e

cu
te

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

eV
ec

to
r;

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
C

o
n

te
xt

;)
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

V
al

u
e;

1
4

0
5

3
8

3
.8

4
2

0
4

9
0

.4
1

0
.2

9
0

.2
2

0
.1

6
0

.1
0

0
.0

6

 143

Table 44 Top 90% methods - part 3

M
et

h
o

d
To

ta
l

In
st

H
et

er
o

N
o

d
es

N
/I

In
st

Ex
ec

M
es

h

C
yc

le
s

IP
C

-0
IP

C
-1

IP
C

-2
IP

C
-3

IP
C

-4
IP

C
-5

Si
m

p
le

Ex
ec

u
te

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

eV
ec

to
r;

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
C

o
n

te
xt

;)
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

V
al

u
e;

4
9

1
6

8
3

.4
3

1
9

3
7

0
.5

1
0

.4
3

0
.4

0
0

.4
0

0
.3

0
0

.2
5

Ev
al

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

e;
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

To
ke

n
;)

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

eV
ec

to
r;

5
9

2
2

8
3

.8
6

2
8

4
4

7
5

0
.6

0
0

.4
3

0
.3

5
0

.2
7

0
.1

7
0

.1
3

ap
p

en
d

To
ke

n
(L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

To
ke

n
;L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

To
ke

n
;)

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
To

ke
n

;
1

7
3

8
2

.2
4

1
7

6
2

0
.2

7
0

.2
4

0
.2

3
0

.2
2

0
.1

9
0

.2
0

fi
n

d
In

M
em

o
ry

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
To

ke
n

V
ec

to
r;

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
To

ke
n

;)
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

To
ke

n
;

2
7

8
8

3
.2

6
1

6
4

3
1

8
0

.5
2

0
.4

7
0

.4
0

0
.3

2
0

.2
3

0
.1

7

fi
n

d
Fa

ct
(L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

V
al

u
eV

ec
to

r;
)L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

V
al

u
eV

ec
to

r;
5

7
2

1
8

3
.8

2
2

1
8

5
1

9
0

.4
2

0
.2

9
0

.2
5

0
.2

1
0

.1
5

0
.1

0

<i
n

it
>(

IL
sp

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

eV
ec

to
r;

)V
2

7
5

8
2

.1
5

2
7

2
8

0
.9

6
0

.7
3

0
.6

8
0

.5
9

0
.4

5
0

.4
2

A
d

d
Fa

ct
(L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
2

_j
e

ss
/j

es
s/

V
al

u
eV

ec
to

r;
)V

3
5

7
8

2
.2

3
3

5
8

9
0

.3
9

0
.3

3
0

.3
2

0
.3

0
0

.2
5

0
.2

5

d
at

a_
e

q
u

al
s(

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
To

ke
n

;)
Z

2
4

6
8

2
.8

3
2

1
5

1
0

.4
1

0
.3

1
0

.2
9

0
.2

4
0

.2
1

0
.1

6

eq
u

al
s(

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

2
_j

e
ss

/j
es

s/
V

al
u

e;
)Z

4
6

1
5

8
3

.4
3

5
7

0
.7

1
0

.8
3

0
.7

1
0

.5
0

0
.3

8
0

.2
5

eq
u

al
s(

Lj
av

a/
la

n
g/

O
b

je
ct

;)
Z

3
7

1
1

8
3

.1
9

5
7

0
.7

1
0

.8
3

0
.7

1
0

.5
0

0
.3

8
0

.2
5

Fi
n

d
Tr

ee
N

o
d

e(
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
P

o
in

t;
)L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
O

ct
N

o
d

e;
9

7
4

0
8

4
.2

1
1

0
1

4
0

5
0

.2
5

0
.2

1
0

.2
1

0
.2

0
0

.1
6

0
.1

4

In
te

rs
ec

t(
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
R

ay
;L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
P

o
in

t;
F)

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

5
_r

ay
tr

ac
e/

O
ct

N
o

d
e;

7
0

1
2

6
0

8
3

.7
2

1
7

8
5

6
5

0
.3

2
0

.2
4

0
.2

1
0

.1
7

0
.1

3
0

.1
0

<i
n

it
>(

)V
1

2
2

8
2

.3
3

1
2

8
1

.5
0

0
.8

0
0

.7
5

0
.6

3
0

.5
5

0
.4

1

A
d

d
(L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
V

ec
to

r;
)L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
P

o
in

t;
2

3
6

8
2

.9
6

2
3

6
1

0
.3

8
0

.3
2

0
.3

2
0

.3
0

0
.2

4
0

.2
2

C
o

m
b

in
e(

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

5
_r

ay
tr

ac
e/

P
o

in
t;

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

5
_r

ay
tr

ac
e/

V
ec

to
r;

FF
)L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
P

o
in

t;
3

5
1

5
8

4
.5

1
3

5
8

9
0

.3
9

0
.3

0
0

.2
9

0
.2

7
0

.2
4

0
.2

6

Se
t(

FF
F)

V
1

0
1

8
1

.8
0

1
0

6
1

.6
7

1
.6

7
1

.2
5

1
.0

0
0

.5
0

0
.5

6

In
te

rs
ec

t(
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
R

ay
;L

sp
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
In

te
rs

ec
tP

t;
)Z

8
8

3
6

8
4

.1
8

2
5

6
1

0
.4

1
0

.3
6

0
.3

3
0

.2
9

0
.2

4
0

.2
4

C
h

ec
k(

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
0

5
_r

ay
tr

ac
e/

R
ay

;L
sp

ec
/b

en
ch

m
ar

ks
/_

2
0

5
_r

ay
tr

ac
e/

In
te

rs
ec

tP
t;

)Z
6

0
1

9
8

3
.3

0
5

4
1

7
2

0
.3

1
0

.2
5

0
.2

4
0

.2
3

0
.1

9
0

.1
9

D
o

t(
Ls

p
ec

/b
en

ch
m

ar
ks

/_
2

0
5

_r
ay

tr
ac

e/
V

ec
to

r;
)F

1
8

8
8

4
.8

9
1

8
5

5
0

.3
3

0
.2

9
0

.2
8

0
.2

6
0

.2
1

0
.2

3

Ä
£

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
2

2
_m

p
eg

au
d

io
/g

;)
Z

1
0

0
2

0
8

2
.0

8
2

4
5

4
4

4
0

.5
5

0
.4

9
0

.4
4

0
.3

8
0

.2
6

0
.2

6

I(
[I

II[
FI

)V
7

4
1

9
8

2
.6

8
8

4
5

0
1

.6
8

1
.0

0
0

.6
6

0
.4

5
0

.2
8

0
.2

8

J(
[F

[F
)V

3
0

5
9

5
8

3
.1

4
3

0
5

5
4

5
.6

5
3

.1
8

2
.1

8
1

.4
3

0
.8

4
0

.5
8

re
ad

()
I

1
6

3
8

2
.3

8
1

2
2

4
0

.5
0

0
.4

8
0

.4
6

0
.4

0
0

.2
6

0
.2

6

re
ad

()
I

5
9

1
4

8
2

.5
1

3
4

1
1

7
0

.2
9

0
.2

7
0

.2
6

0
.2

4
0

.1
8

0
.1

7

Ä
£

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
2

2
_m

p
eg

au
d

io
/g

;)
Z

1
3

3
2

8
8

2
.1

7
4

3
6

0
0

.7
2

0
.5

4
0

.4
8

0
.4

1
0

.3
2

0
.3

5

Ä
„(

[F
[F

II)
V

3
4

8
8

2
.5

9
2

7
7

3
9

5
0

.7
0

0
.5

3
0

.4
7

0
.3

8
0

.2
6

0
.2

7

e(
[I

Ls
p

ec
/b

en
ch

m
ar

ks
/_

2
2

2
_m

p
eg

au
d

io
/g

;[
[S

I)
V

5
9

1
2

8
2

.1
7

5
3

1
2

5
0

.4
2

0
.3

9
0

.3
7

0
.3

4
0

.2
7

0
.2

5

 144

Table 45 Top 90% methods - part 4

M
et

h
o

d
To

ta
l

In
st

H
et

er
o

N
o

d
es

N
/I

In
st

Ex
ec

M
es

h

C
yc

le
s

IP
C

-0
IP

C
-1

IP
C

-2
IP

C
-3

IP
C

-4
IP

C
-5

j(
F)

S
1

8
6

8
3

.7
8

1
2

5
1

0
.2

4
0

.2
4

0
.2

4
0

.2
2

0
.1

7
0

.1
6

Ä
–(

[F
[F

[F
)V

6
0

1
1

8
1

.9
7

3
4

8
7

0
5

0
.4

9
0

.4
1

0
.3

7
0

.3
2

0
.2

4
0

.2
7

Ä
“(

[F
[F

)V
3

1
5

9
5

8
3

.0
4

3
1

5
9

7
3

.2
5

2
.2

7
1

.7
4

1
.2

5
0

.7
9

0
.5

8

Ä
”(

[F
[F

[F
)V

3
4

9
8

6
8

2
.4

9
3

4
9

1
0

3
3

.3
9

2
.3

4
1

.7
5

1
.2

2
0

.7
6

0
.6

5

Ä
•(

[F
[F

[F
)V

6
4

9
1

7
9

8
2

.7
7

6
4

9
6

5
9

.9
8

4
.3

9
2

.6
6

1
.6

1
0

.8
9

0
.6

8

Ä
£

(L
sp

ec
/b

en
ch

m
ar

ks
/_

2
2

2
_m

p
eg

au
d

io
/g

;)
Z

9
5

2
0

8
2

.1
9

8
4

1
1

9
0

.7
1

0
.5

0
0

.4
7

0
.4

2
0

.3
2

0
.3

0

n
ex

tc
h

ar
()

C
1

6
8

4
0

8
2

.4
3

4
4

9
3

0
.4

7
0

.3
8

0
.3

6
0

.3
2

0
.2

6
0

.2
2

re
ad

C
h

ar
()

C
1

3
2

2
7

8
2

.1
1

1
6

5
4

0
.3

0
0

.2
6

0
.2

5
0

.2
5

0
.2

0
0

.2
1

sc
an

_t
o

ke
n

(I
)V

3
7

7
8

2
.1

1
1

5
6

3
0

.2
4

0
.2

1
0

.2
1

0
.2

0
0

.1
8

0
.1

6

M
o

ve
(L

ja
va

/u
ti

l/
V

ec
to

r;
)I

4
1

1
2

8
3

.1
2

2
1

2
7

1
6

0
.3

0
0

.2
6

0
.2

3
0

.1
9

0
.1

5
0

.1
1

A
n

yA
ct

iv
e

St
r(

[J
)Z

1
8

4
8

2
.6

7
1

5
4

7
0

.3
2

0
.2

6
0

.2
4

0
.2

1
0

.1
5

0
.1

5

ge
tT

o
ke

n
(I

)L
sp

ec
/b

en
ch

m
ar

ks
/_

2
2

8
_j

ac
k/

To
ke

n
;

9
4

2
3

8
2

.5
3

9
3

6
0

.2
5

0
.2

5
0

.2
4

0
.2

3
0

.2
0

0
.1

7

co
m

p
re

ss
()

V
1

6
5

3
9

8
2

.4
1

3
1

1
5

7
1

0
.5

4
0

.4
2

0
.3

6
0

.2
8

0
.1

9
0

.1
7

o
u

tp
u

t(
I)

V
2

0
8

4
4

8
2

.1
5

8
8

1
1

6
0

.7
6

0
.5

0
0

.4
3

0
.3

5
0

.2
5

0
.2

3

d
ec

o
m

p
re

ss
()

V
1

1
9

3
3

8
2

.8
4

9
1

3
0

.6
9

0
.6

9
0

.6
4

0
.5

3
0

.3
8

0
.2

2

ge
tC

o
d

e(
)I

1
6

4
3

2
8

2
.0

0
1

3
9

2
3

8
0

.5
8

0
.4

7
0

.4
4

0
.3

9
0

.3
2

0
.3

2

p
o

p
()

B
1

1
1

8
1

.6
4

1
1

3
7

0
.3

0
0

.2
4

0
.2

3
0

.2
3

0
.1

9
0

.2
1

p
u

sh
(B

)V
1

2
1

8
1

.5
0

1
2

2
5

0
.4

8
0

.4
8

0
.4

6
0

.4
3

0
.2

9
0

.3
1

re
ad

B
yt

e(
)I

2
3

4
8

2
.0

9
2

2
6

0
0

.3
7

0
.3

1
0

.3
1

0
.3

0
0

.2
7

0
.2

7

re
ad

B
yt

es
([

B
I)

I
3

8
8

8
2

.3
2

5
1

9
0

.2
6

0
.2

8
0

.2
6

0
.2

3
0

.2
0

0
.1

6

w
ri

te
B

yt
e(

B
)V

1
2

1
8

1
.5

0
1

2
2

5
0

.4
8

0
.4

8
0

.4
6

0
.4

3
0

.2
9

0
.3

1

u
p

d
at

eC
R

C
3

2
(L

ja
va

/u
ti

l/
zi

p
/C

R
C

3
2

;[
S)

V
4

4
9

8
2

.2
3

4
7

8
9

0
.5

3
0

.4
5

0
.3

9
0

.3
2

0
.2

3
0

.2
1

tr
an

sf
o

rm
_i

n
te

rn
al

([
D

I)
V

2
5

1
6

0
8

2
.4

2
4

1
8

0
.2

2
0

.2
0

0
.1

5
0

.1
1

0
.1

1
0

.0
9

fa
ct

o
r(

[[
D

[I
)I

1
6

2
3

5
8

2
.2

1
4

7
1

2
1

0
.3

9
0

.3
1

0
.3

0
0

.2
6

0
.2

2
0

.2
3

n
ex

tD
o

u
b

le
()

D
7

1
1

7
8

2
.5

1
4

9
1

1
8

0
.4

2
0

.3
4

0
.3

2
0

.3
0

0
.2

3
0

.2
0

 145

APPENDIX C - SAMPLE ANALYSIS FROM ONE METHOD

This Appendix demonstrates the data gathered from one sample method, the

‘nextDouble()’ from the SpecJvm2008 set. This method does contribute significantly to

the overall performance, and is shown as an example of the results logged for each of the

methods analyzed. This data is part of a single electronic document which is part of the

analysis and simulation process used to create the results presented in Chapters 5 and 7.

Figure 27 shows the summary information for the method. Both dynamic and static

analysis results are summarized in this first section of the document.

Figure 27 Sample Analysis for nextDouble()

 146

Figure 28 shows a section of the method document where the raw JAVAP output

is stored. The method requires two columns of output from JAVAP.

Figure 28 Method code from JAVAP – nextDouble()

L0: isub

.line 119 putfield spec/benchmarks/scimark/utils/Random/i I

aload 0 L7:

getfield spec/benchmarks/scimark/utils/Random/m [I .line 129

aload 0 aload 0

getfield spec/benchmarks/scimark/utils/Random/i I getfield spec/benchmarks/scimark/utils/Random/j I

iaload ifne L8

aload 0 L9:

getfield spec/benchmarks/scimark/utils/Random/m [I .line 130

aload 0 aload 0

getfield spec/benchmarks/scimark/utils/Random/j I bipush 16

iaload putfield spec/benchmarks/scimark/utils/Random/j I

isub goto L10

istore 1 L8:

L1: .line 132

.line 120 aload 0

iload 1 dup

ifge L2 getfield spec/benchmarks/scimark/utils/Random/j I

L3: iconst_1

.line 121 isub

iload 1 putfield spec/benchmarks/scimark/utils/Random/j I

ldc 2147483647 L10:

iadd .line 134

istore 1 aload 0

L2: getfield spec/benchmarks/scimark/utils/Random/haveRange Z

.line 122 ifeq L11

aload 0 L12:

getfield spec/benchmarks/scimark/utils/Random/m [I .line 135

aload 0 aload 0

getfield spec/benchmarks/scimark/utils/Random/j I getfield spec/benchmarks/scimark/utils/Random/left D

iload 1 aload 0

iastore getfield spec/benchmarks/scimark/utils/Random/dm1 D

L4: iload 1

.line 124 i2d

aload 0 dmul

getfield spec/benchmarks/scimark/utils/Random/i I aload 0

ifne L5 getfield spec/benchmarks/scimark/utils/Random/width D

L6: dmul

.line 125 dadd

aload 0 dreturn

bipush 16 L11:

putfield spec/benchmarks/scimark/utils/Random/i I .line 137

goto L7 aload 0

L5: getfield spec/benchmarks/scimark/utils/Random/dm1 D

.line 127 iload 1

aload 0 i2d

dup dmul

getfield spec/benchmarks/scimark/utils/Random/i I dreturn

iconst_1 L13:

.var 0 is 'this' Lspec/benchmarks/scimark/utils/Random; from L0 to L13

.var 1 is 'k' I from L1 to L13

 147

Figure 30 shows the results of the DataFlow analysis applied to the method. The

first entry indicates whether the instruction is jump and which direction. The data between

‘>>’ and ‘<<’ is the nodes to which producer data is sent. The following items indicate the

number of ‘pop’ and ‘push’ values; whether the instruction loads or stores a register; and

finally the instruction group.

Figure 29 DataFlow code - nextDouble()

Linked Code

decoder:

(0)/(+)/(-), thisAddr, Next1, Next2, Opcode,

>>Df destination. --/M-/-B/MB. Side . ThreadID; <<

pop=n; push=n; regLoad; regStore; group

(0),0,1,,aload, >>1.--.1.0; <<pop=0;push=1;True,False,lr (0),33,34,,getfield, >>35.--.2.0; <<pop=1;push=1;False,False,mr

(0),1,2,,getfield, >>4.--.2.0; <<pop=1;push=1;False,False,mr (0),34,35,,iconst_1, >>35.--.1.0; <<pop=0;push=1;False,False,mv

(0),2,3,,aload, >>3.--.1.0; <<pop=0;push=1;True,False,lr (0),35,36,,isub, >>36.--.1.0; <<pop=2;push=1;False,False,ai

(0),3,4,,getfield, >>4.--.1.0; <<pop=1;push=1;False,False,mr (0),36,37,,putfield, <<pop=2;push=0;False,False,mw

(0),4,5,,iaload, >>10.--.2.0; <<pop=2;push=1;False,False,mr (0),37,38,,aload, >>38.--.1.0; <<pop=0;push=1;True,False,lr

(0),5,6,,aload, >>6.--.1.0; <<pop=0;push=1;True,False,lr (0),38,39,,getfield, >>39.--.1.0; <<pop=1;push=1;False,False,mr

(0),6,7,,getfield, >>9.--.2.0; <<pop=1;push=1;False,False,mr (+),39,40,44,ifne, <<pop=1;push=0;False,False,jp

(0),7,8,,aload, >>8.--.1.0; <<pop=0;push=1;True,False,lr (0),40,41,,aload, >>42.--.2.0; <<pop=0;push=1;True,False,lr

(0),8,9,,getfield, >>9.--.1.0; <<pop=1;push=1;False,False,mr (0),41,42,,bipush, >>42.--.1.0; <<pop=0;push=1;False,False,mv

(0),9,10,,iaload, >>10.--.1.0; <<pop=2;push=1;False,False,mr (0),42,43,,putfield, <<pop=2;push=0;False,False,mw

(0),10,11,,isub, >>11.--.1.0; <<pop=2;push=1;False,False,ai (+),43,,50,goto, <<pop=0;push=0;False,False,gt

(0),11,12,,istore, <<pop=1;push=0;False,True,lw (0),44,45,,aload, >>45.--.1.0; <<pop=0;push=1;True,False,lr

(0),12,13,,iload, >>13.--.1.0; <<pop=0;push=1;True,False,lr (0),45,46,,dup, >>46.--.1.0; >>49.--.2.0; <<pop=1;push=2;False,False,mv

(+),13,14,18,ifge, <<pop=1;push=0;False,False,jp (0),46,47,,getfield, >>48.--.2.0; <<pop=1;push=1;False,False,mr

(0),14,15,,iload, >>16.--.2.0; <<pop=0;push=1;True,False,lr (0),47,48,,iconst_1, >>48.--.1.0; <<pop=0;push=1;False,False,mv

(0),15,16,,ldc, >>16.--.1.0; <<pop=0;push=1;False,False,cn (0),48,49,,isub, >>49.--.1.0; <<pop=2;push=1;False,False,ai

(0),16,17,,iadd, >>17.--.1.0; <<pop=2;push=1;False,False,ai (0),49,50,,putfield, <<pop=2;push=0;False,False,mw

(0),17,18,,istore, <<pop=1;push=0;False,True,lw (0),50,51,,aload, >>51.--.1.0; <<pop=0;push=1;True,False,lr

(0),18,19,,aload, >>19.--.1.0; <<pop=0;push=1;True,False,lr (0),51,52,,getfield, >>52.--.1.0; <<pop=1;push=1;False,False,mr

(0),19,20,,getfield, >>23.--.3.0; <<pop=1;push=1;False,False,mr (+),52,53,65,ifeq, <<pop=1;push=0;False,False,jp

(0),20,21,,aload, >>21.--.1.0; <<pop=0;push=1;True,False,lr (0),53,54,,aload, >>54.--.1.0; <<pop=0;push=1;True,False,lr

(0),21,22,,getfield, >>23.--.2.0; <<pop=1;push=1;False,False,mr (0),54,55,,getfield, >>63.--.2.0; <<pop=1;push=1;False,False,mr

(0),22,23,,iload, >>23.--.1.0; <<pop=0;push=1;True,False,lr (0),55,56,,aload, >>56.--.1.0; <<pop=0;push=1;True,False,lr

(0),23,24,,iastore, <<pop=3;push=0;False,False,mw (0),56,57,,getfield, >>59.--.2.0; <<pop=1;push=1;False,False,mr

(0),24,25,,aload, >>25.--.1.0; <<pop=0;push=1;True,False,lr (0),57,58,,iload, >>58.--.1.0; <<pop=0;push=1;True,False,lr

(0),25,26,,getfield, >>26.--.1.0; <<pop=1;push=1;False,False,mr (0),58,59,,i2d, >>59.--.1.0; <<pop=1;push=1;False,False,ci

(+),26,27,31,ifne, <<pop=1;push=0;False,False,jp (0),59,60,,dmul, >>62.--.2.0; <<pop=2;push=1;False,False,af

(0),27,28,,aload, >>29.--.2.0; <<pop=0;push=1;True,False,lr (0),60,61,,aload, >>61.--.1.0; <<pop=0;push=1;True,False,lr

(0),28,29,,bipush, >>29.--.1.0; <<pop=0;push=1;False,False,mv (0),61,62,,getfield, >>62.--.1.0; <<pop=1;push=1;False,False,mr

(0),29,30,,putfield, <<pop=2;push=0;False,False,mw (0),62,63,,dmul, >>63.--.1.0; <<pop=2;push=1;False,False,af

(+),30,,37,goto, <<pop=0;push=0;False,False,gt (0),63,64,,dadd, >>64.--.1.0; <<pop=2;push=1;False,False,af

(0),31,32,,aload, >>32.--.1.0; <<pop=0;push=1;True,False,lr (0),64,,,dreturn, <<pop=1;push=0;False,False,rt

(0),32,33,,dup, >>33.--.1.0; >>36.--.2.0; <<pop=1;push=2;False,False,mv(0),65,66,,aload, >>66.--.1.0; <<pop=0;push=1;True,False,lr

(0),66,67,,getfield, >>69.--.2.0; <<pop=1;push=1;False,False,mr

(0),67,68,,iload, >>68.--.1.0; <<pop=0;push=1;True,False,lr

(0),68,69,,i2d, >>69.--.1.0; <<pop=1;push=1;False,False,ci

(0),69,70,,dmul, >>70.--.1.0; <<pop=2;push=1;False,False,af

(0),70,,,dreturn, <<pop=1;push=0;False,False,rt

 148

Figure 31 shows the raw data from the results of the dataflow analysis. The items

were described in Section 7.2, and are presented for a single method as a demonstration of

the data gathering processes.

Figure 30 DataFlow Analysis - nextDouble()

 149

Figure 31 represents the raw data from this single method in the performance

analysis presented in Section 7.3. The two sections of the table represent the 2 Branch

Prediction cases simulated. The columns represent the 6 configurations simulated. The

rows represent data as follows:

 The ‘R’ in the Return column indicates that at Return instruction was

executed.

 Total mesh clock cycles required to execute the method

 Total serial clock cycles required to execute the method

 Total instructions executed

 Instructions per cycle which is the ratio of instructions to mesh clock cycles

 The Parallel 1 row indicates the number of mesh cycles where 2 instructions

were executing

 Parallel>1 indicates the number of mesh cycles where more than 2

instructions were executing

 Jump Forward Taken

 Jump Forward Not Taken

 Jump Backward Taken (Note that this method although contributing to the

overall performance does not have a loop inside. This method would benefit

due to its residence in the DataFlow Fabric and being invoked repeatedly

by the processes described in Section 6.2.

 Jump Backward Not Taken

 %Coverage is the ratio of static instructions executed to total number of

static instructions. This is the test of viability of the jump/branch prediction

strategy described in Section 7.1.

 150

 Max Nodes represents the serial node required by the last instruction in the

method. This number is static in 5 of the cases, and is only interesting as

instructions are deployed to a heterogeneous DataFlow Fabric in Case 5.

Note that this is not the number of nodes consumed, but only represents the

added distance that data might have to traverse in the execution of the

method.

Figure 31 Simulation results - nextDouble()

 151

APPENDIX D - BENCHMARK DESCRIPTIONS

Appendix D provides a list of all the benchmarks that are included in the

SpecJvm2008 and SpecJvm98 suites. Benchmarks were excluded due to being part of the

initialization and due to execution difficulties. The required use of the GNU Classpath

[52] code rather than the more recently released (open source) Oracle Java classes is the

primary reason for these exclusions on SpecJvm2008. Table 46 shows SpecJvm98

benchmarks both included and excluded. Table 47 shows SpecJvm2008 benchmarks

included in the analysis; while Table 48 shows SpecJvm2008 benchmarks that were

excluded.

Table 46 SpecJvm98 Benchmarks

SpecJvm98- Included

_201_compress

A popular utility used to compress/uncompress files

_202_jess

A Java expert system shell

_209_db

A small data management program

_222_mpegaudio

An MPEG-3 audio stream decoder

_227_mtrt

A dual-threaded program that ray traces an image file

_228_jack

A parser generator with lexical analysis

SpecJvm98- Excluded

_200_check

checks JVM and Java features

_213_javac

The Java compiler, compiling 225,000 lines of code

 152

Table 47 SpecJvm2008 Benchmarks Included

SpecJvm2008- Included

Compress

This benchmark compresses data, using a modified Lempel-Ziv method (LZW).

Basically finds common substrings and replaces them with a variable size code.

Crypto

This benchmark focuses on different areas of crypto and are split in three different sub-

benchmarks.

signverify

Sign and verify using MD5withRSA, SHA1withRSA, SHA1withDSA and

SHA256withRSA protocols.

MPEGaudio

This benchmark is very similar to the SPECjvm98 mpegaudio. The mp3 library has been

replaced with JLayer, an LGPL mp3 library. Its floating-point heavy and a good test of

mp3 decoding. Input data were taken from SPECjvm98.

Scimark

This benchmark was developed by NIST and is widely used by the industry as a floating

point benchmark.

FFT

Fast Fourier Transform (FFT) performs a one-dimensional forward transform of 4K

complex numbers.

SOR

Jacobi Successive Over-relaxation (SOR) on a 100x100 grid exercises typical access

patterns in finite difference applications, for example, solving Laplace's equation in 2D

with Drichlet boundary conditions.

Monte Carlo

Monte Carlo integration approximates the value of Pi by computing the integral of the

quarter circle y = sqrt(1 - x^2) on [0,1].

Sparse

Sparse matrix multiply uses an unstructured sparse matrix stored in compressed-row

format with a prescribed sparsity structure.

LU

dense LU matrix factorization Computes the LU factorization of a dense 100x100

matrix using partial pivoting.

 153

Table 48 SpecJvm2008 Benchmarks Excluded

SpecJvm2008- Excluded

Startup

This benchmark starts each benchmark for one operation.

Compiler

This benchmark uses the OpenJDK (JDK 7 alpha) front end compiler to compile a set of

.java files.

Crypto

This benchmark focuses on different areas of crypto and are split in three different sub-

benchmarks.

aes

Encrypt and decrypt using the AES and DES protocols, using CBC/PKCS5 Padding and

CBC/NoPadding

rsa

Encrypt and decrypt using the RSA protocol, using input data of size 100 bytes and 16

kB.

Derby

This benchmark uses an open-source database written in pure Java. It is synthesized with

business logic to stress the BigDecimal library. It is a direct replacement to the

SPECjvm98 db benchmark.

Serial

This benchmark serializes and deserializes primitives and objects, using data from the

JBoss benchmark.

Sunflow

This benchmark tests graphics visualization using an open source, internally multi-

threaded global illumination rendering system.

XML

This benchmark has two sub-benchmarks: XML.transform and XML.validation.

154

Glossary

ACK Protocol. Synchronizing the transmission of data between two

elements by sending an 'Acknowledgement’ message

which must be received before any further data

transmission.

Anchor Node. A special Instruction Node in the DataFlow Fabric

which acts as the interface between the Fabric and the

General Purpose Processor. Method state is kept, and

this node may allow invocation from another node in

the DataFlow Fabric.

Branch Prediction. The process of predicting the behavior of branches to

improve performance by avoiding stalls in the

instruction stream. This function is not part of the

JavaFlow machine.

ByteCode. See Java ByteCode

Class. The basic unit of programming in the Java language.

Classes may be used statically or instantiated into one

more many objects which form the basis for the

Object Oriented Design of the Java language.

Class File. The basic unit of information containing all the

information about a Java Class for it to be loaded,

linked, and executed in a Java Virtual Machine.

Constant Pool. A portion of the Java ClassFile which contains

references to other classes used by the current class.

 155

This data is updated upon loading of the class to

resolve these references to actual pointers inside the

JVM.

ControlFlow. The normal ordering of a program/method. Usually

associated with an instruction counter which indicates

which instruction is currently executing.

Dimensional Routing. The process of routing data in the DataFlow Fabric

that always routes in first one dimension (x) and then

the second dimension (y). This routing algorithm

while not as complex or optimal as some allows a

simple router, sequential delivery, and no deadlocks.

DataFlow. The ordering of execution of a program/method based

on the availability of data for the operations. Note

that this DataFlow ordering may contradict the

intended control flow ordering in many languages and

requires special handling to execute programs

properly.

Dynamic Mix. The percentages of instructions actually executed

during the running of a benchmark.

Fabric. The name for the set of Instruction Nodes which are

interconnected by the mesh network in a DataFlow

machine.

Field. A variable of a Class or an Object instantiated from a

class. This provides a structured way to view only the

 156

data the designer wants to be made available outside

the construct of a Class.

Finally clause. A Java language construct that executes a set of

instructions after a method is possibly an interrupted

by an exception.

Fire. The action of an Instruction Node actually executing

the instruction. Normally this is initiated by the

receipt of all necessary data elements (e.g.

‘Pop’==’PopsReceived’)

Folding. The process of removing possibly redundant

ByteCode instructions from a method.

Garbage Collection. The freeing of storage used by objects that are no

longer necessary

General Purpose Process (GPP). A standard processor core capable of interpreting Java

ByteCode instructions and managing the DataFlow

Fabric.

Graphics Processing Unit (GPU) The processing units used in advanced graphics

subsystems and also exploited for advanced parallel

computing applications. These processors have very

high level of parallelism, but due to their SIMD

(Single Instruction, Multiple Data) organization, and

typical restrictive cross processor memory access, are

difficult to program for general purpose functions.

 157

Heap. The set of memory addresses used by the Java Virtual

Machine to store objects. The Heap is typically

subject to Garbage Collection.

Hyperblock. A subset of a program in the TRIPS context that can

execute atomically and not have any back branches.

Instance. An object created (instantiated) from a Class. Note

that instance/object data is maintained on the Heap

while static Class data is maintained in a common

Method Area.

InstanceID. A field in messages to insure that the message is

received by nodes that are part of the same Thread,

Class, and method. In a practical implementation, this

value would be hashed when included in messages.

Instruction Node. An element in the DataFlow Fabric responsible for the

execution of a ByteCode Instruction. Included in the

Instruction Node is the instruction execution unit, one

or more instruction data units, serial network router,

mesh network router, and at times, the GPP/Memory

interface unit.

Instructions Per Cycle (IPC). . The performance measurement of the system. The

cycles are the Mesh Node cycles, and the instructions

are the executed Java ByteCode instructions. This

metric is used as it is independent of both the

technology and (to a degree), the exact execution

times of the instructions.

 158

Java ByteCode The instruction set architecture (ISA) implemented by

the Java Virtual Machine

Java Virtual Machine (JVM). . . . The architecture including instruction set, machine

resources, and interfaces of the processing system

used to execute Java programs.

JAVAC. The Java compiler which compiles source java classes

into Java ClassFiles for loading and executing by the

Java Virtual Machine.

JavaFlow. The single word name for the Java DataFlow

Machine.

JAVAP. A program provided as part of the Java Development

environment to disassemble Java Class Files into

human readable statements.

Linear Address. The addresses of the ByteCode instructions prior to

loading into the DataFlow Fabric. While the

architecture specifies the addresses of the instructions

as byte offsets from the beginning, the JavaFlow

machine linear addresses are sequential for each

instruction.

Locality. The concept of insuring that the data required by a

processing unit is physically close to that unit.

Mesh Address. Addresses of cells in the DataFlow Fabric. In the

JavaFlow machine these addresses are 3 tuple: x, y, p

where x and y represent the grid positions, and p is the

 159

processing function. In the JavaFlow analysis, p is

always set to 0.

Mesh Clock cycle. The time for the instruction execution unit to perform

a portion of the execution and the time for the Mesh

Router to transfer data through the Instruction Node.

Mesh Message. The packet of data transferred from one Instruction

Node to another using the mesh network.

Method. The program which executes as part of a Java Class

Method Area. An area of storage where the method code, associated

data, and static class data is stored.

Object. An instantiation of a Class. The object has storage

allocated on the Heap.

Ordered Memory Access. Memory accesses to the Heap where the memory

subsystem must insure the proper ordering of reads

and writes to insure proper sequencing.

Parallelism. Execution events occurring at the same time. In

JavaFlow, parallelism is measured by the number of

mesh cycles that have more than one Instruction Node

executing. Note that this includes actual processing,

but excludes service times.

Pop. A characteristic of a ByteCode instruction that defines

the number of stack data elements that are used as

input to the instruction.

 160

PopsReceived. A state in the Instruction Node that counts the number

of DataFlow messages received. When

‘PopsReceived’ equals ‘Pop,’ the instruction is ready

to fire.

Producer-Consumer. The nomenclature of a DataFlow machine where

Instruction Nodes produce the results of computations

and then send these results to consuming nodes

elsewhere in the DataFlow Fabric.

Push. A characteristic of a ByteCode instruction that defines

the number of destinations to which the results must

be sent.

Quick. A term applied to the opcodes of ByteCode

instructions whose addresses have been resolved.

While not part of the official JVM architecture, these

opcodes have been used by interpreters as a pseudo

standard.

Serial Clock cycle. The clock used to transmit data down the serial

network. It is projected that this clock cycle can be

shorter than the mesh network due to the less complex

routing functions required.

Serial Message. The message sent between nodes in the serial network

which is used to maintain control flow ordering and to

transfer register data to ByteCode instructions.

 161

Simultaneous Multi-Threading. . A processing function implemented in some modern

systems where more than one thread can be executing

in a single set of processing elements by maintaining

instance id information along with data elements.

SPEC. Standard Performance Evaluation Corporation is a

non-profit corporation formed to standardize and

support a series of benchmarks used measure the

performance of computing systems.

Stack. A resource of the JVM which holds operands for

ByteCode instructions. The Stack is a push down

(Last In, First Out) structure.

Static Mix. The percentages of instructions found in methods that

are loaded into the machine independent of their

execution frequency.

Unordered Memory Access. Memory accesses to the Constant Pool which since

the resolution of addresses is done before loading

instructions, can be made without the constraints of

insuring ordering the accesses between Instruction

Nodes.

X-Y Routing. See Dimensional Routing

162

References

[1] P. Miller, The Smart Swarm, New York, NY: Avery Books, 2010.

[2] TIOBE Software BV. (2007, October 12, 2007). TIOBE Programming Community

Index. Available at: http://www.tiobe.com/index.php

[3] S. Cass, "The Top 10 Programming Languages; Spectrum's 2014 Rankings," IEEE

Spectrum, vol. 51, issue 7, p. 68, 2014.

[4] T. Lindholm and F. Yellin, Java Virtual Machine Specification, Boston, MA:

Addison-Wesley Longman Publishing Co., Inc., 1999.

[5] B. Venners, Inside the Java Virtual Machine, New York: McGraw-Hill

Professional, 1999.

[6] R. J. Ascott and E. E. Swartzlander Jr., "JavaFlow—A Java dataflow machine," in

IEEE International SOC Conference, Belfast, Northern Ireland, UK, pp. 211-214,

2009.

[7] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, "Dataflow: The Road Less

Complex," presented at the In the Workshop on Complexity-effective Design

(WCED) held in conjunction with the 30th Annual International Symposium on

Computer Architecture (ISCA), 2003.

[8] R. Ho, K. W. Mai, and M. A. Horowitz, "The future of wires," Proceedings of the

IEEE, vol. 89, issue 4, pp. 490-504, 2001.

[9] P. Kongetira, K. Aingaran, and K. Olukotun, "Niagara: a 32-way multithreaded

Sparc processor," IEEE Micro, vol. 25, issue 2, pp. 21-29, 2005.

http://www.tiobe.com/index.php

 163

[10] D. Nicolaescu and A. Veidenbaum, "Understanding and comparing the

performance of optimized JVMs," in Innovative Architecture for Future

Generation High-Performance Processors and Systems, pp. 1-8, 2005.

[11] K. Casey, M. A. Ertl, and D. Gregg, "Optimizing indirect branch prediction

accuracy in virtual machine interpreters," ACM Trans. Program. Lang. Syst., vol.

29, issue 6, pp. 37:1-37:29, 2007.

[12] C. Click, G. Tene, and M. Wolf, "The pauseless GC algorithm," Proceedings of the

1st ACM/USENIX International Conference on Virtual Execution Environments,

pp. 46-56, 2005.

[13] D. Greve, "Symbolic simulation of the JEM1 microprocessor," in Formal Methods

in Computer-Aided Design. vol. 1522, 1st ed., Berlin: Springer, 1998, p. 531.

[14] J. M. O'Connor and M. Tremblay, "picoJava-I: The Java Virtual Machine in

hardware," IEEE Micro, vol. 17, issue 2, pp. 45-53, 1997.

[15] M. Schoeberl, "JOP: A Java Optimized Processor for Embedded Real-Time

Systems," Ph.D. Dissertation, Vienna University of Technology, Vienna, 2005.

[16] M. Schoeberl, "Evaluation of a Java processor," Tagungsband Austrochip 2005, pp.

127-134, October, 2005.

[17] J. C. B. Mattos, S. Wong, and L. Carro, "The Molen FemtoJava engine," in

Proceedings of the IEEE 17th International Conference on Application-Specific

Systems, Architectures and Processors, pp. 19-22, 2006.

[18] R. Radhakrishnan, "Microarchitectural Techniques to Enable Efficient Java

Execution," Ph.D. Dissertation, University of Texas at Austin, Austin, TX, 2000.

 164

[19] R. Radhakrishnan, R. Bhargava, and L. K. John, "Improving Java performance

using hardware translation," in 15th International Conference on Supercomputing,

pp. 427-439, 2001.

[20] J. Glossner and S. Vassiliadis, "Delft-Java Dynamic Translation," in 25th

EUROMICRO Conference, Milan, Italy, pp. 57-62, 1999.

[21] H. Oi, "Instruction Folding in a Hardware-Translation Based Java Vvirtual

Machine," in 3rd Conference on Computing Frontiers, pp. 139-146, 2006.

[22] M. W. El-Kharashi, F. Elguibaly, and K. F. Li, "Adapting Tomasulo's algorithm for

bytecode folding based Java processors," ACM SIGARCH Computer Architecture

News, vol. 29, issue 5, pp. 1-8, 2001.

[23] H. C. Wang and C. K. Yuen, "Exploiting Dataflow to Extract Java Instruction Level

Parallelism on a Tag-Based Multi-Issue Semi In-order (TMSI) Processor," in 20th

International Parallel and Distributed Processing Symposium, pp. 9-17, 2006.

[24] N. Vijaykrishnan, N. Ranganathan, and R. Gadekarla, "Object-oriented

architectural support for a Java processor," ECOOP’98—Object-Oriented

Programming, pp. 330-355, 1998.

[25] Adapteva, Inc.,. (2013, July, 2014). Epiphany Multicore IP. Available at:

http://www.adapteva.com/

[26] HSA Foundation. (2014). Heterogeneous System Architecture. Available at:

http://www.hsafoundation.com/

[27] Oracle Corporation. (2014). Java 8 Documentation. Available at:

http://www.oracle.com/technetwork/java/javase/documentation/index.html

http://www.adapteva.com/
http://www.hsafoundation.com/
http://www.oracle.com/technetwork/java/javase/documentation/index.html

 165

[28] OpenJDK. (2014). OpenJDK Sumatra Project. Available at:

http://wiki.openjdk.java.net/display/Sumatra/Main

[29] J. Hsu, "IBM's New Brain," IEEE Spectrum, vol. 51, issue 10, pp. 17-19, 2014.

[30] J. B. Dennis and D. P. Misunas, "A preliminary architecture for a basic data-flow

processor," ACM SIGARCH Computer Architecture News, vol. 3, issue 4, pp. 126-

132, 1975.

[31] J. Sharp, Data Flow Computing: Theory and Practice, Norwood, NJ: Ablex Pub,

1992.

[32] D. A. Adams, "A Computation Model With Data Flow Sequencing," Stanford

University Technical Report, Palo Alto, CA., 1968

[33] L. C. Hobbs, "Parallel Processor Systems, Technologies, and Applications," in A

Model for Parallel Computations, D. A. Adams, Ed., 1st ed., New York: Spartan,

1970, pp. 311-333.

[34] J. Rumbaugh, "A Data Flow Multiprocessor," IEEE Transactions on Computers,

vol. C-26, issue 2, pp. 138-146, 1977.

[35] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson, et

al., "The WaveScalar architecture," ACM Transactions on Computer Systems, vol.

25, issue 2, pp. 1-54, 2007.

[36] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald, D. Burger, S. W.

Keckler, et al., "Dataflow predication," Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 89-102, 2006.

http://wiki.openjdk.java.net/display/Sumatra/Main

 166

[37] M. Beck, R. Johnson, and K. Pingali, "From Control Flow to Dataflow.," Cornell

University, Technical Report TR89-1050, 1989.

[38] G. M. Papadopoulos and D. E. Culler, "Monsoon: an Explicit Token-Store

Architecture," ACM SIGARCH Computer Architecture News, vol. 18, issue 3, pp.

82-91, 1990.

[39] K. R. Traub, "A compiler for the MIT Tagged-Token dataflow architecture," MIT

Technical Report, Cambridge, MA., 1986.

[40] J. R. Gurd, C. C. Kirkham, and I. Watson, "The Manchester prototype dataflow

computer," Communications of the ACM, vol. 28, issue 1, pp. 34-52, 1985.

[41] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John, C. Lin, et al.,

"Scaling to the End of Silicon with EDGE Architectures," Computer, vol. 37, issue

7, pp. 44-55, 2004.

[42] R. McDonald, D. Burger, S. W. Keckler, K. Sankaralingam, and R. Nagarajan,

"Trips processor reference manual," Technical report, Department of Computer

Sciences, The University of Texas at Austin, 2005.

[43] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder, et al.,

"Compiling for EDGE architectures," International Symposium on Code

Generation and Optimization, pp. 185–195, 2006.

[44] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino, et al.,

"An evaluation of the TRIPS computer system," ACM SIGPLAN Notices, vol. 44,

issue 3, pp. 1-12, 2009.

 167

[45] S. Swanson, A. Putnam, M. Mercaldi, K. Michelson, A. Petersen, A. Schwerin, et

al., "Area-performance trade-offs in tiled dataflow architectures," in 33rd

International Symposium on Computer Architecture, pp. 314-326, 2006.

[46] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, "WaveScalar,"

Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 291–302, 2003.

[47] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual Machine

Specification, Java SE 8 Edition, Upper Saddle River, NJ: Addison-Wesley, 2014.

[48] M. N. Horak, S. M. Nowick, M. Carlberg, and U. Vishkin, "A Low-Overhead

Asynchronous Interconnection Network for GALS Chip Multiprocessors," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.

30, issue 4, pp. 494-507, 2011.

[49] A. Sheibanyrad, A. Greiner, and I. Miro-Panades, "Multisynchronous and Fully

Asynchronous NoCs for GALS Architectures," IEEE Design & Test of Computers,

vol. 25, issue 6, pp. 572-580, 2008.

[50] SPEC. (2010). Standard Performance Evaulation Corporation. Available at:

www.spec.org

[51] R. Lougher. (2010, August, 2014). JAMVM. Available at:

http://jamvm.sourceforge.net/

[52] Free Software Foundation, Inc.,. (2009). GNU Classpath. Available at:

http://www.gnu.org/software/classpath/classpath.html

http://www.spec.org/
http://jamvm.sourceforge.net/
http://www.gnu.org/software/classpath/classpath.html

 168

[53] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Sivasubramaniam, J. Rubio,

and J. Sabarinathan, "Java runtime systems: characterization and architectural

implications," IEEE Transactions on Computers, vol. 50, issue 2, pp. 131-146,

2001.

[54] M. Dahm, "Technical Report B-17-98 Byte code engineering with the BCEL API,"

Institut fur Informatik Freie Universit at Berlin, 2001.

[55] OW2_Consortium. (2010). ASM Documentation. Available at: http://asm.ow2.org

[56] J. Meyer and T. Downing, Java Virtual Machine, Sebastopol, CA: O'Reilly &

Associates, 1997.

http://asm.ow2.org/

