13,671 research outputs found

    Glueability of Resource Proof-Structures: Inverting the Taylor Expansion

    Get PDF
    A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures

    Undecidability of Multiplicative Subexponential Logic

    Get PDF
    Subexponential logic is a variant of linear logic with a family of exponential connectives--called subexponentials--that are indexed and arranged in a pre-order. Each subexponential has or lacks associated structural properties of weakening and contraction. We show that classical propositional multiplicative linear logic extended with one unrestricted and two incomparable linear subexponentials can encode the halting problem for two register Minsky machines, and is hence undecidable.Comment: In Proceedings LINEARITY 2014, arXiv:1502.0441

    Relational type-checking for MELL proof-structures. Part 1: Multiplicatives

    Get PDF
    Relational semantics for linear logic is a form of non-idempotent intersection type system, from which several informations on the execution of a proof-structure can be recovered. An element of the relational interpretation of a proof-structure R with conclusion Γ\Gamma acts thus as a type (refining Γ\Gamma) having R as an inhabitant. We are interested in the following type-checking question: given a proof-structure R, a list of formulae Γ\Gamma, and a point x in the relational interpretation of Γ\Gamma, is x in the interpretation of R? This question is decidable. We present here an algorithm that decides it in time linear in the size of R, if R is a proof-structure in the multiplicative fragment of linear logic. This algorithm can be extended to larger fragments of multiplicative-exponential linear logic containing λ\lambda-calculus

    Proof equivalence in MLL is PSPACE-complete

    Full text link
    MLL proof equivalence is the problem of deciding whether two proofs in multiplicative linear logic are related by a series of inference permutations. It is also known as the word problem for star-autonomous categories. Previous work has shown the problem to be equivalent to a rewiring problem on proof nets, which are not canonical for full MLL due to the presence of the two units. Drawing from recent work on reconfiguration problems, in this paper it is shown that MLL proof equivalence is PSPACE-complete, using a reduction from Nondeterministic Constraint Logic. An important consequence of the result is that the existence of a satisfactory notion of proof nets for MLL with units is ruled out (under current complexity assumptions). The PSPACE-hardness result extends to equivalence of normal forms in MELL without units, where the weakening rule for the exponentials induces a similar rewiring problem.Comment: Journal version of: Willem Heijltjes and Robin Houston. No proof nets for MLL with units: Proof equivalence in MLL is PSPACE-complete. In Proc. Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science, 201

    A \u3ci\u3eDr. Strangelove\u3c/i\u3e Situation : Nuclear Anxiety, Presidential Fallibility, and the Twenty-Fifth Amendment

    Get PDF
    This Article is a revisionist history of the ratification of the Twenty-Fifth Amendment, which establishes procedures for remedying a vice presidential vacancy and for addressing presidential inability. During the Cold War, questions of presidential succession and the transfer of power in the case of inability were on the public’s mind and, in 1963, these questions became more urgent in the shadow of the Cuban Missile Crisis. Traditional legal histories of the Amendment argue that President John F. Kennedy’s assassination was both the proximate and prime factor in the development of the Amendment, but they do not account for the pervasive nuclear anxiety inherent in American politics and culture at the time. Oral interviews of key actors, such as former Senator Birch Bayh of Indiana, the Amendment’s architect, as well as examination of the Lyndon B. Johnson papers, the files of the Subcommittee on Constitutional Amendments, and other previously unexamined archives, offer new insight into the anxiety and thought processes of the President, Congress, and state legislators. With the ratification of the Twenty-Fifth Amendment on February 10, 1967, the nuclear anxiety of the era became ingrained in the Constitution itself. The framers of the Amendment adjusted America’s foundational document not as dictated by a momentary whim but by the exigencies of the times. With the goal of expanding the field of legal history by examining cultural and political factors, this Article argues that nuclear anxiety provides another important explanation for the incorporation of the Amendment

    Reducing wildland fire hazard exploiting complex network theory. A case study analysis

    Get PDF
    We discuss a new systematic methodology to mitigate wildland fire hazard by appropriately distributing fuel breaks in space. In particular, motivated by the concept of information flow in complex networks we create a hierarchical allocation of the landscape patches that facilitate the fire propagation based on the Bonacich centrality. Reducing the fuel load in these critical patches results to lower levels of fire hazard. For illustration purposes we apply the proposed strategy to a real case of wildland fire. In particular we focus on the wildland fire that occurred in Spetses Island, Greece in 1990 and burned the one third of the forest. The efficiency of the proposed strategy is compared against the benchmark of random distribution of fuel breaks for a wide range of fuel breaks densities

    Correctness of Multiplicative (and Exponential) Proof Structures is NL-Complete

    No full text
    15 pagesInternational audienceWe provide a new correctness criterion for unit-free MLL proof structures and MELL proof structures with units. We prove that deciding the correctness of a MLL and of a MELL proof structure is NL-complete. We also prove that deciding the correctness of an intuitionistic multiplicative essential net is NL-complete
    • …
    corecore