41,939 research outputs found

    On the counting function of the sets of parts A such that the partition function p(A,n) takes even values for n large enough

    Get PDF
    AbstractIf A is a set of positive integers, we denote by p(A,n) the number of partitions of n with parts in A. First, we recall the following simple property: let f(z)=1+∑n=1∞Δnzn be any power series with Δn=0 or 1; then there is one and only one set of positive integers A(f) such that p(A(f),n)≥Δn(mod2) for all n≄1. Some properties of A(f) have already been given when f is a polynomial or a rational fraction. Here, we give some estimations for the counting function A(P,x)=Card{a∈A(P);aâ©œx} when P is a polynomial with coefficients 0 or 1, and P(0)=1

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if p∈Cp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio

    Leveraging Coding Techniques for Speeding up Distributed Computing

    Get PDF
    Large scale clusters leveraging distributed computing frameworks such as MapReduce routinely process data that are on the orders of petabytes or more. The sheer size of the data precludes the processing of the data on a single computer. The philosophy in these methods is to partition the overall job into smaller tasks that are executed on different servers; this is called the map phase. This is followed by a data shuffling phase where appropriate data is exchanged between the servers. The final so-called reduce phase, completes the computation. One potential approach, explored in prior work for reducing the overall execution time is to operate on a natural tradeoff between computation and communication. Specifically, the idea is to run redundant copies of map tasks that are placed on judiciously chosen servers. The shuffle phase exploits the location of the nodes and utilizes coded transmission. The main drawback of this approach is that it requires the original job to be split into a number of map tasks that grows exponentially in the system parameters. This is problematic, as we demonstrate that splitting jobs too finely can in fact adversely affect the overall execution time. In this work we show that one can simultaneously obtain low communication loads while ensuring that jobs do not need to be split too finely. Our approach uncovers a deep relationship between this problem and a class of combinatorial structures called resolvable designs. Appropriate interpretation of resolvable designs can allow for the development of coded distributed computing schemes where the splitting levels are exponentially lower than prior work. We present experimental results obtained on Amazon EC2 clusters for a widely known distributed algorithm, namely TeraSort. We obtain over 4.69×\times improvement in speedup over the baseline approach and more than 2.6×\times over current state of the art

    On the counting function of sets with even partition functions

    Full text link
    Let q be an odd positive integer and P \in F2[z] be of order q and such that P(0) = 1. We denote by A = A(P) the unique set of positive integers satisfying \sum_{n=0}^\infty p(A, n) z^n \equiv P(z) (mod 2), where p(A,n) is the number of partitions of n with parts in A. In [5], it is proved that if A(P, x) is the counting function of the set A(P) then A(P, x) << x(log x)^{-r/\phi(q)}, where r is the order of 2 modulo q and \phi is Euler's function. In this paper, we improve on the constant c=c(q) for which A(P,x) << x(log x)^{-c}

    Fast and compact self-stabilizing verification, computation, and fault detection of an MST

    Get PDF
    This paper demonstrates the usefulness of distributed local verification of proofs, as a tool for the design of self-stabilizing algorithms.In particular, it introduces a somewhat generalized notion of distributed local proofs, and utilizes it for improving the time complexity significantly, while maintaining space optimality. As a result, we show that optimizing the memory size carries at most a small cost in terms of time, in the context of Minimum Spanning Tree (MST). That is, we present algorithms that are both time and space efficient for both constructing an MST and for verifying it.This involves several parts that may be considered contributions in themselves.First, we generalize the notion of local proofs, trading off the time complexity for memory efficiency. This adds a dimension to the study of distributed local proofs, which has been gaining attention recently. Specifically, we design a (self-stabilizing) proof labeling scheme which is memory optimal (i.e., O(log⁥n)O(\log n) bits per node), and whose time complexity is O(log⁥2n)O(\log ^2 n) in synchronous networks, or O(Δlog⁥3n)O(\Delta \log ^3 n) time in asynchronous ones, where Δ\Delta is the maximum degree of nodes. This answers an open problem posed by Awerbuch and Varghese (FOCS 1991). We also show that Ω(log⁥n)\Omega(\log n) time is necessary, even in synchronous networks. Another property is that if ff faults occurred, then, within the requireddetection time above, they are detected by some node in the O(flog⁥n)O(f\log n) locality of each of the faults.Second, we show how to enhance a known transformer that makes input/output algorithms self-stabilizing. It now takes as input an efficient construction algorithm and an efficient self-stabilizing proof labeling scheme, and produces an efficient self-stabilizing algorithm. When used for MST, the transformer produces a memory optimal self-stabilizing algorithm, whose time complexity, namely, O(n)O(n), is significantly better even than that of previous algorithms. (The time complexity of previous MST algorithms that used Ω(log⁥2n)\Omega(\log^2 n) memory bits per node was O(n2)O(n^2), and the time for optimal space algorithms was O(n∣E∣)O(n|E|).) Inherited from our proof labelling scheme, our self-stabilising MST construction algorithm also has the following two properties: (1) if faults occur after the construction ended, then they are detected by some nodes within O(log⁥2n)O(\log ^2 n) time in synchronous networks, or within O(Δlog⁥3n)O(\Delta \log ^3 n) time in asynchronous ones, and (2) if ff faults occurred, then, within the required detection time above, they are detected within the O(flog⁥n)O(f\log n) locality of each of the faults. We also show how to improve the above two properties, at the expense of some increase in the memory

    Are galaxy distributions scale invariant? A perspective from dynamical systems theory

    Get PDF
    Unless there is evidence for fractal scaling with a single exponent over distances .1 <= r <= 100 h^-1 Mpc then the widely accepted notion of scale invariance of the correlation integral for .1 <= r <= 10 h^-1 Mpc must be questioned. The attempt to extract a scaling exponent \nu from the correlation integral n(r) by plotting log(n(r)) vs. log(r) is unreliable unless the underlying point set is approximately monofractal. The extraction of a spectrum of generalized dimensions \nu_q from a plot of the correlation integral generating function G_n(q) by a similar procedure is probably an indication that G_n(q) does not scale at all. We explain these assertions after defining the term multifractal, mutually--inconsistent definitions having been confused together in the cosmology literature. Part of this confusion is traced to a misleading speculation made earlier in the dynamical systems theory literature, while other errors follow from confusing together entirely different definitions of ``multifractal'' from two different schools of thought. Most important are serious errors in data analysis that follow from taking for granted a largest term approximation that is inevitably advertised in the literature on both fractals and dynamical systems theory.Comment: 39 pages, Latex with 17 eps-files, using epsf.sty and a4wide.sty (included) <[email protected]

    Combinatorial methods of character enumeration for the unitriangular group

    Get PDF
    Let \UT_n(q) denote the group of unipotent n×nn\times n upper triangular matrices over a field with qq elements. The degrees of the complex irreducible characters of \UT_n(q) are precisely the integers qeq^e with 0≀e≀⌊n2⌋⌊n−12⌋0\leq e\leq \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor, and it has been conjectured that the number of irreducible characters of \UT_n(q) with degree qeq^e is a polynomial in q−1q-1 with nonnegative integer coefficients (depending on nn and ee). We confirm this conjecture when e≀8e\leq 8 and nn is arbitrary by a computer calculation. In particular, we describe an algorithm which allows us to derive explicit bivariate polynomials in nn and qq giving the number of irreducible characters of \UT_n(q) with degree qeq^e when n>2en>2e and e≀8e\leq 8. When divided by qn−e−2q^{n-e-2} and written in terms of the variables n−2e−1n-2e-1 and q−1q-1, these functions are actually bivariate polynomials with nonnegative integer coefficients, suggesting an even stronger conjecture concerning such character counts. As an application of these calculations, we are able to show that all irreducible characters of \UT_n(q) with degree ≀q8\leq q^8 are Kirillov functions. We also discuss some related results concerning the problem of counting the irreducible constituents of individual supercharacters of \UT_n(q).Comment: 34 pages, 5 table
    • 

    corecore