

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 1115-1125

www.elsevier.com/locate/disc

On the counting function of the sets of parts \mathscr{A} such that the partition function $p(\mathscr{A}, n)$ takes even values for *n* large enough

Fethi Ben Saïd^a, Houda Lahouar^a, Jean-Louis Nicolas^{b, 1}

^a Département de Mathématiques, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5000 Monastir, Tunisie ^bInstitut Camille Jordan, UMR 5208, Bâtiment Doyen Jean Braconnier, Université Claude Bernard (Lyon 1), 21 Avenue Claude Bernard, F-69622 Villeurbanne, France

> Received 29 October 2003; received in revised form 21 October 2005; accepted 2 November 2005 Available online 18 April 2006

Abstract

If \mathscr{A} is a set of positive integers, we denote by $p(\mathscr{A}, n)$ the number of partitions of *n* with parts in \mathscr{A} . First, we recall the following simple property: let $f(z) = 1 + \sum_{n=1}^{\infty} \varepsilon_n z^n$ be any power series with $\varepsilon_n = 0$ or 1; then there is one and only one set of positive integers $\mathscr{A}(f)$ such that $p(\mathscr{A}(f), n) \equiv \varepsilon_n \pmod{2}$ for all $n \ge 1$. Some properties of $\mathscr{A}(f)$ have already been given when *f* is a polynomial or a rational fraction. Here, we give some estimations for the counting function $A(P, x) = \operatorname{Card}\{a \in \mathscr{A}(P); a \le x\}$ when *P* is a polynomial with coefficients 0 or 1, and P(0) = 1. \bigcirc 2006 Elsevier B.V. All rights reserved.

Keywords: Partitions; Generating functions; Mertens's formula; Cyclotomic polynomial

1. Introduction

Let us denote by \mathbb{N} the set of positive integers. If \mathscr{A} is a subset of \mathbb{N} , its characteristic function is denoted by $\chi(\mathscr{A}, n)$ or more simply by $\chi(n)$ when there is no confusion

$$\chi(n) = \chi(\mathscr{A}, n) = \begin{cases} 1 & \text{if } n \in \mathscr{A}, \\ 0 & \text{if } n \notin \mathscr{A}. \end{cases}$$
(1)

If $\mathscr{A} = \{n_1, n_2, \ldots\} \subset \mathbb{N}$ with $1 \leq n_1 < n_2 < \ldots$ then $p(\mathscr{A}, n)$ denotes the number of partitions of *n* whose parts belong to \mathscr{A} : it is the number of solutions of the diophantine equation

$$n_1x_1+n_2x_2+\cdots=n,$$

in non-negative integers x_1, x_2, \ldots . The generating series associated to the set \mathscr{A} is

$$F_{\mathscr{A}}(z) = \sum_{n=0}^{\infty} p(\mathscr{A}, n) z^n = \prod_{a \in \mathscr{A}} \frac{1}{1 - z^a}$$
(2)

E-mail addresses: Fethi.Bensaid@fsm.rnu.tn (F.B. Saïd), houda_lahouar@yahoo.fr (H. Lahouar), jlnicola@in2p3.fr (J.-L. Nicolas). ¹Research partially supported by Région Rhône-Alpes, contract MIRA 2002 *Théorie des nombres Lyon-Monastir* and by CNRS, Institut Camille Jordan, UMR 5208.

0012-365X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.11.022

and we shall set $p(\mathcal{A}, 0) = 1$. In [11], by considering the logarithmic derivative of $F_{\mathcal{A}}$, it was shown that

$$z\frac{F'_{\mathscr{A}}(z)}{F_{\mathscr{A}}(z)} = \sum_{n=1}^{\infty} \sigma(\mathscr{A}, n) z^n,$$

where

$$\sigma(n) = \sigma(\mathscr{A}, n) = \sum_{d \mid n} \chi(\mathscr{A}, d) d = \sum_{d \mid n, d \in \mathscr{A}} d.$$
(3)

Definition 1. We shall say that two power series f, g with integral coefficients are congruent modulo M (where M is any positive integer) if their coefficients of the same power of z are congruent modulo M. In other words, if

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n + \dots \in \mathbb{Z}[[z]]$$

and

$$g(z) = b_0 + b_1 z + b_2 z^2 + \dots + b_n z^n + \dots \in \mathbb{Z}[[z]]$$

then

$$f \equiv g \pmod{M} \iff \forall n \ge 0, \quad a_n \equiv b_n \pmod{M}$$

If
$$f \in \mathbb{F}_2[[z]]$$
,
 $f(z) = \sum_{n=0}^{\infty} \varepsilon_n z^n \quad \text{with } \varepsilon_n \in \{0, 1\} \quad \text{and} \quad \varepsilon_0 = 1,$
(4)

it is proved in [2] and [7] that there exists a *unique* set $\mathscr{A}(f) \subset \mathbb{N}$ such that

$$F_{\mathscr{A}(f)}(z) = \prod_{a \in \mathscr{A}(f)} \frac{1}{1 - z^a} = \sum_{n=0}^{\infty} p(\mathscr{A}(f), n) z^n \equiv f(z) \pmod{2},$$
(5)

in other words

$$p(\mathscr{A}(f), n) \equiv \varepsilon_n \pmod{2}, \quad n = 1, 2, 3, \dots$$
(6)

Indeed, for n = 1,

$$p(\mathscr{A}(f), 1) = \begin{cases} 1 & \text{if } 1 \in \mathscr{A}(f), \\ 0 & \text{if } 1 \notin \mathscr{A}(f) \end{cases}$$

and therefore, by (6),

$$1 \in \mathscr{A}(f) \iff \varepsilon_1 = 1. \tag{7}$$

Further, assuming that the elements of $\mathscr{A}(f)$ are known up to n-1, we set $(\mathscr{A}(f))_{n-1} = \mathscr{A}(f) \cap \{1, 2, ..., n-1\}$; observing that there is only one partition of n using the part n, we see that

$$p(\mathscr{A}(f), n) = p((\mathscr{A}(f))_{n-1}, n) + \chi(\mathscr{A}(f), n)$$

and (1) and (6) yield

$$n \in \mathscr{A}(f) \Leftrightarrow \chi(\mathscr{A}(f), n) = 1 \Leftrightarrow p((\mathscr{A}(f))_{n-1}, n) \equiv 1 + \varepsilon_n \pmod{2}.$$
(8)

Let $P \in \mathbb{F}_2[z]$ be a polynomial of degree, say, N. Considering P as a power series allows one to define $\mathscr{A}(P)$ by (7) and (8). In [4,11,12], this set $\mathscr{A}(P)$ was introduced in a slightly different way: it was shown that, for any finite set $\mathscr{B} \subset \mathbb{N}$ and any integer $M \ge \max_{b \in \mathscr{B}} b$, there exists a unique set $\mathscr{A}_0 = \mathscr{A}_0(\mathscr{B}, M)$ such that $p(\mathscr{A}_0, n)$ is even for all

n > M. Clearly, from (6), the set $\mathscr{A}(P)$ has the property that $p(\mathscr{A}(P), n)$ is even for n > N (since, in (4), $\varepsilon_n = 0$ for n > N) and so, by defining $\mathscr{B} = \mathscr{A}(P) \cap \{1, 2, ..., N\}$, the two sets $\mathscr{A}(P)$ and $\mathscr{A}_0(\mathscr{B}, N)$ coincide. In other words, knowing \mathscr{B} and M, the polynomial

$$P(z) \equiv \sum_{n=0}^{M} p(\mathscr{A}_0(\mathscr{B}, M), n) z^n \pmod{2}$$

of degree $N \leq M$ satisfies $\mathscr{A}(P) = \mathscr{A}_0(\mathscr{B}, M)$.

Let the factorization of P into irreducible factors over $\mathbb{F}_2[z]$ be

$$P = Q_1^{\alpha_1} Q_2^{\alpha_2} \dots Q_{\ell}^{\alpha_{\ell}}.$$
(9)

We denote by β_i , $1 \le i \le \ell$, the order of $Q_i(z)$, that is the smallest integer such that Q(z) divides $1 + z^{\beta}$ in $\mathbb{F}_2[z]$. It is known that β_i is odd (cf. [9, Chapter 3]). Let us set

$$q = \operatorname{lcm}(\beta_1, \beta_2, \dots, \beta_\ell) \quad (q \text{ is odd}).$$
(10)

It was proved in [4] (cf. also [11] and [1]) that, for all $k \ge 0$, the sequence $(\sigma(\mathscr{A}(P), 2^k n) \mod 2^{k+1})_{n \ge 1}$ is periodic with period q defined by (10); in other words,

$$n_1 \equiv n_2(\operatorname{mod} q) \Rightarrow \quad \forall k \ge 0, \quad \sigma(\mathscr{A}(P), 2^k n_1) \equiv \sigma(\mathscr{A}(P), 2^k n_2) \pmod{2^{k+1}}.$$

$$(11)$$

Some attention has been paid to the counting function of the sets $\mathscr{A}(f)$:

$$A(f, x) = \operatorname{Card}\{a : a \leq x, a \in \mathscr{A}(f)\} = \sum_{n \leq x} \chi(\mathscr{A}(f), n).$$
(12)

It was observed in Reference [12] that for some polynomials *P*, the set $\mathscr{A}(P)$ is a union of geometric progressions of quotient 2, and so $A(P, x) = \mathcal{O}(\log x)$. For instance, from the classical identity

$$1 - z = \frac{1}{(1+z)(1+z^2)\dots(1+z^{2^n})\dots}$$
(13)

it is easy to see that the set $\mathscr{G} = \{1, 2, 4, 8, \dots, 2^n, \dots\}$ satisfies

$$\sum_{n=0}^{\infty} p(\mathscr{G}, n) z^n = \prod_{a \in \mathscr{G}} \frac{1}{1 - z^a} \equiv 1 + z \pmod{2}$$

and thus, from the characteristic property (5), $\mathscr{A}(1+z) = \mathscr{G}$.

In [7], it is shown that, if the power series f is a rational fraction, say P/Q, there exists a polynomial $U \in \mathbb{F}_2[z]$ such that

$$A\left(\frac{P}{Q}, x\right) = A(U, x) + \mathcal{O}(\log x), \quad x \to \infty.$$

In the paper [3], it is shown that the counting function of the set $\mathcal{A}(1 + z + z^3) = \mathcal{A}_0(\{1, 2, 3\}, 3)$ satisfies

$$A(1+z+z^3,x) \sim c \frac{x}{(\log x)^{3/4}}, \quad x \to \infty,$$

where c = 0.937... is a constant. In [10], it is shown that the number of *odd* elements of the set $\mathscr{A}(1 + z + z^3 + z^4 + z^5) = \mathscr{A}_0(\{1, 2, 3, 4, 5\}, 5)$ up to x is asymptotic to $c_2x(\log \log x/(\log x)^{1/3})$; the constant c_2 is estimated in [5], where the approximate value $c_2 = 0.070187...$ is given.

In [2], a law for determining $\mathscr{A}(f_1 f_2)$ in terms of $\mathscr{A}(f_1)$ and $\mathscr{A}(f_2)$ is given, which yields an estimation of the counting function $A(f_1 f_2, x)$ in terms of $A(f_1, x)$ and $A(f_2, x)$. For instance, if $f_1(z) = 1 + z + z^3$ and $f_2(z) = 1 + z + z^3 + z^4 + z^5$, it is proved that

$$A(f_1f_2, x) \sim A(f_2, x), \quad x \to \infty.$$

The aim of this paper is to give some general estimates for A(P, x), the counting function (12) of the set $\mathscr{A}(P)$, when $P \in \mathbb{F}_2[z]$ is a polynomial and x tends to infinity. We shall prove

Theorem 1. Let $P \in \mathbb{F}_2[z]$ be a polynomial such that P(0) = 1, let $\mathscr{A} = \mathscr{A}(P)$ be the set defined by (7) and (8) and let q, defined by (10), be an odd period of the sequences $(\sigma(\mathscr{A}, 2^k n) \mod 2^{k+1})_{n \ge 1}$. Let r be the order of 2 modulo q, that is the smallest positive integer such that $2^r \equiv 1 \pmod{q}$. We shall say that a prime $p \ne 2$ is a bad prime if

$$\exists s, \quad 0 \leqslant s \leqslant r - 1 \quad such \ that \ p \equiv 2^s \ (\text{mod } q). \tag{14}$$

Then

- (i) if p is a bad prime, we have (p, n) = 1, for all $n \in \mathcal{A}$;
- (ii) there exists an absolute constant C_1 such that, for all x > 1,

$$A(P,x) \leqslant 7(C_1)^r \frac{x}{(\log x)^{r/\varphi(q)}},\tag{15}$$

where φ is Euler's function.

Theorem 2. Let $P \in \mathbb{F}_2[z]$ be a polynomial such that P(0) = 1, let $\mathscr{A} = \mathscr{A}(P)$ be the set defined by (7) and (8) and let q (cf. (10)) be a period of the sequences $(\sigma(\mathscr{A}, 2^k n) \mod 2^{k+1})_{n \ge 1}$.

• Case 1: If the property

all the odd prime divisors of any $n \in \mathcal{A}$ divide q (16)

is true, then we have

$$A(P, x) = \mathcal{O}_q((\log x)^{\omega(q)+1}),\tag{17}$$

where $\omega(q)$ is the number of prime factors of q.

• Case 2: If (16) is not true, there exists a positive real number λ depending on n_0 and q, such that

$$\liminf_{x \to \infty} \frac{A(P, x) \log x}{x^{\lambda}} > 0.$$
⁽¹⁸⁾

What Theorem 2 says is that there exist two kinds of sets $\mathscr{A}(P)$: those of the first case are thin while those of the second case are denser. We shall prove

Theorem 3. Let $f_1, f_2 \in \mathbb{F}_2[[z]]$ be such that $f_1(0) = f_2(0) = 1$. Let us assume that there exist two polynomials $P_1, P_2 \in \mathbb{F}_2[z]$ which are products in $\mathbb{F}_2[z]$ of cyclotomic polynomials and satisfy $f_1P_1 = f_2P_2$. Then the set $\mathcal{A}(f_1) \land \mathcal{A}(f_2) = (\mathcal{A}(f_1) \setminus \mathcal{A}(f_2)) \cup (\mathcal{A}(f_2) \setminus \mathcal{A}(f_1))$ is included in a finite union of geometric progressions of quotient 2, and thus

$$|A(f_1, x) - A(f_2, x)| = \mathcal{O}(\log x).$$
⁽¹⁹⁾

In particular, let $P \in \mathbb{F}_2[z]$ be a polynomial which is a product of cyclotomic polynomials. Then the set $\mathcal{A}(P)$ is included in a finite union of geometric progressions of quotient 2, and thus

$$A(P, x) = \mathcal{O}(\log x). \tag{20}$$

We formulate the following conjecture:

Conjecture 1. Let $P \in \mathbb{F}_2[z]$ be a polynomial which is not congruent modulo 2 to any product of cyclotomic polynomials. Then there exists a constant c(P) < 1 such that

$$A(P, x) \asymp \frac{x}{\left(\log x\right)^{c(P)}}.$$
(21)

One of the tools of the proofs of Theorems 1 and 2 will be the following. Let \mathscr{A} be any subset of \mathbb{N} . If *m* is an odd positive integer, we set, as in [4], for $k \ge 0$

$$S(m,k) = \chi(\mathscr{A},m) + 2\chi(\mathscr{A},2m) + \dots + 2^k \chi(\mathscr{A},2^km).$$
⁽²²⁾

It follows from (3) that for $n = 2^k m$, we have

$$\sigma(\mathscr{A}, n) = \sigma(\mathscr{A}, 2^k m) = \sum_{d \mid m} dS(d, k).$$
⁽²³⁾

By applying Möbius's inversion formula, (23) yields

$$mS(m,k) = \sum_{d \mid m} \mu(d)\sigma\left(\mathscr{A}, \frac{n}{d}\right) = \sum_{d \mid \overline{m}} \mu(d)\sigma\left(\mathscr{A}, \frac{n}{d}\right),$$
(24)

where μ is Möbius's function and $\overline{m} = \prod_{p \mid m} p$ is the radical of m. Another useful remark is that, if $0 \le j < k$ and m is odd, a divisor of $2^k m$ is either a divisor of $2^j m$ or a multiple of 2^{j+1} , so that, for $0 \le j \le k$, we have

$$\sigma(\mathscr{A}, 2^k m) \equiv \sigma(\mathscr{A}, 2^j m) \pmod{2^{j+1}}$$
(25)

(note that (25) trivially holds for j = k).

2. Proof of Theorem 1

Let us start with two lemmas:

Lemma 1. Let K be any positive integer and let $x \ge 1$ be any real number. Then we have

$$\operatorname{Card}\{n \leq x; n \text{ coprime with } K\} = \sum_{n \leq x; \ (n,K)=1} 1 \leq 7 \frac{\varphi(K)}{K} x,$$
(26)

where φ is Euler's function.

Proof. This is a classical result from sieve theory: see Theorems 3-5 of [6]. \Box

Lemma 2 (*Mertens's formula*). Let a and q be two positive coprime integers. There exists an absolute constant C_1 such that, for all x > 1,

$$\Pi(x;q,a) \stackrel{\text{def}}{=} \prod_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \left(1 - \frac{1}{p}\right) \leqslant \frac{C_1}{(\log x)^{1/\varphi(q)}}.$$
(27)

Proof. We have

$$\log \Pi(x;q,a) = -\sum_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \frac{1}{p} + \sum_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \left(\frac{1}{p} + \log\left(1 - \frac{1}{p}\right)\right).$$
(28)

The second sum satisfies:

$$0 \ge \sum_{\substack{p \le x \\ p \equiv a \pmod{q}}} \left(\frac{1}{p} + \log\left(1 - \frac{1}{p}\right)\right) \ge \sum_{p} \left(\frac{1}{p} + \log\left(1 - \frac{1}{p}\right)\right) = -0.3157\dots$$
(29)

as quoted in [15], 2.7 and 2.10. The first sum in (28) was estimated by Mertens who proved (cf. [8, Sections 7 and 110])

$$\sum_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \frac{1}{p} = \frac{\log \log x}{\varphi(q)} + \mathcal{O}_q(1).$$
(30)

But Ramaré has told us that it is possible to prove (30) with an error term independent of q: in his paper [13], p. 496, the formula below is given

$$\sum_{\substack{n \leqslant x \\ n \equiv a \pmod{q}}} \frac{\Lambda(n)}{n} = \frac{\log x}{\varphi(q)} + C(q, a) + \mathcal{O}\left(\frac{\sqrt{q}\log^3 q}{\varphi(q)}\right)$$
(31)

where $\Lambda(n)$ is the Von Mangoldt function

$$\Lambda(n) = \begin{cases} \log p & \text{if } n \text{ is a power of a prime } p, \\ 0 & \text{if not} \end{cases}$$
(32)

and C(q, a) is a constant depending on q and a. Since Euler's function satisfies $\varphi(q) \ge \log 2(q/\log(2q))$ (cf. [14], p. 316), the error term in (31) is bounded, and setting x = 1 in (31) shows that C(q, a) is also bounded. So, (31) implies

$$\sum_{\substack{n \leq x \\ n \equiv a \pmod{q}}} \frac{A(n)}{n} = \frac{\log x}{\varphi(q)} + \mathcal{O}(1)$$
(33)

and the constant involved in the \mathcal{O} term is absolute. Let us set

$$W(x;q,a) \stackrel{\text{def}}{=} \sum_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \frac{\log p}{p}.$$
(34)

It follows from (32) that

$$W(x;q,a) \leq \sum_{\substack{n \leq x \\ n \equiv a \pmod{q}}} \frac{A(n)}{n} \leq W(x;q,a) + \sum_{p} \sum_{m \geq 2} \frac{\log p}{p^m} \leq W(x;q,a) + 0.76$$

as mentioned in [15], 2.8 and 2.11, and (33) yield

$$W(x;q,a) = \frac{\log x}{\varphi(q)} + \mathcal{O}(1), \tag{35}$$

where the constant involved in the O term is absolute. By using Stieltjes's integral and partial summation, it follows from (35) that

$$\sum_{\substack{p \leqslant x \\ p \equiv a \pmod{q}}} \frac{1}{p} = \int_{2^{-}}^{x} \frac{d[W(t;q,a)]}{\log t} = \frac{W(x;q,a)}{\log x} + \int_{2}^{x} \frac{W(t;q,a)}{t (\log t)^{2}} dt$$
$$= \frac{\log \log x}{\varphi(q)} + \mathcal{O}(1)$$
(36)

and the constant involved in the \mathcal{O} term is absolute; therefore, from (28), (36) and (29), Lemma 2 follows. Unfortunately no precise value for C_1 seems to be known. \Box

Proof of Theorem 1. (i) Let p be a bad prime, let m be an odd multiple of p and let j be any non-negative integer. We have to prove that

$$n = 2^{j} m \notin \mathscr{A} = \mathscr{A}(P). \tag{37}$$

It follows from (24), with $\mathscr{A} = \mathscr{A}(P)$, that

$$mS(m, j) = \sum_{d \mid \overline{m}} \mu(d)\sigma\left(\frac{n}{d}\right) = \sum_{d \mid \overline{m}/p} \mu(d)\left(\sigma\left(\frac{n}{d}\right) - \sigma\left(\frac{n}{dp}\right)\right).$$
(38)

But, from (14), there exists s, $0 \le s \le r - 1$, such that $p \equiv 2^s \pmod{q}$; therefore, for each divisor d of \overline{m}/p , we have

$$\frac{n}{d} \equiv 2^s \frac{n}{dp} \pmod{q}.$$
(39)

Since $n = 2^j m$, (25) gives

$$\sigma\left(2^{s}\frac{n}{dp}\right) \equiv \sigma\left(\frac{n}{dp}\right) \pmod{2^{j+1}}.$$
(40)

From (11), (39) implies

$$\sigma\left(\frac{n}{d}\right) \equiv \sigma\left(2^{s}\frac{n}{dp}\right) (\operatorname{mod} 2^{j+1}) \tag{41}$$

while (40) and (41) imply

$$\sigma\left(\frac{n}{d}\right) - \sigma\left(\frac{n}{dp}\right) \equiv 0 \pmod{2^{j+1}},$$

and (38) becomes $mS(m, j) \equiv 0 \pmod{2^{j+1}}$ which yields, since *m* is odd,

$$S(m, j) \equiv 0 \pmod{2^{j+1}}.$$
 (42)

From (22) and (1), it follows that

$$0 \leq S(m, j) < 2^{j+1}.$$
 (43)

So, (42) and (43) give S(m, j) = 0, which, from (22), yields $\chi(\mathcal{A}, 2^j m) = 0$, which, by applying (1), proves (37).

(ii) Let us denote by K = K(x) the product of the bad primes (see (14)) up to x. It follows from (i), Lemmas 1 and 2 that

$$A(P,x) \leq \sum_{\substack{n \leq x \\ (n,K)=1}} 1 \leq 7 \frac{\varphi(K)}{K} x = 7x \prod_{s=0}^{r-1} \prod_{\substack{p \leq x \\ p \equiv 2^s \pmod{q}}} \left(1 - \frac{1}{p}\right) \leq \frac{7(C_1)^r x}{(\log x)^{r/\varphi(q)}}$$

which completes the proof of Theorem 1. \Box

3. Proof of Theorem 2

Lemma 3. Let a_1, a_2, \ldots, a_k and y be positive real numbers. The number $N(a_1, a_2, \ldots, a_k; y)$ of solutions of the diophantine inequality

$$a_1x_1 + a_2x_2 + \dots + a_kx_k \leqslant y \tag{44}$$

in non-negative integers x_1, x_2, \ldots, x_k satisfies

$$N(a_1, a_2, \dots, a_k; y) \leqslant \frac{\left(y + \sum_{i=1}^k a_i\right)^k}{k!} \prod_{i=1}^k \left(\frac{1}{a_i}\right).$$
(45)

Proof. This is a classical lemma that can be found, for instance, in [16], III.5.2. \Box

Proof of Theorem 2. *Case* 1: Let us write the standard factorization of q into primes: $q = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_s^{\alpha_s}$ with $s = \omega(q)$. From (16), we have

$$A(P, x) \leq \operatorname{Card}\{n \leq x, \ n = 2^{i_0} q_1^{i_1} q_2^{i_2} \dots q_s^{i_s}, \ i_0 \geq 0, \dots, i_s \geq 0\}.$$
(46)

By using the notation of Lemma 3, the right-hand side of (46) can be written as $N(\log 2, \log q_1, \dots, \log q_s; \log x)$ and (45) yields, since $\log q_j \ge \log 3 \ge 1$,

$$A(P, x) \leq \frac{1}{(\omega(q) + 1)! \log 2} (\log x + \log(2q))^{\omega(q) + 1} \prod_{j=1}^{\omega(q)} \frac{1}{\log q_j}$$
$$\leq \frac{(\log x)^{\omega(q) + 1}}{(\omega(q) + 1)! \log 2} \left(1 + \frac{\log(2q)}{\log x}\right)^{\omega(q) + 1}$$

which, for $x \to \infty$, implies (17).

Case 2: Here, (16) does not hold; so, there exists an odd prime p_0 which is coprime to q and divides some element $n_0 \in \mathcal{A}(P)$; such an element can be written as

$$n_0 = 2^{k_0} m_0 \in \mathscr{A}(P), \quad k_0 \ge 0, \quad m_0 \text{ odd}, \quad m_0 = p_0^{\alpha} a_0, \quad \alpha \ge 1, \quad (p_0, a_0) = 1$$
(47)

and (22) and (24) yield

$$m_0 S(m_0, k_0) = \sum_{d \mid \overline{m_0}} \mu(d) \sigma\left(\frac{n_0}{d}\right) = \sum_{d \mid \overline{a_0}} \mu(d) \left(\sigma\left(2^{k_0} \frac{m_0}{d}\right) - \sigma\left(2^{k_0} \frac{m_0}{dp_0}\right)\right),\tag{48}$$

where $\sigma(n) = \sigma(\mathscr{A}(P), n)$ is defined in (3).

7 . 1

Let *p* be an odd prime satisfying

$$p \equiv p_0 \pmod{2^{\kappa_0 + 1} q}$$
 and $(p, a_0) = 1$ (49)

and let us set

$$m = p^{\alpha} a_0, \quad n = 2^{k_0} m.$$
 (50)

We want to show that

$$n \in \mathscr{A}(P). \tag{51}$$

As in (48), we have

$$mS(m,k_0) = \sum_{d \mid \overline{a_0}} \mu(d) \left(\sigma \left(2^{k_0} \frac{m}{d} \right) - \sigma \left(2^{k_0} \frac{m}{dp} \right) \right).$$
(52)

It follows from (49), (50) and (47), that

$$m \equiv m_0 \left(\mod 2^{k_0 + 1} q \right) \tag{53}$$

which implies that $m \equiv m_0 \pmod{q}$; further, for any divisor d of $\overline{a_0}$, we have $2^{k_0}(m/d) \equiv 2^{k_0}(m_0/d) \pmod{q}$ and $2^{k_0}(m/dp) \equiv 2^{k_0}(m_0/dp_0) \pmod{q}$. By applying (11), it follows that $\sigma(2^{k_0}(m/d)) \equiv \sigma(2^{k_0}(m_0/d)) \pmod{2^{k_0+1}}$ and $\sigma(2^{k_0}(m/dp)) \equiv \sigma(2^{k_0}(m_0/dp_0)) \pmod{2^{k_0+1}}$, which, from (48) and (52) implies

$$mS(m, k_0) \equiv m_0 S(m_0, k_0) \pmod{2^{k_0 + 1}}.$$
(54)

But, from (53), $m \equiv m_0 \pmod{2^{k_0+1}}$ holds, and, as *m* is odd, (54) yields

$$S(m, k_0) \equiv S(m_0, k_0) \pmod{2^{k_0 + 1}}.$$

Since, from (22), the inequalities $0 \le S(m, k_0) < 2^{k_0+1}$ and $0 \le S(m_0, k_0) < 2^{k_0+1}$ hold, we have

$$S(m, k_0) = S(m_0, k_0)$$

and, from the unicity of the binary expansion of (22), it follows that

 $\chi(2^j m) = \chi(2^j m_0), \quad j = 0, 1, \dots, k_0$

which, for $j = k_0$, implies $\chi(n) = \chi(n_0) = 1$ and proves (51).

How many such *n*'s do we get? Let us denote by $\pi(y; k, \ell) = \sum_{\substack{p \leq y \\ p \equiv \ell \pmod{k}}} 1$ the number of primes up to *y* in the arithmetic progression $p \equiv \ell \pmod{k}$. If *k* and ℓ are fixed and coprime, it is known that (cf. [8, Section 120, 16, Section II.8])

$$\pi(y;k,\ell) \sim \frac{y}{\varphi(k)\log y}, \quad y \to \infty.$$
(55)

The number of *n*'s, $n \leq x$, satisfying (50) and (49) is certainly not less than

$$\pi\left(\left(\frac{x}{2^{k_0}a_0}\right)^{1/\alpha}; 2^{k_0+1}q, p_0\right) - \omega(a_0)$$

(where $\omega(a_0)$ is the finite number of prime factors of a_0) so that, from (51) and (55),

$$A(P, x) \ge \pi \left(\left(\frac{x}{2^{k_0} a_0} \right)^{1/\alpha}; 2^{k_0 + 1} q, p_0 \right) - \omega(a_0) \ge \frac{1}{2\varphi\left(2^{k_0 + 1} q\right)} \frac{y}{\log y}$$

holds for x large enough with $y = (x/2^{k_0}a_0)^{1/\alpha}$. Since $\log y \le \log x/\alpha$,

$$A(P,x) \geqslant \frac{\alpha}{2^{k_0+1}\varphi(q) \left(2^{k_0}a_0\right)^{1/\alpha}} \frac{x^{1/\alpha}}{\log x}$$

This implies (18), with $\lambda = 1/\alpha$, which completes the proof of Theorem 2.

4. Proof of Theorem 3

Lemma 4. Let $f \in \mathbb{F}_2[[z]]$, f(0) = 1 and $\alpha \in \mathbb{N}$. We have:

$$\mathscr{A}((1-z^{\alpha})f(z)) = \begin{cases} \mathscr{A}(f) \setminus \{\alpha\} \\ if \ \alpha \in \mathscr{A}(f) \\ \mathscr{A}(f) \setminus \{2^{h} \alpha\} \cup \{\alpha, 2\alpha, \dots, 2^{h-1}\alpha\} \\ if \ h \ is \ the \ smallest \ integer \ such \ that \ 2^{h} \alpha \in \mathscr{A}(f) \\ \mathscr{A}(f) \cup \{\alpha, 2\alpha, \dots, 2^{h}\alpha, \dots\} \\ if \ for \ all \ non-negative \ h, \ 2^{h} \alpha \notin \mathscr{A}(f) \end{cases}$$
(56)

and

$$\mathscr{A}(f(z)/(1-z^{\alpha})) = \begin{cases} \mathscr{A}(f) \cup \{\alpha\} \\ \text{if } \alpha \notin \mathscr{A}(f) \\ \mathscr{A}(f) \cup \{2^{h}\alpha\} \setminus \{\alpha, 2\alpha, \dots, 2^{h-1}\alpha\} \\ \text{if } h \text{ is the smallest integer such that } 2^{h}\alpha \notin \mathscr{A}(f) \\ \mathscr{A}(f) \setminus \{\alpha, 2\alpha, \dots, 2^{h}\alpha, \dots\} \\ \text{if for all non-negative } h, \ 2^{h}\alpha \in \mathscr{A}(f). \end{cases}$$
(57)

Proof. To prove (56), let us first assume that

$$\forall h \ge 0, \quad 2^n \alpha \notin \mathscr{A}(f). \tag{58}$$

If we denote by

$$\mathscr{G}(\alpha) = \{\alpha, 2\alpha, 4\alpha, \ldots\}$$
(59)

the infinite geometric progression with first term α and quotient 2, we have from (2) and (13)

$$F_{\mathscr{A}(f) \cup \mathscr{G}(\alpha)}(z) = F_{\mathscr{A}(f)}(z) \prod_{n=0}^{\infty} \frac{1}{1 - z^{\alpha 2^n}} \equiv F_{\mathscr{A}(f)}(z)(1 + z^{\alpha}) \pmod{2}$$

which, from the characteristic property (5), proves the third case of (56).

If (58) does not hold, let us denote by $h \ge 0$ the smallest integer such that $2^h \alpha \in \mathscr{A}(f)$ and by \mathscr{A}' the set $\mathscr{A}' = \mathscr{A}(f) \setminus \{2^h \alpha\} \cup \{\alpha, 2\alpha, \dots, 2^{h-1}\alpha\}$ (if $h \ne 0$) and $\mathscr{A}' = \mathscr{A}(f) \setminus \{\alpha\}$ (if h = 0). From (2), we have

$$F_{\mathscr{A}'}(z) = F_{\mathscr{A}(f)}(z) \frac{1 - z^{\alpha 2^{h}}}{(1 - z^{\alpha}) \dots (1 - z^{\alpha 2^{h-1}})} \equiv F_{\mathscr{A}(f)}(z)(1 + z^{\alpha}) \pmod{2}$$

- h

which, from the characteristic property (5), proves the first case (h = 0) and the second case $(h \ge 1)$ of (56).

Formula (57) is identical to formula (56), but expressed in a different way. \Box

Proof of Theorem 3. By using the notation (59), it follows from Lemma 4 that, for any $\alpha \in \mathbb{N}$ and $f \in \mathbb{F}_2[[z]]$,

$$\mathscr{A}\left((1-z^{\alpha})^{\pm 1}f(z)\right) \subset \mathscr{A}(f) \cup \mathscr{G}(\alpha).$$
(60)

Let us call $\Phi_n(z) \in \mathbb{Z}[z]$ the cyclotomic polynomial of index *n*. From the classical formula

$$\Phi_n(z) = \prod_{d \mid n} (1 - z^d)^{\mu(n/d)}$$

and from our hypothesis, it follows that there exists a finite sequence $d_1 \leq d_2 \leq \cdots \leq d_\ell$ of positive integers such that

$$f_2(z) = f_1(z) \prod_{i=1}^{\ell} (1 - z^{d_i})^{\varepsilon_i}, \quad \varepsilon_i = -1 \text{ or } 1.$$

By applying (60) ℓ times, we have

$$\mathscr{A}(f_2) \subset \mathscr{A}(f_1) \cup \left(\bigcup_{i=1}^{\ell} \mathscr{G}(d_i)\right)$$

and, symmetrically,

$$\mathscr{A}(f_1) \subset \mathscr{A}(f_2) \cup \left(\bigcup_{i=1}^{\ell} \mathscr{G}(d_i)\right)$$

so that

$$\mathscr{A}(f_1) \, \mathscr{A}(f_2) = (\mathscr{A}(f_1) \setminus \mathscr{A}(f_2)) \cup (\mathscr{A}(f_2) \setminus \mathscr{A}(f_1)) \subset \left(\bigcup_{i=1}^{\ell} \mathscr{G}(d_i)\right) \tag{61}$$

which proves the first part of Theorem 3; (19) is an easy consequence of (61).

To prove the second part of Theorem 3, let us set $f_1(z) = P_2(z) = 1$ and $f_2(z) = P_1(z) = P(z)$. Since $\mathscr{A}(f_1) = \mathscr{A}(1) = \emptyset$, it follows from (61) that there exist $d_1 \leq d_2 \leq \cdots \leq d_\ell$ such that

$$\mathscr{A}(P) \subset \bigcup_{i=1}^{\ell} \mathscr{G}(d_i)$$

which completes the proof of Theorem 3. \Box

1124

Acknowledgement

We are pleased to thank O. Ramaré for the proof of Lemma 2, A. Sárközy for fruitful discussions and J.A. Bondy for carefully reading our manuscript.

References

- [1] F. Ben Saïd, On a conjecture of Nicolas-Sárközy about partitions, J. Number Theory 95 (2002) 209-226.
- [2] F. BenSaïd, On some sets with even valued partition function, The Ramanujan J. 9 (2005) 63-75.
- [3] F. Ben Saïd, J.-L. Nicolas, Even partition functions, Séminaire Lotharingien de Combinatoire (http://www.mat.univie.ac.at/~slc/), 46 (2002), B 46i
- [4] F. Ben Saïd, J.-L. Nicolas, Sets of parts such that the partition function is even, Acta Arith. 106 (2003) 183–196.
- [5] F. BenSaïd, J.-L. Nicolas, Sur une application de la formule de Selberg-Delange, Colloq. Math. 98 (2003) 223-247.
- [6] H. Halberstam, H.-E. Richert, Sieve Methods, Academic Press, New York, 1974.
- [7] H. Lahouar, Fonction de partitions à parité périodique, European J. Combin. 24 (2003) 1089–1096.
- [8] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, second ed., Chelsea, New-York, 1953.
- [9] R. Lidl, H. Niederreiter, Introduction to Finite Fields and their Application, Cambridge University Press, Cambridge, 1994.
- [10] J.-L. Nicolas, On the parity of generalized partition functions II, Period. Math. Hungar. 43 (2001) 177–189.
- [11] J.-L. Nicolas, I.Z. Ruzsa, A. Sárközy, On the parity of additive representation function, J. Number Theory 73 (1998) 292-317.
- [12] J.-L. Nicolas, A. Sárközy, On the parity of generalized partition functions, in: M.A. Bennett, B.C. Berndt, N. Boston, H.G. Diamond, A.J. Hildebrand, W. Philip, A.K. Peters (Eds.), Number Theory for the Millennium, vol. 3, 2002, pp. 55–72.
- [13] O. Ramaré, Sur un théorème de Mertens, Manuscripta Math. 108 (2002) 495–513.
- [14] P. Ribenboim, The New Book of Prime Numbers Record, third ed., Springer, Berlin, 1995.
- [15] J.B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962) 64-94.
- [16] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, S.M.F., Paris (1995). Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995.