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Fast and Compact Self-Stabilizing Verification, Computation,
and Fault Detection of an MST

Amos Korman ∗ Shay Kutten† Toshimitsu Masuzawa ‡

Abstract

This paper demonstrates the usefulness of distributed local verification of proofs, as a tool for the design
of self-stabilizing algorithms. In particular, it introduces a somewhat generalized notion of distributed local
proofs, and utilizes it for improving the time complexity significantly, while maintaining space optimality. As
a result, we show that optimizing the memory size carries at most a small cost in terms of time, in the context
of Minimum Spanning Tree (MST). That is, we present algorithms that are both time and space efficient for
both constructing an MST and for verifying it. This involves several parts that may be considered contributions
in themselves.

First, we generalize the notion of local proofs, trading off the time complexity for memory efficiency.
This adds a dimension to the study of distributed local proofs, which has been gaining attention recently.
Specifically, we design a (self-stabilizing) proof labeling scheme which is memory optimal (i.e., O(log n)
bits per node), and whose time complexity is O(log2 n) in synchronous networks, or O(∆ log3 n) time in
asynchronous ones, where ∆ is the maximum degree of nodes. This answers an open problem posed by
Awerbuch and Varghese (FOCS 1991). We also show that Ω(log n) time is necessary, even in synchronous
networks. Another property is that if f faults occurred, then, within the required detection time above, they
are detected by some node in the O(f log n) locality of each of the faults.

Second, we show how to enhance a known transformer that makes input/output algorithms self-stabilizing.
It now takes as input an efficient construction algorithm and an efficient self-stabilizing proof labeling scheme,
and produces an efficient self-stabilizing algorithm. When used for MST, the transformer produces a memory
optimal self-stabilizing algorithm, whose time complexity, namely, O(n), is significantly better even than that
of previous algorithms. (The time complexity of previous MST algorithms that used Ω(log2 n) memory bits
per node was O(n2), and the time for optimal space algorithms was O(n|E|).) Inherited from our proof
labelling scheme, our self-stabilising MST construction algorithm also has the following two properties: (1)
if faults occur after the construction ended, then they are detected by some nodes within O(log2 n) time in
synchronous networks, or within O(∆ log3 n) time in asynchronous ones, and (2) if f faults occurred, then,
within the required detection time above, they are detected within the O(f log n) locality of each of the faults.
We also show how to improve the above two properties, at the expense of some increase in the memory.
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verification, Self-stabilization, Fast fault detection, Local fault detection.
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1 Introduction

1.1 Motivation

In a non-distributed context, solving a problem is believed to be, sometimes, much harder than verifying it
(e.g., for NP-Hard problems). Given a graph G and a subgraph H of G, a task introduced by Tarjan [65] is to
check whether H is a Minimum Spanning Tree (MST) of G. This non-distributed verification seems to be just
slightly easier than the non-distributed computation of an MST. In the distributed context, the given subgraph H
is assumed to be represented distributively, such that each node stores pointers to (some of) its incident edges
in H . The verification task consists of checking whether the collection of pointed edges indeed forms an MST,
and if not, then it is required that at least one node raises an alarm. It was shown recently that such an MST
verification task requires the same amount of time as the MST computation [26, 53]. On the other hand, assuming
that each node can store some information, i.e., a label, that can be used for the verification, the time complexity
of an MST verification can be as small as 1, when using labels of size Θ(log2 n) bits per node [54, 55], where
n denotes the number of nodes. To make such a proof labeling scheme a useful algorithmic tool, one needs to
present a marker algorithm for computing those labels. One of the contributions of the current paper is a time
and memory efficient marker algorithm.

Every decidable graph property (not just an MST) can be verified in a short time given large enough la-
bels [55]. A second contribution of this paper is a generalization of such schemes to allow a reduction in the
memory requirements, by trading off the locality (or the time). In the context of MST, yet another (third) con-
tribution is a reduced space proof labeling scheme for MST. It uses just O(log n) bits of memory per node
(asymptotically the same as the amount of bits needed for merely representing distributively the MST). This is
below the lower bound of Ω(log2 n) of [54]. The reason this is possible is that the verification time is increased to
O(log2 n) in synchronous networks and to O(∆ log3 n) in asynchronous ones, where ∆ is the maximum degree
of nodes. Another important property of the new scheme is that any fault is detected rather close to the node
where it occurred. Interestingly, it turns out that a logarithmic time penalty for verification is unavoidable. That
is, we show that Ω(log n) time for an MST verification scheme is necessary if the memory size is restricted to
O(log n) bits, even in synchronous networks. (This, by the way, means that a verification with O(log n) bits,
cannot be silent, in the sense of [33]; this is why they could not be of the kind introduced in [55]).

Given a long enough time, one can verify T by recomputing the MST. An open problem posed by Awerbuch
and Varghese [15] is to find a synchronous MST verification algorithm whose time complexity is smaller than
the MST computation time, yet with a small memory. This problem was introduced in [15] in the context of self-
stabilization, where the verification algorithm is combined with a non-stabilizing construction protocol to produce
a stabilizing protocol. Essentially, for such purposes, the verification algorithm repeatedly checks the output
of the non-stabilizing construction protocol, and runs the construction algorithm again if a fault at some node
is detected. Hence, the construction algorithm and the corresponding verification algorithm are assumed to be
designed together. This, in turn, may significantly simplify the checking process, since the construction algorithm
may produce output variables (labels) on which the verification algorithm can later rely. In this context, the above
mentioned third contribution solves this open problem by showing an O(log2 n) time penalty (in synchronous
networks) when using optimal O(log n) memory size for the MST verification algorithm. In contrast, if we
study MST construction instead of MST verification, time lower bounds which are polynomial in n for MST
construction follow from [58, 62] (even for constant diameter graphs).

One known application of some methods of distributed verification is for general transformers that transform
non-self-stabilizing algorithms to self-stabilizing ones. The fourth contribution of this paper is an adaptation
of the transformer of [15] such that it can transform algorithms in our context. That is, while the transformer
of [15] requires that the size of the network and its diameter are known, the adapted one allows networks of
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unknown size and diameter. Also, here, the verification method is a proof labeling scheme whose verifier part
is self-stabilizing. Based on the strength of the original transformer of [15] (and that of the companion paper
[13] it uses), our adaptation yields a result that is rather useful even without plugging in the new verification
scheme. This is demonstrated by plugging in the proof labeling schemes of [54, 55], yielding an algorithm which
already improves the time of previous O(log2 n) memory self-stabilizing MST construction algorithm [17], and
also detects faults using 1 time and at distance at most f from each fault (if f faults occurred).

Finally, we obtain an optimal O(log n) memory size, O(n) time asynchronous self-stabilizing MST con-
struction algorithm. The state of the art time bound for such optimal memory algorithms was O(n|E|) [18, 48].
In fact, our time bound improves significantly even the best time bound for algorithms using polylogarithmic
memory, which was O(n2) [17].

Moreover, our self-stabilizing MST algorithm inherits two important properties from our verification scheme,
which are: (1) the time it takes to detect faults is small: O(log2 n) time in a synchronous network, orO(∆ log3 n)
in an asynchronous one; and (2) if some f faults occur, then each fault is detected within its O(f log n) neigh-
bourhood. Intuitively, a short detection distance and a small detection time may be helpful for the design of
local correction, for fault confinement, and for fault containment algorithms [43, 16]. Those notions were intro-
duced to combat the phenomena of faults “spreading” and “contaminating” non-faulty nodes. For example, the
infamous crash of the ARPANET (the predecessor of the Internet) was caused by a fault in a single node. This
caused old updates to be adopted by other nodes, who then generated wrong updates affecting others [59]. This
is an example of those non-faulty nodes being contaminated. The requirement of containment [43] is that such a
contamination does not occur, or, at least, that it is contained in a small radius around the faults. The requirement
of confinement [16] allows the contamination of a state of a node, as long as this contamination is not reflected in
the output (or the externally visible actions) of the non-faulty nodes. Intuitively, if the detection distance is short,
non-faulty nodes can detect the faults and avoid being contaminated.

1.2 Related work

The distributed construction of an MST has yielded techniques and insights that were used in the study of many
other problems of distributed network protocols. It has also become a standard to check a new paradigm in dis-
tributed algorithms theory. The first distributed algorithm was proposed by [25], its complexity was not analyzed.
The seminal paper of Gallager, Humblet, and Spira presented a message optimal algorithm that used O(n log n)
time, improved by Awerbuch to O(n) time [40, 9], and later improved in [57, 41] to O(D +

√
n log∗ n), where

D is the diameter of the network. This was coupled with an almost matching lower bound of Ω(D +
√
n) [62].

Proof labeling schemes were introduced in [55]. The model described therein assumes that the verification is
restricted to 1 unit of time. In particular, a 1 time MST verification scheme was described there using O(log2 n)
bits per node. This was shown to be optimal in [54]. In [46], Göös and Suomela extend the notion of proof
labeling schemes by allowing constant time verification, and exhibit some efficient proof labeling schemes for
recognizing several natural graph families. In all these schemes, the criterion to decide failure of a proof (that is,
the detection of a fault) is the case that at least one node does not manage to verify (that is, detects a fault). The
global state passes a proof successfully if all the nodes verify successfully. This criterion for detection (or for a
failure to prove) was suggested by [2, 3] in the contexts of self stabilization, and used in self stabilization (e.g.
[13, 14, 15]) as well as in other other contexts [60].

Self-stabilization [29] deals with algorithms that must cope with faults that are rather severe, though of a type
that does occur in reality [50]. The faults may cause the states of different nodes to be inconsistent with each
other. For example, the collection of marked edges may not be an MST.

Table 1.2 summarizes the known complexity results for self stabilizing MST construction algorithms. The
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first several entrees show the results of using (to generate an MST algorithm automatically) the known trans-
former of Katz and Perry [52], that extends automatically non self stabilizing algorithms to become self stabiliz-
ing. The transformer of Katz and Perry [52] assumes a leader whose memory must hold a snapshot of the whole
network. The time of the resulting self-stabilizing MST algorithm is O(n) and the memory size is O(|E|n). We
have attributed a higher time to [52] in the table, since we wanted to remove its assumption of a known leader, to
make a fair comparison to the later papers who do not rely on this assumption.

To remove the assumption, in the first entry we assumed the usage of the only leader election known at the
time of [52]. That is, in [3], the first self-stabilizing leader election algorithm was proposed in order to remove
the assumptions of [52] that a leader and a spanning tree are given. The combination of [3] and [52] implied
a self-stabilizing MST in O(n2) time. (Independently, a leader election algorithm was also presented by [6];
however, we cannot use it here since it needed an extra assumption that a bound on n was known; also, its higher
time complexity would have driven the complexity of the transformed MST algorithm higher than the O(n2)
stated above.)

Using unbounded space, the time of self-stabilizing leader election was later improved even to O(D) (the
actual diameter) [4, 27]. The bounded memory algorithms of [10] or [1, 28], together with [52] and [9], yield a
self-stabilizing MST algorithm using O(n|E| log n) bits per node and time O(D log n) or O(n).

Antonoiu and Srimani [5] presented a self stabilizing algorithm whose complexities were not analyzed. As
mentioned by [48], the model in that paper can be transformed to the models of the other papers surveyed
here, at a high translation costs. Hence, the complexities of the algorithm of [5] may grow even further when
stated in these models. Gupta and Srimani [47] presented an O(n log n) bits algorithm. Higham and Liang [48]
improved the core memory requirement to O(log n), however, the time complexity went up again to Ω(n|E|).
An algorithm with a similar time complexity and a similar memory per node was also presented by Blin, Potop-
Butucaru, Rovedakis, and Tixeuil [18]. This latter algorithm exchanges less bits with neighbours than does the
algorithm of [48]. The algorithm of [18] addressed also another goal- even during stabilization it is loop free.
That is, it also maintains a tree at all times (after reaching an initial tree). This algorithm assumes the existence of
a unique leader in the network (while the algorithm in the current paper does not). However, this does not seem
to affect the order of magnitude of the time complexity.

Note that the memory size in the last two algorithms above is the same as in the current paper. However,
their time complexity isO(|E|n) versusO(n) in the current paper. The time complexity of the algorithm of Blin,
Dolev, Potop-Butucaru, and Rovedakis [17] improved the time complexity of [18, 48] to O(n2) but at the cost of
growing the memory usage to O(log2 n). This may be the first paper using labeling schemes for the design of a
self-stabilizing MST protocol, as well as the first paper implementing the algorithm by Gallager, Humblet, and
Spira in a self-stabilizing manner without using a general transformer.

Additional studies about MST verification in various models appeared in [26, 30, 31, 53, 54, 55]. In particular,
Kor et al. [53] shows that the verification from scratch (without labels) of an MST requires Ω(

√
n + D) time

and Ω(|E|) messages, and that these bounds are tight up to poly-logarithmic factors. We note that the memory
complexity was not considered in [53], and indeed the memory used therein is much higher than the one used
in the current paper. The time lower bound proof in [53] was later extended in [26] to apply for a variety of
verification and computation tasks.

This paper has results concerning distributed verification. Various additional papers dealing with verification
have appeared recently, the models of some of them are rather different than the model here. Verification in the
LOCALmodel (where congestion is abstracted away) was studied in [37] from a computational complexity per-
spective. That paper presents various complexity classes, shows separation between them, and provides complete
problems for these classes. In particular, the class NLD defined therein exhibits similarities to the notion of proof
labeling schemes. Perhaps the main result in [37] is a sharp threshold for the impact of randomization on local
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Table 1: Comparing self-stabilizing MST construction algorithms

Algorithm space time Asynch comment

[52]+[3]+[9] O(|E|n) O(n2) yes

[52]+ [4]+[9] unbounded O(D) yes The 2nd component can be re-
placed by [27], assuming the
LOCAL model.

[52]+ [9]+ [10] O(|E|n) log n O(min{D log n, n}) yes The third component here can be
replaced by [1] or by [28].

[47] O(n log n) O(n) no Implies an O(n2) time bound in
asynchronous networks, assum-
ing a good bound on the net-
work size is known. The time is
based on assuming the LOCAL
model.

[48] O(log n) Ω(|E|n) yes The time complexity is based
on the assumption that a good
bound on the network diameter
is known.

[18] O(log n) Ω(|E|n) yes Aims to exchanging less bits
with neighbours than [48]. As-
sumes a leader is known.

[17] O(log2(n)) O(n2) yes

Current paper O(log n) O(n) yes
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decision of hereditary languages. Following that paper, [38] showed that the threshold in [37] holds also for any
non-hereditary language, assuming it is defined on path topologies. In addition, [38] showed further limitations
of randomness, by presenting a hierarchy of languages, ranging from deterministic, on the one side of the spec-
trum, to almost complete randomness, on the other side. Still, in the LOCAL model, [39] studied the impact
of assuming unique identifiers on local decision. We stress that the memory complexity was not considered in
neither [37] nor in its follow-up papers [38, 39].

1.3 Our results

This paper contains the following two main results.

(1) Solving an open problem posed by Awerbuch and Varghese [15]: In the context of self-stabilization,
an open problem posed in [15] is to find a (synchronous) MST verification algorithm whose time complexity
is smaller than the MST computation time, yet with a small memory. Our first main result solves this question
positively by constructing a time efficient self-stabilizing verification algorithm for an MST while using optimal
memory size, that is O(log n) bits of memory per node. More specifically, the verification scheme takes as
input a distributed structure claimed to be an MST. If the distributed structure is indeed an MST, and if a marker
algorithm properly marked the nodes to allow the verification, and if no faults occur, then our algorithm outputs
accept continuously in every node. However, if faults occur (including the case that the structure is not, in
fact, an MST, or that the marker did not perform correctly), then our algorithm outputs reject in at least one
node. This reject is outputted in time O(log2 n) after the faults cease, in a synchronous network. (Recall, lower
bounds which are polynomial in n for MST construction are known even for synchronous networks [58, 62].) In
asynchronous networks, the time complexity of our verification scheme grows toO(∆ log3 n). We also show that
Ω(log n) time is necessary if the memory size is restricted to O(log n), even in synchronous networks. Another
property of our verification scheme is that if f faults occurred, then, within the required detection time above,
they are detected by some node in theO(f log n) locality of each of the faults. Moreover, we present a distributed
implementation of the marker algorithm whose time complexity for assigning the labels is O(n), under the same
memory size constraint of O(log n) memory bits per node.

(2) Constructing an asynchronous self-stabilizing MST construction algorithm which uses optimal mem-
ory (O(log n) bits) and runs in O(n) time: In our second main result, we show how to enhance a known
transformer that makes input/output algorithms self-stabilizing. It now takes as input an efficient construction
algorithm and an efficient self-stabilizing proof labeling scheme, and produces an efficient self-stabilizing algo-
rithm. When used with our verification scheme, the transformer produces a memory optimal self-stabilizing MST
construction algorithm, whose time complexity, namely, O(n), is significantly better even than that of previous
algorithms. (Recall, the time complexity of previous MST algorithms that used Ω(log2 n) memory bits per node
was O(n2), and the time for optimal space algorithms was O(n|E|).) Inherited from our verification scheme,
our self-stabilising MST construction algorithm also has the following two properties. First, if faults occur after
the construction ended, then they are detected by some nodes within O(log2 n) time in synchronous networks,
or within O(∆ log3 n) time in asynchronous ones, and second, if f faults occurred, then, within the required
detection time above, they are detected within the O(f log n) locality of each of the faults. We also show how to
improve these two properties, at the expense of some increase in the memory.
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1.4 Outline

Preliminaries and some examples of simple, yet useful, proof labeling schemes are given in Section 2. An
intuition is given in Section 3. A building block is then given in Section 4. Namely, that section describes a
synchronous MST construction algorithm in O(log n) bits memory size and O(n) time. Section 5 describes
the construction of parts of the labeling scheme. Those are the parts that use labeling schemes of the kind
described in [55]- namely, schemes that can be verified in one time unit. These parts use the MST construction
(of Section 4) to assign the labels. Sections 6, 7, and 8 describe the remaining part of the labeling scheme.
This part is a labeling scheme by itself, but of a new kind. It saves on memory by distributing information.
Specifically, Section 6 describes how the labels should look if they are constructed correctly (and if an MST is
indeed represented in the graph). The verifications, in the special case that no further faults occur, is described in
Section 7. This module verifies (alas, not in constant time) by moving the distributed information around, for a
“distributed viewing”. Because the verification is not done in one time unit, it needs to be made self stabilizing.
This is done in Section 8. Section 9 presents a lower bound for the time of a proof labeling scheme for MST that
uses only logarithmic memory. (Essentially, the proof behind this lower bound is based on a simple reduction,
using the rather complex lower bound given in [54].)

The efficient self-stabilizing MST algorithm is given in Section 10. Using known transformers, we combine
efficient MST verification schemes and (non-self-stabilizing) MST construction schemes to yield efficient self-
stabilizing schemes. The MST construction algorithm described in Section 4 is a variant of some known time
efficient MST construction algorithms. We show there how those can also be made memory efficient (at the
time, this complexity measure was not considered), and hence can be used as modules for our optimal memory
self-stabilizing MST algorithm.

2 Preliminaries

2.1 Some general definitions

We use rather standard definitions; a reader unfamiliar with these notions may refer to the model descriptions
in the rich literature on these subjects. In particular, we use rather standard definitions of self-stabilization (see,
e.g. [32]). Note that the assumptions we make below on time and time complexity imply (in self stabilization
jargon) a distributed daemon with a very strong fairness. When we speak of asynchronous networks, this implies
a rather fine granularity of atomicity. Note that the common self stabilization definitions include the definitions
of faults. We also use standard definitions of graph theory (including an edge weighted graph G = (V,E), with
weights that are polynomial in n = |V |) to represent a network (see, e.g. [35]). Each node v has a unique
identity ID(v) encoded using O(log n) bits. For convenience, we assume that each adjacent edge of each node
v has some label that is unique at v (edges at different nodes may have the same labels). This label, called a
port-number, is known only to v and is independent of the port-number of the same edge at the other endpoint of
the edge. (Clearly, each port-number can be assumed to be encoded using O(log n) bits). Moreover, the network
can store an object such as an MST (Minimum Spanning Tree) by having each node store its component of the
representation. A component c(v) at a node v includes a collection of pointers (or port-numbers) to neighbours
of v, and the collection of the components of all nodes induces a subgraph H(G) (an edge is included in H(G)
if and only if at least one of its end-nodes points at the other end-node). In the verification scheme considered
in this current paper, H(G) is supposed to be an MST and for simplicity, we assume that the component of each
node contains a single pointer (to the parent, if that node is not defined as the root). It is not difficult to extend
our verification scheme to hold also for the case where each component can contain several pointers. Note that
the definitions in this paragraph imply a lower bound of Ω(log n) bits on the memory required at each node to
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even represent an MST (in graphs with nodes of high degree).

Some additional standard ([40]) parts of the model include the assumption that the edge weights are distinct.
As noted often, having distinct edge weights simplifies our arguments since it guarantees the uniqueness of the
MST. Yet, this assumption is not essential. Alternatively, in case the graph is not guaranteed to have distinct edge
weights, we may modify the weights locally as was done in [53]. The resulted modified weight function ω′(e)
not only assigns distinct edge weights, but also satisfies the property that the given subgraph H(G) is an MST of
G under ω(·) if and only if H(G) is an MST of G under ω′(·).1

We use the (rather common) ideal time complexity which assumes that a node reads all of its neighbours in
at most one time unit, see e.g. [18, 17]. Our results translate easily to an alternative, stricter, contention time
complexity, where a node can access only one neighbour in one time unit. The time cost of such a translation is
at most a multiplicative factor of ∆, the maximum degree of a node (it is not assumed that ∆ is known to nodes).

As is commonly assumed in the case of self-stabilization, each node has only some bounded number of
memory bits available to be used. Here, this amount of memory is O(log n).

2.2 Using protocols designed for message passing

We use a self stabilizing transformer of Awerbuch and Varghese as a building block [15]. That protocol was
designed for the message passing model. Rather than modifying that transformer to work on the model used here
(which would be very easy, but would take space), we use emulation. That is, we claim that any self stabilizing
protocol designed for the model of [15] (including the above transformer) can be performed in the model used
here, adapted from [18, 17]. This is easy to show: simply use the current model to implement the links of the
model of [15]. To send a message from node v to its neighbour u, have v write its shared variable that (only v
and) u can read. This value can be read by u after one time unit in a synchronous network as required from a
message arrival in the model of [15]. Hence, this is enough for synchronous networks.

In an asynchronous network, we need to work harder to simulate the sending and the receiving of a message,
but only slightly harder, given known art. Specifically, in an asynchronous network, an event occurs at uwhen this
message arrives. Without some additional precaution on our side, u could have read this value many times (per
one writing) resulting in duplications: multiple message “arriving” while we want to emulate just one message.
This is solved by a self stabilizing data link protocol, such as the one used by [3], since this is also the case in
a data link protocol in message passing systems where a link may loose a package. There, a message is sent
repeatedly, possibly many times, until an acknowledgement from the receiver tells the sender that the message

1We note, the standard technique (e.g., [40]) for obtaining unique weights is not sufficient for our purposes. Indeed, that technique
orders edge weights lexicographically: first, by their original weight ω(e), and then, by the identifiers of the edge endpoints. This
yields a modified graph with unique edge weights, and an MST of the modified graph is necessarily an MST of the original graph. For
construction purposes it is therefore sufficient to consider only the modified graph. Yet, this is not the case for verification purposes, as the
given subgraph can be an MST of the original graph but not necessarily an MST of the modified graph. While the authors in [53] could not
guarantee that any MST of the original graph is an MST of the modified graph (having unique edge weights), they instead make sure that
the particular given subgraph T is an MST of the original graph if and only if it is an MST of modified one. This condition is sufficient for
verification purposes, and allows one to consider only the modified graph. For completeness, we describe the weight-modification in [53].
To obtain the modified graph, the authors in [53] employ the technique, where edge weights are lexicographically ordered as follows.
For an edge e = (v, u) connecting v to its neighbour u, consider first its original weight ω(e), next, the value 1 − Y v

u where Y v
u is the

indicator variable of the edge e (indicating whether e belongs to the candidate MST to be verified), and finally, the identifiers of the edge
endpoints, ID(v) and ID(u) (say, first comparing the smaller of the two identifiers of the endpoints, and then the larger one). Formally,
let ω′(e) = 〈ω(e), 1− Y v

u ,IDmin(e),IDmax(e)〉 , where IDmin(e) = min{ID(v),ID(u)} and IDmax(e) = max{ID(v),ID(u)}.
Under this weight function ω′(e), edges with indicator variable set to 1 will have lighter weight than edges with the same weight under
ω(e) but with indicator variable set to 0 (i.e., for edges e1 ∈ T and e2 /∈ T such that ω(e1) = ω(e2), we have ω′(e1) < ω′(e2)). It
follows that the given subgraph T is an MST of G under ω(·) if and only if T is an MST of G under ω′(·). Moreover, since ω′(·) takes
into account the unique vertex identifiers, it assigns distinct edge weights.
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arrived. The data link protocol overcomes the danger of duplications by simply numbering the messages modulo
some small number. That is, the first message is sent repeatedly with an attached “sequence number” zero, until
the first acknowledgement arrives. All the repetitions of the second message have as attachments the sequence
number 1, etc. The receiver then takes just one of the copies of the first message, one of the copies of the second,
etc. A self stabilized implementation of this idea in a shared memory model appears in [3] using (basically, to
play the role of the sequence number) an additional shared variable called the “toggle”, which can take one of
three values.2 When u reads that the toggle of v changes, u can emulate the arrival of a message. In terms of time
complexity, this protocol takes a constant time, and hence sending (an emulated) message still takes a constant
time (in terms of complexity only) as required to emulate the notion of ideal time complexity of [18, 17]. Note
that the memory is not increased.

2.3 Wave&Echo

We use the well known Wave&Echo (PIF) tool. For details, the readers are referred to [21, 63]. For completeness,
we remind the reader of the overview of Wave&Echo when performed over a rooted tree. It is started by the tree
root, and every node who receives the wave message forwards it to its children. The wave can carry a command
for the nodes. A leaf receiving the wave, computes the command, and sends the output to its parent. This is
called an echo. A parent, all of whose children echoed, computes the command itself (possibly using the outputs
sent by the children) and then sends the echo (with its own output) to its parent. The Wave&Echo terminates at
the root when all the children of the root echoed, and when the root executed the command too.

In this paper, the Wave&Echo activations carry various commands. Let us describe first two of these com-
mands, so that they will also help clarify the notion of Wave&Echo and its application. The first example is the
command to sum up values residing at the nodes. The echo of a leaf includes its value. The echo of a parent
includes the sum of its own value and the sums sent by its children. Another example is the counting of the nodes.
This is the same as the sum operation above, except that the initial value at a node is 1. Similarly to summing up,
the operation performed by the wave can also be a logical OR.

2.4 Proof labeling schemes

In [54, 55, 46], the authors consider a framework for maintaining a distributed proof that the network satisfies
some given predicate Ψ, e.g., that H(G) is an MST. We are given a predicate Ψ and a graph family F (in this
paper, if Ψ and F are omitted, then Ψ is MST and F (or F(n)) is all connected undirected weighted graphs
with n nodes). A proof labeling scheme (also referred to as a verification algorithm) includes the following two
components.

• A marker algorithmM that generates a labelM(v) for every node v in every graph G ∈ F .

• A verifier, that is a distributed algorithm V , initiated at each node of a labeled graph G ∈ F , i.e., a graph
whose nodes v have labels L(v) (not necessarily correct labels assigned by a marker). The verifier at each
node is initiated separately, and at an arbitrary time, and runs forever. The verifier may raise an alarm at
some node v by outputting “no” at v.

Intuitively, if the verifier at v raises an alarm, then it detected a fault. That is, for any graph G ∈ F ,
2That protocol, called “the strict discipline” in [3], actually provides a stronger property (emulating a coarser grained atomicity), not

used here.
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• If G satisfies the predicate Ψ and if the label at each node v isM(v) (i.e., the label assigned to v by the
marker algorithmM) then no node raises an alarm. In this case, we say that the verifier accepts the labels.

• If G does not satisfy the predicate Ψ, then for any assignment of labels to the nodes of G, after some finite
time t, there exists a node v that raises an alarm. In this case, we say that the verifier rejects the labels.

Note that the first property above concerns only the labels produced by the marker algorithmM, while the
second must hold even if the labels are assigned by some adversary. We evaluate a proof labeling scheme (M,V)
by the following complexity measures.

• The memory size: the maximum number of bits stored in the memory of a single node v, taken over all the
nodes v in all graphs G ∈ F(n) that satisfy the predicate Ψ (and over all the executions); this includes: (1)
the bits used for encoding the identity ID(v), (2) the marker memory: number of bits used for constructing
and encoding the labels, and (3) the verifier memory: the number of bits used during the operation of the
verifier3.

• The (ideal) detection time: the maximum, taken over all the graphs G ∈ F(n) that do not satisfy the
predicate Ψ and over all the labels given to nodes of G by adversaries (and over all the executions), of the
time t required for some node to raise an alarm. (The time is counted from the starting time, when the
verifier has been initiated at all the nodes.)

• The detection distance: for a faulty node v, this is the (hop) distance to the closest node u raising an alarm
within the detection time after the fault occurs. The detection distance of the scheme is the maximum, taken
over all the graphs having at most f faults, and over all the faulty nodes v (and over all the executions), of
the detection distance of v.

• The (ideal) construction-time: the maximum, taken over all the graphs G ∈ F(n) that satisfy the predicate
Ψ (and over all the executions), of the time required for the markerM to assign labels to all nodes of G.
Unless mentioned otherwise, we measure construction-time in synchronous networks only.

In our terms, the definitions of [54, 55] allowed only detection time complexity 1. Because of that, the verifier
of [54, 55] at a node v, could only consult the neighbours of v. Whenever we use such a scheme, we refer to
it as a 1-proof labeling scheme, to emphasis its running time. Note that a 1-proof labelling scheme is trivially
self-stabilzying. (In some sense, this is because they “silently stabilize” [33], and “snap stabilize” [20].) Also, in
[54, 55], if f faults occurred, then the detection distance was f .

2.5 Generalizing the complexities to a computation

In Section 2.4, we defined the memory size, detection time and the detection distance complexities of a veri-
fication algorithm. When considering a (self-stabilizing) computation algorithm, we extend the notion of the
memory size to include also the bits needed for encoding the component c(v) at each node. Recall, the definition
of a component c(v) in general, and the special case of c(v) for MST, are given in Section 2. (Recall, from Sec-
tion 2.4, that the size of the component was excluded from the definition of memory size for verification because,
there, the designer of the verification scheme has no control over the nodes’ components.)

3Note that we do not include the number of bits needed for storing the component c(v) at each node v. Recall that for simplicity,
we assume here that each component contains a single pointer, and therefore, the size of each component is O(logn) bits. Hence, for
our purposes, including the size of a component in the memory complexity would not increase the asymptotical size of the memory,
anyways. However, in the general case, if multiple pointers can be included in a component, then the number of bits needed for encoding
a component would potentially be as large as O(∆ logn). Since, in this case, the verification scheme has no control over the size of the
component, we decided to exclude this part from the definition of the memory complexity.
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The notions of detection time and the detection distance can be carried to the very common class of self-
stabilizing computation algorithms that use fault detection. (Examples for such algorithms are algorithms that
have silent stabilization [33].) Informally, algorithms in this class first compute an output. After that, all the
nodes are required to stay in some output state where they (1) output the computation result forever (unless a
fault occurs); and (2) check repeatedly until they discover a fault. In such a case, they recompute and enter
an output state again. Let us term such algorithms detection based self-stabilizing algorithms. We define the
detection time for such algorithms to be the time from a fault until the detection. However, we only define
the detection time (and the detection distance) for faults that occur after all the nodes are in their output states.
(Intuitively, in the other cases, stabilization has not been reached yet anyhow.) The detection distance is the
distance from a node where a fault occurred to the closest node that detected a fault.

2.6 Some examples of 1-proof labeling schemes

As a warm-up exercise, let us begin by describing several simple 1-proof labeling schemes, which will be useful
later in this paper. The first two examples are taken from [55] and are explained there in more details. The reader
familiar with proof labeling schemes may skip this subsection.

◦ Example 1: A spanning tree. (Example SP) Let fspan denote the predicate such that for any input graph
G satisfies, fspan(G) = 1 if H(G) is a spanning tree of G, and fspan(G) = 0 otherwise. We now describe an
efficient 1-proof labeling scheme (M,V) for the predicate fspan and the family of all graphs. Let us first describe
the markerM operating on a “correct instance”, i.e., a graph G where T = H(G) is indeed a spanning tree of
G. If there exists a node u whose component does not encode a pointer to any of its adjacent edges (observe
that there can be at most one such node), we root T at u. Otherwise, there must be two nodes v and w whose
components point at each other. In this case, we root T arbitrarily at either v or w. Note that after rooting T , the
component at each non-root node v points at v’s parent. The label given byM to a node v is composed of two
parts. The first part encodes the identity ID(r) of the root r of T , and the second part of the label of v encodes
the distance (assuming all weights of edges are 1) between v and r in T .

Given a labeled graph, the verifier V operates at a node v as follows: first, it checks that the first part of the
label of v agrees with the first part of the labels of v’s neighbours, i.e., that v agrees with its neighbours on the
identity of the root. Second, let d(v) denote the number encoded in the second part of v’s label. If d(v) = 0 then
V verifies that ID(v) = ID(r) (recall that ID(r) is encoded in the first part of v’s label). Otherwise, if d(v) 6= 0
then the verifier checks that d(v) = d(u) + 1, where u is the node pointed at by the component at v. If at least
one of these conditions fails, the verifier V raises an alarm at v. It is easy to get convinced that (M,V) is indeed
a 1-proof labeling scheme for the predicate fspan with memory size O(log n) and construction time O(n).

Remark. Observe that in case T = H(G) is indeed a (rooted) spanning tree ofG, we can easily let each node v
know which of its neighbours in G are its children in T and which is its parent. Moreover, this can be done using
one unit of time and label size O(log n) bits. To see this, for each node v, we simply add to its label its identity
ID(v) and the identity ID(u) of its parent u. The verifier at v first verifies that ID(v) is indeed encoded in the
right place of its label. It then looks at the label of its parent u, and checks that v’s candidate for being the identity
of u is indeed ID(u). Assume now that these two conditions are satisfied at each node. Then, to identify a child
w in T , node v should only look at the labels of its neighbours in G and see which of them encoded ID(v) in the
designated place of its label.

◦ Example 2: Knowing the number of nodes (Example NumK) Denote by fsize the boolean predicate such that
fsize(G) = 1 if and only if one designated part of the label L(v) at each node v encodes the number of nodes in
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G (informally, when fsize is satisfied, we say that each node ‘knows’ the number of nodes in G). Let us denote
the part of the label of v that is supposed to hold this number by L′(v).

In [55], the authors give a 1-proof labeling scheme (M,V) for fsize with memory size O(log n). The idea
behind their scheme is simple. First, the verifier checks that L′(u) = L′(v) for every two adjacent nodes u and v
(if this holds at each node then all nodes must hold the same candidate for being the number of nodes). Second,
the marker constructs a spanning tree T rooted at some node r (and verifies that this is indeed a spanning tree
using the Example SP above). Third, the number of nodes in T is aggregated upwards along T towards its root r,
by keeping at the labelM(v) of each node v, the number of nodes n(v) in the subtree of T hanging down from
v. This again is easily verified by checking at each node v that n(v) = 1 +

∑
u∈Child(v) n(u), where Child(v)

is the set of children of v. Finally, the root verifies that n(r) = L′(r). It is straightforward that (M,V) is indeed
a 1-proof labeling scheme for the predicate fsize with memory size O(log n) and construction time O(n).

◦ Example 3: An upper bound on the diameter of a tree (Example EDIAM) Consider a tree T rooted at r, and
let h denote the height of T . Denote by fheight the boolean predicate such that fheight(T ) = 1 if and only if one
designated part of the label L(v) at each node encodes the same value x, where h ≤ x (informally, when fheight
is satisfied, we say that each node ‘knows’ an upper bound of 2x on the diameter D of T ). Let us denote the
part of the label of v that is supposed to hold this number by L′(v). We sketch a simple 1-proof labeling scheme
(M,V) for fheight. First, the verifier checks that L′(u) = L′(v) for every two adjacent nodes u and v (if this
holds at each node then all nodes must hold the same value x). Second, similarly to the proof labeling scheme
for fspan given in Example SP above, the label in each node v contains the distance d(v) in the tree from v to
the root. Each non-root node verifies that the distance written at its parent is one less than the distance written at
itself, and the root verifies that the distance written at itself is 0. Finally, each node v verifies also that x ≥ d(v).
If no node raises an alarm then x is an upper bound on the height. On the other hand, if the value x is the same
at all nodes and x is an upper bound on the height then no node raises an alarm. Hence the scheme is a 1-proof
labeling scheme for the predicate fheight with memory size O(log n) and construction time O(n).

3 Overview of the MST verification scheme and the intuition behind it

The final MST construction algorithm makes use of several modules. The main technical contribution of this
paper is the module that verifies that the collection of nodes’ components is indeed an MST. This module in itself
is composed of multiple modules. Some of those, we think may be useful by themselves. To help the reader
avoid getting lost in the descriptions of all the various modules, we present, in this section, an overview of the
MST verification part.

Given a graph G and a subgraph that is represented distributively at the nodes of G, we wish to produce a
self-stabilizing proof labeling scheme that verifies whether the subgraph is an MST of G. By first employing
the (self-stabilizing) 1-proof labeling scheme mentioned in Example SP, we may assume that the subgraph is a
rooted spanning tree of G (otherwise, at least one node would raise an alarm). Hence, from now on, we focus
on a spanning tree T = (V (G), E(T )) of a weighted graph G = (V (G), E(G)), rooted at some node r(T ), and
aim at verifying the minimality of T .

3.1 Background and difficulties

From a high-level perspective, the proof labeling scheme proves that T could have been computed by an algorithm
that is similar to that of GHS, the algorithm of Gallager, Humblet, and Spira’s described in [40]. This leads to a
simple idea: when T is a tree computed by such an algorithm, T is an MST. Let us first recall a few terms from
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[40]. A fragment F denotes a connected subgraph of T (we simply refer it to a subtree). Given a fragment F , an
edge (v, u) ∈ E(G) whose one endpoint v is in F , while the other endpoint u is not, is called outgoing from F .
Such an edge of minimum weight is called a minimum outgoing edge from F . A fragment containing a single
node is called a singleton. Recall that GHS starts when each node is a fragment by itself. Essentially, fragments
merge over their minimum outgoing edges to form larger fragments. That is, each node belongs to one fragment
F1, then to a larger fragment F2 that contains F1, etc. This is repeated until one fragment spans the network. A
tree constructed in that way is an MST. Note that in GHS, the collection of fragments is a laminar family, that is,
for any two fragments F and F ′ in the collection, if F ∩ F ′ 6= ∅ then either F ⊆ F ′ or F ′ ⊆ F (see, e.g. [44]).
Moreover, each fragment has a level; in the case of v above, F2’s level is higher than that of F1. This organizes
the fragments in a hierarchyH, which is a tree whose nodes are fragments, where fragment F1 is a descendant in
H of F2 if F2 contains F1. GHS manages to ensure that each node belongs to at most one fragment at each level,
and that the total number of levels is O(log n). Hence, the hierarchyH has O(log n) height.

The marker algorithm in our proof labeling scheme performs, in some sense, a reverse operation. If T is an
MST, the marker “slices” it back into fragments. Then, the proof labeling scheme computes for each node v:

• The (unique) name of each of the fragments Fj that v belongs to,
• the level of Fj , and
• the weight of Fj’s minimum outgoing edge.

Note that each node participates in O(log n) fragments, and the above “piece of information” per fragment
requires O(log n) bits. Hence, this is really too much information to store in one node. As we shall see later,
the verification scheme distributes this information and then brings it to the node without violating the memory
size bound O(log n). For now, it suffices to know that given these pieces of information and the corresponding
pieces of information of their neighbours, the nodes can verify that T could have been constructed by an algorithm
similar to GHS. That way, they verify that T is an MST. Indeed, the 1-proof labeling schemes for MST verification
given in [54, 55] follow this idea employing memory size of O(log2 n) bits. (There, each node keeps O(log n)
pieces, each of O(log n) bits.)

The current paper allows each node to hold only O(log n) memory bits. Hence, a node has room for only a
constant number of such pieces of information at a time. One immediate idea is to store some of v’s pieces in
some other nodes. Whenever v needs a piece, some algorithm should move it towards v. Moving pieces would
cost time, hence, realizing some time versus memory size trade-off.

Unfortunately, the total (over all the nodes) number of pieces in the schemes of [54, 55] is Ω(n log n). Any
way one would assign these pieces to nodes would result in the memory of some single node needing to store
Ω(log n) pieces, and hence, Ω(log2 n) bits. Thus, one technical step we used here is to reduce the total number
of pieces to O(n), so that we could store at each node just a constant number of such pieces. However, each node
still needs to use Ω(log n) pieces. That is, some pieces may be required by many nodes. Thus, we needed to
solve also a combinatorial problem: locate each piece “close” to each of the nodes needing it, while storing only
a constant number of pieces per node.

The solution of this combinatorial problem would have sufficed to construct the desired scheme in the
LOCAL model [61]. There, node v can “see” the storage of nearby nodes. However, in the congestion aware
model, one actually needs to move pieces from node to node, while not violating the O(log n) memory per node
constraint. This is difficult, since, at the same time v needs to see its own pieces, other nodes need to see their
own ones.
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3.2 A very high level overview

Going back to GHS, one may notice that its correctness follows from the combination of two properties:

• P1. (Well-Forming) The existence of a hierarchy treeH of fragments, satisfying the following:

• Each fragment F ∈ H has a unique selected outgoing edge (except when F is the whole tree T ).
• A (non-singleton) fragment is obtained by merging its children fragments inH through their selected

outgoing edges.

• P2. (Minimality) The selected outgoing edge of each fragment is its minimal outgoing edge.

In our proof labeling scheme, we verify the aforementioned two properties separately. In Section 5, we show how
to verify the first property, namely, property Well-Forming. This turns out to be a much easier task than verifying
the second property. Indeed, the Well-Forming property can be verified using a 1-proof labeling scheme, while
still obeying the O(log n) bits per node memory constraint. Moreover, the techniques we use for verifying
the Well-Forming are rather similar to the ones described in [55]. The more difficult verification task, namely,
verifying the Minimality property P2, is described in Section 6. This verification scheme requires us to come
up with several new techniques which may be considered as contributions by themselves. We now describe the
intuition behind these verifications.

3.3 Verifying the Well-Forming property (described in detail in Sections 4 and 5)

We want to show that T could have been produced by an algorithm similar to GHS. Crucially, since we care about
the memory size, we had to come up with a new MST construction algorithm that is similar to GHS but uses only
O(log n) memory bits per node and runs in time O(n). This MST construction algorithm, called SYNC MST,
can be considered as a synchronous variant of GHS and is described in Section 4.

Intuitively, for a correct instance (the case T is an MST), the marker algorithmM produces a hierarchy of
fragments H by following the new MST construction algorithm described in Section 4. Let ` = O(log n) be the
height of H. For a fixed level j ∈ [0, `], it is easy to represent the partition of the tree into fragments of level j
using just one bit per node. That is, the root r′ of each fragment F ′ of level j has 1 in this bit, while the nodes
in F ′ \ {r′} have 0 in this bit. Note, these nodes in F ′ \ {r′} are the nodes below r′ (further away from the root
of T ), until (and not including) reaching additional nodes whose corresponding bit is 1. Hence, to represent the
whole hierarchy, it is enough to attach a string of length `+1-bits at each node v. The string at a node v indicates,
for each level j ∈ [0, `], whether v is the root of the fragment of level j containing v (if one exists).

Next, still for correct instances, we would like to represent the selected outgoing edges distributively. That is,
each node v should be able to detect, for each fragment F containing v, whether v is an endpoint of the selected
edge of F . If v is, it should also know which of v’s edges is the selected edge. This representation is used later
for verifying the two items of the Well-Forming property specified above. For this purpose, first, we add another
string of `+ 1 entries at each node v, one entry per level j. This entry specifies, first, whether there exists a level
j fragment Fj(v) containing v. If Fj(v) does exist, the entry specifies whether v is incident to the corresponding
selected edge. Note, storing the information at v specifying the pointers to all the selected edges of the fragments
containing it, may require O(log2 n) bits of memory at v. This is because there may be O(log n) fragments
containing v; each of those may select an edge at v leading to an arbitrary neighbour of v in the tree T ; if v has
many neighbours, each edge may costO(log n) bits to encode. The trick is to distribute the information regarding
v’s selected edges among v’s children in T . (Recall that v can look at the data structures of v’s children.)

The strings mentioned in the previous paragraphs are supposed to define a hierarchy and selected outgoing
edges from the fragments of the hierarchy. However, on incorrect instances, if corrupted, the strings may not
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represent the required. For example, the strings may represent more than one selected edge for some fragment.
Hence, we need also to attach proof labels for verifying the hierarchy and the corresponding selected edges
represented by those strings. Fortunately, for proving the Well-Forming property only, it is not required to
verify that the represented hierarchy (and the corresponding selected edges) actually follow the MST construction
algorithm (which is the case for correct instances). In Section 5, we present 1-proof labeling schemes to show
that the above strings represent some hierarchy with corresponding selected edges, and that the Well-Forming
property does hold for that hierarchy.

3.4 Verifying The Minimality property (described in detail in Sections 6, 7 and 8)

A crucial point in the scheme is letting each node v know, for each of its incident edges (v, u) ∈ E and for each
level j, whether u and v share the same level j fragment. Intuitively, this is needed in order to identify outgoing
edges. For that purpose, we assign each fragment a unique identifier, and v compares the identifier of its own
level j fragment to the identifier of u’s level j fragment.

Consider the number of bits required to represent the identifiers of all the fragments that a node v participates
in. There exists a method to assign unique identifiers such that this total number is only O(log n) [56, 36].
Unfortunately, we did not manage to use that method here. Indeed, there exists a marker algorithm that assigns
identifiers according to that method. However, we could not find a low space and short time method for the
verifier to verify that the given identifiers of the fragments were indeed assigned in that way. (In particular, we
could not verify efficiently that the given identifiers are indeed unique).

Hence, we assign identifiers according to another method that appears more memory wasteful, where the
identity ID(F ) of a fragment F is composed of the (unique) identity of its root together with its level. We also
need each node v to know the weight ω(F ) of the minimum outgoing edge of each fragment F containing v. To
summarize, the piece of information I(F ) required in each node v per fragment F containing v is ID(F )◦ω(F ).
Thus, I(F ) can be encoded using O(log n) bits. Again, note that since a node may participate in ` = Θ(log n)
fragments, the total number of bits used for storing all the I(F ) for all fragments F containing v would thus be
Θ(log2 n). Had no additional steps been taken, this would have violated the O(log n) memory constraint.

Luckily, the total number of bits needed globally for representing the pieces I(F ) of all the fragments F is
only O(n log n), since there are at most 2n fragments, and I(F ) of a fragment F is of size O(log n) bits. The
difficulty results from the fact that multiple nodes need replicas of the same information. (E.g., all the nodes in
a fragment need the ID of the fragment.) If a node does not store this information itself, it is not clear how to
bring all the many pieces of information to each node who needs them, in a short time (in spite of congestion)
and while having only a constant number of such pieces at a node at each given point in time.

To allow some node v to check whether its neighbour u belongs to v’s level j fragment Fj(v) for some level j,
the verifier at v needs first to reconstruct the piece of information I(Fj(v)). Intuitively, we had to distribute the
information, so that I(F ) is placed “not too far” from every node in F . To compare I(Fj(v)) with a neighbour u,
node v must also obtain I(Fj(u)) from u. This requires some mechanism to synchronize the reconstructions in
neighbouring nodes. Furthermore, the verifier must be able to overcome difficulties resulting from faults, which
can corrupt the information stored, as well as the reconstruction and the synchronization mechanisms.

The above distribution of the I’s is described in Section 6. The distributed algorithm for the “fragment by
fragment” reconstruction (and synchronization) is described in Section 7. The required verifications for validating
the I’s and comparing the information of neighbouring nodes are described in Section 8.
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3.4.1 Distribution of the pieces of information (described in detail in Section 6)

At a very high level description, each node v stores permanently I(F ) for a constant number of fragments F .
Using that, I(F ) is “rotated” so that each node in F “sees” I(F ) in O(log n) time. We term the mechanism
that performs this rotation a train. A first idea would have been to have a separate train for each fragment F that
would “carry” the piece I(F ) and would allow all nodes in F to see it. However, we did not manage to do that
efficiently in terms of time and of space. That is, one train passing a node could delay the other trains that “wish”
to pass it. Since neighbouring nodes may share only a subset of their fragments, it is not clear how to pipeline
the trains. Hence, those delays could accumulate. Moreover, as detailed later, each train utilizes some (often
more than constant) memory per node. Hence, a train per fragment would have prevented us from obtaining an
O(log n) memory solution.

A more refined idea would have been to partition the tree into connected parts, such that each part P intersects
O(|P |) fragments. Using such a partition, we could have allocated theO(|P |) pieces (of theseO(|P |) fragments),
so that each node of P would have been assigned only a constant number of such pieces, costing O(log n) bits
per node. Moreover, just one train per part P could have sufficed to rotate those pieces among the nodes of P .
Each node in P would have seen all the pieces I(F ) for fragments F containing it in O(|P |) time. Hence, this
would have been time efficient too, had P been small.

Unfortunately, we did not manage to construct the above partition. However, we managed to obtain a similar
construction: we construct two partitions of T , called Top and Bottom. We also partitioned the fragments into
two kinds: top and bottom fragments. Now, each part P of partition Top intersects with O(|P |) top fragments
(plus any number of bottom fragments). Each part P of partition Bottom intersects with O(|P |) bottom frag-
ments (plus top fragments that we do not count here). For each part in Top (respectively Bottom), we shall
distribute the information regarding the O(|P |) top (respectively, bottom) fragments it intersects with, so that
each node would hold at most a constant number of such pieces of information. Essentially, the pieces of in-
formation regarding the corresponding fragments are put in the nodes of the part (permanently) according to a
DFS (Depth First Search) order starting at the root of the part. For any node v, the two parts containing it encode
together the information regarding all fragments containing v. Thus, to deliver all relevant information, it suffices
to utilize one train per part (and hence, each node participates in two trains only). Furthermore, the partitions
are made so that the diameter of each part is O(log n), which allows each train to quickly pass in all nodes, and
hence to deliver the relevant information in short time.

The distributed implementation of this distribution of pieces of information, and, in particular, the distributed
construction of the two partitions, required us to come up with a new multi-wave primitive, enabling an efficient
(inO(n)) time) parallel (i.e., pipelined) executions of Wave&Echo operations on all fragments of HierarchyHM.

3.4.2 Viewing the pieces of information (described in detail in Section 7)

Consider a node v and a fragment Fj(v) of level j containing it. Recall that the information I(Fj(v)) should
reside in some node of a part P to which v belongs. To allow v to compare I(Fj(v)) to I(Fj(u)) for a neighbour
u, both these pieces must somehow be “brought” to v. The process handling this task contains several compo-
nents. The first component is called the train which is responsible for moving the pieces of information through
P ’s nodes, such that each node does not hold more than O(log n) bits at a time, and such that in short time, each
node in P “sees” all pieces, and in some prescribed order. Essentially, a train is composed of two ingredients.
The first ingredient called convergecast pipelines the pieces of information in a DFS order towards the root of
the part (recall, the pieces of information of the corresponding fragments are initially located according to a DFS
order). The second ingredient broadcasts the pieces from the root of the part to all nodes in the part. Since the
number of pieces is O(log n) and the diameter of the part is O(log n), the synchronous environment guarantees
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that each piece of information is delivered to all nodes of a part in O(log n) time. On the other hand, in the asyn-
chronous environment some delays may occur, and the delivery time becomes O(log2 n). These time bounds are
also required to self-stabilize the trains, by known art, see, e.g. [23, 20].

Unfortunately, delivering the necessary pieces of information at each node is not enough, since I(Fj(v)) may
arrive at v at a different time than I(Fj(u)) arrives at u. Recall that u and its neighbour v need to have these
pieces simultaneously in order to compare them (to know whether the edge e = (u, v) is outgoing from Fj(v)).

Further complications arise from the fact that the neighbours of a node v may belong to different parts, so
different trains pass there. Note that v may have many neighbours, and we would not want to synchronize so
many trains. Moreover, had we delayed the train at v for synchronization, the delays would have accumulated,
or even would have caused deadlocks. Hence, we do not delay these trains. Instead, v repeatedly samples a
piece from its train, and synchronizes the comparison of this piece with pieces sampled by its neighbours, while
both trains advance without waiting. Perhaps not surprisingly, this synchronization turns out to be easier in
synchronous networks, than in asynchronous ones. Our synchronization mechanism guarantees that each node
can compare all pieces I(Fj(v)) with I(Fj(u)) for all neighbours u and levels j in a short time. Specifically,
O(log2 n) time in synchronous environments and O(∆ log3 n) time in asynchronous ones.

3.4.3 Local verifications (described in detail in Section 8)

So far, with respect to verifying the Minimality property, we have not discussed issues of faults that may com-
plicate the verification. Recall, the verification process must detect if the tree is not an MST. Informally, this
must hold despite the fact that the train processes, the partitions, and also, the pieces of information carried by
the trains may be corrupted by an adversary. For example, the adversary may change or erase some (or even all)
of such pieces corresponding to existing fragments. Moreover, even correct pieces that correspond to existing
fragments may not arrive at a node in the case that the adversary corrupted the partitions or the train mechanism.

In Section 8, we explain how the verifier does overcome such undesirable phenomena, if they occur. In-
tuitively, what is detected is not necessarily the fact that a train is corrupted (for example). Instead, what is
detected is the state that some part is incorrect (either the tree is not an MST, or the train is corrupted, or ... etc.).
Specifically, we show that if an MST is not represented in the network, this is detected in time O(log2 n) for
synchronous environments and time O(∆ log3 n) for asynchronous ones. Note that for a verifier, the ability to
detect while assuming any initial configuration means that the verifier is self-stabilizing, since the sole purpose
of the verifier is to detect.

Verifying that some two partitions exist is easy. However, verifying that the given partitions are as described
in Section 6.1, rather than being two arbitrary partitions generated by an adversary seems difficult. Fortunately,
this verification turns out to be unnecessary.

First, as mentioned, it is a known art to self-stabilize the train process. After trains stabilize, we verify that
the set of pieces stored in a part (and delivered by the train) includes all the (possibly corrupted) pieces of the
form I(Fj(v)), for every v in the part and for every j such that v belongs to a level j fragment. Essentially, this
is done by verifying at the root r(P ) of a part P , that (1) the information regarding fragments arrives at it in
a cyclic order (the order in which pieces of information are supposed to be stored in correct instances), (2) the
levels of pieces arriving at r(P ) comply with the levels of fragments to which r(P ) belongs to, as indicated by
r(P )’s data-structure. Next, we verify that the time in which each node obtains all the pieces it needs is short.
This is guaranteed by the correct train operation, as long as the diameter of parts is O(log n), and the number of
pieces stored permanently at the nodes of the part is O(log n). Verifying these two properties is accomplished
using a 1-proof labelling scheme of size O(log n), similarly to the schemes described in Examples 2 and 3 (SP
and EDIAM, mentioned in Section 2.6).
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Finally, if up to this point, no node raised an alarm, then for each node v, the (possibly corrupted) pieces of
information corresponding to v’s fragments reach v in the prescribed time bounds. Now, by the train synchro-
nization process, each node can compare its pieces of information with the ones of its neighbours. Hence, using
similar arguments as was used in the O(log2 n)-memory bits verification scheme of [55], nodes can now detect
the case that either one of the pieces of information is corrupted or that T is not an MST.

4 A synchronous MST construction inO(log n) bits memory size andO(n) time

In this section, we describe an MST construction algorithm, called SYNC MST, that is both linear in its running
time and memory optimal, that is, it runs inO(n) time and hasO(log n) memory size. We note that this algorithm
is not self-stabilizing and its correct operation assumes a synchronous environment. The algorithm will be useful
later for two purposes. The first is for distributively assigning the labels of the MST proof labelling scheme,
as described in the next section. The second purpose, is to be used as a module in the self-stabilizing MST
construction algorithm.

As mentioned, the algorithm of Gallager, Humblet, and Spira (GHS) [40] constructs an MST in O(n log n)
time. This has been improved by Awerbuch to linear time, using a somewhat involved algorithm. Both algorithms
are also efficient in terms of the number of messages they send. The MST construction algorithm described in this
section is, basically, a simplification of the GHS algorithm. There are two reasons for why we can simplify that
algorithm, and even get a better time complexity. The first reason is that our algorithm is synchronous, whereas
GHS (as well as the algorithm by Awerbuch) is designed for asynchronous environments. Our second aid is
the fact that we do not care about saving messages (anyhow, we use a shared memory model), while the above
mentioned algorithms strive to have an optimal message complexity. Before describing our MST construction
algorithm, we recall the main features of the GHS algorithm.

4.1 Recalling the MST algorithm of Gallager, Humblet, and Spira (GHS)

For full details of GHS, please refer to [40]. GHS uses connected subgraphs of the final MST, called fragments.
Each node in a fragment, except for the fragment’s root, has a pointer to its parent in the fragment. When
the algorithm starts, every node is the root of the singleton fragment including only itself. Each fragment is
associated with its level (zero for a singleton fragment) and the identity of its root (this is a slight difference
from the description in [40], where a fragment is said to be rooted at an edge). Each fragment F searches for
its minimum outgoing edge emin(F ) = (v, u). Using the selected edges, fragments are merged to produce larger
fragments of larger levels. That is, two or more fragments of some level j, possibly together with some fragments
of levels lower than j, are merged to create a fragment of level j+1. Eventually, there remains only one fragment
spanning the graph which is an MST.

In more details, each fragment sends an offer (over emin(F )) to merge with the other fragment F ′, to which
the other endpoint u belongs. If F ′ is of a higher level, then F is connected to F ′. That is, the edges in F are
reoriented so that F is now rooted in the endpoint v of emin(F ), which becomes a child of the other endpoint u.

If the level of F ′ is lower, then F waits until the level of F ′ grows (see below, the description of “test”
messages). The interesting case is when F and F ′ are of the same level j. If emin(F ) = emin(F ′), then F and
F ′ merge to become one fragment, rooted at, say, the highest ID node between u and v. The level of the merged
fragment is set to j + 1.

The remaining case, that (w.l.o.g.) w(emin(F )) > w(emin(F ′)) does not need a special treatment. When F
sends F ′ an offer to merge, F ′ may have sent such an offer to some F ′′ over w(emin(F ′)). Similarly, F ′′ may
have sent an offer to some F ′′′ (over w(emin(F ′′))), etc. No cycle can be created in this chain of offers (because
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of the chain of decreasing weights w(emin(F )) > w(emin(F ′)) > w(emin(F ′′))...). Hence, unless the chain
ends with some fragment of a higher level (recall that treating the case that a fragment’s minimum edge leads to
a higher level fragment was already discussed), some two fragments in the above chain merge, increasing their
level by one. This case (for the fragments of the chain, excluding the two merging fragments) now reduces to the
case (discussed previously) that a fragment F makes an offer to a fragment of a higher level.

The above describes the behavior of fragments. To implement it by nodes, recall that every fragment always
has a root. The root conducts Wave&Echo over the fragment to ask nodes to find their own candidate edges for
the minimum outgoing edge. On receiving the wave (called “find”), each node v selects its minimum edge (v, u)
that does not belong yet to the fragment, and has not been “tested” yet (initially, no edge was “tested”). Node v
sends a “test” message to u, to find out whether u belongs to v’s fragment. The “test” includes the ID of v’s
fragment’s root r and its level j. If the level of u’s fragment is at least j then u answers. In particular, if u’s level
is j and u’s fragment root is r then u sends a “reject” to v, causing v to conclude that (v, u) is not outgoing and
cannot be a candidate. (Node u does not answer, until its level reaches j, thus, possibly, causing v’s fragment to
wait.) In the converging wave (called “found”) of the above “find” broadcast, each node v passes to its parent
only the candidate edge with the minimum weight (among its own candidate and the candidates it received from
its children). Node v also remembers a pointer to whoever sent it the above candidate. These pointers form a
route from F ′s root to the endpoint of emin(F ). The root then sends a message “change-root”, instructing all the
nodes on this route (including itself) to reverse their parent pointers. Hence, F becomes rooted at the endpoint
of emin(F ), who now can send an offer to “connect” over emin(F ).

4.2 Algorithm SYNC MST: a synchronous linear time version with optimal memory size

The algorithm we now describe is synchronous and assumes that all the nodes wake up simultaneously at round 0.
However, to keep it easy for readers who are familiar with GHS, we tried to keep it as similar to GHS as possible.

Initially, each node is a root of a fragment of level 0 that contains only itself. During the execution of
SYNC MST, a node who is not a root, keeps a pointer to its parent. The collection of these pointers (together with
all the nodes) defines a forest at all times. Each node also keeps an estimate of the ID and the level of the root of
its fragment. As we shall see later, the ID estimate is not always accurate. The level estimate is a lower bound
on the actual level. We use the levels for convenience of comparing the algorithm to that of GHS (and for the
convenience of the proof). The levels actually can be computed from the round number, or from the counting
procedure defined below. More specifically, the algorithm is performed in synchronous phases. Phase i starts at
round 11 · 2i. Each root r(F ) of a fragment F (that is, a node whose parent pointer is null) starts the phase by
setting its level to i and then counting the number of nodes in its fragment.

The counting process, called Count Size, is defined later, but for now it suffices to say that it consumes
precisely 2i+2 − 1 rounds. If the diameter of the fragment is small, then some waiting time is added to keep
the precise timing. On the other hand, if the number of nodes in the fragment is too large, Count Size may
terminate before all the nodes in the fragment are counted. Specifically, we guarantee that if the counting process
succeeds to count all nodes in the fragment F then the precise number of these nodes is known to the root r(F )
at the end of the counting procedure. On the other hand, if the counting process does not count all nodes, then
the number of nodes in the fragment is at least 2i+1, and at the end of the Count Size process, the root r(F )
learns this fact. Moreover, in such a case, as a consequence, r(F ) changes its level to i+ 1.

Definition 4.1 A root r(F ) is active in phase i if and only if |F | ≤ 2i+1 − 1, where |F | denotes the number of
nodes in F . Note that if r(F ) is active then its level is i. In particular, all the roots are active in phase (and
level) 0. A fragment is active when its root is active.
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Comment 4.1 When constructing the marker algorithm in later sections, we use the fragments constructed by
algorithm SYNC MST. More specifically, we refer only to the active fragments. As is easy to observe below in
the current section, an active fragment is a specific set of nodes that does not change. This is because when the
fragment merges with others (or when others join it), it is no longer the same fragment. In particular, when the
new set of nodes will be active, it will be in a higher phase.

Procedure Find Min Out Edge: Consider the root r(F ) of fragment F , who is active in phase i. At round
(11 + 4) · 2i, each such root r(F ) instructs the nodes in F to search for the minimum outgoing edge of F . This
procedure, called Find Min Out Edge, could have been combined with the counting, but we describe it as a
separate stage for the sake of simplicity. The method is the same as that of GHS algorithm, except that we achieve
an exact timing obtained by not saving in messages. The search is performed over exactly the same set of nodes
which has just been counted. This is implemented by a Wave operation initiated by r(F ), carrying r(F )’s ID and
level. At precisely round (11 + 6) · 2i, each node v who has received the wave, finds the minimum outgoing edge
emanating from it. That is, v looks at each of its neighbours u to see whether u belongs to a different fragment
of some other root r(F ′) 6= r(F ). We now describe how v identifies this.

Let us note here two differences from GHS. First, node v tests all of its emanating edges at the same time,
rather than testing them one by one (as is done in GHS). Moreover, it does not reject any edge, and will test all its
edges in the next searches too. Intuitively, the above mentioned one by one process was used in GHS in order to
save messages. We do not try to save messages, and the simultaneous testing allows us to keep an exact timing on
which we rely heavily. Second, in GHS, node u’s estimate of its level may be lower than that of node v. In GHS,
v then needs to wait for u to reach v’s level, before v knows whether edge (v, u) is outgoing. The main reason
this action is useful in GHS is to save on message complexity. Here, again, we do not intend to save messages.

Recall that the root of v’s fragment F is active at phase i, hence, |F | < 2i+1. (We shall show that no
additional nodes joined F after the counting.) Hence, at round (11 + 6) · 2i, all the nodes in F have already
received the wave, and set their ID estimates to ID(r(F )). The big gain from that, is that at round (11 + 6) · 2i,
the IDs of the roots of u and v are different if and only if the edge (v, u) is outgoing at v. The minimum
outgoing edge in the fragment of r(F ) is then computed during the convergecast, using the standard Wave&Echo
technique. Thus, Procedure Find Min Out Edge (composed of the aforementioned Wave&Echo) lasts at most
2(2i+1−1) round units, hence (having been started at round (11+4)·2i), it is completed by round (11+8)·2i−1.

Merging and reorienting edges: Let (w, x) be the chosen minimum outgoing edge from the fragment F , such
that w ∈ F . Later, we refer to it as the candidate edge. At round (11 + 8) · 2i, an active root r(F ) of F starts the
process of re-orienting the edges in F towards w. (For a more thorough description of the root transfer refer to
[40].) This takes at most 2(2i − 1) rounds.

Node w then conducts a handshake with x, referred to as the pivot of F . This takes a constant time, but, to
keep the total numbers simple, we pad this time to 2i. One case is that w is, at that time exactly, a pivot of the
fragment of x, and also ID(x) < ID(w). In this case, node x will become the child of w. In every other case, w
hooks upon the other endpoint x (sets its parent pointer to point at x). The hooking is performed exactly at round
(11 + 11) · 2i− 1, ending phase i. Since the next phase starts at round 22 · 2i there is no overlap between phases.

Procedure Count Size: To complete the description of a phase, it is left to describe the counting process,
namely, Procedure Count Size. To count, a root starts a Wave&Echo, attaching a time-to-live = 2i+1 − 1
counter to its broadcast message. A child c of a node y accepts the wave only if the time-to-live is above zero.
Child c then copies the wave broadcast message, decrementing the time-to-live (by 1). If, after decrementing, the
value of time-to-live is zero, then c is a leaf who needs to start the echo. The number of the nodes (who copied
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the broadcast message) is now counted during the echo in the standard way. Finally, if the count covers the whole
graph, this can be easily detected at the time of the echo. The algorithm then terminates.

To sum up, phase i of the MST construction algorithm is composed of the following components.

Phase i

• Starts at round 11 · 2i ;
• Root r(F ) of each fragment F initiates Procedure Count Size.

At the end of the procedure, we have:
|F | ≤ 2i+1 − 1 iff (1) r(F ) is active and (2) all nodes in F have their ID estimates set to ID(r(F )) ;
• At round (11 + 4) · 2i, each active root r(F ) initiates Procedure Find Min Out Edge ;
• At round (11 + 8) · 2i, merge fragments and re-orient edges in the newly created fragments.

The proof that the collection of parent pointers forms a forest (or a tree) at all times is the same as in GHS.
Let us now analyze the round complexity. Observe that each phase i takes O(2i) time. Hence, the linear time
complexity of the algorithm follows from the lemma below.

Lemma 4.1 The size of a fragment F in phase i (and in level i) is at least 2i. Moreover, |F | < 2i+1 if and only
if r(F ) is active by round (11 + 4) · 2i.

Proof: Let us first prove the second part of the lemma. Before deciding whether to be active, a root r(F ) of
level i counts the number of nodes in its fragment, by employing Procedure Count Size. If the count amounts
to 2i+1 or more, then the level of r(F ) is set to i + 1. Otherwise, we have |F | ≤ 2i+1 − 1 and the root of F
becomes active. Since Procedure Count Size is terminated by round (11+4) ·2i, the second part of the lemma
follows. To prove the first part of the lemma, we need to show that the size of a level i fragment is at least 2i. We
prove this by induction on i.

Intuitively, the induction says that each fragment at the beginning of phase i − 1, is of size at least 2i−1.
During phase i − 1, by the second part of the lemma, at time (11 + 4) · 2i−1, all the non-active fragments are
already of size at least 2i and are also of level i (as a result of the count). As for active fragments, each such
fragment is combined to at least one other fragment, so the resulting size is at least 2 · 2i−1 = 2i.

In more details, note that the claim holds for phase i = 0. For a larger phase i, assume that the lemma holds
for phases up to i− 1 including. Consider a root r(F ) of a fragment F of level i. It was a root also at level i− 1.
First, assume that at phase i−1, some other root r(F1) hooked upon r(F )’s tree. To do so, r(F1) had to be active
at phase i − 1. By the induction hypothesis (the first part of the lemma), the size of fragment F1, as well as the
size of fragment of F at that point in time, was at least 2i−1. The claim, in this case, follows.

Now, assume that no other fragment hooked upon fragment F in phase i− 1. Note that F at level i− 1 does
not span the graph (otherwise, no root would reach level i, by the 2nd part of the inductive hypothesis, and since
the counting process on trees is a known art and is known to be correct). Hence, it has a minimum outgoing
edge e = (w, x), where w ∈ F and x belongs to some other fragment Fx. We claim that the search process
Find Min Out Edge does find that edge e. Recall that in the fragment of an active root, the counting reaches
all the nodes in the fragment. Hence, each of them knows the ID of their root r(F ) at the time the search in
their fragment starts. Moreover, since a hooking is performed only at times of the form (11 + 11) · 2j − 1, no
new nodes (or fragments) join until the last time step of the phase (which is after the search, because of what we
established about the size of the fragment).
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We claim that either (a) Edge e = (w, x) was not the minimum outgoing edge of x’s fragment Fx, or,
alternatively, (b) the root rx of x’s fragment Fx had level i at that time, or (c) ID(x) > ID(w). Assume the
contrary. By the inductive hypothesis, node rx is at least at level i − 1. Since we assumed that (b) does not
hold, rx is exactly at level i − 1. This means (by the correctness of the counting) that rx is active at phase
i − 1. Similarly, this also means that the size of Fx is less than 2i. Hence, and by the induction hypothesis, the
counting, the searching, the root transfer, and the handshake end in x’s fragment at the same time they end in w’s
fragment. (These processes use known art, and we shall not prove them here.) Then x hooks upon w, contrary to
our assumption.

We have just established that the conditions for w to hook upon x hold. Hence, w hooks upon x. Similarly
to the previous case, the size of w’s fragment, as well as the size of x’s fragments at that point in time is at least
2i−1. Thus, the size of the combined fragment is at least 2i. This concludes the proof of the first part of the
lemma. �

Corollary 4.2 The synchronous MST construction algorithm computes an MST in time O(n).

Implementing the algorithm in the shared memory model with O(log n) memory: Each node v keeps its
fragment level and root ID. Node v also remembers whether v is in the stage of counting the number of nodes,
or searching for the minimum outgoing edge. It also needs to remember whether it is in the wave stage, or has
already sent the echo. Node v needs to remember the candidate (for being emin(F )) edge that v computed in
the echo (“found”) stage of the convergecast. If this candidate was reported by a child, then v also remembers a
pointer to that child. Clearly, all the above variables combined need O(log n) bits of memory.

At a first glimpse it may look as if a node must also remember the list of pointers to its children. The list is
used for (1) sending the wave (e.g., the “find” message of the search, using GHS terms) to all the children, and
(2) knowing when all the children answered the echo (e.g., the “found” of the search). Note that a node does
not need to store this list itself. Node v can look at each neighbour u to see whether the neighbour is v’s child.
(For that purpose, if u is a child of v, then u stores v’s ID as u’s Parent ID.) Clearly, this can be implemented
using O(log n) bits per node.

To implement (1), node v posts its wave broadcast message (e.g., the “find”) so that every neighbour can read
it. However, only its children actually do. To allow the implementation of (2), a precaution is taken before the
above posting. Node v first posts a request for its children to reset their ECHO variables, and performs the posting
of “find” only when it sees that ECHO has been reset for every neighbour w whose parent pointer points at v.

To implement (2), node v further reads its neighbours repeatedly. It knows all its children echoed the wave in
an iteration when it has just finished rereading all its neighbours, and every node u pointing at v (as its parent),
also sets its ECHO variable to some candidate edge (or to some default value if it has no candidate edge).

Observation 4.3 The space required by the linear time synchronous algorithm is O(log n) bits per node.

The theorem below follows from Observation 4.3 and Corollary 4.2.

Theorem 4.4 The synchronous algorithm SYNC MST computes an MST in timeO(n) and memory sizeO(log n).
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5 Representing and verifying a hierarchy

We are now ready to describe our proof labeling scheme (M,D) for MST. The goal of this section is to construct
some part of the markerM, and the corresponding part of the verifier D, which are relatively easy to construct.
The techniques used in this section bear similarity to the techniques presented in [55]. Hence, we only expose
the main ideas behind this part of the proof labeling scheme, leaving out some of the technicalities. Nevertheless,
since the notion of proof labeling schemes can sometimes be confusing, this section may help the reader to get
accustomed to the notion and the difficulties that may arise.

As a warm up, we first note that using the 1-proof labeling scheme described in Example SP, we may assume
that H(G) ≡ T is a spanning tree of G rooted at some node r, and that each node knows which of its neighbours
in G are its children in T and which is its parent. Moreover, using the 1-proof labeling scheme described in
Example NumK, we may also assume that each node knows n. The 1-proof labeling schemes described in
Examples SP and NumK use O(log n) memory size and can be constructed using O(n) time. Hence, using them
does not violate the desired complexity constrains of our scheme. Thus, from now on, let us fix a spanning tree
T = (V (G), E(T )) of a graph G = (V (G), E(G)), rooted at some node r(T ). The goal of the rest of the
verification scheme is to verify that T is in fact, minimal. Before we continue, we need a few definitions.

Definition 5.1 A hierarchyH for T is a collection of fragments of T satisfying the following two properties.

1. T ∈ H and, for every v ∈ V (G), there is an Fv ∈ H such such V (Fv) = {v} and E(Fv) = ∅.

2. For any two fragments F and F ′ inH, if F ∩F ′ 6= ∅ then either F ⊆ F ′ or F ′ ⊆ F . (That is, the collection
of fragments is a laminar family.)

Please recall (Definition 4.1 and Comment 4.1) that when we construct a hierarchy according to Definition 5.1,
the fragments referred to are the active fragments constructed in SYNC MST.

The root of a fragment F is the node in F closest to the root of T . For a fragment F ∈ H, let H(F ) denote
the collection of fragments in H which are strictly contained in F . Observe that a hierarchy H can be viewed as
a rooted tree, whose root is the fragment T , and whose leaves are the singleton fragments inH. A child of a non-
singleton fragment F ∈ H is a fragment F ′ ∈ H(F ) such that no other fragment F ′′ ∈ H(F ) satisfies F ′′ ⊃ F ′.
Note that the rooted tree induced by a hierarchy is unique (if the children are unordered). To avoid confusion
with tree T , we use the name hierarchy-tree (or, sometimes even just hierarchy) for the above mentioned tree
induced by a hierarchy. We associate a level, denoted lev(F ), with each fragment F ∈ H. It is defined as the
height of the node corresponding to F in the hierarchy-tree induced byH, i.e., the maximal number of fragments
on a simple path in H connecting F to a singleton fragment. In particular, the level of a singleton fragment is 0.
The level of the fragment T is called the height of the hierarchy, and is denoted by `. Figure 1 depicts a hierarchy
H of a tree T .

Definition 5.2 Given a hierarchyH for a spanning tree T , a function χ : H\{T} −→ E(T ) is called a candidate
function of H if it satisfies E(F ) = {χ(F ′)|F ′ ∈ H(F )} for every F ∈ H. (Less formally, F is precisely the
union of the candidate edges χ(F ′) of all fragments F ′ ofH strictly contained in F ).

The proof of the following lemma is similar, e.g., to the proof of [40].

Lemma 5.1 Let T be a spanning tree of a graph G. If there exists a candidate function χ for a hierarchy H
for T , such that for every F ∈ H, the candidate edge χ(F ) is a minimum outgoing edge from F , then T is an
MST of G.
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Figure 1: A hierarchy H of a tree T . The root node of H represents T (where non-tree edges are omitted). Each
fragment that is not a leaf fragment is a parent, in the hierarchy, of the fragments that were merged to form it.
The broken arrow from each fragment is the outgoing edge of the fragment that is used to form a higher level
(parent) fragment.
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Proof: We prove the claim that each fragment F ∈ H is a subtree of an MST of G, by induction on the level
lev(F ) of fragment F . Note that the claim obviously holds for any fragment F with lev(F ) = 0 since F is a
singleton fragment.

Now consider a fragment F with lev(F ) = k under the inductive assumption that the claim holds for every
fragment F ′ with lev(F ′) < k. Let F1, F2, . . . , Fa be the child fragments of F in H. Since for each i ∈ [1, a],
fragment Fi satisfies lev(Fi) < k, the induction hypothesis implies that Fi is a subtree of the MST. It also follows
from the facts that E(F ) = {χ(F ′)|F ′ ∈ H(F )} and E(Fi) = {χ(F ′)|F ′ ∈ H(Fi)} for each i ∈ [1, a] that
the fragment F is obtained by connecting F1, F2, . . . , Fa with their minimum outgoing edges. In the case that
a fragment F ′ is a fragment of an MST (as is the case here for F1, F2, . . . , Fa, by the induction hypothesis), it
is known that the union of E(F ′) with the minimum outgoing edge of F ′ is a fragment of the MST (the “safe
edge” theorem). (See e.g., [35].) Thus, fragment F , which is obtained by connecting fragments F1, F2, . . . , Fa
with their minimum outgoing edges, is a subgraph of an MST. �

Informally, suppose that we are given distributed structures that are claimed to be a tree T , a “legal” hierar-
chy H for the tree, and a “legal” candidate function for the hierarchy. The goal obtained in the current section is
to verify the following properties of these structures. First, verify that this indeed is a hierarchy for T of height
` ≤ dlog ne and a candidate function χ for H. Moreover, verify that each node v “knows” to which levels of
fragments v belongs and which of its neighbours in T share the same given fragment. (Note that this section
does not guarantee that knowledge for neighbours in G who are not neighbours in T .) In addition, each node
is verified to “know” whether it is adjacent to a candidate edge of any of the fragments it belongs to. Put more
formally, this section establishes the following lemma.

Lemma 5.2 There exists a 1-proof labeling scheme with memory size O(log n) and construction time O(n) that
verifies the following:

• H(G) ≡ T is a spanning tree of G rooted at some node r, and each node knowns n.
• The cartesian product of the data-structures indeed implies a hierarchy H for T of height ` ≤ dlog ne
and a candidate function χ forH. Furthermore, the data-structure at each node v allows it to know,

• Whether v belongs to a fragment Fj(v) of level j inH for each 0 ≤ j ≤ `, and if so:
• Whether v is the root of Fj(v).
• Whether v is an endpoint of the (unique) candidate edge of Fj(v), and if so, which of the edges

adjacent to v is the candidate edge.
• Given the data-structure of a node u which is a neighbour of v in G, i.e., (v, u) ∈ E(G), node v can

find out whether they are neighbours in T as well, i.e., whether (u, v) ∈ E(T ), and if so, for each
1 ≤ j ≤ `, whether u belongs to Fj(v).

5.1 HierarchyHM and candidate function χM

On a correct instance, i.e., when T is indeed an MST, the markerM first constructs a particular hierarchy HM
over T and a candidate function χM for that hierarchy. HierarchyHM and candidate function χM are designed
so that indeed each candidate of a fragment is a minimum outgoing edge from that fragment. The marker then
encodes hierarchy HM and candidate function χM in one designated part of the labels using O(log n) bits per
node. Note, however, that these bits of information may be corrupted by the adversary. We will therefore need
to employ another procedure that verifies that indeed a hierarchy H and a candidate function χ are represented
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by the cartesian product of the encodings of all nodes. By Lemma 5.1, it is not necessary that the verifier checks
that H is, in fact, the particular hierarchy HM constructed by the marker, or that the candidate function χ is
χM. However, as is clear from the same lemma, we do need to show that H and candidate function χ satisfy
that indeed each candidate of a fragment is a minimum outgoing edge from that fragment. This task is the main
technical difficulty of the paper, and is left for the following sections.

The hierarchy HM and Candidate function χM built by the marker algorithm are based on SYNC MST, the
new MST construction algorithm described in Section 4. Since we assume that the MST is unique, Algorithm
SYNC MST will in fact construct the given MST. (Recall that we describe here the labels assigned by the marker
to a correct instance, where the given subgraph T is indeed an MST.) The hierarchy and candidate function
we define for T follow the merging of active fragments in algorithm SYNC MST. More precisely, the nodes in
HM are the active fragments defined during the execution of SYNC MST. Recall from Section 4, that an active
fragment F joins some fragment H of T , through its minimal outgoing edge e. (It is possible that at the time
F joins H , H itself was an active fragment that joined F through its own minimal outgoing edge that is also
e.) Note that with time, some other fragments join the resulted connected component, until, at some point, the
resulted connected component becomes an active fragment F ′. In the hierarchy tree HM, fragment F is defined
as the child of F ′, and the candidate edge of F is e, i.e., χ(F ) = e.

As proved in Lemma 4.1, after performing the algorithm for level i, the size of every fragment is at least 2i.
Thus, in particular, the height of the hierarchy H is at most dlog ne. The candidate function χM chosen by the
marker for HM is defined by the minimum outgoing edges selected by the algorithm, i.e., for each F ∈ HM,
the candidate edge χ(F ) is the selected edge of F . Thus, under χM, each candidate of a fragment is, actually, a
minimum outgoing edge.

5.2 Representing a hierarchy distributively and verifying it locally

Representing a hierarchy: Let ` ≤ dlog ne. Given a hierarchy of fragmentsH of height ` over the rooted tree
T = H(G), we now describe how we represent it in a distributed manner. Each node v keeps a string named
Roots(v) of length ` + 1, where each entry in that string is either “1”, “0”, or “*”. To be consistent with the
levels, we enumerate the entries of each string from left to right, starting at position 0, and ending at position `.
Fix j ∈ [0, `]. Informally, the i’th entry of Roots(v), namely, Rootsi(v), is interpreted as follows.

• Rootsi(v) = 1 indicates that v is the root of the level i fragment it belongs to.
• Rootsi(v) = 0 indicates that v is not the root of the level i fragment it belongs to.
• Rootsi(v) = ∗ indicates that there is no level i fragment that v belongs to.

See Table 2 for an example of Roots strings of nodes corresponding to Figure 1.

Verifying a hierarchy: Observe, the Roots strings assigned for a correct instance satisfy the following.

The Roots strings (RS) conditions:

• (RS0) The prefix of the Roots string at every node is in [1,*]∗ and its suffix is in [0,*]∗,
(*because each node is a root of a level 0 fragment and continues being a root in its fragment until some
level when it stops (if it does stop); when the node stops being a root, it never becomes a root again*)
• (RS1) the length of each Roots string is `+ 1,

(*because there cannot be more than `+ 1 levels *)
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Roots 0 1 2 3 4 EndP 0 1 2 3 4
a 1 0 0 0 0 a up none none none none
b 1 1 0 0 0 b down up none none none
c 1 0 0 0 0 c up none none none none
d 1 * 0 0 0 d up * none none none
e 1 * 0 0 0 e up * none none none
f 1 0 0 0 0 f up down none none none
g 1 1 1 1 0 g down none down up none
h 1 * 1 0 0 h down * up none none
i 1 * 0 0 0 i up * none none none
j 1 0 0 0 0 j up none none none none
k 1 1 1 0 0 k down down up none none
l 1 1 1 1 1 l down down down down none
m 1 1 0 0 0 m down up none none none
n 1 0 0 0 0 n up none none none none
o 1 0 0 0 0 o up none none none none
p 1 1 0 0 0 p down up none none none
q 1 0 0 0 0 q up none none none none
r 1 0 0 0 0 r up none none none none

Parents 0 1 2 3 4 Or-EndP 0 1 2 3 4
a 1 0 0 0 0 a 1 0 0 0 0
b 0 1 0 0 0 b 1 1 0 0 0
c 0 0 0 0 0 c 1 0 0 0 0
d 1 0 0 0 0 d 1 0 0 0 0
e 0 0 0 0 0 e 1 0 0 0 0
f 1 0 0 0 0 f 1 1 0 0 0
g 0 0 0 1 0 g 1 1 1 1 0
h 0 0 1 0 0 h 1 0 1 0 0
i 0 0 0 0 0 i 1 0 0 0 0
j 1 0 0 0 0 j 1 0 0 0 0
k 0 0 1 0 0 k 1 1 1 0 0
l 0 0 0 0 0 l 1 1 1 1 0

m 0 1 0 0 0 m 1 1 0 0 0
n 0 0 0 0 0 n 1 0 0 0 0
o 1 0 0 0 0 o 1 0 0 0 0
p 0 1 0 0 0 p 1 1 0 0 0
q 1 0 0 0 0 q 1 0 0 0 0
r 1 0 0 0 0 r 1 0 0 0 0

Table 2: Roots, EndP, Parents and Or-EndP for Figure 1.
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• (RS2) the Roots string of the root r of T contains only “1”s and “*”s, and its `’th entry is “1”,
(*because a zero in the ith position would have meant that r is not the root of its fragment of level i; the
second part follows from the fact that the whole tree is a fragment of level ` and r is its root *)
• (RS3) the first entry (at position 0) of every Roots string is “1”,

(*because every node v is the root of a singleton fragment of level 0 containing only node v *),
• (RS4) the `’th entry of every non-root node is “0”,

(*because only r is the root of a fragment of level `, since that fragment is the whole tree *)
• (RS5) if the j’th entry of Roots(v) is “0” for some node v and j ∈ [0, `], then the j’th entry of the Roots

strings of v’s parent in T is not “*”.
(*because node v belongs to a fragment F of level j, but is not F ’s root; hence, v’s parent belongs to F of
level j too *)

It is easy to see that for any assignment of Roots strings I obeying rules RS1–RS5 there exists a unique
hierarchy whose distributed representation is I. Hence, we say that an assignment of Roots strings to the nodes
of T is legal if the strings obey the five Roots strings conditions above, namely RS1–RS5. For a given legal
assignment of Roots strings I, we refer to its induced hierarchy as the Roots-hierarchy of I. Recall that at
this point, we may assume that each node v knows the value of n, and that each node knows whether it is the root
of T . Hence, verifying that a given assignment of Roots strings is a legal one can be done locally, by letting
each node look at its own string and the string of its parent only.

Identifying tree-neighbours in the same fragment: Obviously, for correct instances, the marker produces a
legal assignment of Roots strings. For a general instance, if the verifier at some node finds that the assignment
of Roots is not legal then it raises an alarm. Thus, (if no node raises an alarm), we may assume that hierarchy
Roots-hierarchy exists, and that each node knows (by looking at its own label and the labels of its neighbours
in the tree T ), for every level 0 ≤ j ≤ `,

1. whether it belongs to a fragment Fj of level j, and if so:

2. which of its neighbours in T belongs to Fj .

5.3 Representing and verifying a candidate function for the Roots-hierarchy

Having discussed the proof labeling for the hierarchy, we now describe the proof labeling scheme for the can-
didate function. Consider now a correct instance G and the hierarchy HM produced by the marker algorithm.
Recall, the candidate function χM is given by the selected outgoing edges, which are precisely the minimum out-
going edges of the corresponding fragments, as identified by the construction algorithm SYNC MST. We would
like to represent this candidate function χM distributively, and to verify that this representation indeed forms
a candidate function. Moreover, we would make sure that each node v be able to know, for each fragment F
containing it, whether it is an endpoint of the selected edge of F , and if so, which of its edges is the selected
edge.

Representing a candidate function: Given a correct instance, and its corresponding legal assignment of
Roots strings, we augment it by adding, for each node v, an additional string of `+ 1 entries named EndP(v).
Intuitively, EndP(v) is used by the marker algorithm to mark the levels of the fragments for which v is the end-
point of the minimum outgoing edge. Moreover, in a sense, EndP(v) also is a part of the marking of the specific
edge of v that is the minimum outgoing edge in that level (in the case that v is indeed the endpoint). Let us now
give the specific definition of that marking.
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Each entry in EndP(v) is one of four symbols, namely, “up”, “down”, “none” and “*”. The entries of
EndP(v) are defined as follows. Fix an integer j ∈ [0, `] and a node v. If v does not belong to a fragment of level
j in HM, then the j’th entry in EndP(v) is “*”. Consider now j ∈ [0, `] such that v does belong to a fragment
F ∈ HM of level j. If v is not an endpoint of the candidate χM(F ) of F , then the j’th entry of EndP(v)
is “none”. Otherwise, node v is an endpoint of χM(F ), i.e., χM(F ) = (v, u) (for some u that is not in F ).
Consider two cases. If u is v’s parent in T then the j’th entry of EndP(v) is set to “up”. If, on the other hand, u
is a child of v in T , then the j’th entry of EndP(v) is set to “down”. See Table 1 for an example of EndP strings
of nodes corresponding to Figure 1.

Consider now a node v that belongs to a level j fragment F ∈ HM. By inspecting its own label, node v can
find out whether it is an endpoint of a candidate of F (recall, from the previous subsection, that it also knows
whether or not it belongs to a level j fragment). Moreover, in this case, we would like v to actually be able
to identify in one time unit, which of its incident (tree) edges is the candidate. Obviously, if the j’th entry in
EndP(v) is “up”, then the candidate e is the edge leading from v to its parent in T . Intuitively, in the case that
the entry is “down”, we would like to store this information in v’s children to save space in v (since v may be the
endpoint of minimum outgoing edges for several fragments, of several levels, and may not have enough space
to represent all of them). Hence, we attach to each node x another string called Parents(x), composed also
of ` + 1 bits. For j ∈ [0, `], the j’th bit in Parents(x) is “1” if and only if (y, x) is the candidate of the level
j fragment that contains y (if one exists), where y is the parent of x. See Table 1 for an example of Parents
strings of nodes corresponding to Figure 1. Now, to identify u, node v needs only to inspect the Parents
strings of its children. In either of the above cases for the EndP(v) entry (“up” or “down”), we call e the induced
candidate of F .

Verifying a candidate function: Given a legal assignment of Roots strings, we say that assignments of EndP
and Parents strings are legal if the following conditions hold:

• (EPS0) If the j’th entry of Parents(v) is “1” and u is the parent of v, then the j’th entry of EndP(u) is
“down”,
(* because if v indicates the minimum outgoing edge of u’s fragment (of level j) leads from u to v, then
v’s parent u indicates this edge leads to one of u’s children *)
• (EPS1) for each fragment F of level 0 ≤ j < ` in the Roots-hierarchy, there exists precisely one node
v ∈ F whose j’th entry in EndP(v) is either “up” or “down”,
(*because only one node v in each fragment F of level j is the endpoint of the outgoing edge of F *)
• (EPS2) for each node v, if the j’th entry in EndP(v) string is “down” then there exists precisely one child
u of v such that the j’th entry in Parents(u) is “1”,
(*because the j’th entry in EndP(v) being “down” indicates its minimum outgoing edge leads to one
of v’s children (only one, since there is only one minimum outgoing edge of the fragment F of level j
containing v); to remember which child, we mark this child u by Parents(u) = 1 *)
• (EPS3) for each node v, and for each 0 ≤ j < `, if the j’th entry in EndP(v) string is “up” then:

1. the j’th entry of v’s Roots-string is “1”,
(*because node v belongs to a different fragment Fv of level j than the level j fragment of v’s parent;
hence, v is the highest (closest to the root of the whole tree) in Fv, that is, v is Fv’s root *)

2. for every i > j, the i’th entry of v’s Roots-string is not “1”,
(*because fragment Fv of v in level j merges with the fragment (of level j) of v’s parent; hence, v is
not the highest in its fragments of levels i > j*)

• (EPS4) if the j’th entry in Parents(v) is “1” then:
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1. the j’th entry of v’s Roots-string is not “0” ,
(*because node v is not in the fragments of level j of v’s parent (see EPS2); hence, either v is the root
of its fragment of level j (see EPS3, part 1), or v does not belong to a fragment of level j *)

2. for every i > j, the i’th entry of v’s Roots-string is not “1”,
(*See EPS3 part 2 *)

• (EPS5) for every non-root node v, there exists an index integer j ∈ [0, `], such that either the j’th entry in
Parents(v) is 1 or the j’th entry in EndP(v) is “up”.
(*because every node is the root of a fragment of level 0; at some level, v’s fragment merges with the
fragment of v’s parent *)

Lemma 5.3 Consider a Roots-hierarchy H given by a legal assignment of Roots strings. The conditions
EPS1–EPS5 above imply that legal assignments of EndP and Parents strings (with respect to H) induce a
candidate function χ : H \ {T} −→ E(T ).

Proof: Condition EPS1 implies that for each fragment F 6= T , there is precisely one node “suspected” as an
endpoint of the induced candidate of F . Condition EPS2 together with the previous one, implies that there is
precisely one induced candidate edge χ(F ) for each fragment F 6= T . That is, these two conditions induce a
function χ : H \ {T} −→ E(T ). Our goal now is to show that χ is, in fact, a candidate function. That is, we
need to show that for every fragment F ∈ H, we have E(F ) = {χ(F ′)|F ′ ∈ H(F )}. (Recall,H(F ) denotes the
set of fragments inH which are strictly contained in F .)

It follows by the second items in Conditions EPS3 and EPS4, that for every fragment F ∈ H, we have

E(F ) ⊇ {χ(F ′)|F ′ ∈ H(F )} (1)

In particular, we have E(T ) ⊇ {χ(F ′)|F ′ ∈ H(T )}. Now, by Condition EPS5, we get that each edge of T is an
induced candidate of some fragment. That is, we have:

E(T ) = {χ(F ′)|F ′ ∈ H(T )} (2)

The first items in Conditions EPS3 and EPS4 imply that for every fragment F ∈ H \ {T}, the edge χ(F ) is
outgoing from F . This fact, together with part (2) in the definition of a hierarchy, implies that for every fragment
F ∈ H,

{χ(F ′)|F ′ 6∈ H(F )}
⋂
E(F ) = ∅. (3)

Equations (1), (2), and (3) imply that for every fragment F ∈ H, {χ(F ′)|F ′ ∈ H(F )}. In other words, χ is a
candidate function forH, as desired. �

Comment 5.1 Condition EPS0 is not required in order to prove the above lemma. If the labels were assigned by
our MST construction algorithm, condition EPS0 holds too. Even though adding the condition seems redundant,
we decided to add it because we believe it makes the reading more intuitive.

Now, to verify that assignments of EndP and Parents strings are legal with respect to a given legal assignment
of Roots strings, we need to verify the five conditions above. Conditions EPS2–EPS5 can be verified easily, in
1 unit of time, while the first condition EPS1 needs additional information at each node to be verified in 1 unit of
time. Specifically, verifying the rule amounts to verifying that exactly one of the nodes in a fragment of level i
has its i’th position in EndP equal to 1. This is easy to do in a scheme that is very similar to Example NumK in
Section 2.6. Hence, we omit this simple description (nevertheless, it is demonstrated in Table 2 in the example
of the Or EndP strings of nodes corresponding to Figure 1).
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5.4 The distributed marker algorithm

A natural method for assigning the labels of the 1-proof labeling scheme described above (composed of the
representation of HM and χM, and the strings Roots, Parents, EndP, and Or EndP), is to follow the con-
struction algorithm of the MST, namely SYNC MST (see Section 4), which, in particular, constructs the hierarchy
HM and the candidate function χM. Recall that the complexity of SYNC MST is O(n) time and O(log n) bits of
memory per node.

Essentially, assigning the labels is performed by adding some set of actions to SYNC MST. These actions do
not change the values of any of the variables of the original algorithm. Also, we do not change the algorithm’s
flow of control, except for adding these actions. Since each action is just a new assignment to a new variable (of
logarithmic size), the addition of these actions cannot violate the correctness of SYNC MST, nor change its time
and memory complexities (except by a constant factor). We note that adding these actions on top of SYNC MST
is not complicated, and can be realized using standard techniques. Hence, we omit it here. Hence, we obtain the
following.

Lemma 5.4 There exists a distributed marker algorithm assigning the labels of the 1-proof labeling scheme
described in Section 5, running in O(n) time and using O(log n) bits of memory per node.

The lemma above together with Lemma 5.3 establishes Lemma 5.2.

6 Distributing pieces of information

In the previous section, we described the verification that (1) a tree exists, (2) it is decomposed into a hierarchy
of fragments, and (3) edges emanating from the fragments compose a candidate function (so that the tree is the
collection of these edges). That verified the Well-Forming property. It is left to verify the Minimality property.
That is, it is left to show that each edge of the candidate function is the minimum outgoing edge of some fragment
in the hierarchy. The current section describes a part of the marker algorithm responsible for marking the nodes
for this verification.

Informally, to perform the verification, each node must possess some information regarding each of the
fragments F containing it. The information regarding a fragment F contains the weight of the selected edge
of the fragment as well as the fragment identity, hence, it can be encoded using O(log n) bits. (The fragment
identity is needed to identify the set OF of outgoing edges from F , and the weight of the selected edge is needed
for comparing it to the weight of the other edges of OF ; this is how we detect that the selected edge is indeed
the minimum). However, as mentioned, each node participates in O(log n) fragments, and hence, cannot hold
at the same time all the information relevant for its fragments. Instead, we distribute this information among
the nodes of the fragments, in a way that will allow us later to deliver this information efficiently to all nodes
of the fragment. In this section, we show how to distribute the information regarding the fragments. In the next
section, we explain how to exploit this distribution of information so that during the verification phase, relevant
information can be delivered to nodes relatively fast and without violating the O(log n) memory size.

The piece of information ID(F ): As mentioned in Section 3.4, a crucial point in the scheme is letting each
node v know, for each of its incident edges (v, u) ∈ E and for each level j, whether u and v share the same level j
fragment. (Note, in the particular case where u is also a neighbour of v in T , this information can be extracted by
v using u’s data-structure, see Lemma 5.2.) Intuitively, this is needed in order to identify outgoing edges. For that
purpose, we assign each fragment a unique identifier, and v compares the identifier of its own level j fragment
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with the identifier of u’s level j fragment. The identifier of a fragment F is ID(F ) := ID(r(F ))◦ lev(F ), where
ID(r(F )) is the unique identity of the root r(F ) of F , and lev(F ) is F ’s level. We also need each node v to
know the weight ω(F ) of the minimum outgoing edge of each fragment F containing v. To summarize, the piece
of information I(F ) required in each node v per fragment F containing v is I(F ) := ID(F )◦ω(F ). Thus, I(F )
can be encoded using O(log n) bits.

At a very high level description, each node v stores permanently I(F ) for a constant number of fragments F .
Using that, I(F ) is “rotated” so that each node in F “sees” I(F ) in O(log n) time. We term the mechanism that
performs this rotation a train. A crucial point is having each node participate in only few trains. Indeed, one train
passing a node could delay the other trains that “wish” to pass it. Furthermore, each train utilizes some (often
more than constant) memory per node. Hence, many trains passing at a node would have violated the O(log n)
memory constraint. In our solution, we let each node participate in two trains.

Let us recall briefly the motivation for two trains rather than one. As explained in Section 3.4.1, one way
to involve only one train passing each node would have been to partition the nodes, such that each fragment
would have intersected only one part of the partition. Then, one train could have passed carrying the pieces of
information for all the nodes in the part. Unfortunately, we could not construct such a partition where the parts
were small. A small size of each part is needed in order to ensure that a node sees all the pieces (the whole train)
in a short time.

Hence, we construct two partitions of the tree. Each partition is composed of a collection of node-disjoint
subtrees called parts. For each partition, the collection of parts covers all nodes. Hence, each node belongs
to precisely two parts, one part per partition. For each part, we distribute the information regarding some of
the fragments it intersects, so that each node holds at most a constant number of such pieces of information.
Conversely, the information regarding a fragment is distributed to nodes of one of the two parts intersecting it.
Furthermore, for any node v, the two parts corresponding to it encode together the information regarding all
fragments containing v. Thus, to deliver all relevant information, it suffices to utilize one train per part (and
hence, each node participates in two trains only). Furthermore, the partitions are made so that the diameter of
each part is O(log n), which allows each train to pass in all nodes in short time, and hence to deliver the relevant
information quickly. The mechanism of trains and their synchronization is described in the next section. The
remaining of this current section is dedicated to the construction of the two partitions, and to explaining how the
information regarding fragments is distributed over the parts of the two partitions.

6.1 The two partitions

Consider a correct instance, and fix the corresponding hierarchy tree H = HM. We now describe two partitions
of the nodes in T , called Top and Bottom. (The distributed algorithm that constructs the partitions is described
later.) We also partition the fragments into two kinds, namely, top and bottom fragments.

Top and bottom fragments: Define the top fragments to be precisely those fragments whose number of nodes
is at least log n. Observe that the top fragments correspond to a subtree of the hierarchy tree H. Name that
subtree TTop. All other fragments are called bottom. See the left side of Figure 2 for an illustration of the top
fragments and the subtree TTop.

6.1.1 Partition Top

Let us first describe partition Top. We first need to define three new types of fragments.

31



Red, blue, and large fragments: A leaf fragment in subtree TTop is colored red. A fragment not in TTop which
is a sibling in H of a fragment in TTop is colored blue. (Equivalently, a blue fragment is a fragment not in TTop,
whose parent fragment inH is a non-red fragment in TTop). The following observation is immediate.

Observation 6.1 The collection of red and blue fragments forms a partition P ′ of the nodes of T . See Figure 2
for an illustration of partition P ′.

To emphasize the fact that each non-blue child fragment of an internal fragment in TTop contains at least log n
nodes, we call internal fragments in TTop large. Note, the large fragments are precisely the (strict) ancestors
of the red fragments in H. Since the ancestry relation in H corresponds to an inclusion relation between the
corresponding (active) fragments in T , we obtain the following observation.

Observation 6.2 Each large fragment Flarge is composed of at least one red fragment Fred as well as one or
more blue ones, and does not contain any additional nodes (of course, the part may contain also the edges
connecting those fragments).

Partition P ′′: Our goal now is to partition the nodes to parts such that each part contains precisely one red
fragment and possibly several blue ones, and no additional nodes. Such a partition exists, since, it is just a
coarsening of the partition P ′ of the nodes to red and blue fragments. Moreover, the construction of some such
a partition is trivial, following Observation 6.2 and the fact that the tree is a connected graph. The following
procedure produces such a partition P ′′ that has an additional property defined below. (A less formal description
of the procedure is as follows: let pink parts be either red fragments, or the results of a merge between a red
fragment and any number of blue ones. Now repeat the following as long as there are unmerged blue fragments:
consider a blue fragment Fblue who has a sibling pink fragment and, moreover touches that sibling; merge Fblue
with one of its sibling pink fragments it touches).

Procedure Merge

1. Initialize the set P̃ of parts to include precisely the set of red parts. (* P̃ is not yet a partition *)

2. Repeat while there are blue fragments not merged into parts of P̃

(a) Let Flarge be a top fragment that contains a node u that is not in any part of P̃ , where all the nodes of
every child fragment of Flarge belong to parts of P̃ .

(b) Let Fblue be the blue fragment containing u. (Note that we have u ∈ Fblue ⊂ Flarge.) Let P̃ ∈ P̃ be
some part that touches Fblue.

(c) Merge Fblue with one such P̃ . (This also removes P̃ from P̃ and inserts, instead, the merged part
Fblue

⋃
P̃

3. When the procedure terminates, P ′′ ← P̃ .

See Figure 2 for an illustration of partition P ′′. It is easy to see (e.g., by induction on the order of merging in the
above procedure) that partition P ′′ is constructed in the following way: let Fred be the red fragment in a part P̃ .
Then all the nodes in P̃ belong to ancestor fragments of Fred. This leads to the following observation.

Claim 6.3 Each part P ∈ P ′′ intersects at most one level j top fragment, for every j.

The property captured in the above claim is very useful. As can be seen later, this property means that the train
in each part P̃ needs to carry only one piece of information for each level.
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Figure 2: On the left: the top fragments and TTop; On the right: partition P ′ (above) and partition P ′′ (below)

Partition Top: We would like to pass a train in each part P of P ′′. Unfortunately, the diameter of P may be
too large. In such a case, we partition P further to neighbourhoods, such that each neighbourhood is a subtree of
T of size at least log n and of diameterO(log n). The resulted partition is called Top. The lemma below follows.

Lemma 6.4 For every part P in partition Top, the following holds.

• |P | ≥ log n,
• D(P ) = O(log n), where D(P ) is the diameter of P .
• P intersects at most one level j top fragment, for every j (in particular, it intersects at most ` = dlog ne
top fragments).

6.1.2 Partition Bottom

The bottom fragments are precisely those with less than log n nodes. The parts of the second partition Bottom
are the following: (1) the blue fragments, and (2) the children fragments in HM of the red fragments. By
Observation 6.1, this collection of fragments is a indeed a partition. Observe that each part of Bottom is a
bottom fragment. Thus, the size, and hence the diameter, of each part P of Bottom, is less than log n. Figure 3
illustrates the bottom fragments and partition Bottom. Observe also that a part P ∈ Bottom contains all of
P ’s descendant fragments in H (recall, P is a fragment, and the collection of fragments are a laminar family),
and does not intersect other bottom fragments. Hence, we get the following.

Lemma 6.5 For every part P of partition Bottom, the following holds:

• |P | < log n, and
• P intersects at most 2|P | < 2 log n bottom fragments.
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Figure 3: The bottom fragments and partition Bottom.

6.1.3 Representations of the partitions

In Section 6.3, we show that the above partitions Top and Bottom can be constructed by a distributed algorithm
that uses O(log n) memory and linear time. Each part P of each of the two partitions is represented by encoding
in a designated part of the label of each node in P , the identity ID(r(P )) of the root of P (the highest node of part
P ). Recall that a node participates in only two parts (one of each partition), so this consumes O(log n) bits per
node. Obviously, given this representation, the root of a part can identify itself as such by simply comparing the
corresponding part of its label with its identity. In addition, by consulting the data-structure of a tree neighbour u,
each node v can detect whether u and v belong to the same part (in each of the two partitions).

A delicate and interesting point is that the verifier does not need to verify directly that the partitions Top or
Bottom were constructed as explained here. This is explained in Section 8.

6.2 Distributing the information of fragments

Fix a part P of partition Top (respectively, Bottom). Recall that P is a subtree of T rooted at r(P ). Let
F1, F2, · · · , Fk be the top (resp., bottom) fragments intersecting P , for some integer k. By Lemma 6.4 (resp.,
Lemma 6.5), we know that k ≤ min{2|P |, 2 log n}. Assume w.l.o.g., that the indices are such that the level of
Fi is, at least, the level of Fi−1, for each 1 < i ≤ k.

The information concerning part P is defined as I(P ) = I(F1) ◦ I(F2)◦, · · · , ◦I(Fk). We distribute this
information over the nodes of P as follows. We break I(P ) into |P | pairs of pieces. Specifically, for i such that
1 ≤ i ≤ dk/2e ≤ |P |, the i’th pair, termed Pc(i), contains I(F2i−1)◦I(F2i) (for odd k, Pc(dk/2e) = I(Fk)).

The process of storing the pieces permanently at nodes of a part of the partition is referred to as the initializa-
tion of the trains. The distributed algorithm that implements the initialization of the trains usingO(log n) memory
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size and linear time is described next. It is supposed to reach the same result of the following non-distributed
algorithm (given just in order to define the result of the distributed one).

This non-distributed algorithm is simply the classical Depth First Search (DFS) plus the following operation
in every node visited for the first time. Consider a DFS traversal over P that starts at r(P ) and let dfs(i) denote
the the i’th node visited in this traversal. For each i, 1 ≤ i ≤ dk/2e, dfs(i) stores permanently the i’th pair of
I(P ), namely, Pc(i).

6.3 Distributed implementation

Before describing the distributed construction of the two partitions, namely Top and Bottom, we need to de-
scribe a tool we use for efficiently executing several waves&echoes operations in parallel. This Multi Wave
primitive (described below) performs a Wave&Echo in every fragment in H of level j, for j = 0, 1, 2, · · · , `.
Moreover, the i+ 1th Wave&Echo is supposed to start after the ith Wave&Echo terminates. Furthermore, all this
is obtained in time O(n).

6.3.1 The Multi Wave primitive

We shall use this primitive only after the Roots string is already set, so that every node knows for each level,
whether it is the root of a fragment of that level. Let us first present a slightly inefficient way to perform this. The
root of the whole tree starts `+1 consecutive waves and echoes, each for the whole final tree. (By consecutive we
mean that the j+1th wave starts when the jth wave terminates.) Let the level j wave be called WaveI1(T,j) since
it carries some instruction I1, is sent over the whole tree T , and carries the information that it is meant for level j.
A root vj of a fragment F j of level j, receiving WaveI1(T,j), then starts its own Wave&Echo WaveI2(F j , j)
over its own fragment only. (Here, I2 is some instruction possibly different than I1.) A node who is not a root of a
level j fragment can echo WaveI1(T,j) as soon as all its children in the final tree (if it has any) echoed. A root vj
echoes WaveI1(T,j) only after its own wave WaveI2(F j , j) terminated (and, of course, after it also received the
echoes of WaveI1(T,j) from all its children). The following observation follows immediately from the known
semantics of Wave&Echo.

Observation 6.6 Consider a fragment F j of level j rooted at some vj . The wave initiation by vj starts after all
the waves involving its descendant fragments terminated (at the roots of the corresponding fragments).

The ideal time complexity of performing the above collection of ` waves is Θ(n log n). In the case that the size
of a level j fragment F j is 2j ≤ |F j | < 2j+1, we can achieve the semantics of Observation 6.6 somewhat more
time efficiently. The primitive that achieves this is termed a Multi Wave. When invoking it, one needs to
specify which instructions it carries. Informally, the idea is that the roots R0 of level 0 fragments perform the
wave (for level 0) in parallel, each in its own fragment of level 0 (a single node). Recall that a fragment F1 of
level 1 contains multiple fragments of level zero. The roots of these fragments of level zero report the termination
of the level 0 wave to the root of F1. Next, the roots R1 of level 1 fragments perform the wave (for level 1) in
parallel, each in its own fragment of level 1. The terminations are reported to level 2 fragment roots, etc., until
the Multi Wave terminates.

The Multi Wave is started at the root of the final tree T by a wave termed Multi Wave(T, I1, I2). Each
node v who receives Multi Wave(T, I1, I2) acts also as if v has initiated a WaveI2(F 0, 0) on a tree contain-
ing only itself. Ensuring the termination and the semantics for level WaveI2(F 0, 0) is trivial. We now define
the actions of levels higher than zero in an inductive manner. Every node v who received (and forwarded to
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its children if it has any) Multi Wave(T, I1, I2), simulates the case that it received (and forwarded to its chil-
dren) WaveI2(F j , j) for every level j. However, v is not free yet to echo WaveI2(F j , j) until an additional
condition holds as follows: When some wave WaveI2(F j , j) terminates at the root vj of Fj , this root initiates
an informing wave WaveFree−I2(F j , j) to notify the nodes in F j that the wave of level j in their subtree ter-
minated, and thus they are free to echo WaveI2(F j+1, j + 1). That is, a leaf of a F j+1 fragment can echo
WaveI2(F j+1, j+ 1) immediately when receiving WaveFree−I2(F j , j), and a non-leaf of WaveI2(F j+1, j+ 1)
may echo WaveI2(F j+1, j + 1) when it receives echoes from all its children in F j+1.

Specifically, the convergecast is performed to the containing j+ 1 fragment as follows: a leaf of a level j+ 1
fragment who receives WaveFree−I2(F j , j) sends a message Ready(j+1, I2) to its parent. A parent node sends
message Ready(j + 1, I2) if it is not a root of a level j + 1 fragment, and only after receiving Ready(j + 1, I2)
from all its children. When a root of a level j + 1 fragment receives the Ready(j + 1, I2) message from all of
its children, it starts WaveFree−I2(F j+1, j + 1). The Multi Wave terminates at the root of the final tree when
the wave for level ` terminates at that root. The informing wave WaveFree−I2(F j , j) itself needs no echo.

Observation 6.7 The efficient implementation of the multi-wave simulates the multiple waves analyzed in Ob-
servation 6.6. That is, it obtains the same result for the instructions I1 and I2 in every node.

Proof: Consider an alternative algorithm (for Multi Wave) in which, when a root of fragment F j+1 receives
Multi Wave(T, I1, I2), it starts a wave Wave− Ready(j + 1, I2). Assume further, that the Ready(j + 1, I2)
messages are sent as echoes of Wave−Ready(j+1, I2). Moreover, assume that an echo Ready(j+1, I2) is sent
by a node only after it received WaveFree−I2(F j , j). The claim for such an alternative algorithm would follow
from Observation 6.6 and the known properties of Wave&Echo. Now, it is easy to verify that the Multi Wave
described simulates that alternative algorithm. That is, (1) Multi Wave(T, I1, I2) is sent by a node vj+1 who
belongs to a fragment of level j + 1 to its child u in the same fragment exactly when it would have sent the
imaginary Wave − Ready(j + 1, I2). This is easy to show by induction on the order of events. Moreover,
at that time, the child u knows the information carried by Wave − Ready(j + 1, I2) since it knows (from its
Roots) which fragments it shares with its parent (and for each one of them we simulate the case u now receives
Wave− Ready). �

Observation 6.8 The ideal time complexity of performing a multi-wave on the hierarchHM is O(n).

Proof: The wave started by the root consumes O(n) time. Recall that hierarchy HM corresponds to active
fragments during the construction of the MST by algorithm SYNC MST. Hence, Lemma 4.1 implies that in
hierarchy HM, the size of a level j fragment F j satisfies 2j ≤ |F j | < 2j+1. Thus, each wave started by a root
of a fragment F j of level j takes O(2j) time, and starts at time O(2j) after the initiation of the multi-wave. �

6.3.2 Distributed construction of partition P ′

The construction of partition P ′ is performed in several stages. Each of the tasks below is performed using the
Multi Wave primitive. This is rather straightforward, given that the usage of Wave&Echo as a primitive is very
well studied. Below, we give some hints and overview.

First, we need to identify red fragments. It is easy to count the nodes in a fragment using Wave&Echo to know
which fragment has more than log n nodes. However, a large fragment that properly contains a red fragment is
not red itself. Hence, the count is performed first in fragments lower in the hierarchy, and only then in fragments
that are higher. Recall that the Multi Wave primitive indeed completes first waves in fragments that are lower
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in the hierarchy, before moving to fragments that are higher. Hence, one execution of the Multi Wave primitive
allows to identify red fragment. At the end of this execution, the roots of fragments know whether they are the
roots of red fragments or not. A similar technique can be applied to identify blue fragments.

A second task is to identify a large fragment Flarge that is not red, but has a child fragment who is red. It is
an easy exercise to perform the construction using the Multi Wave primitive.

The third task is that of identifying the blue fragments. A fourth task is to let each node in a blue fragment,
and each node in a red fragment, know the color of their fragments. Again, designing these tasks is an easy
exercise given the example of the first task above, and the Multi Wave primitive.

6.3.3 Constructing partition P ′′

It is rather straightforward to use waves&echos to implement procedure Merge to generate partition P ′′. The red
fragments use waves&echos to annex roots of sibling blue fragments. They become pink parts (in the terminology
of paragraph 6.1.1. Then this is repeated in the parent fragment, etc. Since this process goes from a lower level
fragment to higher and higher levels, the Multi Wave primitive handles this well.

6.3.4 Constructing partition Top

Upon receiving the echoes for the Multi Wave primitive constructing partition P ′′, the root of the final tree
instructs (by yet another Wave) each PART LEADER of P ′′ to start partitioning its part into parts of partition
Top. That is, each part of P ′′ is partitioned into subtrees, each of diameter O(log n) and of size Ω(log n). This
task is described in [57]. When it is completed, each part of Top is rooted at its highest node. Moreover, every
node in that part is marked by the name of its part leader, in its variable called Top − Root. (Since Top is a
partition, each node belongs only to one part; hence, this does not violate the O(log n) bits constraint.)

6.3.5 Constructing partition Bottom

Recall that the parts of the second partition Bottom are (1) the blue fragments and (2) the child fragments of
red fragments. Let us term the latter green fragments. We already established that members and roots of blue
fragments know that they are members and roots of blue fragments. The green fragments are notified in a similar
way the blue ones were. That is, the root of the final tree starts a Wave&Echo instructing the roots of the red
fragments to notify child fragments that they are green.

Claim 6.9 The two partitions Top and Bottom described in Section 6.1 can be assigned in time O(n) and
memory size O(log n).

6.3.6 Initializing the trains information

First we describe a primitive that a root of a part P uses for storing I(F ) of one given fragment F ∈ P . This is
a well known distributed algorithm, so we do not describe it in detail. We use a distributed Depth First Search
(DFS), see, e.g. [45, 22, 7]. Initially, all the nodes in a part P are marked Vacant(P ). When the root of the part
wants to store the I(F ) of some fragment F , it sends this I(F ) (with a token) to perform a DFS traversal of part
P . The first time that token reaches a node marked Vacant(P ), it sets Vacant(P ) to false and stores I(F )
in that node. It is left to describe how the root of a part gets I(F ) for each F whose I(F ) should reside in that
part.
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6.3.7 Storing I in partition Top

A part P ′′ in partition P ′′ contains precisely one red fragment Fred. Hence, we call such fragments red-centered.
Consider a part P in partition Top that was created from a red-centered part P ′′ ∈ P ′′. Recall that such a part
P should store only the I of top fragments it intersects. Since each such top fragment is an ancestor fragment of
Fred, we let part P store the I of all ancestor fragments of Fred. Hence, the set of I stored at P includes the I
of all fragments P intersects, but may include more I’s (of fragments intersecting P ′′ but not P ). Nevertheless,
note that, for every j, these other I’s correspond to at most one fragment in level j. This follows simply from the
fact that Fred intersects at most one level j fragment (see Claim 6.3). Recall also that the root of the part knows
it is a root of a part (by comparing its Top− Root variable with its identity), and every node knows which part
it belongs to (again, using its Top − Root variable) as well as who are its parent and children in the part. (The
latter information a node can deduce by reading each tree neighbour.)

The root of the final tree T starts a Multi Wave over T . Fix a level j. The jth wave of the multi-wave, which
we term Send Anc Info(T, j), signals the roots of every top fragment F j of level j to obtain the information
I(F j) and to send it to the roots of the parts of partition Top intersecting F j . Consider a root vj of such a
fragment F j who receives the signal of Send Anc Info(T, j). First, to obtain I(F j), node vj must find the
weight of e, the minimum outgoing edge of F j . Recall that the endpoint u ∈ Fj of e = (u, v) can identify it
is the endpoint using the j’th position in EndPu, and can identify which of its incident edges is e. So, node vj
starts another Wave&Echo bringing the weight of e to vj . (Note that vj is the root of a single fragment in level j,
though it may be the root of other fragments in other levels; hence, at the time of the wave of level j, it handles
the piece of only one fragment, namely, Fj ; hence, not congestion arises). When this wave terminates, vj sets
I(F j) = (ID(vj), ω(e)) and starts another Wave&Echo, called Anc Info(F j , j), conveying I(F j) to roots of
the parts of partition Top intersecting F j . To implement this, vj , the root of Fj , first broadcasts I(F j) to the
nodes of F j . At this point, each node in Fj knows I(F j). Next, our goal is to deliver I(F j) to the roots of
parts in partition Top intersecting F j . However, note that since Fj is a subtree, and all parts are subtrees, the
roots of the parts of partition Top intersecting F j are all contained in Fj , except maybe the root uj of the part
containing vj . So, by now, all roots of parts in partition Top intersecting F j , except maybe uj , already know
I(F j). To inform uj it suffices to deliver I(F j) up the tree, from vj to uj . Since, all roots of parts in Top, and
uj in particular, know they are roots, this procedure is trivial. Finally, to complete the wave at level j, a root of
a Top part receiving I(Fj) stores it in its part as described at top of this section (that is, storing each piece at a
node in the part, following a DFS order).

Note, that since the diameter of a part in Top is of length O(log n), the wave of level j can be implemented
in O(|Fj |+ log n) = O(2j + log n) time. Altogether, the Multi Wave over T is completed by time

O(

logn∑
j=1

2j + log n) = O(n).

6.3.8 Storing I in partition Bottom

Recall that a part in partition Bottom is a fragment of size O(log n). The root of such a part P collects the I of
fragments in P of each level i by issuing a Wave&Echo for level i. The weight of the minimum outgoing edge
of each fragment F i of level i is then collected by the root of F i. This ensures that the I(F i) for each fragment
F i of level i in the fragment arrives at F i’s root. Finally, the Wave&Echo collects the Is from the roots of the
fragments in the Bottom part to the root of the part. It is easy to see the following.

Claim 6.10 The initialization of the trains information described in Section 6.3 can be done in time O(n) and
memory size O(log n).
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The next corollary that summarizes this section follows from Lemma 5.4 and Claims 6.9 and 6.10.

Corollary 6.11 The marker algorithmM can be implemented using memory size O(log n) and O(n) time.

7 Viewing distributed information

We now turn to the verifier algorithm of part of the proof labeling scheme that verifies the Minimality property.

Consider a node v and a fragment Fj(v) of level j containing it. Recall that I(Fj(v)) should reside per-
manently in some node of a part P to which v belongs. This information should be compared at v with the
information I(Fj(u)) regarding a neighbour u of v, hence both these pieces must somehow be “brought” to v.
The process handling this task contains several components. The first is called a “train” and is responsible for
moving the pieces’ pairs Pc(i) through P ’s nodes, such that each node does not hold more than O(log n) bits at
a time, and such that in short time, each node in P “sees” all pieces, and in their correct order. (By short time,
we mean O(log n) time in synchronous networks, and O(log2 n) time asynchronous networks.)

Unfortunately, this is not enough, since I(Fj(v)) may arrive at v at a different time than I(Fj(u)) arrives at
u, hence some synchronization must be applied. Further difficulties arise from the fact that the neighbours of a
node v may belong to different parts, so different trains pass there. Note that v may have many neighbours, and
we would not want to synchronize so many trains.

A first idea to obtain synchronization would have been to utilize delays of trains. However, delaying trains
at different nodes could accumulate, or could even cause deadlocks. Hence, we avoid delaying trains almost
completely. Instead, each node v repeatedly samples a piece from its train, and synchronizes the comparison
of this piece with pieces sampled by its neighbours, while both trains advance without waiting. Perhaps not
surprisingly, this synchronization turns out to be easier in synchronous networks, than in asynchronous ones.

This process presented below assumes that no fault occurs. The detection of faults is described later.

7.1 The trains

For simplicity, we split the task of a train into two subtasks, each performed repeatedly – the first, convergecast,
moves (copies of) the pieces one at a time pipelined from their permanent locations to r(P ), the root of part P ,
according to the DFS order. (Recall, dfs(i) stores permanently the i’th piece of I(P ).)

Definition 7.1 A cycle is a consecutive delivery of the k pairs of pieces Pc(1),Pc(2), · · · ,Pc(k) to r(P ).

Since we are concerned with at most k ≤ 2 log n pairs of pieces, each cycle can be performed in O(log n)
time. The second subtask, broadcast, broadcasts each piece from r(P ) to all other nodes in P (pipelined). This
subtask can be performed in D(P ) = O(log n) time, where D(P ) is the diameter of P . We now describe these
two subtasks (and their stabilization) in detail.

Consider a part P (recall, a part is a subtree). The (pipelined) broadcast in P is the simpler subtask. Each
node contains a broadcast buffer for the current broadcast piece, and the node’s children (in the part) copy the
piece to their own broadcast buffer. When all these children of a node acknowledge the reception of the piece,
the node can copy the next piece into its broadcast buffer. Obviously, this process guarantees that the broadcast
of each piece is performed in D(P ) = O(log n) time, where D(P ) is the diameter of P .

We now describe the convergecast subtask. Informally, this is a recursive process that is similar to a dis-
tributed DFS. The subtask starts at the root. Each node v which has woken-up, first wakes-up its first child (that

39



is, signals the first child to start). When the first child u1 finishes (delivering to v all the pieces of information in
u1’s subtree), then v wakes-up the next child, and so forth.

Each node holds two buffers of O(log n) bits each for two pieces of the train, besides its own piece (that it
holds permanently). The node uses one of these buffers, called the incoming car, to read a piece from one of
its children, while the other buffer, called the outgoing car is used to let its parent (if it has one) read the piece
held by the node. A node v 6= r(P ) participates in the following simple procedure whenever signaled by its
parent to wake-up. Let u1, u2, · · · , ud denote the children of v in P (if any exists), ordered according to their
corresponding port-numbers at v (i.e., for i < j, child ui is visited before uj in the DFS tour).

Train Convergecast Protocol (performed at each node v 6= r(P ))
(*Using two buffers: incoming car and outgoing car *)

1. Copy v’s (permanent) piece into v’s outgoing car

2. For i = 1 to d (*d is the number of v’s children*)

(a) Signal ui to start performing the train algorithm; (*wake-up ui*)

(b) Repeat until v receives a signal “finished” from ui

i. Copy the piece from the outgoing car of ui to v’s incoming car
ii. Wait until v’s outgoing car is read by its parent (*to accomplish that, v reads the incoming car of

its parent and compares it with its outgoing car *)
iii. Move the piece from the incoming car to outgoing car (and, subsequently, empty the content of

the incoming car);

3. Report “finished” to parent;

The train Convergecast protocol of the root r(P ) is slightly different. Instead of waiting for its parent to read
each piece, it waits for the train Broadcast protocol (at the root) to read the piece to its own buffer. Instead of
reporting “finished” to its parent, it generates a new start to its first child.

Theorem 7.1 Let t0 be some time when the root r = r(P ) of P initiated the “For” loop of the train Convergecast
protocol. Each node in P sees the pieces in the cycle {Pc(1),Pc(2), · · · ,Pc(φ(P ))} in O(log n) time after t0
in synchronous networks and in O(log2 n) time after t0 in asynchronous networks.

Proof: First observe that the train broadcast in a leaf node of the part who received a piece from its parent, does
not need to pass that piece to any further children. Hence the train process does not incur a deadlock.

As mentioned before, once the root sees a piece, the broadcast protocol guarantees that this piece is delivered
to all nodes in the part inD(P ) = O(log n) time. Let τ ′ denote the maximal time period between two consecutive
times that the broadcast protocol at the root reads the buffer of the convergecast protocol to take a new piece (a
piece is actually taken only if the convergecast has managed to bring there a new piece, after the broadcast process
took the previous one). Now, denote τ = max{1, τ ′}.

Observation 7.2 In synchronous networks, we have τ = 1. In asynchronous networks, we have τ ≤ D(P ) =
O(log n).

The first part of the observation is immediate. To see why the second part of the observation holds, note that by
the definition of time, it takes O(D(P )) for a chain of events that transfer a piece to a distance of D(P ), in the
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case that all the buffers on the way are free; note that there is no deadlock and no congestion for information
flowing down the tree, away from the root; this can be seen easily by induction on the distance of a broadcast
piece from the furthest leaf; clearly, if the distance is zero, the piece is consumed, so there is already a room for
a new piece; the rest of the induction is also trivial.

We shall measure the time in phases, where each phase consists of τ time units. Let us start counting the time
after time t0, that is, we say that phase 0 starts at time t0. Our goal now is to show that (for either synchronous
or asynchronous networks), for each 1 ≤ i < φ(P ), piece Pc(i) arrives at the root within O(log n) phases.

We say that a node v is holding a piece at a given time if either (1) v keeps the piece permanently, or (2)
at the given time, the piece resides in either v’s incoming car or its outgoing car. Consider now phase t. For
each i, where 1 ≤ i ≤ φ(P ), if the root r held Pc(i) at some time between t0 and the beginning of the phase t,
then we say that i is not t-relevant. Otherwise, i is t-relevant. For any t-relevant i, where 1 ≤ i ≤ φ(P ),
let dt(i) denote the smallest DFS number of a node v holding Pc(i) at the beginning of phase t. That is,
dt(i) = min{dfs(u)| u holds Pc(i) at time t}. For any i that is not t-relevant, let dt(i) = 0. The following
observation is immediate.

Observation 7.3 At any time t,

• For any 1 ≤ i ≤ φ(P ), we have dt(i) ≥ dt+1(i) (in other words, dt(i) cannot increase with the phase).

• For any 1 ≤ i < φ(P ), we have dt(i) ≤ dt(i+ 1).

Informally, the following lemma gives a bound for the delay of a piece as a result of processing previous pieces.

Lemma 7.4 Let x and i be two integers such that 1 ≤ i ≤ x ≤ φ(P ). Then, dt(x) ≤ i− 1 for t ≥ 3x− i.

To prove the lemma, first observe that the condition holds for the equality case, that is, the case where i = x.
Indeed, for each 1 ≤ x ≤ φ(P ), the node holding Pc(x) permanently is at distance at most x− 1 from the root.
Hence, d0(x) ≤ x − 1. Now, the condition follows since, by Observation 7.3, dt(x) cannot increase with the
phase.

We now prove the lemma using a double induction. The first induction is on x. The basis of the induction,
i.e., the case x = 1, is trivial, since it reduces to the equality case i = x = 1.

Assume by induction that the condition holds for x− 1 and any i, such that 1 ≤ i ≤ x− 1 ≤ φ(P ). We now
prove that the condition holds for x and any 1 ≤ i ≤ x. This is done using a reverse induction on i.

The basis of this (second) induction, i.e., the case i = x, is an equality case and hence, it is already known to
satisfy the desired condition. Now assume by induction, that the condition holds for x and i, where 2 ≤ i ≤ x,
and let us show that it holds also for x and i− 1.

Let us first consider the case i = 2. By the (first) induction hypothesis (applied with values x− 1 and i = 1),
we know that

dt′(x− 1) ≤ 0 where t′ = 3x− 4.

Thus, at phase t′ = 3x− 4, piece Pc(x− 1) is not t′-relevant. That is, at that time, piece Pc(x− 1) is either in
the outgoing car of the root r(P ) or in the root’s incoming car. In the first case, the incoming car of the root is
already empty at t′. Otherwise, recall that, by definition, the broadcast process at the root consumes a piece from
r(P )’s outgoing car every phase (if there is a new piece there it has not taken yet). Hence, the outgoing car at
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r(P ) is consumed by phase t′ + 1. By that phase, the root notices the piece is consumed, deliverers the content
of its incoming car (namely, piece Pc(x− 1)) to its outgoing car, and empties its incoming car.

On the other hand, by the second induction hypothesis, d(x) ≤ 1 at the beginning of phase 3x− 2 = t′ + 2.
That is, Pc(x) is at some child v of the root. By the second part of Observation 7.3, node v is the child the root
reads next, and, moreover no piece other than Pc(x) is at the outgoing car of v. If at the beginning of phase
t′+2, piece Pc(x) is at the outgoing car of v, then the piece reaches the incoming car of the root already at phase
t′ + 2. Otherwise, by at most phase t′ + 3, node r(P ) has a copy of Pc(x) in its incoming car. This means that
dt′′(x) ≤ 0, where t′′ = t′ + 3 ≤ 3x− (i− 1), as desired.

Now consider the case that 2 < i. By the second induction hypothesis, we have dt′(x) ≤ i − 1, where
t′ = 3x− i. If dt′(x) ≤ i− 2 at the beginning of phase t′ then we are done. Otherwise, let v be the node holding
Pc(x) at the beginning of phase t′ such that the distance (on the tree) of v from r is i − 1. Let u be v’s parent.
Our goal now is to show that u holds Pc(x) by phase t′ + 1. The (first) induction hypothesis implies that the
condition holds for the pair x− 1 and i− 2. That is,

dt′−1(x− 1) ≤ i− 3.

Thus, Pc(x−1) has already been copied to u’s parentw. The only reason Pc(x−1) may be stuck at u (perhaps at
both the incoming and outgoing cars of u) at phase t′− 1, is that u has not observed yet that its parent w actually
already copied Pc(x− 1). This is observed by u by phase t′ (when u observes this, it empties the content of its
incoming car). Thus, by phase t′ + 1, node u has a copy of Pc(x), as desired. This concludes the proof of the
lemma.

The theorem now follows from the lemma and from the fact that φ(P ) = O(log n). �

Recognizing membership to arriving fragments: Consider now the case that a piece containing I(F ) carried
by the broadcast wave arrives at some node v. Abusing notations, we refer to this event by saying that fragment
F arrives at v. Recall that v does not have enough memory to remember the identifiers of all the fragments con-
taining it. Thus, a mechanism for letting v know whether the arriving fragment F contains v must be employed.
Note that the level j of F can be extracted from I(F ), and recall that it is already ensured that v knows whether
it is contained in some level j fragment. Obviously, if v is not contained in a level j fragment then v /∈ F . If
Fj(v) does exist, we now explain how to let v know whether F = Fj(v).

Consider first a train in a part P ∈ Top. Here, P intersects at most one level j top fragment, for each level j
(see Lemma 6.4). Thus, this train carries at most one level j fragment Fj . Hence, Fj = Fj(v) if and only if
Fj(v) exists.

Now consider a train in a part P ∈ Bottom. In this case, part P may intersect several bottom fragments of
the same level. To allow a node v to detect whether a fragment Fj arriving at v corresponds to fragment Fj(v), we
slightly refine the above mentioned train broadcast mechanism as follows. During the broadcast wave, we attach
a flag to each I(F ), which can be either “on” or “off”, where initially, the flag is “off”. Recall that I(F ) contains
the identity ID(r(F )) of the root r(F ) of F . When the broadcast wave reaches this root r(F ) (or, when it starts
in r(F ) in the case that r(F ) = r(P )), node r(F ) changes the flag to “on”. In contrast, before transmitting the
broadcast wave from a leaf u of F to u’s children in T (that do not belong to F ), node u sets the flag to ”off”.
That way, a fragment F arriving at a node v contains v if and only if the corresponding flag is set to “on”. (Recall
that the data structure lets each node know whether it is a leaf of a level j fragment.) This process allows each
node v to detect whether F = Fj(v).

To avoid delaying the train beyond a constant time, each node multiplexes the two trains passing via it. That
is, it passes one piece of one train, then one piece of the other.
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7.2 Sampling and synchronizing

Fix a partition (either Top or Bottom), and a part P of the partition. Node u ∈ P maintains two variables:
Ask(u) and Show(u), each for holding one piece I(F ). In Ask(u), node u keeps I(Fj(u)) for some j, until
u compares the piece I(Fj(u)) with the piece I(Fj(v)), for each of its neighbours v. Let E(u, v, j) denote the
event that node u holds I(Fj(u)) in Ask(u) and sees I(Fj(v)) in Show(v). (For simplicity of presentation, we
consider here the case that both u and v do belong to some fragments of level j; otherwise, storing and comparing
the information for a non-existing fragments is trivial.) For any point in time t, let C(t) denote the minimal time
interval C(t) = [t, x(t)] in which every event of the type E(u, v, j) occurred. For the scheme to function, it is
crucial that C(t) exists for every time t. Moreover, to have a fast scheme, we must ensure that maxt |C(t)| is
small.

Recall that the train (that corresponds to P ) brings the pieces I(F ) in a cyclic order. When u has done
comparing I(Fj(u)) with I(Fj(v)) for each of its neighbours v, node u waits until it receives (by the train)
the first piece I(F ) following I(Fj(u)) in the cyclic order, such that F contains u (recall that u can identify
this F ). Let us denote the level of this next fragment F by j′, i.e., F = Fj′(u). Node u then removes I(Fj(u))
from Ask(u) and stores I(Fj′(u)) there instead, and so forth. Each node u also stores some piece I(Fi(u)) at
Show(u) to be seen by its neighbours. (Note that the value at Show(u) may be different than the one at Ask(u).)

Let us explain the comparing mechanism. Assume that everything functions correctly. In particular, assume
that the partitions and the distribution of the information are as described above, and the trains function correctly
as well. Let us first focus our attention on the simpler and seemingly more efficient synchronous case.

7.2.1 The comparing mechanism in synchronous networks

Fix a node v. In a synchronous network, node v sees Show(u) in every pulse, for each neighbour u. Let
every node u store in Show(u) each piece that arrives in the train (each time, replacing the previous content of
Show(u)). Hence, by Theorem 7.1, given a level j, node v sees I(Fj(u)) (if such exists) within O(log n) time.
Put differently, if v waits some O(log n) time (while I(Fj(v)) is in Ask(v)), node v sees I(Fj(u)) in Show(u)
for each neighbour u. (We do not assume that u keeps track of which neighbours v has already seen I(Fj(u));
node v simply waits sufficient time – to allow one cycle of the train, while looking at its neighbours, looking for
their I for level j.) Subsequently, node v waits another O(log n) rounds until the train brings it I(Fj′(v)) and
stores it in Ask(v), and so forth. In other words, we have just established that event E(v, u, j′) occurs within
O(log n) time after v stores I(Fj′(v)) in Ask(v), which happens O(log n) time after event E(v, u, j), and so
forth. The time for at most log n+ 1 such events to occur (one per level j) is O(log2 n).

Lemma 7.5 In a synchronous environment, for each node v and its neighbour u, all events of type E(v, u, j) (for
all levels j) occur within time O(log2 n).

7.2.2 The comparing mechanism in asynchronous networks

In an asynchronous network, without some additional kind of a handshake, node u cannot be sure that the piece
in Show(u) was actually seen by its neighbours. (Intuitively, this is needed, so that u can replace the piece with
the next one.) Moreover, it is not easy to perform such handshakes with all of u’s neighbours, since u does not
have enough memory to keep track on which of its neighbours v has seen the piece and which has not yet. First,
let us describe a simple, but somewhat inefficient handshake solution. A more efficient one is presented later.

Each node v, holding some piece I(Fj(v)) in Ask(v), selects a neighbour u and acts as a “client”: that is,
node v writes in its register Want the pair (ID(u), j). Node v then looks repeatedly at Show(u) until it sees
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I(Fj(u)) there. At the same time, each node u also has a second role – that of a “server”. That is, each node
rotates these two roles: it performs one atomic action as a server and one as a client. Acting as a server, u selects
a client to serve (in a round robin order). If the client has written some (ID(w), i) in the client’s Want, for
w 6= u, then u chooses another client. On the other hand, if the client wrote (ID(u), j) in the client’s Want, then
u waits until it receives by the train I(Fj(u)) and stores it in Show(u). A trivial handshake then suffices for u
to know that this value has been read by the client. Node u, in its role as a server, can then move to serve its
next neighbour, and node v, in its role as a client, can move on to the next server. In particular, if the client v has
already received service from all its neighbours for I(Fj(v)), then v waits until the train brings it the next piece
I(Fj′(v)) that v needs to compare.

Consider now the time a client v waits to see I(Fj(u)) for one of its neighbours u. Before serving v, the
server u may serve O(∆) neighbours. By Theorem 7.1 (applied for the asynchronous setting), each service takes
O(log2 n) time. In addition, the client needs services from ∆ servers, and for O(log n) values of j. The total
time for all the required events to happen in this simple handshake mechanism is, thus, O(∆2 log3 n).

Let us now describe the more efficient asynchronous comparison mechanism that requires only O(∆ log3 n)
time. Before dwelling into the details of the comparison mechanism, let us first describe a difference in the way
we employ the train. Recall that in the simple solution above (as well as in the synchronous case), the movement
of trains was independent from the actions of the comparison mechanism, and hence, by Theorem 7.1, each train
finishes a cycle in O(log2 n) time. In contrast, a train here may be delayed by the nodes it passes, in a way to
be described. Crucially, as we show later, the delay at each node is at most some constant time c, and hence, the
time a train finishes a cycle remains asymptotically the same, namely, O(log2 n).

As before, node v, holding I(Fj(v)) in Ask(v) chooses a server u among v’s neighbours and reads Show(u).
Another small, but crucial addition to the actions taken in the simple procedure, is the following: if, when reading
Show(u), node v reads I(Fj(u)), then E(v, u, j) occurred, and v moves on to read another neighbour. This is
illustrated in Figures 4 and 5.

Only in the case that I(Fj(u)) is not at Show(u) at that time (see Figure 6), node v sets Want(v) ←
(ID(u), j) (see Figure 7). In this case, we say that v files a request for j at u. This request stays filed until
the value of Show(u) is the desired one and E(v, u, j) occurs. Similarly to the synchronized setting, in the case
that v has just finished seeing I(Fj(u)) in every neighbour u, node v first waits until it gets by the train, the next
piece I(Fj′(v)) in the cycle, and then puts I(Fj′(v)) as the new content of Ask(v).

Now consider any node u in its role as a server. It reads all the clients. (Recall that the ideal time complexity
assumes this can be performed in one time unit.) When node u receives I(Fj(u)) from the train, it puts this value
in Show(u). It now delays the train as long as it sees any client v whose Want(v) = (ID(u), j). In particular,
node u keeps I(Fj(u)) in Show(u) during this delay time period. If u has not read any neighbour v such that
Want(v) = (ID(u), j), then u stops delaying the train, waits for receiving the next piece I(Fj′(u)) from the
train, and uses it to replace the content of Show(u).

We define the Ask cycle of a node v. This is the time interval starting at the time a client v replaces the
content of Ask(v) from I(Fjmax(v)) to I(Fjmin(v)), and until (and excluding) the time v does that again. Here,
jmax is the highest level of a piece in that train, such that Fjmax(v) exists, and jmin is the smallest level of a
piece in that train, such that Fjmin(v) exists.

Lemma 7.6 The total length of a Ask cycle of a node v is O(∆ log3 n).

Proof: Fix a node u and let t1u be some time that u starts storing I(Fj(u)) in Show(u), for some level j;
moreover, I(Fj(u)) is stored there until some time t2u when u replaces the content of Show(u) again.

Recall, node u delays the train and keeps I(Fj(u)) in Show(u) as long as it sees any client v such that
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I(F3(u)) ; 3 
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Figure 4: Node v receives the next piece (for j = 3) to compare.
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I(F3(v)) ; 3 
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w 

Figure 5: First case, E(v, u, 3) occurred the first time v reads I(F3(u)). Next, v may look at its next node, w.
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Figure 6: Second case, E(v, u, 3) does not occur immediately.
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Figure 7: Node v files a request at u for j = 3.
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Figure 8: The trains at v and at u do not stop.
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Figure 9: The server u received the requested piece at last.
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Want(v) = (ID(u), j); when it sees that no such neighbour v exists, it stops delaying the train and waits for
the train to deliver it the next piece I(Fj′(u)) to be used for replacing the content of Show(u). We now claim
that the delay time period at node u is at most some constant time. To prove that, we first show that there exists
a constant c such that no client v has Want(v) = (ID(u), j) in the time interval [t1u + c, t2u]. Indeed, for each
neighbour v of u, let tv be the first time after t1u that v reads the value of Show(u). Clearly, there exists a constant
c (independent of u and v) such that tv ∈ [t1u, t

1
u + c]. Right at time tv, the content of Want(v) stops being

(ID(u), j) (if it were before), since I(Fj(u)) is the value of Show(u) during the whole time interval [t1u, t
2
u].

Moreover, during the time interval [tv, t
2
u], node v does not file a request for j at u, since again, whenever it reads

Show(u) during that time interval, it sees I(Fj(u)). Hence, no client v has Want(v) = (ID(u), j) in the time
interval [t1u + c, t2u]. Now, from time t1u + c, it takes at most some constant time to let u observe that none of its
neighbours v has Want(v) = (ID(u), j). This establishes the fact that the delay of the train at each node is at
most some constant. Hence, as mentioned before, the time the train finishes a cycle is O(log2 n). (It is also easy
to get convinces that this delay does not prevent the train from being self-stabilizing.)

Next, consider the time that some node v starts holding I(Fj(v)) in Ask(v). Consider a neighbour u of v.
The time it takes for v until it sees I(Fj(u)) in Show(u) isO(log2 n). Hence, a client v waitsO(log2 n) for each
request v files at a server u for a value j. The total time that v waits for a service of j at all the servers is then
O(∆ log2 n). From that time, v needs to wait additional O(log2 n) time to receive from the train the next piece
I(Fj′(v)) (to replace the content of Ask(v)). Summing this over the O(log n) pieces in the cycle, we conclude
that the total time of an Ask cycle of v is O(∆ log3 n). �

Lemma 7.7 If (1) two partitions are indeed represented, such that each part of each partition is of diameter
O(log n), and the number of pieces in a part is O(log n), and (2) the trains operate correctly, then the following
holds.

• In a synchronous network, maxt |C(t)| = O(log2 n).

• In an asynchronous network, maxt |C(t)| = O(∆ log3 n).

8 Local verifications

In this section, we describe the measures taken in order to make the verifier self-stabilizing. That is, the train
processes, the partitions, and also, the pieces of information carried by the train may be corrupted by an adver-
sary. To stress this point and avoid confusion, a piece of information of the form z ◦ j ◦ ω, carried by a train, is
termed the claimed information Î(F ) of a fragment F whose root ID is z, whose level is j, and whose minimum
outgoing edge is ω. Note that such a fragment F may not even exist, if the information is corrupted. Conversely,
the adversary may also erase some (or even all) of such pieces corresponding to existing fragments. Finally,
even correct pieces that correspond to existing fragments may not arrive at a node in the case that the adversary
corrupted the partitions or the train mechanism. Below we explain how the verifier does detect such undesirable
phenomena, if they occur. Note that for a verifier, the ability to detect with assuming any initial configuration
means that the verifier is self-stabilizing, since the sole purpose of the verifier is to detect. We show, in this sec-
tion, that if an MST is not represented in the network, this is detected. Since the detection time (the stabilization
time of the verifier) is sublinear, we still consider this detection as local, though some of the locality was traded
for improving the memory size when compared with the results of [54, 55].

Verifying that some two partitions exist is easy. It is sufficient to (1) let each node verify that its label contains
the two bits corresponding to the two partitions; and (2) to have the root r(T ) of the tree verify that the value of
each of its own two bits is 1. (Observe that if these two conditions hold then (1) r(T ) is a root of one part in each
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of the two partitions; and (2) for a node v 6= r(T ), if one of these two bits in v is zero, then v belongs to the same
part in the corresponding partition as its parent.) Note that this module of the algorithm self-stabilizes trivially in
zero time.

It seems difficult to verify that the given partitions are as described in Section 6.1, rather than being two
arbitrary partitions generated by an adversary. Fortunately, this verification turns out to be unnecessary. (As we
shall see, if the components at the nodes do not describe an MST, no adversarial partitioning can cause the verifier
to accept this as representing an MST; if partitions are represented, we just need to verify that a part is not too
large for the time complexity).

First, for the given partitions, it is a known art to self-stabilize the train process. That is, the broadcast
part of the train is a standard flooding, for which the self stabilization has been heavily studied, see, in particular,
[20, 24]. For the convergecast, first, note that pieces are sent up the tree. Hence, they cannot cycle, and cannot get
“stuck”. Moreover, it is easy to get convinced that only pieces that are already in some buffer (either incomming,
or outgoing, or permanent) can be sent. Finally, notice that the order of the starting of the nodes is exactly the
DFS order. The stabilization of the DFS process is well understood [23]. It is actually easier here, since this is
performed on a tree (recall that another part of the verifier verifies that there are no cycles in the tree).

Finally, composing such self-stabilizing primitives in a self-stabilizing manner is also a known art, see
e.g. [34, 49, 64, 52]. In our context, once the DFS part stabilizes, it is easy to see the pieces flow up the tree
stabilizes too. This leads to the following observation.

Observation 8.1 Starting at a time that isO(log n) after the faults in synchronous networks, andO(log2 n) time
in asynchronous networks, the trains start delivering only pieces that are stored permanently at nodes in the part.

After the trains stabilize (in the sense described in Observation 8.1), what we want to ensure at this point is that
the set of pieces stored in a part (and delivered by the train) includes all the (possibly corrupted) pieces of the
form I(Fj(v)), for every v in the part and for every j such that v belongs to a level j fragment. Addressing this,
we shall show that the verifier at each node rejects if it does not obtain all the required pieces eventually, whether
the partitions are correct or not. Informally, this is done as follows. Recall that each node v knows the set J(v)
of levels j for which there exists a fragment of level j containing it, namely, Fj(v). Using a delimiter (stored at
v), we partition J(v) to JTop(v) and JBottom(v); where JTop(v) (respectively, JBottom(v)) is the set of levels
j ∈ J(v) such that Fj(v) is top (resp., bottom).

Node v “expects” to receive the claimed information Î(Fj(v)) for j ∈ JTop(v) (respectively, j ∈ JBottom(v))
from the train of the part in Top (respectively, Bottom) it belongs to.

Let us now consider the part PTop ∈ Top containing v. In correct instances, by the way the train operates,
it follows that the levels of fragments arriving at v should arrive in a strictly increasing order and in a cyclical
manner, that is, j1 < j2 < j3 < · · · < ja, j1 < j2 < · · · ja, j1 · · · (observe that ja = `). Consider the case that
the verifier at v receives two consecutive pieces z1 ◦ j1 ◦ ω1 and z2 ◦ j2 ◦ ω2 such that j2 ≤ j1. The verifier at v
then “assumes” that the event S of the arrival of the second piece z2 ◦ j2 ◦ ω2 starts a new cycle of the train. Let
the set of pieces arriving at v between two consecutive such S events be named a cycle set. To be “accepted” by
the verifier at v, the set of levels of the fragments arriving at v in each cycle set must contain JTop(v). It is trivial
to verify this in two cycles after the faults cease. (The discussion above is based implicitly on the assumption that
each node receives pieces infinitely often; this is guaranteed by the correctness of the train mechanism, assuming
that at least one piece is indeed stored permanently in PTop; verifying this assumption is done easily by the root
r(PTop) of PTop, simply by verifying that r(PTop) itself does contain a piece.) Verifying the reception of all
the pieces in a part in Bottom is handled very similarly, and is thus omitted. Hence, we can sum up the above
discussion as follows:
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Claim 8.2 If the verifier accepts then each node v receives Î(Fj(v)), for every level j ∈ J(v) (in the time stated
in Lemma 7.7), and conversely, if a node does not receive Î(Fj(v)) (in the time stated in Lemma 7.7) then the
verifier has rejected.

Let p(v) denote the parent of v in T . Recall, that by comparing the data structure of a neighbour u in T , node
v can know whether u and v belong to the same fragment of level j, for each j. In particular, this is true for u
being the parent of v in T . Consider an event E(v, p(v), j). In case p(v) belongs to the same level j fragment
as v, node v compares Î(Fj(v)) with Î(Fj(p(v))), and verifies that these pieces are equal (otherwise, it rejects).
By transitivity, if no node rejects, it follows that for every fragment F ∈ H, we have that Î(F ) is of the form
z ◦ j ◦ ω, and all nodes in F agree on this. By verifying at the root rF of F that ID(rF ) = z, we obtain the
following.

Claim 8.3 If the verifier accepts then:

• The claimed identifiers of the fragments are compatible with the given hierarchy H. In particular, this
guarantees that the identifiers of fragments are indeed unique.

• For every F ∈ H, all the nodes in F agree on the claimed weight of the minimum outgoing edge of
fragment F , denoted ω̂(F ), and on the identifier of fragment F , namely, ID(F ).

So far, we have shown that each node does receive the necessary information needed for the verifier. Now, finally,
we show how to use this information to detect whether this is an MST. Basically, we verify that ω̂(F ) is indeed
the minimum outgoing edge ω(F ) of F and that this minimum is indeed the candidate edge of F , for every
F ∈ H. Consider a time when E(v, u, j) occurs. Node v rejects if any of the checks below is not valid.

• C1: If v is the endpoint of the candidate edge e = (v, u) of Fj(v) then v checks that u does not belong
to Fj(v), i.e., that ID(Fj(v)) 6= ID(Fj(u)), and that ω̂(Fj(v)) = ω(e) (recall, it is already ensured that v
knows whether it is an endpoint, and if so, which of its edges is the candidate);

• C2: If ID(Fj(v)) 6= ID(Fj(u)) then v verifies that ω̂(Fj(v)) ≤ ω((v, u)).

The following lemma now follows from C1, C2 and Lemma 5.1.

Lemma 8.4 • If by some time t, the events E(v, u, j) occurred for each node v and each neighbour u of v
in G and for each level j, and the verifier did not reject, then T is an MST of G.

• If T is not an MST, then in the time stated in Lemma 7.7 after the faults cease, the verifier rejects.

We are now ready for the following theorem, summarizing Sections 4 to 8.

Theorem 8.5 The scheme described in Sections 4–8 is a correct proof labeling scheme for MST. Its memory
complexity isO(log n) bits. Its detection time complexity isO(log2 n) in synchronous networks andO(∆ log3 n)
in asynchronous ones. Its detection distance is O(f log n) if f faults occurred. Its construction time is O(n).

Proof: The correctness and the specified detection time complexity follow from Lemma 8.4 and Claim 8.2.
The space taken by pieces of I stored permanently at nodes (and rotated by the trains) was already shown to be
O(log n) bits. In addition, a node needs some additional O(log n) bits of memory for the actions described in
Section 8. Similarly, the data-structure at each node and the corresponding 1-proof labeling schemes (that are
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used to verify it) consume additional O(log n) bits. Finally, for each train, a node needs a constant number of
counters and variables, each of logarithmic size. This establishes the required memory size of the scheme.

To show the detection distance, let network G1 contain faults. Consider a (not necessarily connected) sub-
graph U containing every faulty node v, every neighbour u of v, and the parts, both of Bottom and of Top of v
and u. First, we claim that no node outside of U will raise an alarm. To see that, assume (by way of contradiction)
that some node w outside U does raise an alarm. Now, consider a different network G2 with the same sets of
nodes and of edges as G1. The state of every node in G2 \ U is exactly the (correct) state of the same node in
G1. The states of the nodes in U are chosen so that to complete the global configuration to be correct. (Clearly,
the configuration can be completed in such a way.) Hence, no node should raise an alarm (since we have shown
that our scheme is correct). However, node w in G2 receives exactly the same information it receives in G1,
since it receives only information from nodes in the parts to which it or its neighbours belong. Hence, w will
raise an alarm. A contradiction. The detection distance complexity now follows from the fact that the radius of
U is O(f log n). (Informally, this proof also says that non-faulty nodes outside of U are not contaminated by the
faulty nodes, since the verification algorithm sends information about the faulty nodes only within U .)

The construction time complexity required for the more complex part of the proof labeling scheme, that is, the
proof scheme described in Sections 6–8, is dominated by the construction time of the MST algorithm SYNC MST.
This time is shown to be O(n) in Theorem 4.4. The construction time required for the simpler 1-proof labeling
scheme described in Section 5 is shown to be linear in Lemma 5.2. �

9 Verification of time lower bound

We now show that any proof labeling scheme for MST that uses optimal memory must use at least logarithmic
time complexity, even when restricted to synchronous networks. The lower bound is derived below from the
relatively complex lower bound for 1-proof labeling schemes for MST presented in [54], by a not- too- difficult
reduction from that problem. We prove the lower bound on the specific kind of networks used in [54]. These
networks are a family of weighted graphs termed (h, µ)-hypertrees. (The name may be misleading; a (h, µ)-
hypertrees is neither a tree nor a part of a hyper graph; the name comes from them being a combination of
(h, µ)-trees (see also [42, 51]) and hypercubes.) We do no describe these hypertrees here, since we use them,
basically, as black boxes. That is, all we need here is to know certain properties (stated below) of these graphs.
(We also need to know the lower bound of [54]).

The following two properties of this family were observed in [54]. First, all (h, µ)-hypertrees are identical if
one considers them as unweighted. In particular, two homologous nodes in any two (h, µ)-hypertrees have the
same identities. Moreover, the components assigned to two homologous graphs in [54] are the same. Hence, the
(unweighted) subgraphsH(G) induced by the components of any two (h, µ)-hypertrees are the same. The second
property that was observed is that this subgraph H(G) is in fact a (rooted) spanning tree of G, the corresponding
(h, µ)-hypertree. Another easy observation that can be obtained by following the recursive construction of an
(h, µ)-hypertree (see Section 4 of [54]), is that each node in an (h, µ)-hypertreeG is adjacent to at most one edge
which is not in the tree H(G), and that the root of H(G) is adjacent only to edges in H(G).

Fix an integer τ . Given a (h, µ)-hypertree G, we transform G into a new graph G′ according to the following
procedure (see Figures 10 and 11). We replace every edge (u, v) in G where ID(u) < ID(v) with a simple path
P (u, v) containing 2τ+2 consecutive nodes, i.e., P (u, v) = (x1, x2 · · · , x2τ+2), where x1 = u, and x2τ+2 = v.
For i = 2, · · · , 2τ + 1, the port number at xi of the port leading to xi−1 (respectively, xi+1) is 1 (resp., 2). The
port-number at x1 (respectively, x2τ+2) of the port leading to x2 (resp., x2τ+1) is the same as the port-number
of the port leading from u (resp., v) to v (resp., u) in G. The weight of the edge (x2τ+1, x2τ+2) is the weight
of (u, v), that is, ω(x2τ+1, x2τ+2) = ω(u, v), and the weight of all other edges in P (u, v) is 1. The identities of
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Figure 10: Transforming an edge of G (the upper part) to a path of G′ (the lower part) for τ = 1 and the case that
the component of u points at v. The component of v points at v’s port 1.

the nodes in the resulted graph are given according to a DFS traversal on G′. We now describe the component of
each node in G′. Let (u, v) be an edge in G and let P (u, v) = (x1, x2 · · · , x2τ+2) be the corresponding path in
G′, where x1 = u and x2τ+2 = v (here we do not assume necessarily that ID(u) < ID(v)). Consider first the
case that in the graph G, the edge (u, v) belongs to the tree H(G). Assume without loss of generality that the
component of u in G points at v. For each i = 1, 2, · · · , 2τ + 1, we let the component at xi point at xi+1 (the
component at x2τ+2 is the same as the component of v in G). Consider now the case that (u, v) does not belong
to H(G). In this case, for i = 2, 3, · · · , τ +1, we let the component at xi point at xi−1 (the component at x1 = u
in G′ is the same as the component of u in G) and for i = τ + 2, τ + 3, · · · , 2τ + 1, we let the component at xi
point at xi+1 (similarly, the component at x2τ+2 is the same as the component of v in G).

By this construction of G′, we get that the subgraph H(G′) induced by the components of G′ is a spanning
tree ofG′, and it is an MST ofG′ if and only ifH(G) is an MST ofG. LetF(h, µ, τ) be the family of all weighted
graphs G′ obtained by transforming every (h, µ)-hypertree G into G′ using the method explained above.

Lemma 9.1 If there exists a proof labeling scheme for MST on the family F(h, µ, τ) with memory complexity `
and detection time τ then there exists a 1-proof labeling scheme (a proof labeling scheme in the sense of [54])
for the MST predicate on the family of (h, µ)-hypertrees with label size O(τ`).

Proof: Let (M′,V ′) be a proof labeling scheme for MST and the family F(h, µ, τ) with memory complexity `
and detection time τ . We describe now a 1-proof labeling scheme (M,V) for the MST predicate on the family
of (h, µ)-hypertrees. Let G be an (h, µ)-hypertree that satisfies the MST predicate. We first describe the labels
assigned by the marker M to the nodes on G. In this lemma, we are not concerned with the time needed for
actually assigning the labels using a distributed algorithm, hence, we describe the marker M as a centralized
algorithm and not as a distributed one. (We note that this is consistent with the model of [54] that considers only
centralized marker algorithms.)

The marker M transforms G to G′. Observe that G′ must also satisfy the MST predicate. M labels the
nodes of G′ using the markerM′. Note that any label given by the markerM′ uses at most ` bits. Given a node
u ∈ G, let e1(u) be the edge not in the tree H(G) that is adjacent to u (if one exists) and let e2(u) be the edge
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Figure 11: The case that the component of u points at u’s port 3 that does not lead to v, and the component of v
points at v’s port 1 that does not lead to u.

in H(G) leading from u to its parent in H(G) (if one exists). Let P1(u) = (w1, w2 · · · , w2τ+2) be the path in
G′ corresponding to e1(u). If u is not the root of H(G) then e2(u) exists and let P2(u) = (y1, y2 · · · , y2τ+2) be
the path in G′ corresponding to e2(u), where y1 = u and y2τ+2 is the parent of u. For the root r of H(G), let
P2(r) be simply (r). If u is not the root of H(G) then for each i ∈ {1, 2, · · · , 2τ + 1}, the markerM copies the
labelsM′(yi) andM′(wi) into the i’th field in the labelM(u). (Note that the labelsM′(wi) are copied in the
labels given byM to both end-nodes of e1(u).) If r is the root of H(G) then e2(r) does not exist and actually,
also e1(r) does not exist, as r is not adjacent to any edge not in H(G). The markerM simply copies the label
M′(r′) into the labelM(r), where r′ is the corresponding node of r in G′.

In the model of proof labeling schemes in [54], the verifier V at a node u ∈ G can look at the labels of all
nodes v such that (u, v) is an edge of G. In particular, it sees the labels assigned by M′ to all nodes in G′ at
distance at most 2τ from its corresponding node u′ inG′. LetBτ (u′) be the set of nodes at distance at most τ from
u′ in G′. We let the verifier V at u simulate the operations of the verifier V ′ at each node in Bτ (u′)–this can be
achieved as the information in the 1-neighbourhood of u (in G) contains the information in the τ -neighbourhood
of G′ of any node in Bτ (u′). Finally, we let V(u) = 1 if and only if V ′(x) = 1 for all x ∈ Bτ (u′). It can be
easily observed that (M,V) is indeed a 1-proof labeling scheme for the family of (h, µ)-hypertrees. Moreover,
each label assigned by the markerM uses O(τ`) bits. (Note that the model in [54] restricts only the sizes of the
labels and not the memory size used by the verifier.) This completes the proof of the lemma. �

Corollary 9.2 Fix a positive integer τ = O(log n). The memory complexity of any proof labeling scheme for
F(n) with detection time τ is Ω( log2 n

τ ) = Ω(log n). (Recall F(n) represents all connected undirected weighted
graphs.)

Proof: In [54] we showed that the label size of any proof labeling scheme for the MST predicate and the family
of (log n, n)-hypertrees is Ω(log2 n) bits. The claim now follows by combining the previous lemma together
with the fact that the number of nodes in a graph G′ ∈ F(log n, n, τ) is polynomial in n. �
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10 The self-stabilizing MST construction algorithm

We use a transformer that inputs a non-self-stabilizing algorithm and outputs a self-stabilizing one. For simplicity,
we first explain how to use the transformer proposed in the seminal paper of Awerbuch and Varghese [15] (which
utilizes the transformer of its companion paper [13] as a black box). This already yields a self-stabilizing MST
algorithm with O(n) time and O(log n) memory per node. Later, we refine that transformer somewhat to add
the property that the verification time is of O(log2 n) in a synchronous network, or O(min{∆ log3 n, n}) in an
asynchronous one. We then also establish the property that if f faults occur, then each fault is detected within its
O(f log n) neighbourhood.

The Resynchronizer of [15] inputs a non-stabilizing synchronous input/output algorithm4 Π whose running
time and memory size are some TΠ and SΠ, respectively. Another input it gets is D̂, which is an upper bound on
the actual diameterD of the network. It then yields a self-stabilizing version whose memory size isO(SΠ+log n)
and whose time complexity is O(TΠ + D̂).

For our purposes, to have the Resynchronizer yield our desired result, we first need to come up with such a
bound D̂ on the diameter. (Recall that we do not assume that D, or even n, are known). Second, the result of
the Resynchronizer of [15] is a synchronous algorithm, while we want an algorithm that can be executed in an
asynchronous network. Let us describe how we bridge these two gaps.

We use known self-stabilizing protocols [1, 28] to compute D, the diameter of the network, in time O(n),
usingO(log n) bits of memory per node. We use this computedD as the desired D̂. Note that at the time that [15]
was written, the only algorithm for computing a good bound (of n) on the diameter with a bounded memory had
time complexity Θ(n2) [3].

To bridge the second gap, of converting the resulting self-stabilizing algorithm for an asynchronous network,
we use a self-stabilizing synchronizer that transforms algorithms designed for synchronous networks to function
correctly in asynchronous ones. Such a synchronizer was not known at the time that [15] was written, but several
are available now. The synchronizer of [10, 11] was first described as if it needs unbounded memory. However,
as is stated in [10], this synchronizer is meant to be coupled with a reset protocol to bound the memory. That is,
to have a memory size of O(log n) and time O(n), it is sufficient to use a reset protocol with these complexities.
We use the reset protocol of [13]. Similarly, this reset protocol is meant to be coupled with a self-stabilizing
spanning tree construction algorithm. The complexities of the resulting reset protocol are dominated by those
of the spanning tree construction. We plug in some spanning tree algorithm with the desired properties (such as
[1, 28]) whose memory size and time complexities are the desired O(log n) and O(n) in asynchronous networks,
respectively. (It is easy to improve the time to O(D) in synchronous networks.) This yields the desired reset
protocol, and, hence, the desired synchronizer protocol5.

Let us sum up the treatment of the first two gaps: thanks to some new modules developed after [15], one can
now use the following version of the main result of [15].

Theorem 10.1 Enhanced Awerbuch-Varghese Theorem, (EAV): Assume we are given a distributed algo-
rithm Π to compute an input/output relation. Whether Π is synchronous or asynchronous, let TΠ and SΠ denote
Π’s time complexity and memory size, respectively, when executed in synchronous networks. The enhanced
Resynchronizer compiler produces an asynchronous (respectively, synchronous) self-stabilizing algorithm whose
memory size is O(SΠ + log n) and whose time complexity is O(TΠ + n) (resp., O(TΠ +D)).

The EAV theorem differs from the result in [15] by (1) addressing also asynchronous algorithms, and (2) basing
4An input/output algorithm is one whose correctness requirement can be specified as a relation between its input and its output.
5An alternative synchronizer can be based on the one of [19], again, coupled with some additional known components, such as a

module to compute n.
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the time complexity on the actual values of n and D of the network rather than on an a-priori bound D̂ that may
be arbitrarily larger than D or n.

Recall from Theorem 4.4 that in synchronous networks, algorithm SYNC MST constructs an MST in O(n)
time and using O(log n) memory bits per node. Hence, plugging in algorithm SYNC MST as Π yields the fol-
lowing theorem.

Theorem 10.2 There exists a self-stabilizing MST construction algorithm that can operate in an asynchronous
environment, runs in O(n) time and uses O(log n) bits of memory per node.

10.1 Obtaining fast verification

The Resynchronizer compiler performs iterations forever. Essentially, the first iteration is used to compute the
result of Π, by executing Π plus some additional components needed for the self-stabilization. Each of the later
iterations is used to check that the above result is correct. For that, the Resynchronizer executes a checker. If
the result is not correct, then the checker in at least one node “raises an alarm”. This, in effect, signals the
Resynchronizer to drop back to the first iteration. Let us term such a node a detecting node. Our refinement just
replaces the checker, interfacing with the original Resynchronizer by supplying such a detecting node.

We should mention that the original design in [15] is already modular in allowing such a replacement of a
checker. In fact, two alternative such checkers are studied in [15]. The first kind of a checker is Π itself. That
is, if Π is deterministic, then, if executed again, it must compute the same result again (this is adjusted later in
[15] to accommodate randomized protocols). This checker functions by comparing the result computed by Π in
each “non-first” iteration to the result it has computed before. If they differ, then a fault is detected. The second
kind of a checker is a local checker of the kinds studied in [3, 13] or even one that can be derived from local
proofs [54, 55]. That is, a checker whose time complexity is exactly 1. When using this kind of a checker, the
Resynchronizer uses one iteration to execute Π, then the Resynchronizer executes the checker repeatedly until a
fault is detected. It was argued in [15] that the usage of such a checker (of time complexity exactly 1) is easy,
since such a checker self-stabilizes trivially. We stress that it was later shown that such a checker (whose time
complexity is 1) must use Ω(log2 n) bits [55]. Hence, plugging such a checker into the Resynchronizer compiler
cannot yield an optimal memory self-stabilizing algorithm.

The door was left open in [15] for additional checkers. It was in this context that they posed the open problem
of whether MST has a checker which is faster than MST computation, and still uses small memory. (Recall that
Theorem 8.5 answers the open problem in the affirmative.)

We use a self-stabilizing verifier (of a proof labeling scheme) as a checker. That is, if a fault occurs, then
the checker detects it, at least in one node, regardless of the initial configuration. Such nodes where the fault is
detected serve as the detecting nodes used above by the Resynchrnonizer. The following theorem differs from the
EAV theorem by stating that the final protocol (resulting from the transformation) also enjoys the good properties
of the self-stabilizing verifier. I.e., if the self-stabilizing verifier has a good detection time and good detection
distance, then, the detection time and distance of the resulting protocols are good too.

Theorem 10.3 Suppose we are given the following:

• A distributed algorithm Π to compute an input/output relation R. Whether Π is synchronous or asyn-
chronous, let TΠ and SΠ denote Π’s time complexity and memory size, when executed in synchronous
networks.

• An asynchronous (respectively, synchronous) proof labeling scheme Π′ for verifyingRwith memory size SΠ′ ,
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whose verifier self-stabilizes with verification time and detection distance tΠ′ and dΠ′ , and whose construc-
tion time (of the marker) is TΠ′ .

Then, the enhanced Resynchronizer produces an asynchronous (resp., synchronous) self-stabilizing algorithm
whose memory and time complexities areO(SΠ +SΠ′+log n) andO(TΠ +TΠ′+ tΠ′+n) (resp., O(TΠ +TΠ′+
tΠ′ +D)), and whose verification time and detection distance are tΠ′ and dΠ′ .

Proof: The proof relies heavily on the Resynchronizer compiler given by the EAV theorem (Theorem 10.1). This
Resynchronizer receives as input the following algorithm Π′′, which is not assumed to be neither self-stabilizing
nor asynchronous. Specifically, algorithm Π′′ first constructs the relationR using algorithm Π and, subsequently,
executes the marker algorithm of the proof labeling scheme Π′.

The resulted Resynchronizer (when executing together with the algorithm Π′′ it transforms) is a detection
based self-stabilizing algorithm (see the explanation of the detection time and distance in Section 2.5). It executes
algorithm Π′′ for a set amount of time (here, counting the time using the self-stabilizing synchronizer) and then
puts all the nodes in an output state, where it uses the self-stabilizing verifier of the proof labeling scheme Π′ to
check. (Recall, in contrast to the marker algorithm, the verifier algorithm of Π′ is assumed to be self-stabilizing.)
The detection time and the detection distance of the combined algorithm thus follow directly from the detection
time and the detection distance of the proof labeling scheme Π′. This concludes the proof of the theorem. �

Now, as algorithm Π, we can plugged in Theorem 10.3 the MST construction algorithm SYNC MST, that
uses optimal memory size and runs in O(n) time. Furthermore, two possible proof labeling schemes that can
be plugged in Theorem 10.3 as Π′ are the schemes of [54, 55]. Both these schemes use O(log2 n) memory
size. Since their detection time is 1, they stabilize trivially. The corresponding distributed markers are simplified
versions of the marker of the proof labeling scheme given of the current paper, and hence their construction time
is O(n). Hence, plugging either one of these schemes as Π′ yields the following.

Corollary 10.4 There exists a self-stabilizing MST algorithm withO(log2 n) memory size andO(n) time. More-
over, its detection time is 1 and its detection distance is f + 1.

Finally, by plugging to the Resynchronizer given in Theorem 10.3, the construction algorithm SYNC MST as Π
and our optimal memory proof labeling scheme mentioned in Theorem 8.5 as Π′, we obtain the following.

Theorem 10.5 There exists a self-stabilizing MST algorithm that uses optimal O(log n) memory size and O(n)
time. Moreover, its detection time complexity is O(log2 n) in synchronous networks and O(∆ log3 n) in asyn-
chronous ones. Furthermore, its detection distance is O(f log n).

10.2 Combining self stabilzing algorithms

The algorithm in this paper is composed of multiple modules (Figures 12 and 13). Some of them are self stabiliz-
ing, and some are not. When composing self stabilizing algorithms together, the result may not be self stabilizing,
so one should take care [34]. We have claimed the stabilization of composite programs throughout this paper.
For the sake of completeness, let us go over all the components here once again, to recall that their composition
self stabilizes in spite of the composition.

The main composition is that of the transformer algorithm of Awerbuch and Varghese [15] together with a
checking scheme. The way to perform this composition, as well as its correctness, have been established in [66]
(as well as in [15]). See Theorem 6.1 in [15] and Theorem 9.3.2 in [66].
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Figure 12: Structure of the self-stabilizing (synchronous or asynchronous) MST construction algorithm obtained
by the enhanced Resynchronizer.
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Figure 13: Algorithm SYNC MST, mainly consisting of algorithms Count Size and Find Min Out Edge,
induces the hierarchy of a MST. From the hierarchy the proof-labeling-scheme, mainly consisting of the trains
and the construction of partitions Bottom and Top, produces a marker and a verifier.
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A synchronizer uses, as an input, the number of nodes and the value of the diameter computed by other
algorithms. Here the correctness follows easily from the “fair combination” principle of [34, 64]. That is, the
algorithms computing these values do not use inputs from the other algorithms in the composition. Moreover,
their outputs stabilize to the correct values at some points (from their respective proofs, that do not depend on
assumptions in other algorithms). From that time on, their values are correct.

The tree construction itself is not supposed to be self stabilizing for the transformer scheme of [15]. This is
also the case with the marker algorithm, since the MST construction algorithm and the marker together constructs
a data structure to be verified. (Recall that verifying the MST alone is costly [53]; hence the idea is to construct
a “redundant” representation of the MST, containing the MST plus the proof labels, such that verifying this
redundant data structure is easier).

It is left to argue that the verifier on its own self stabilizes, in spite of the fact that it is composed of several
components. Recall that the output of the verifier is a logical AND of several verifiers. That is, if either the
verifier for the scheme for the Well-Forming property (Sections 4 and 5) or the verifier for the scheme for the
Minimality property (Sections 6, 7, and 8) outputs “no”, then the combined (composed together) verifier outputs
no. Hence, the different schemes do not interfere with each other. If all of them are self stabilizing, then the
composition is self stabilizing. In particular, the scheme for verifying the Well-Forming property runs in one
time unit repeatedly. As observed by [15], such a verifier is necessarily self stabilizing. It is then left to show that
the verifier for the Minimality property self stabilizes.

Note that Section 6 describes a part of the marker, devoted to the scheme for verifying the Minimality prop-
erty. Recall that the marker is not required to self stabilize. Section 7 describes the trains process which is
composed of two parts: the convergecast of the information to a part’s root, and its broadcast from the root. The
second process (the broadcast) inputs (at the root) the results of the first process, but not vice versa. Hence,
clearly, the composition self stabilizes as above (that is, after the first process eventually stabilizes, the second
process will eventually stabilize too). The pieces of information carried by the train are then used by each node
to compare information with its neighbours (in Section 7.2) and by the part root (in Section 5). Again, the flow
of information between modules is one way. That is, from the train process to the computations by each node
and by the root. After the trains stabilizes, so does the rest, eventually. (The later computations also input the
output of the module computing the number n of nodes in the network; again, the flow of information is only
unidirectional, and hence the verifier does stabilize after the n computation stabilizes).

Comment 10.1 Using later synchronizers: As explained in Section 10, for simplicity of the presentation we
prefer using the synchronizer and the reset protocols built in the scheme of [15], since the proof of their compo-
sition is already covered in [15, 66]. For those who prefer using the later synchronizers and reset protocols we
mentioned, e.g., [11], the composition would remain self stabilizing even if we use those. The correction of this
statement has essentially been established in those synchronizers papers. That is, they presented synchronizers
such that they can take any algorithm intended to run over a synchronous network, compose with it, and have
it run correctly (and in a self-stabilizing manner) in an asynchronous network. The same holds also for self
stabilizing reset protocols.

For the sake of completeness, let us recall, nevertheless, why this composition is correct. For the synchronizer
to work, it needs a certain output from the algorithm. This output is TRIVIAL. That is, a SYNCHRONOUS
algorithm at a node at a pulse acts as follows. It receives messages from ALL the neighbours (or at least a
statement that no message is going to arrive from a specific neighbour), and then processes a message from each
neighbour. Then it is ready for the next pulse.

Thus, the synchronizer needs to know (1) when did the algorithm receive messages from all the neighbours.
For this purpose, the synchronizer receives the messages on the algorithm’s behalf, and when it receives all of
them (or notifications that no messages will be sent), it passes all of them to the algorithm together, which, in turn,
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processes all of these messages together. The algorithm needs then to tell the synchronizer that it has finished
processing the messages. If this processing generates messages to be sent to neighbours, the algorithm needs to
give these new messages to the synchronizer to send them on the algorithm’s behalf. (This is done so that if there
is a neighbour u to which the node does not send a message in the current pulse, the synchronizer will send a
“dummy” message, saying that no message will arrive.)

The analysis of the synchronizers (in the papers that presented self stabilizing synchronizers, e.g., [11]) were
base on the rather obvious observation regarding the correctness of this trivial information for any “reasonable”
algorithm, starting from the second round. That is, it is not assumed that the computation or the messages are
correct. What is assumed by the synchronizers is just the fact that the algorithm computed already the messages
from the previous round (and is giving the synchronzer the resulting messages). Obviously, this assumption holds
for our algorithm too, so we can rely on the results of the papers where the synchronizers were designed.
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[46] M. Göös and J. Suomela. Locally checkable proofs. PODC, 159–168 (2011).

[47] S. K. S. Gupta and P. K. Srimani. Self-stabilizing multicast protocols for ad hoc networks. Journal of
Parallel and Distributed Computing, 63(1), 87–96 (2003).

[48] L. Higham and Z. Liang. Self-stabilizing minimum spanning tree construction on message passing net-
works. DISC, 194–208 (2001).

[49] A. Israeli and M. Jalfon. Token management schemes and random walks yield self stabilizing mutual
exclusion. PODC, 119–132 (1990).

[50] G. M. Jayaram and G. Varghese. The fault span of crash failures. JACM, 47(2), 244–293 (2000).

[51] M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling schemes for flow and connectivity. SIAM Journal
on Computing, 34, 23–40 (2004).

[52] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. Distributed Computing,
7(1), 17–26 (1993).

[53] L. Kor, A. Korman, and D. Peleg. Tight bounds for distributed MST verification. STACS, 69-80 (2011).

[54] A. Korman and S. Kutten. Distributed verification of minimum spanning trees. Distributed Computing,
20(4), 253–266 (2007).

[55] A. Korman, S. Kutten, and D. Peleg. Proof labeling schemes. Distributed Computing, 22(4), 215–233
(2010).

[56] A. Korman and D. Peleg. Compact separator decomposition for dynamic trees and applications. Distributed
Computing, 21(2), 141–161 (2008).

[57] S. Kutten and D. Peleg. Fast distributed construction of k-dominating sets and applications. PODC, 238–
249 (1995).

62



[58] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed MST for constant diameter graphs. Distributed Com-
puting, 18(6), 453–460 (2006).

[59] J. McQuillan, I. Richer, and E. Rosen. The New Routing Algorithm for the ARPANET. IEEE Transactions
on Communications, 28(5), 711–719 (1980).

[60] M. Naor and L. Stockmeyer. What can be computed locally? STOC, 184–193 (1993).

[61] D. Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM (2000).

[62] D. Peleg and V. Rubinovich. A near-tight lower bound on the time complexity of distributed minimum-
weight spanning tree construction. SIAM Journal on Computing, 30(5), 1427–1442 (2000).

[63] A. Segall. Distributed network protocols. IEEE Transactions on Information Theory, 29(1), 23–34 (1983).

[64] F. A. Stomp. Structured design of self stabilizing programs. Proc. IEEE 2nd Israeli Symp. on Theory of
Comput. Systems: 167–176 (1993).

[65] R. E. Tarjan. Applications of path compression on balanced trees. JACM, 26(4), 690–715 (1979).

[66] G. Varghese. Self-stabilization by local checking and correction. PhD dissertation, Laboratory for Com-
puter Science, Massachusetts Inst. of Tech nology (1992).

63


