2,401 research outputs found

    Integrated and Differentiated Spaces of Triangular Fuzzy Numbers

    Full text link
    Fuzzy sets are the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies. In mathematics, fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. In this paper, we use the triangular fuzzy numbers for matrix domains of sequence spaces with infinite matrices. We construct the new space with triangular fuzzy numbers and investigate to structural, topological and algebraic properties of these spaces.Comment: 10 pages, 17 reference

    Expert system training and control based on the fuzzy relation matrix

    Get PDF
    Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model

    Expert systems and finite element structural analysis - a review

    Get PDF
    Finite element analysis of many engineering systems is practised more as an art than as a science . It involves high level expertise (analytical as well as heuristic) regarding problem modelling (e .g. problem specification,13; choosing the appropriate type of elements etc .), optical mesh design for achieving the specified accuracy (e .g . initial mesh selection, adaptive mesh refinement), selection of the appropriate type of analysis and solution13; routines and, finally, diagnosis of the finite element solutions . Very often such expertise is highly dispersed and is not available at a single place with a single expert. The design of an expert system, such that the necessary expertise is available to a novice to perform the same job even in the absence of trained experts, becomes an attractive proposition. 13; In this paper, the areas of finite element structural analysis which require experience and decision-making capabilities are explored . A simple expert system, with a feasible knowledge base for problem modelling, optimal mesh design, type of analysis and solution routines, and diagnosis, is outlined. Several efforts in these directions, reported in the open literature, are also reviewed in this paper

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times

    Affine Registration of label maps in Label Space

    Get PDF
    Two key aspects of coupled multi-object shape\ud analysis and atlas generation are the choice of representation\ud and subsequent registration methods used to align the sample\ud set. For example, a typical brain image can be labeled into\ud three structures: grey matter, white matter and cerebrospinal\ud fluid. Many manipulations such as interpolation, transformation,\ud smoothing, or registration need to be performed on these images\ud before they can be used in further analysis. Current techniques\ud for such analysis tend to trade off performance between the two\ud tasks, performing well for one task but developing problems when\ud used for the other.\ud This article proposes to use a representation that is both\ud flexible and well suited for both tasks. We propose to map object\ud labels to vertices of a regular simplex, e.g. the unit interval for\ud two labels, a triangle for three labels, a tetrahedron for four\ud labels, etc. This representation, which is routinely used in fuzzy\ud classification, is ideally suited for representing and registering\ud multiple shapes. On closer examination, this representation\ud reveals several desirable properties: algebraic operations may\ud be done directly, label uncertainty is expressed as a weighted\ud mixture of labels (probabilistic interpretation), interpolation is\ud unbiased toward any label or the background, and registration\ud may be performed directly.\ud We demonstrate these properties by using label space in a gradient\ud descent based registration scheme to obtain a probabilistic\ud atlas. While straightforward, this iterative method is very slow,\ud could get stuck in local minima, and depends heavily on the initial\ud conditions. To address these issues, two fast methods are proposed\ud which serve as coarse registration schemes following which the\ud iterative descent method can be used to refine the results. Further,\ud we derive an analytical formulation for direct computation of the\ud "group mean" from the parameters of pairwise registration of all\ud the images in the sample set. We show results on richly labeled\ud 2D and 3D data sets

    Fuzzy Inference Systems for Risk Appraisal in Military Operational Planning

    Get PDF
    Advances in computing and mathematical techniques have given rise to increasingly complex models employed in the management of risk across numerous disciplines. While current military doctrine embraces sound practices for identifying, communicating, and mitigating risk, the complex nature of modern operational environments prevents the enumeration of risk factors and consequences necessary to leverage anything beyond rudimentary risk models. Efforts to model military operational risk in quantitative terms are stymied by the interaction of incomplete, inadequate, and unreliable knowledge. Specifically, it is evident that joint and inter-Service literature on risk are inconsistent, ill-defined, and prescribe imprecise approaches to codifying risk. Notably, the near-ubiquitous use of risk matrices (along with other qualitative methods), are demonstrably problematic at best, and downright harmful at worst, due to misunderstanding and misapplication of their quantitative implications. The use of fuzzy set theory is proposed to overcome the pervasive ambiguity of risk modeling encountered by today’s operational planners. Fuzzy logic is adept at addressing the problems caused by imperfect and imprecise knowledge, entangled causal relationships, and the linguistic input of expert opinion. To this end, a fuzzy inference system is constructed for the purpose of risk appraisal in military operational planning

    Gromov-Hausdorff convergence of state spaces for spectral truncations

    Full text link
    We study the convergence aspects of the metric on spectral truncations of geometry. We find general conditions on sequences of operator system spectral triples that allows one to prove a result on Gromov-Hausdorff convergence of the corresponding state spaces when equipped with Connes' distance formula. We exemplify this result for spectral truncations of the circle, Fourier series on the circle with a finite number of Fourier modes, and matrix algebras that converge to the sphere.Comment: 15 pages, 3 figures (published version
    corecore