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The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Ciear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9- !6, computing and educational facilities are shared

by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.
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Abstract

Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems

to characterize human expertise. This can be shown from the fact that an experienced human

operator can control some complex plants better than a computer can. This report proposes

the fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/Jond

examples, either in linguistic terms or in numerical values to mimic human processes of

perception and decision making. The knowledge base is codified in terms of many implicit

fuzzy rules. Fuzzy knowledge thus codified may also be compared to explicit rtdes specified

by a human expert. It can also provide a basis for modeling the human operator, and allow

comparison of what a human expert says to what he or she does in practice.

Two ezeperiments were performed. One, control of liquid in a tank, demonstrates how the

FERM knowledge base is elicited and trained. The other shows how to use a FERM, btlilt

up from linguistic rules, to control an inverted pendulum without a dynamic model.
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1 Introduction to Fuzzy Set Theory

Perfect notions or ezact concepts correspond to the sorts of things envisaged in pure mathe-

matics, while inezactness or fuzziness prevails in real life. A human operator or an expert's

knowledge about variables or their relationship tend to be fuzzy, i.e.,the observations and

thoughts of most people most of the time may be said to be mentally modeled and commu-

nicated to other persons in terms of natural language such as low, very low, high, very high,

etc. Often the outputs from a simulation model are also fuzzy, because of the inezac¢ncss

of model parameters and process and sensor noise. The fuzzy approach of expert system is

based on the premise that the key dements in human thinking are not crisply defined but are

more approximately defined. In other words, classes of objects in which the transition from

non-membership to membership in set theory is gradual rather than abrupt as in that of a

crisp set. It appears that much of the logic behind human reasoning is not the traditional

two-valued or even multivalued logic, but logic with fuzzy truth, fuzzy connectives and fuzzy

rules of inference.

By relying on the use of fuzzy hnguistic variables and fuzzy algorithms, this new approach

provides an approximate, yet effective and more flexible means of describing the behavior of

systems which are too complex or to ill-defined to admit precise mathematical analysis by

classical methods and tools. L.A.Zadeh[1], the founder of fuzzy set theory, modified a math-

ematical cornerstone, common set theory, and proposed the concept of fuzzy mathematics.

His proposal was to absorb the features by which human thinking could distinguish and

judge comphcated phenomenon. Fuzzy sets, which map the logic of true and false into sev-

eral ranges, are much more suitable to describe such large, complex systems having interfaces

with human experts.

1.1 Basic Set Theory

A set is defined as a collection or aggregate of objects. The objects that belong to the set

are termed the elements of the set. The term universal set is apphed to the set that contains

all the elements which one wishes to consider. The symbol/g represents a general universe.

A subset is the set that contains only certain dements from the universal set. For example,

letting A represent the letters in the English alphabet and B represent the letters in the

word failure, A = { a,b,c, .... , t,y,z } is a set and B = { f,a,i,l,u,r,e } is a subset. It is clear

that whether a collection of objects is called set or subset is determined by the definition of
the universe. A subset is sometimes called set under known contezt.

For any crisp set A, a characteristic function which determines, for any element of the

universe, whether that element is a member of A, is defined as:

1 iff z E A#A(z) = 0 otherwise (1)

It is dear that the characteristic function _tA of a classical or crisp set takes a unique

value in the two element set {0, 1}.



One may ask: what if an element is not completely in a set and also not completely out

of a set? For example, consider

A = {._[z is the Safe Temperature of an electric motor } (2)

Assume it is understood that for the given system, the normal temperature is around

200F. It seems safe to say that 100F, 130F, 160F and 180F are all elements of set A and it

seems equally safe to say that 800F, 900F are not elements of set A. But what about 240F

and 280F? Intuitively, it is more plausible that 220F is an element of A than that 250F is

an element of A. This plausibility leads to the generalizRtion of the degree of membership

in a set, which forms the basis of fuzzy set theory.

A fuzzy subset A of some universe// is a collection of objects from L/ such that the

characteristic function/z a takes any value in the interval [0,1]. Fuzzy set A is symbolicMly

denoted

= U} (3)
or

= _f._u t_a_l#z (4)

when M is a continuum, and

A = )#zl, • •., (.5)

when L/ has n elements.

The symbol # is employed to link the elements of the support with their grade of mem-

bership, and the support of a fuzzy set is the crisp set that contains all the elements that

have nonzero membership grade.

Consider equation (2) again and redefine it as a fuzzy set

A = z is the Safe Temperature of an electric motor } (6)

where the characteristic function

1.0 for 0<x<220
/_(z)#z = _ for 220 < z < 350 (7)1+(1=-220)/50)= - --

0.0 for a: > 3.50

#_l(z)#z is conventionally called membership function.

The fuzzy set _{ describes the imprecise term Safe Temperature. Clearly, the temperature

below 220F is considered safe, and the degree of membership is 1.0. It is not so clear what

happens when temperature reaches 270F. In this particular definitions of the fuzzy set Safe

Temperature, the degree of safety of a temperature 270F is 0..5. In this way, the imprecision

connected with the concept Safe Temperature can be captured mathematically and dealt

with in an algorithmic fashion.

In a fuzzy set, it is noticed that the transition between membership and non-membership

is gradual rather then abrupt, and that universe L/itself is not fuzzy. If the membership is

restricted in two values 0 and 1, a fuzzy set is reduced to a crisp set.



1.2 Fuzzy Union and Intersection

The definition of basic operations on sets must be modified for use in fuzzy set theory. Several

notable structures can be defined on #/[ in the interval [0,1], each of which introduces the

union and intersection operations, and which coincide with the classical ones. The widely

accepted max/min definition is given by Zadeh [21

Union

Intersection

ttAut_ = max(fta(_),it_l)

ttanO = rnin(ltAl¢), #tOi, ))

(s)

(0)



2 Fuzzy Relation and Knowledge Base

Any decision making process involves input sates and output actions. For instance, system

control is the decision and action in response to observed present and past system states

in order to improve system performance according to some given criterion; the decision

for failure diagnosis is based on observed symptoms (input states). Figure (1) shows tile

proposed framework of fuzzy knowledge base. The fuzzy sets 5"1,5"2," • ', S,,' • ,-4',,_ are

observed fuzzy states of a system, and the fuzzy sets C',,('_,-..,(_'./,...,(', are possible

control actions correspoading to these states. It is clear that each (_'j m_.y have some degree

of relevance to each Si. These relations form basis of the proposed fuzzy expert relation

matrix (FERM).

2.1 Crisp Relation and Fuzzy Relation

A crisp relation shows the presence or absence of the association and interaction between

elements of two or more sets. The relations, or the strength of ties, is either one or zero.

The Cartesian product of two crisp sets X and Y is defined as:

It is not associative, that is,

XxYytYxX

.._ _r} (10)

ff x #Y

For a family of crisp sets, the Cartesian product is generalized as [3]

x_ × x_ × ... × x_ = ((_,,z_,... ,_,)l,,_x, i = 1,2,...N} It1)

A relation among crisp sets Xx,X_,...X_, is a subset of the Cartesian product X 1 x X 2 >:

... × X,,, and is denoted as R(X1,X2,...X,,). Therefore

R(X1,X2,...X,) C X1,X_,...X,_ (12)

Figure 1: Relations of System States and Actions

t



For relations among sets Xa, Xa, .-'X,, the Cartesian product X1 × X2 ×.-. x X,, represents

the universal set.

Because a relation itself is also a set, the basic set concepts such as containment or subset,

union, intersection and complement can be applied without modification to relations.

Each crisp relation H can be defined by a characteristic function that assigns a value of 1

to every pair of the universal set belonging to the relation, and a 0 to every pair that does not

belong. For a given relation, this function assigns a value PR to every tuple (Xx, ,¥2," ".X_)
such that

1 iff (X_,X_,...x,) e Rpn(Xx,X_,'" -X.) = 0 otherwise (13)

A fuzzy relation is ma extension of a crisp relation [4]. The concept of crisp relation

cain be generalized to allow for various degrees, strength of relation, or interaction between

elements. The values of the characteristic function are no longer only zero or one in fuzzy

relations, they can take any values between zero and one:

{(0,1]i_ (-._,,%,..._,) e ff#_(X1, -X'z, • ""-;_'.) - 0 otherwise (14)

With the fuzzy characteristicfunction in mind, we can extend most theorems derived

from crisp set theory, because the crisprelationcan be viewed as a restrictedcase of the

more general fuzzy relation.

2.2 Binary Relation

To show one property of a fuzzy relation, let's restrict ourselves to a relation between two

sets.7(and Y which is called a binary relation.

In the real world, we can regard ._" as _n observed fuzzy state of a system which might

be couched in terms of natural language, e_nd the fuzzy set Y as the possible control action,.

The fuzzy relation defines the system in a fashion similar to the transfer function in control

theory.

A binary fuzzy relation defined in the Cartesian set _: x Y is a mapping from _'(z) and

_r(y) to R(z,F),

R: .¢×_"= [0,I]

v_ e _'(_), _ e ";"(z)

For each pair of elements (zi, y_) e (,_', Y), there exists a rli e [0, 1] which expresses the

strength of ties between the paiz z_ and yj. R is a actually a membership function of the

input states and the output decisions.
When the universe of discourse is infinite, the relation is in a continuous form. For

instance, the word similar can be mathematically expressed in the form

{ _ if fz-_,l <'5 (15)R(z, y) = 0 otherwise

5



i........i 03 i........i
xl '

! |
t

S ! | s
I ! I •

I i o !
I ! s |
! ! s
| I |
| !
I ! |
I ! i
I ' I i

e o ! s
e ¢ | f
l ! l t
I ! l I

!
e ! t :

I........ | ' ,
| .... ._°.t

yl

y2

y3

Figure 2: Example of a Binary Fuzzy Relation

When the universe of discourse if finite, the relation is in the discrete form, and is treated
as a fuzzy relation matriz.

kC , I>)=

7"nl "l'n2

• " " 7"1m

• " " 7"2m

• " " 7"nl"n

(16)

where 7"ij E [0, 1] i = 1, 2,.--m; j = 1, 2,...rt;

Here is an example of fuzzy relation matrix ]_ defined in ,Y = {zl, z2 } and I7 = {_/1, _2, _3}

]_(_,_) = [ 0.30.9 0.51"00.10"0] (17)

which can be displayed as a directed graph shown in figure (2).

The number between two nodes represents the strength of ties between tuples.

2.3 T-Norms and T-Conorms

T-norms, or triangular norms, and T-conorms, or triangular conorms, are general operators

used to deal wittl data which fall in the interval [0,1]. Statisticians have used this concept

for a long time [5]. Now this concept has been adapted to fuzzy set theory, especially in the

fields of fuzzy logic and fuzzy expert systems [6].

T-norm is a mapping from two arguments L E [0, 1] to T E [0, 1]. That is, L × L _ T
and

6



T-conorm is a mapping from two argument L _ [0,1] to T_o E [0,1]. That is, L × L --" T_o

such that it has the following characteristics:

1. Monotonicity
if x<y, w<_', then, T(.r,w) <_ T(V,z)

T.o(X,w) <_Lo(V, :)
(18)

2. Commutative

T(x,y) = T(y,x) T,o(X,y ) = T,o(y,x) (19)

3. Associative

T(T(x,y),z) = T(z,T(y,z)) T_o(Too(_,v),:) = T,o(x,T_o(v,,)) (20)

4. Boundary conditions

T(x,O) = 0

T_o(_,O) =

and T(z,1) = x for T-norm (21)
and T¢o(z,1) = 1 for T-conorm

V .,v,.,w _ [0,1]

A method for generating a T-norm and a T-conorm is summarized as follows:

Suppose g(s) and h(s) are strictly monotonic in a segment of R, and

G(t) = g-t(s), H(t) = h-'(s)

If F(a,b) is generated by g(s) , where g(0) = 0 and g(1) = 1, then

is a T-conorm and

is a T-norm.

F(a,b) = G[1 A g(a) + g(b)]

F(a,b) = G[O ,.! (g(a) + g(b) - 1)]

(22)

(23)

(24)

Some T-norms and T-conorms

T(x,y) = min(x,y) = z A y

T(x,y) = z .y

T(x,v) = ,r
l+(1-z)(1-y)

zi¢
T(x, y) = .+(1-.}(z+u-zu)

T(x,y)= 1-- {1A [(1-- x) p+(1-y)p]t/p}

T,o(Z,y) = maz(z,y) = z V y

T_o = x + y - x " y

T,o(x, Y) =
1 +:tit

z+y-_V-(1-v)_ey
T.o(x,y)= .+(x-.)(x-*v)

T_o(x,V) = V(z p + vP) 1/!'

pc

(25)



All T-norms and T-conorms satisfy DeMorgan's law, but only the first set of T-norm and

T-conorm (max-min) satisfies

T(x,z)=x

T(x, Tco(y,z)) = Tco(T(x,y),T(x,z))

Too(_,_) =
T¢o(T(x, T(y, z)) = T(T_o(X,y), T¢o(X,z ))

(26}

Therefore, the max-min operators are widely used in fuzzy set theory as fuzzy operators.

But in the fuzzy relation operation, other T-norms and T-conorms can be used and compared

under certain circumstances.

2.4 Representing Knowledge by Fuzzy Relations

Suppose we have a set of rules expressed in linguistic terms.

IF X_ and f(_ and...and f(_ THEN

_rF ._ ,_nd J_'7 a_d... _,_d X7 THEN
IF : ...

do
do

do "

do "

do _
IF : ...

IF ff_ and ft'_ and...and X_' THEN

(27)

where the logic or can also be used in the place of, or in combination with logic and.

The above rn rules constitute m fuzzy relations.

(28)

i= 1,2,...m

The overall relation matrix/_ obtained from the fuzzy rules is calculated as the union of

m individual relation matrices [7]

h = h, u h_ u...h_ = U R, (29)
i=1

This fuzzy relation matrix/_ functions as a knowledge base which will trigger an output

action Y when a set of fuzzy states "i -i ",X1, X2," • ", X,, is given.

An example is a linguistic rule concerning identification of a broken bearing in a servo-

motor by using vibration measurement:

IF the vibration is high and the period is proportional to motor speed

THEN the likelihood of a broken bearing is high
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2.5 Fuzzy Clustering

It often happens that the rules collected from experts are incomplete or even contradic-

tory. When two experts observe the same, or almost the same system states, but give out

completely different conclusions, the knowledge base so constructed could form a misleading
inference chain.

When we are given M patterns, At,A2,...,Ap, contained in the pattern space S, the

process of clustering can be formally stated as: seek the regions SI,S2,...,SK such that

every Ai, i = 1,2,.. •, M falls into one of these regions and no Ai falls in two regions [8] :

that is,

S, u S2 u ... u SK = 5 (30)

,-q'i # Sj V i #: j (31)

Therefore, the linguistic rules collected are first passed through a prefilter, for rule val-

idation (tilting out the contradicted rules), and for clustering (putting the similar rules

together).

2.6 Inference with Fuzzy Relation Matrix

The inference engine forms one of the important functional blocks of a knowledge-based

system. Equipped with the fuzzy relation matrix constructed with an inference engine, the

system is capable of inferring a useful conclusion with given data input. We call it a Fuzzy

Expert Relation Matrix, or FERM. Fuzzy composition [9} [10] is used for fuzzy the inference

engine.

As inference engine of fuzzy composition implemented with a fuzzy relation matrix is

parallel inherited. That means, in contrast to the inference engine of backward or forward

reasoning in a symbolic rule-base expert system, this method allows all the rules be actived

in parallel, and therefore makes possible much faster computation.

Suppose we have two fuzzy relations R E /_'(_" x 2) and ,.q e _'(2 x l_). A fuzzy relation

/_ o S defined in .._" x I7- is the composition of

(h o S)l.. = sup,_z {T[R(2, Z), S(Z, Y)] } (32)

or

(h ® :t)l,., = Sup,_ {r, oiht2, 2), _(2, %1}

where o and @ are operators for fuzzy composition.

They are associated together by the following relationship.

(33)

In the previous example of fuzzy relations, the inference composition was

'?"= h o (2, x 2, x... x 2,,)

(34)

(35)

10



or

and in more details

[
= Proj¢ iinterception(

For simplicity, consider the binary fuzzy relation

Antecedents ft'i _ Consequences

Premise ._"

]:"= h®(2, × 22 _ ... × 2.)

f" = Sup,,e.L,=l,_,..., T ._'i, [_)

" }1-I2,,h)
i=I

t} i= 1,2,... ,m

(36)

(37)

(38)

6'onclusion f" =?

To infer the conclusion ]_" for any premise _Y, perform max-rain composition of .,_" and 1_"

}I) =/_oX = (2i x f;) oX (39)

It is easy to verify that the fuzzy set I-" can be computed as the union of fuzzy set I_

intersected by Ai with a constant membership function that plays the role of rule firing,

9(y)= Q[A,(y)Afi(y)} Vy _ f" (40)
i=I

and

and

Ai = Sup,_,t [)['(x)A ,_'i(x)] i = 1,2,-.. ,m

The calculation is a three-step scheme which works as follows:

(41)

(42)

1. Matching step

The fuzzy data ._ is matched against -'_.'i and the value of the possibility measure is

obtained. It returns with a degree to which the fuzzy quantities _." and _f,'/overlap.

2. Active step

The fuzzy consequence l_i is intersected by the degree of overlap Ai. The higher Ai, the

more the rule _ is fired.

3. Combination step

All the results coming from different rules are put together by means of the union

composition.

11
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3 Fuzzy Learning

The idea of a fuzzy expert relation matrix (FERM) has been expressed in the previous

sections. We are going to use this idea to capture the human operator's expertise and store

it in the form of a FERM. A computer fluid level control simulation has been developed for

experiment and demonstration. The fluid tank (figure .5) is a nonlinear system whose model

is unknown. Its inputs and outputs are fuzzified to natural language.

A human operator observes a series of errors between the liquid set level and the current

level, and give out a series of control actions. Our purpose is to capture the human operator's

control strategy based on his/her observations and control outputs.

The observed system states and operator's control actions are recorded. These records

are then to be used for building the FERM by means of fuzzy learning.

3.1 Fluid Level Control System Example

The fluid tank has a pipe for flow into the tank and a pipe for flow out from the tank. Each

flow is controlled by its corresponding valve. The shape of the tank can be changed easily

as a set of parameters. This simulated tank system has two functional inputs: two valve

openings which are controlled by a human operator. The functional output is fluid level.

The goal of the operation is to keep the fluid level as close to the set point as possible. There

are random noises associated with the valve openings and the measurement of the fluid level,

For simplicity, the functional inputs and output are fuzzified by linear membership functions.

The relation matrix /_ is given by the Cartesian product:

(43)

where

Ek = {,uE, #1,/rE2#2, ..., /tm2, #24}

is the fuzzy variable of error between the measurement and set point.

(44)

C-E_ = {ttcE, # 1, ttcE, #2, ..., +tce2, #24} (45)

is the fuzzy variable of error rate of change between the measurement and set point.

Uj, = {Pv, #1, #v, #2, ..., #tr,, #24} (46)

is the fuzzy variable of control valve openings, a function of the two valve opening Vt and

vs.

The overall relation matrix obtained from the fuzzy rules is calculated as the union of N

individual relation matrices:

N

h= u h2u...u hk...= U L, (47)
k=l
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The output b" from the fuzzy controller can therefore be obtained by its inputs E and (rE

using the composition rules of inference.

(r=(_ x d'E) o R 148)

It can be expressed at each sampling instant as follows:

(f(nT) = (P,(nT) x C-E(n.T))o (4_)

A fuzzy decision (de-fuzzification) is required to obtain the crisp control action ,t of _he

process.

Building of the fuzzy rule starts with a completely empty relation matrix model from

which it is not possible to make any conclusions. As the iterations proceed, various entries

(43) and (47) are added to the model. These are essentially accurate but only cover a portion

of the input-output space. Any assumption that is made to allow extra entries to be added

to the relation matrix need not to be very accurate.

The element of the relation matrix can be said to be a rule of the form

If E_ and C'E j then (f_' with membership #,j_ (50)

where the antecedents and consequences are base fuzzy sets.

The fuzzy model, as currently programmed, is described by a relation matrix with 24 ×

24 × 24 = 13824 elements, where each variable is defined to have 24 base fuzzy sets. Each

rule of the form (50) where #;j_ is greater than an arbitrary cutoff level ( say 0.1 ) is called

a simple rule. Any pair _7i and C'E' will be the antecedents for a number of simple rules.

This set of simple rules is called a compound rule for inputs Ei and CZE,. For this model

a compound rule can consist of a maximum of 24 simple rules, one for each fuzzy output

set. The model can contain a maximum of ,576 compound rules, consisting of a maximum of

13824 rules. The relation matrix model can be described in terms of the number of simple

and compound rules it contains.

3.2 Learning Runs

A series of experiments was performed to investigate the learning properties of the proposed

fuzzy identification and control algorithm. We had two kind of experiments: one with human

operator, and another with a PID controller on an approximate hnear plant in the place

of human operator. In the first case, we assumed after some training time, that the human

operator would always give correct control just as an experienced human operator. In the

second case, we can assume the PID operator was always doing the most desirable control.

Each run consisted of 100 point samples, with the relation matrix obtained at the end

of each run used as the initial matrix of the next run. Noise levels were set to 10% of the

input valve opening and 5% of the fluid level measurement. Each run was started at the

same initial fluid level in the tank, which is approximately half way between the bottom and

the set point level of the tank. Learning was judged by the number of simple and compound

15



rules in the relation matrix at the end of each run, and by the variance of the fluid level

around the setpoint during a run. The variance is a measure of the controller's ability _o

control.

3.3 Results of Nonlinear Liquid Tank Experiment

Sufficient learning runs were performed to ensure a sub-convergence of the process model

identification. 'that is, the learning run sequence was stopped when the number of compound

rules had converged, and the number of simple rules was at least increasing only slowly.

The identified model was much fuzzier than the predefined model (a decision table built

artificially) in the sense that the ratio of compound rules to simple rules was much lower

for the identified model !0.12 - 0.2 for identified model, 0.5 for predefined model). However,

the test runs did not show that the predefined model was much better than that of the

identified modeh This means some rules are not sensitive to the systelu performance. On

the other hand, the number of simple rules increased slowly for many runs after the number

of compound rules had converged. This had little effect on the quality of control. Hence the

learning runs were stopped before convergence of the simple rules.

In the simulation test, the number of simple rules was arouud 3230 and the numDer of

compound rules around 120, after about 800 samples.

After the FERM model was built, the data recorded was put into this model, and the

outputs from the model were compared to the actual control measurements. For the relation

matrix established after different iteration entries using (43) anti (47), the results are shown

in figures (6), (7) and (8).

In these figures, the solid line represents the data output from the identified model, while

the dotted line represents the data by measurement. It is seen that after a certain number of

learning trials, the FERM model captures the human operator's control process quite well.
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Figure 6: Sample Points: 10
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3.4 Conclusions

From these experiments, it is concluded:

1. The FERM model is capable of capturing and identifying the human operator's control

capability and knowledge about a given process control task.

. The FERM model can be built up from some approximation model, for example, a

linearized model of a system. Then so constructed, the FERM model can be used to

control the nonlinear system.

3. The FERM model is not very sensitive to noise.

. The knowledge collected in the FERM form is very natural to a human operator's

ways of thinking. The FERM's way of watching and learning makes it easier to elicit

an operator's expertise. Once acquired, such expertise may be used for direct control,

failure diagnosis, or design and reconfiguration.

18
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4 Control Based on Given Fuzzy Rules

In the previous section, we showed how to elicit a human operator's knowledge and capture

it into a FERM. In this section, as an example of application, we wiLl use the FERM idea

to control an inverted pendulum.

4.1 Fuzzy Control of an Inverted Pendulum

The inverted pendulum is a classic example of an inherently unstable system. Its dynal_fics

is a classical example of systems involving balance maintenance such as rocket thruster

control. Many inverted pendulum control designs have been investigated. So far, most

controLler designs a_e limited in the linerization of the dynamic model[11}. It takes a long

time to figure out workable PID gains or fuR-state-feedback gains. When either the size or

the rod length of the pendulum is changed, the controLler should be redesigned.

On the other hand, & child can stand a rod on his palm without gripping it after a Little

practice, even though he does not understand anything about dynamics or control theory. He

gains the strategy of moving his palm in order to keep the rod vertically stable by successes

and failures. The strategy is not represented by any PID or state-feedback controLler based

on differential equations, but by gathering some relations between the pendulum angles and

the corresponding palm movements. The angle measured by human eyes is not so precise,

or rather is fuzzy, and so is the palm movement. But the fuzzy inputs and fuzzy output,

together with the fuzzy relation, give, satisfactory control action. In our exmnple, we capture

these fuzzy relations in a computer simulation.

Figure (9) shows the inverted pendulum controlled by a human, and figure (10) iLlustrates

the same control from a FERM-based controller.

Simila_ to the above control by a human, we can summarize some control rules in fuzzy

language terms, and then construct a fuzzy relation in the place of s control strategy.

This investigation consists of two stages:

;9
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Figure 10: Fuzzy Relation Control

1. Obtain fuzzy control rules, establish the fuzzy relation matrix and optimize the relation

matrix.

2. Run computer simulation. (This program was written in C++, and an executable file

for IBM personal computer with EGA or VGA monitor is included in the report).

4.2 The Pendulum Setup

The pendulum system consisted of a rod mounted on a shaft on top of a cart that was free

to move in the horizontal plane. There was no actuator at the base of the pendulum, and

the cart was driven by a pulley connected to a servomotor. An optical encoder on the motor

measured the cart position while another optical encoder on the pivot of the pendulum

measuzed the angle of the pendulum. The whole setup is illustrated as in figure (11), and

the FERM consists of the rules shown in (12).

where ek ----O -- 0o, and g_ = ek - ek-1 and the natural language terms

NL : negative large

1V3 : negative small

ZE : zero

PS :positive large

PL : positive small

The membership function for rod angle error is shown in figure(13), the membership

function for rod angle error change rate is shown in figure(14), and the membership function

for control output is shown in figure(15),

4.3 Results of the Inverted Pendulum Experiment

Figure (17) shows the response of the inverted pendulum to fuzzy control, and Figure (17)

shows the response of full state feedback control. The pendulum has an offset of about six

20
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degrees in both experiments.

Compared with the full state feedback controller(16) , the fuzzy controller has faster

response and smaller overshoot.

4.4 Conclusions from the Inverted Pendulum Experiment

1. The simulation result shows that the FERM controller can be used in the place of

human to control an inverted penduhuu. This example generMizes to a class of control

problems involving balance.

2. The FERM approach does not require a detailed mathematical model to formulate

the algorithm. It is more tolerable to system parameter change and noise than that
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designed from traditional control theory. Therefore, in the sense of parameter changes

due to timing or environment change, the fuzzy control approach is more reliable.
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5 Conclusions and Recommendations

_'onclusions

I°

.

.

A general theory was developed for the fuzzy expert relation matrix technique for

expert system development and use.

A fuzzy learning experiment was done to demonstrate learning from a human operator

in the context of controlling a nonlinear process.

A control experiment was done to demonstrate the application of the fuzzy expert

relation matrix technique to control of an inverted pendulum.

Recommendations

.

.

Further research is needed on how to optimize the fuzzy relation matrix approach.

When compared with neural network approach, it is outwardly similar in terms of

system learning and identification. But inside, it is different in terms of knowledge

storage and the exact mechanism of learning. Research on the relation between the

two approaches may produce a more efficient way of learning and identification from

imprecise data.

Further experiments with human operators need be done to find a more efficient way

to cluster linguistic rules.
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