3 research outputs found

    Ordering based decision making: a survey

    Get PDF
    Decision making is the crucial step in many real applications such as organization management, financial planning, products evaluation and recommendation. Rational decision making is to select an alternative from a set of different ones which has the best utility (i.e., maximally satisfies given criteria, objectives, or preferences). In many cases, decision making is to order alternatives and select one or a few among the top of the ranking. Orderings provide a natural and effective way for representing indeterminate situations which are pervasive in commonsense reasoning. Ordering based decision making is then to find the suitable method for evaluating candidates or ranking alternatives based on provided ordinal information and criteria, and this in many cases is to rank alternatives based on qualitative ordering information. In this paper, we discuss the importance and research aspects of ordering based decision making, and review the existing ordering based decision making theories and methods along with some future research directions

    Non-clausal multi-ary alpha-generalized resolution calculus for a finite lattice-valued logic

    Get PDF
    Due to the need of the logical foundation for uncertain information processing, development of efficient automated reasoning system based on non-classical logics is always an active research area. The present paper focuses on the resolution-based automated reasoning theory in a many-valued logic with truth-values defined in a lattice-ordered many-valued algebraic structure - lattice implication algebras (LIA). Specifically, as a continuation and extension of the established work on binary resolution at a certain truth-value level α (called α-resolution), a non-clausal multi-ary α-generalized resolution calculus is introduced for a lattice-valued propositional logic LP(X) based on LIA, which is essentially a non-clausal generalized resolution avoiding reduction to normal clausal form. The new resolution calculus in LP(X) is then proved to be sound and complete. The concepts and theoretical results are further extended and established in the corresponding lattice-valued first-order logic LF(X) based on LIA
    corecore