60,170 research outputs found

    On the Connectivity of Unions of Random Graphs

    Full text link
    Graph-theoretic tools and techniques have seen wide use in the multi-agent systems literature, and the unpredictable nature of some multi-agent communications has been successfully modeled using random communication graphs. Across both network control and network optimization, a common assumption is that the union of agents' communication graphs is connected across any finite interval of some prescribed length, and some convergence results explicitly depend upon this length. Despite the prevalence of this assumption and the prevalence of random graphs in studying multi-agent systems, to the best of our knowledge, there has not been a study dedicated to determining how many random graphs must be in a union before it is connected. To address this point, this paper solves two related problems. The first bounds the number of random graphs required in a union before its expected algebraic connectivity exceeds the minimum needed for connectedness. The second bounds the probability that a union of random graphs is connected. The random graph model used is the Erd\H{o}s-R\'enyi model, and, in solving these problems, we also bound the expectation and variance of the algebraic connectivity of unions of such graphs. Numerical results for several use cases are given to supplement the theoretical developments made.Comment: 16 pages, 3 tables; accepted to 2017 IEEE Conference on Decision and Control (CDC

    Connectivity in one-dimensional geometric random graphs: Poisson approximations, zero-one laws and phase transitions

    Get PDF
    Consider n points (or nodes) distributed uniformly and independently on the unit interval [0,1]. Two nodes are said to be adjacent if their distance is less than some given threshold value.For the underlying random graph we derive zero-one laws for the property of graph connectivity and give the asymptotics of the transition widths for the associated phase transition. These results all flow from a single convergence statement for the probability of graph connectivity under a particular class of scalings. Given the importance of this result, we give two separate proofs; one approach relies on results concerning maximal spacings, while the other one exploits a Poisson convergence result for the number of breakpoint users.This work was prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011

    A note on uniform power connectivity in the SINR model

    Full text link
    In this paper we study the connectivity problem for wireless networks under the Signal to Interference plus Noise Ratio (SINR) model. Given a set of radio transmitters distributed in some area, we seek to build a directed strongly connected communication graph, and compute an edge coloring of this graph such that the transmitter-receiver pairs in each color class can communicate simultaneously. Depending on the interference model, more or less colors, corresponding to the number of frequencies or time slots, are necessary. We consider the SINR model that compares the received power of a signal at a receiver to the sum of the strength of other signals plus ambient noise . The strength of a signal is assumed to fade polynomially with the distance from the sender, depending on the so-called path-loss exponent α\alpha. We show that, when all transmitters use the same power, the number of colors needed is constant in one-dimensional grids if α>1\alpha>1 as well as in two-dimensional grids if α>2\alpha>2. For smaller path-loss exponents and two-dimensional grids we prove upper and lower bounds in the order of O(logn)\mathcal{O}(\log n) and Ω(logn/loglogn)\Omega(\log n/\log\log n) for α=2\alpha=2 and Θ(n2/α1)\Theta(n^{2/\alpha-1}) for α<2\alpha<2 respectively. If nodes are distributed uniformly at random on the interval [0,1][0,1], a \emph{regular} coloring of O(logn)\mathcal{O}(\log n) colors guarantees connectivity, while Ω(loglogn)\Omega(\log \log n) colors are required for any coloring.Comment: 13 page

    On zero-one laws for connectivity in one-dimensional geometric random graphs

    Get PDF
    We consider the geometric random graph where n points are distributed uniformly and independently on the unit interval [0,1]. Using the method of first and second moments, we provide a simple proof of the "zero-one" law for the property of graph connectivity under the asymptotic regime created by having n become large and the transmission range scaled appropriately with n

    On the critical communication range under node placement with vanishing densities

    Get PDF
    We consider the random network where n points are placed independently on the unit interval [0, 1] according to some probability distribution function F. Two nodes communicate with each other if their distance is less than some transmission range. When F admits a continuous density f with f = inf (f(x), x [0, 1]) > 0, it is known that the property of graph connectivity for the underlying random graph admits a strong critical threshold. Through a counterexample, we show that only a weak critical threshold exists when f = 0 and we identify it. Implications for the critical transmission range are discussed

    A strong zero-one law for connectivity in one-dimensional geometric random graphs with non-vanishing densities

    Get PDF
    We consider the geometric random graph where n points are distributed independently on the unit interval [0,1] according to some probability distribution function F. Two nodes communicate with each other if their distance is less than some transmission range. When F admits a continuous density f which is strictly positive on [0,1], we show that the property of graph connectivity exhibits a strong critical threshold and we identify it. This is achieved by generalizing a limit result on maximal spacings due to Levy for the uniform distribution

    Percolation and Connectivity on the Signal to Interference Ratio Graph

    Full text link
    A wireless communication network is considered where any two nodes are connected if the signal-to-interference ratio (SIR) between them is greater than a threshold. Assuming that the nodes of the wireless network are distributed as a Poisson point process (PPP), percolation (unbounded connected cluster) on the resulting SIR graph is studied as a function of the density of the PPP. For both the path-loss as well as path-loss plus fading model of signal propagation, it is shown that for a small enough threshold, there exists a closed interval of densities for which percolation happens with non-zero probability. Conversely, for the path-loss model of signal propagation, it is shown that for a large enough threshold, there exists a closed interval of densities for which the probability of percolation is zero. Restricting all nodes to lie in an unit square, connectivity properties of the SIR graph are also studied. Assigning separate frequency bands or time-slots proportional to the logarithm of the number of nodes to different nodes for transmission/reception is sufficient to guarantee connectivity in the SIR graph.Comment: To appear in the Proceedings of the IEEE Conference on Computer Communications (INFOCOM 2012), to be held in Orlando Florida Mar. 201

    The Cost of Global Broadcast in Dynamic Radio Networks

    Get PDF
    We study the single-message broadcast problem in dynamic radio networks. We show that the time complexity of the problem depends on the amount of stability and connectivity of the dynamic network topology and on the adaptiveness of the adversary providing the dynamic topology. More formally, we model communication using the standard graph-based radio network model. To model the dynamic network, we use a generalization of the synchronous dynamic graph model introduced in [Kuhn et al., STOC 2010]. For integer parameters T1T\geq 1 and k1k\geq 1, we call a dynamic graph TT-interval kk-connected if for every interval of TT consecutive rounds, there exists a kk-vertex-connected stable subgraph. Further, for an integer parameter τ0\tau\geq 0, we say that the adversary providing the dynamic network is τ\tau-oblivious if for constructing the graph of some round tt, the adversary has access to all the randomness (and states) of the algorithm up to round tτt-\tau. As our main result, we show that for any T1T\geq 1, any k1k\geq 1, and any τ1\tau\geq 1, for a τ\tau-oblivious adversary, there is a distributed algorithm to broadcast a single message in time O((1+nkmin{τ,T})nlog3n)O\big(\big(1+\frac{n}{k\cdot\min\left\{\tau,T\right\}}\big)\cdot n\log^3 n\big). We further show that even for large interval kk-connectivity, efficient broadcast is not possible for the usual adaptive adversaries. For a 11-oblivious adversary, we show that even for any T(n/k)1εT\leq (n/k)^{1-\varepsilon} (for any constant ε>0\varepsilon>0) and for any k1k\geq 1, global broadcast in TT-interval kk-connected networks requires at least Ω(n2/(k2logn))\Omega(n^2/(k^2\log n)) time. Further, for a 00 oblivious adversary, broadcast cannot be solved in TT-interval kk-connected networks as long as T<nkT<n-k.Comment: 17 pages, conference version appeared in OPODIS 201
    corecore