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On zero-one laws for connectivity in
one-dimensional geometric random graphs

Guang Han and Armand M. Makowsktellow

Abstract— We consider the geometric random graph wheren II. THE MAIN RESULT
points are distributed uniformly and independently on the unit . . .
interval [0, 1]. Using the method of first and second moments, we _W_e start W't_h a sequenc{a)_(l, i=12,..}ofiid rvs
provide a simple proof of the “zero-one” law for the property distributed uniformly in the interval0,1]. For eachn =

of graph connectivity under the asymptotic regime created 2,3,..., we think of X,..., X,, as the locations of. nodes
by having n become large and the transmission range scaled (or users), labelled, ..., n, in the interval0, 1]. Given a fixed
appropriately with n. communication range > 0, nodesi andj are connected if

|X; — X;| < 7, in which case an undirected edge is said to

exist between them.

] _ This notion of edge connectivity gives rise to an undirected
NTEREST in geometric random graphs as models fQfaometric random graph, thereafter deno@¢h; 7). The
wireless networks has been stimulated to a great _eXt%j?éph G(n;7) is said to be(path) connected if every pair

by the paper of Gupta and Kumar [10]. Here, we considerg ysers can be linked by at least one path over the edges of

one-dimensional random graph model which has been studjgd graph, and the probability of graph connectivity is give
recently by a number of authors, e.g., see [3], [5], [6], [], by

[9], [14]: The network comprises points (or nodes) which are P(n;7) := P [G(n;7) is connected (1)
distributed uniformly and independently on the unit intdrv
[0,1]. Two nodes are said to communicate with each oth¥¥¢hile obviouly P(n;7) = 1 wheneverr > 1, we find it
if their distance is less than some given transmission rangenvenient to sef’(n;7) = 0 for 7 < 0.
7 > 0. Let P(n; ) denote the probability that the network (as The main result of this note is given in Theorem 2.1 below.
induced graph) is connected. To prepare for it, we note that there is no loss of generality
Randomizing node locations makes it possible for mariy writing any range function : No — R in the form
properties (including graph connectivity) to display aitgb 1
behavior whem becomes large and the transmission range ™= (logn+an), n=12,.... ()
is scaled appropriately, i.e., is made to dependchathrough L .
scalings or range functions: Ny — R, : n — 7,. Typical for iome deV|f’:1t|on function: - I\){O - R ) in th
behavior reveals itself through “zero-one” laws whereby P;neg)er:: 5bllaslzt(;7;1?ny range function : No — Ry in the
given graph property occurs (resp. does not occur) with ’
very high probability (as: becomes large) depending on how 0 if limy, o o, = —00
the scaling used deviates froncetical scaling7* (which is lim P(n;1,) = 3)
property dependent). e 1 if limy,— oo 0 = 400.
For the property of graph connectivity, the critical scglin

is known to ber: = 10%, e.g., see [1], [14], with the Theorem 2.1 identifies the range functioh : Ny — R,
following rough meaning: For sufficiently large, a communi- given by
cation ranger,, suitably larger (resp. smaller) thafj ensures o 103”7 n=1,2,... (4)
P(n;7,) ~ 1 (resp.P(n;7,) ~ 0). In these references, the " n
precise technical meaning for suitably larger (resp. sgnall as thecritical scaling defining a threshold or boundary in
amounts tor,, = c7; with ¢ > 1 (resp.0 < ¢ < 1). In this the space of range functions. However, the conclusion (3) is
short note, we strengthen this result by showing that the-zequite stronger than the one usually discussed in the litezat
one law still holds if we allowmuch smaller deviations (than namely
(¢ — 1)7r¥) from the critical scalingr)s. This is the content of i 1
Theorem 2.1 (discussed in the next section) which provides . * 0 IF U<es

RS . lim P(n;cr)) = (5)
also an early indication of the sharpness of the correspgndi n—oo 1 if 1<e
phase transition [11]. The proof is self-contained and uses ‘
elementary arguments based on the method of first and secomtis last result still holds for any range function Ny — R
moments [12, p. 55], an approach widely used in the theosych thatr,, ~ c7; for somec > 0 — Here and throughout
of Erdés-Renyi graphs. the paper, such asymptotic equivalence is understood mawith

) o ) going to infinity. Either of these equivalent forms is alrgad
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2.2] obtain (5) by a bin-covering technique. The zero-ome lawhere we have set

(5) warrants that the threshold functief be called astrong /

threshold [13]. —dt 0<xz<l1.

1—-t
To better appreciate the difference between (3) and (5), we
write a range functiorr : Ny — R, of the form (2) as The mappingz — (z) is increasing and convex on the
o interval [0, 1) with
T =T+ —, n=12,... (6) 2
n
0< —, 0<z<1. 10
with corresponding deviation function : Ny — R. From V@) < 21 —x) = (10)

Theorem 2.1, perturbatiorfg- from the critical threshold yield
the one-law (resp. zero-law) providédh,, ., o, = oo (resp.
lim,, o o, = —00) With no further constraint on.. Contrast

Now consider a range function: Ny — R in the form
(2). For eactp > 0, providedpr,, < 1, the decomposition (9)

ields
this with (5) where we allow only scalings of the form ~ y
ety with ¢ > 0 ande # 1, so thata,, ~ (¢ — 1)logn . (1-pm)i = e Tt ()
It is now plain that (5) is indeed implied by (3). Whereas —  —plogntan) —nyp(prn)

“small” deviations of the fornr,, = +loglogn are covered

by Theorem 2.1, they are not covered by the zero-one law (5)
(sincea,, = o(logn)). Consequently, it seems appropriate tThe next two technical lemmas rely on this observation; they
call the critical scalingr* a very strong (and not merely a will be useful in a number of places.

strong) threshold for the property of graph connectivitiiST ~ Lemma 3.1: For any range functiom : Ng — R in the

—  pPe P o—n(pTa) (11)

is certainly in line with the very sharp phase transitioatty form (2) withlim,, .. o, = —o0, we have
aparent from the graphs available in several papers, &g., s (1= pr)n
[7], [9], and formally established in [11]. lim — P g s, (12)

n—oo N~ Pe—PAn
IIl. PRELIMINARIES

Fix n = 2,3,... and 7 > 0. With the node locations proof. Fix p > 0. In view of (11), it is plain that Lemma 3.1

Xi,...,Xn, we associate the rv&,, ..., X, , which are wjll hold if the assumptiorlim,,_.. a,, = —oo can be shown
the location of these: users arranged in increasing ordekg jimply

e, X,1 < ... <X,, with the conventionX,, o = 0 and

Xpni1 = 1. The rvsX,1,..., X, are theorder statistics prn <1  for all sufficiently large n (13)
associated with the i.i.d. rvs Xq,...,X,,. Also define the with
spacings lim n(pr,) = 0. (14)

Lok i= X = X1, k=1,nt1. Condition (13) ensures that (11) holds for large enough

Interest in these quantities derives from the observatian t  First, from the assumptiolim,, . &, = —oo, we note that
the graphG(n; 7) is connected if and only if,, ,, < 7 for all «a, < 0 for large enough and the form (2) therefore implies
k=2,...,n, so that T < 1"% on that range, whence
Pn;7)=P[Lyx <7, k=2,...,n]. (7) lim Tn—hm%:()
n—oo n—oo N

It is well known [2, Eq. (6.4.3), p. 135] that for any SUbsetlncehmn_,oo 1% _ 0. This already establishes (13).

- 2 .

IC{L,...,n}, we have Still on that range, the monotonicity af yields
P[L, > ty, k€l (8) logn
" n(pry) < (p - )
= (1= tx] . tel01], kel
kel N so that

with the notationz”s = 2 if « > 0 anda” = 0 if = < 0. somy <P (12 ploen ! (logn)?

Using (8), it is easy to obtain closed form expression for PTn) =79 b n

P(n;7). This closed form expression has been redlscoverB

by several authors, e.g., Godehardt and Jaworski [8, Cor

p. 146], Desai and Manjunath [3] (as Eqn (8) with= 1 and

r = 1), Ghasemi and Nader-Esfahani [7] and Gore [9]. See

also Devroye’s paper [4] for pointers to an older literature  Lemma 3.2: Consider a range function: Ny — R, in the
We conclude this section with some easy convergence faftgm (2). It holds that

to be used in the proof of Theorem 2.1: With< z < 1, it

is a simple matter to check that

invoking the bound (10). The validity of (14) is now
straightforward. [ ]

oo If lim,_ o0 0y = —00
lim n(l —7,)} = (15)
lOg(l — .I') = — —1 tdt = —r — w(x) (9) 0 if hmnﬂoo Qip, —+00.
0 _



These results readily ensure the validity of the one-law and
zero-law upon lettingn go to infinity in (18) and (19),
respectively, where has been replaced by,.

From Lemma 3.2, we readily see that

Proof. First, we note that

1—7)%
2670‘"-( T)+a

n(l _Tn)n nileia"

. (16)

n=12...

and Lemma 3.1 (withp = 1) readily yields the conclusion
limy, o0 (1 — 7). = 00 Whenlim,, o a,, = —o0.

We note thatn(l — 7,)7 = 0 if 1 < 7,, while when
7. < 1, we conclude from (11) that(l — 7,,)7} < e “»
by the non-negativity ofi. It is now immediate that
limy, o0 (1 — 7)1 = 0 whenlim,, . o, = +o00. [ ]

lim E[Cy(1,)] =

n—oo

0 if lim,—oo vy = +00
(22)

oo If lim,_ee oy = —00.

Next, from the expressions given earlier, we conclude that
E [On(Tn)Q}
E[C, (Tn)]2

(n—2) (1—2m,)"

(n—1) (1- Tn)in .

=E[Cp(m)] " + (23)

We have already shown thktn,, ., E [C),(7,)] = co when-

IV. A PROOF OFTHEOREM2.1
Fix n = 2,3,... and 7 in (0,1). For eachi = 1,...,n,
node: is said to be areakpoint node in the random graph
G(n; T) whenever (i) it isnot the leftmost node if0, 1] and
(i) there is no node in the random interva; — 7, X;]. The
numberC,,(7) of breakpoint nodes ifiz(n; 7) is given by

Cn(r) = Z X,k (T)
k=2

everlim,_, ., a,, = —oo. From Lemma 3.1 (first wittp = 2
and thenp = 1) under this last condition, we also get

It is now a simple matter to check from these facts that

—27,)" (1— n-le=on

27,)7

2
NS ) =1
n— 00 (1 _ Tn)i" n—oo N 2e—2an |:(1 — Tn)ql_:|

and (21) readily follows upon letting go to infinity in (23).1

where the{0, 1}-valued rvsx, 1(7),...
indicator functions defined by

, Xn.nt1(T) are the

Xnk(T):=1[Lpr>71], k=1,....,n+1.

The graphG(n; ) is connected if and only i€, (7) = 0, and
we have the representation

P(n;T)=PI[C,(1) =0].

(1]

17 @

The basic idea of the proof is to leverage the representatiggi
(17) in order to provide lower and upper bounds on th

probability of graph connectivity through moments of the[4]
counting variableC,,(7): The method of first moment [12, 5]
Eqgn. (3.10), p. 55] yields the inequality

1—E[Cy(7)] < P(n;7) (18) o)

while the method of second moment [12, Remark 3.1, p. 55]
gives the bound (7]

E [C,(r)]
E[Cn(r)?]
With the help of (8) it is a simple matter to derive the closed—[g]

P(n;T) <1-— (19) 18l

form expressions [10]
E[Ch(T)]=(nh-1)0-7)}
and [11]
E [Cpn(7)?] = E[Cph(T)] + (n — 1)(n — 2)(1 — 27)". 2]
Now, pick any range function : Ny — R, of the form
(2). We shall show below that [13]
lim E[Cp(7,)]=0 if lim a, =00 (20)
and
E Cn n 2
fim EAC(7 )2] =1 if lim a,=-co. (21)
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