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On zero-one laws for connectivity in
one-dimensional geometric random graphs

Guang Han and Armand M. Makowski,Fellow

Abstract— We consider the geometric random graph wheren
points are distributed uniformly and independently on the unit
interval [0, 1]. Using the method of first and second moments, we
provide a simple proof of the “zero-one” law for the property
of graph connectivity under the asymptotic regime created
by having n become large and the transmission range scaled
appropriately with n.

I. I NTRODUCTION

I NTEREST in geometric random graphs as models for
wireless networks has been stimulated to a great extent

by the paper of Gupta and Kumar [10]. Here, we consider a
one-dimensional random graph model which has been studied
recently by a number of authors, e.g., see [3], [5], [6], [7],[8],
[9], [14]: The network comprisesn points (or nodes) which are
distributed uniformly and independently on the unit interval
[0, 1]. Two nodes are said to communicate with each other
if their distance is less than some given transmission range
τ > 0. Let P (n; τ) denote the probability that the network (as
induced graph) is connected.

Randomizing node locations makes it possible for many
properties (including graph connectivity) to display a typical
behavior whenn becomes large and the transmission rangeτ

is scaled appropriately, i.e., is made to depend onn through
scalings or range functionsτ : N0 → R+ : n → τn. Typical
behavior reveals itself through “zero-one” laws whereby a
given graph property occurs (resp. does not occur) with a
very high probability (asn becomes large) depending on how
the scaling used deviates from acritical scalingτ⋆ (which is
property dependent).

For the property of graph connectivity, the critical scaling
is known to beτ⋆n = logn

n
, e.g., see [1], [14], with the

following rough meaning: Forn sufficiently large, a communi-
cation rangeτn suitably larger (resp. smaller) thanτ⋆n ensures
P (n; τn) ≃ 1 (resp.P (n; τn) ≃ 0). In these references, the
precise technical meaning for suitably larger (resp. smaller)
amounts toτn = cτ⋆n with c > 1 (resp.0 < c < 1). In this
short note, we strengthen this result by showing that the zero-
one law still holds if we allowmuch smaller deviations (than
(c− 1)τ⋆n) from the critical scalingτ⋆n . This is the content of
Theorem 2.1 (discussed in the next section) which provides
also an early indication of the sharpness of the corresponding
phase transition [11]. The proof is self-contained and uses
elementary arguments based on the method of first and second
moments [12, p. 55], an approach widely used in the theory
of Erdős-Renyi graphs.

Department of Electrical and Computer Engineering, and Institute for
Systems Research, University of Maryland, College Park, MD20742. Email:
hanguang@wam.umd.edu, armand@isr.umd.edu

II. T HE MAIN RESULT

We start with a sequence{Xi, i = 1, 2, . . .} of i.i.d. rvs
distributed uniformly in the interval[0, 1]. For eachn =
2, 3, . . ., we think ofX1, . . . , Xn as the locations ofn nodes
(or users), labelled1, . . . , n, in the interval[0, 1]. Given a fixed
communication rangeτ > 0, nodesi and j are connected if
|Xi − Xj| ≤ τ , in which case an undirected edge is said to
exist between them.

This notion of edge connectivity gives rise to an undirected
geometric random graph, thereafter denotedG(n; τ). The
graph G(n; τ) is said to be(path) connected if every pair
of users can be linked by at least one path over the edges of
the graph, and the probability of graph connectivity is given
by

P (n; τ) := P [G(n; τ) is connected] . (1)

While obviouly P (n; τ) = 1 wheneverτ ≥ 1, we find it
convenient to setP (n; τ) = 0 for τ < 0.

The main result of this note is given in Theorem 2.1 below.
To prepare for it, we note that there is no loss of generality
in writing any range functionτ : N0 → R+ in the form

τn =
1

n
(logn+ αn) , n = 1, 2, . . . . (2)

for some deviation functionα : N0 → R.
Theorem 2.1: For any range functionτ : N0 → R+ in the

form (2), it holds that

lim
n→∞

P (n; τn) =




0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

(3)

Theorem 2.1 identifies the range functionτ⋆ : N0 → R+

given by

τ⋆n =
logn

n
, n = 1, 2, . . . (4)

as thecritical scaling defining a threshold or boundary in
the space of range functions. However, the conclusion (3) is
quite stronger than the one usually discussed in the literature,
namely

lim
n→∞

P (n; cτ⋆n) =




0 if 0 < c < 1

1 if 1 < c.

(5)

This last result still holds for any range functionτ : N0 → R+

such thatτn ∼ cτ⋆n for somec > 0 – Here and throughout
the paper, such asymptotic equivalence is understood withn

going to infinity. Either of these equivalent forms is already
contained in Theorem 1 by Appel and Russo [1, p. 352].
More recently, Muthukrishnan and Pandurangan [14, Thm.
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2.2] obtain (5) by a bin-covering technique. The zero-one law
(5) warrants that the threshold functionτ⋆ be called astrong
threshold [13].

To better appreciate the difference between (3) and (5), we
write a range functionτ : N0 → R+ of the form (2) as

τn = τ⋆n +
αn

n
, n = 1, 2, . . . (6)

with corresponding deviation functionα : N0 → R. From
Theorem 2.1, perturbationsαn

n
from the critical threshold yield

the one-law (resp. zero-law) providedlimn→∞ αn = ∞ (resp.
limn→∞ αn = −∞) with no further constraint onα. Contrast
this with (5) where we allow only scalings of the formτn ∼
cτ⋆n with c > 0 and c 6= 1, so thatαn ∼ (c − 1) logn .
It is now plain that (5) is indeed implied by (3). Whereas
“small” deviations of the formαn = ± log logn are covered
by Theorem 2.1, they are not covered by the zero-one law (5)
(sinceαn = o(log n)). Consequently, it seems appropriate to
call the critical scalingτ⋆ a very strong (and not merely a
strong) threshold for the property of graph connectivity. This
is certainly in line with the very sharp phase transition already
aparent from the graphs available in several papers, e.g., see
[7], [9], and formally established in [11].

III. PRELIMINARIES

Fix n = 2, 3, . . . and τ > 0. With the node locations
X1, . . . , Xn, we associate the rvsXn,1, . . . , Xn,n which are
the location of thesen users arranged in increasing order,
i.e., Xn,1 ≤ . . . ≤ Xn,n with the conventionXn,0 = 0 and
Xn,n+1 = 1. The rvsXn,1, . . . , Xn,n are theorder statistics
associated with then i.i.d. rvs X1, . . . , Xn. Also define the
spacings

Ln,k := Xn,k −Xn,k−1, k = 1, . . . , n+ 1.

Interest in these quantities derives from the observation that
the graphG(n; τ) is connected if and only ifLn,k ≤ τ for all
k = 2, . . . , n, so that

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n] . (7)

It is well known [2, Eq. (6.4.3), p. 135] that for any subset
I ⊆ {1, . . . , n}, we have

P [Ln,k > tk, k ∈ I] (8)

=

(
1 −

∑
k∈I

tk

)n
+

, tk ∈ [0, 1], k ∈ I

with the notationxn+ = xn if x ≥ 0 andxn+ = 0 if x ≤ 0.
Using (8), it is easy to obtain closed form expression for

P (n; τ). This closed form expression has been rediscovered
by several authors, e.g., Godehardt and Jaworski [8, Cor. 1,
p. 146], Desai and Manjunath [3] (as Eqn (8) withz = 1 and
r = τ ), Ghasemi and Nader-Esfahani [7] and Gore [9]. See
also Devroye’s paper [4] for pointers to an older literature.

We conclude this section with some easy convergence facts
to be used in the proof of Theorem 2.1: With0 ≤ x < 1, it
is a simple matter to check that

log(1 − x) = −

∫ x

0

1

1 − t
dt = −x− ψ(x) (9)

where we have set

ψ(x) :=

∫ x

0

t

1 − t
dt, 0 ≤ x < 1.

The mappingx → ψ(x) is increasing and convex on the
interval [0, 1) with

0 < ψ(x) ≤
x2

2(1 − x)
, 0 ≤ x < 1. (10)

Now consider a range functionτ : N0 → R+ in the form
(2). For eachp > 0, providedpτn < 1, the decomposition (9)
yields

(1 − pτn)n+ = e−n(pτn+ψ(pτn))

= e−p(logn+αn)e−nψ(pτn)

= n−pe−pαne−nψ(pτn). (11)

The next two technical lemmas rely on this observation; they
will be useful in a number of places.

Lemma 3.1: For any range functionτ : N0 → R+ in the
form (2) with limn→∞ αn = −∞, we have

lim
n→∞

(1 − pτn)
n
+

n−pe−pαn

= 1, p > 0. (12)

Proof. Fix p > 0. In view of (11), it is plain that Lemma 3.1
will hold if the assumptionlimn→∞ αn = −∞ can be shown
to imply

pτn < 1 for all sufficiently large n (13)

with
lim
n→∞

nψ(pτn) = 0. (14)

Condition (13) ensures that (11) holds for large enoughn.
First, from the assumptionlimn→∞ αn = −∞, we note that

αn < 0 for large enoughn and the form (2) therefore implies
τn ≤ logn

n
on that range, whence

lim
n→∞

τn = lim
n→∞

αn

n
= 0

sincelimn→∞

logn
n

= 0. This already establishes (13).
Still on that range, the monotonicity ofψ yields

nψ(pτn) ≤ nψ

(
p
logn

n

)
so that

nψ(pτn) ≤
p2

2
·

(
1 − p

logn

n

)−1

·
(logn)2

n

by invoking the bound (10). The validity of (14) is now
straightforward.

Lemma 3.2: Consider a range functionτ : N0 → R+ in the
form (2). It holds that

lim
n→∞

n(1 − τn)n+ =




∞ if limn→∞ αn = −∞

0 if limn→∞ αn = +∞.

(15)
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Proof. First, we note that

n (1 − τn)
n

+ = e−αn ·
(1 − τn)

n
+

n−1e−αn

, n = 1, 2, . . . (16)

and Lemma 3.1 (withp = 1) readily yields the conclusion
limn→∞ n(1 − τn)

n
+ = ∞ when limn→∞ αn = −∞.

We note thatn(1 − τn)
n
+ = 0 if 1 ≤ τn, while when

τn ≤ 1, we conclude from (11) thatn(1 − τn)n+ ≤ e−αn

by the non-negativity ofψ. It is now immediate that
limn→∞ n(1 − τn)

n
+ = 0 when limn→∞ αn = +∞.

IV. A PROOF OFTHEOREM 2.1

Fix n = 2, 3, . . . and τ in (0, 1). For eachi = 1, . . . , n,
node i is said to be abreakpoint node in the random graph
G(n; τ) whenever (i) it isnot the leftmost node in[0, 1] and
(ii) there is no node in the random interval[Xi − τ,Xi]. The
numberCn(τ) of breakpoint nodes inG(n; τ) is given by

Cn(τ) =

n∑
k=2

χn,k(τ)

where the{0, 1}-valued rvsχn,1(τ), . . . , χn,n+1(τ) are the
indicator functions defined by

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n+ 1.

The graphG(n; τ) is connected if and only ifCn(τ) = 0, and
we have the representation

P (n; τ) = P [Cn(τ) = 0] . (17)

The basic idea of the proof is to leverage the representation
(17) in order to provide lower and upper bounds on the
probability of graph connectivity through moments of the
counting variableCn(τ): The method of first moment [12,
Eqn. (3.10), p. 55] yields the inequality

1 − E [Cn(τ)] ≤ P (n; τ) (18)

while the method of second moment [12, Remark 3.1, p. 55]
gives the bound

P (n; τ) ≤ 1 −
E [Cn(τ)]

2

E [Cn(τ)2]
. (19)

With the help of (8) it is a simple matter to derive the closed-
form expressions

E [Cn(τ)] = (n− 1)(1 − τ)n+

and

E
[
Cn(τ)

2
]

= E [Cn(τ)] + (n− 1)(n− 2)(1 − 2τ)n+.

Now, pick any range functionτ : N0 → R+ of the form
(2). We shall show below that

lim
n→∞

E [Cn(τn)] = 0 if lim
n→∞

αn = ∞ (20)

and

lim
n→∞

E
[
Cn(τn)2

]
E [Cn(τn)]

2 = 1 if lim
n→∞

αn = −∞. (21)

These results readily ensure the validity of the one-law and
zero-law upon lettingn go to infinity in (18) and (19),
respectively, whereτ has been replaced byτn.

From Lemma 3.2, we readily see that

lim
n→∞

E [Cn(τn)] =




0 if limn→∞ αn = +∞

∞ if limn→∞ αn = −∞.

(22)

Next, from the expressions given earlier, we conclude that

E
[
Cn(τn)2

]
E [Cn(τn)]

2 = E [Cn(τn)]
−1

+
(n− 2)

(n− 1)

(1 − 2τn)
n

+

(1 − τn)
2n
+

. (23)

We have already shown thatlimn→∞ E [Cn(τn)] = ∞ when-
ever limn→∞ αn = −∞. From Lemma 3.1 (first withp = 2
and thenp = 1) under this last condition, we also get

lim
n→∞

(1 − 2τn)
n
+

n−2e−2αn

= lim
n→∞

(1 − τn)
n
+

n−1e−αn

= 1.

It is now a simple matter to check from these facts that

lim
n→∞

(1 − 2τn)
n

+

(1 − τn)
2n
+

= lim
n→∞

(1 − 2τn)
n
+

n−2e−2αn

·

[
n−1e−αn

(1 − τn)n+

]2
= 1

and (21) readily follows upon lettingn go to infinity in (23).
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