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Connectivity in one-dimensional geometric random
graphs: Poisson approximations, zero-one laws and

phase transitions
Guang Han and Armand M. Makowski,Fellow, IEEE

Abstract— Consider n points (or nodes) distributed
uniformly and independently on the unit interval [0, 1].
Two nodes are said to be adjacent if their distance is
less than some given threshold value. For the underlying
random graph we derive zero-one laws for the property
of graph connectivity and give the asymptotics of the
transition widths for the associated phase transition. These
results all flow from a single convergence statement for the
probability of graph connectivity under a particular class
of scalings. Given the importance of this result, we give two
separate proofs; one approach relies on results concerning
maximal spacings, while the other one exploits a Poisson
convergence result for the number of breakpoint users.

Keywords: Geometric random graphs, Connec-
tivity, Critical scalings, Zero-one laws, Phase tran-
sitions.

I. INTRODUCTION

Geometric random graphs appear in settings as
diverse as statistical physics, pattern recognition
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and biomedical research to name a few; see the
monograph by Penrose [34] for a comprehensive
discussion. In the context of wireless networks,
Gupta and Kumar [18] have recently drawn attention
to the two-dimensional version through their use of
the popular disk model.

In this paper we consider the simplest of ge-
ometric random graph models, namely the ones
defined over finite (one-dimensional) intervals –
Considern points (or communication nodes) which
are distributed uniformly and independently on the
(generic) interval[0, 1]. Two nodes are said to be
adjacent (or to communicate with each other) if
their distance is less than some given transmission
rangeτ > 0. This one-dimensional model has been
proposed for wireless networks constrained over
“linear highways,” e.g., see [7], [11], [12], [13],
[16], [32].

We focus on the connectivity of the induced graph
when n becomes large and the transmission range
is appropriately scaled withn, i.e., the transmission
range is made to depend onn through scalings
τ : N0 → R : n → τn. It is well known that the
graph is connected (resp. not connected) with a very
high probability (asn becomes large) depending on
how the scaling used deviates from acritical scaling
τ ⋆ : N0 → R. This critical scaling, given by (9),
has the following rough operational meaning: Let
P (n; τ) denote the probability that then node net-
work is connected under transmission rangeτ . For
n sufficiently large, a transmission rangeτn suitably
larger (resp. smaller) thanτ ⋆

n ensuresP (n; τn) ≃ 1
(resp. P (n; τn) ≃ 0). Such statements are known
in the literature aszero-onelaws once the precise
technical meaning for suitably larger (resp. smaller)
has been elucidated, see e.g., [1], [21], [32]. Phase
transitions are associated with such zero-one laws
[26] and sharp asymptotics are sometimes available
for the corresponding transition width [19], [20].



2

The one-dimensional models are arguably the
least geometric in nature, and as such occupy a
somewhat singular place in the literature on geo-
metric random graphs [34, p. 283]. This is reflected
by the continuing attention they have received from
research communities with various (non-geometric)
perspectives: The monograph by Godehardt [14]
deals with applications to cluster analysis, and the
exhaustive study in [15] provides a direct combi-
natorial analysis of many results of interest. Appel
and Russo [1, p. 352] leverage the connection with
maximal spacings, while Muthukrishnan and Pan-
durangan [32, Thm. 2.2] make use of bin-covering
techniques.

As a result of these efforts, many questions
concerning graph connectivity have by now been
answered, albeit in various forms of completeness.
However, some of the results have been reproduced
independently, are scattered in multiple literatures
and are not always couched in graph-theoretic
terms. Here we provide a unified presentation of
these results, both old and new, in their sharpest
form; the discussion emphasizes the single conver-
gence statement

lim
n→∞

P

(

n;
log n + x

n

)

= e−e−x

, x ∈ R. (1)

as the source for all relevant results. This con-
vergence points to the special role played by the
scalingsn → log n+x

n
, and foreshadows the form (9)

of the critical scaling.
The convergence (1) paves the way to a number

of results: From it we first can derive a zero-one
law for graph connectivity [Section III]. The version
given here is stronger than the one usually discussed
in the literature, and for this reason we refer to it
as a very strong zero-one law [Section IV]. This
zero-one law was already obtained by the authors
by means of a different technique in [21]. The
convergence (1) leads easily to precise asymptotics
on the width for the phase transition inherent in
the very strong zero-one law [Section V]; these
asymptotics were already announced in [19], [20].

A closed-form expression forP (n; τ) is available
[Section VI]. However, there does not appear a
simple way to use it in order to establish (1). Given
the central place occupied by this convergence, we
shall present two very different approaches to its
proof – Each proof makes use of a different char-
acterization of graph connectivity in terms of the

spacings induced by i.i.d. samples drawn from the
uniform distribution on finite intervals [3, Chap. 7].
The contributions of the paper can be summarized
as follows:

Lévy’s result on maximal spacings –The first
approach relies on the fact that the maximal spacing
induced by the node positions provides an immedi-
ate characterization of graph connectivity. We then
obtain (1) as a byproduct of classical results con-
cerning the asymptotic theory of maximal spacings.
The result goes back the work of Lévy [28], but we
provide here a simple proof which appears to be
new [Section VII].

Stein-Chen approximation –Next we characterize
graph connectivity through the number of break-
point nodes which counts the number of connected
components minus one. A key result is a Poisson
approximation for this count variable through the
Stein-Chen method [Section VIII with a proof in
Section X]. This approach provides convergence to
a Poisson random variable under the scaling (4),
as well as anapproximation(in the total variation
norm) which can be used to glean information on
the corresponding rate of convergence. As a result
we are now in a position to understand the perfor-
mance offinite node graphs [Section IX] through
an explicitly computable bound on the difference

∣

∣

∣

∣

P

(

n;
log n + x

n

)

− e−e−x

∣

∣

∣

∣

, x ∈ R

for all n = 2, 3, . . .. As an added bonus, this bound
can be leveraged to obtain a rate of convergence for
Lévy’s original result. This time, the convergence
(1) is an easy consequence of the aforementioned
Poisson convergence.

We close the paper [Section XI] with several
pointers: The two approaches given here have
analogs in geometric random graphs of dimension
two and higher. When nodes are placed according
to an arbitrary distribution, results have been devel-
oped by the authors in a series of recent papers [22],
[23], [24].

A word on the notation and conventions in use:
All limiting statements, including asymptotic equiv-
alences, are understood withn going to infinity.
The random variables (rvs) under consideration are
all defined on the same probability triple(Ω,F , P).
Probabilistic statements are made with respect to
this probability measureP, and we denote the cor-
responding expectation operator byE. The notation
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P−→ n (resp.=⇒n) is used to signify convergence
in probability (resp. weak convergence) withn
going to infinity. Also, we use the notation=st to
indicate distributional equality. The indicator func-
tion of an eventE is denoted by1 [E].

II. THE MODEL AND A KEY CONVERGENCE

RESULT

We start with a sequence{Xi, i = 1, 2, . . .}
of i.i.d. rvs which are distributed uniformly in the
interval [0, 1]. For eachn = 2, 3, . . ., we think of
X1, . . . , Xn as the locations ofn nodes (or users),
labelled1, . . . , n, in the interval[0, 1]. Given a fixed
distance (or transmission range)τ > 0, nodesi
and j are said to be adjacent if|Xi − Xj| ≤ τ , in
which case an undirected edge exists between them.
This notion of adjacency amongst nodes gives rise
to an undirected geometric random graph, thereafter
denotedG(n; τ). As usual, the graphG(n; τ) is said
to be connected if every pair of nodes can be linked
by at least one path over the edges of the graph, and
we write

P (n; τ) := P [G(n; τ) is connected] . (2)

We refer to the quantityP (n; τ) as the probability
of graph connectivity. Obviously,P (n; τ) = 1 if
τ ≥ 1. We also find it convenient to setP (n; τ) = 0
if τ ≤ 0.

We are interested in understanding how the prob-
ability of graph connectivity behaves when the num-
ber n of nodes becomes large and the transmission
range τ is scaled appropriately. Thus, with range
function or scaling τ : N0 → R : n → τn, we
investigate the limit

lim
n→∞

P (n; τn) (3)

whenever it exists. We allow scalings to take on
negative values as a matter of convenience in order
to simplify the presentation in a number of places
(with the help of the convention following (2)).

The basic message of the paper is that the needed
asymptotics pertaining to (3) all flow from a single
statement which we now present: With eachx in
R, we associate the range functionσ(x) : N0 → R

defined by

σn(x) :=
log n + x

n
, n = 1, 2, . . . (4)

Note thatσn(x) > 0 for all n sufficiently large.

Theorem 2.1:For eachx in R, we have

lim
n→∞

P (n; σn(x)) = e−e−x

. (5)

Theorem 2.1 has several byproducts which are
discussed in the next three sections. In the course
of the paper two very different approaches will be
presented to establish (5).

III. A ZERO-ONE LAW AND ITS CRITICAL

SCALING

We start by noting that there is no loss of gener-
ality in writing any range functionτ : N0 → R in
the form

τn =
1

n
(log n + αn) , n = 1, 2, . . . . (6)

for some deviation functionα : N0 → R – Just take

αn = nτn − log n, n = 1, 2, . . . .

Theorem 3.1:For any range functionτ : N0 → R

written in the form (6) for some deviation function
α : N0 → R, we have

lim
n→∞

P (n; τn) =







0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
(7)

In [21], the authors gave a direct derivation of
Theorem 3.1 by the method of first and second
moments, an approach widely used in the theory
of Erdős-Renyi graphs [25, p. 55]. Here we take
a different approach: The form of (6)–(7) suggests
interpreting (5) (via (4)) as aninterpolation result
betweenx = −∞ andx = ∞. This is indeed borne
out by the proof of Theorem 3.1 given next, which
exploits only the validity of (5).

Proof. Consider a range functionτ : N0 → R

written in the form (6) withlimn→∞ αn = ∞. Thus,
for everyx in R, there exists an integern(x) such
that x < αn for all n > n(x), in which case

P (n; σn(x)) ≤ P (n; τn), n ≥ n(x)

since the mappingτ → P (n; τ) is monotonically
increasing for eachn = 2, 3, . . .. Letting n go to
infinity in this last inequality, we conclude from (5)
that

e−e−x ≤ lim inf
n→∞

P (n; τn).
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We get the one-law upon noting thatx can be
made arbitrarily large in this last inequality.
This implies lim infn→∞ P (n; τn) = 1, whence
limn→∞ P (n; τn) = 1. The caselimn→∞ αn = −∞
can be handledmutatis mutandiswith details left
to the interested reader.

We note that Theorem 3.1 can be consolidated
with (5) through a single statement.

Theorem 3.2:For any range functionτ : N0 → R

written in the form (6), we have

lim
n→∞

P (n; τn) = e−e−α

(8)

wheneverα = limn→∞ αn (possibly±∞).
Theorem 3.2 is in fact equivalent to (5), and can

be established from it by arguments similar to the
ones used in the proof of Theorem 3.1; details are
left to the interested reader.

From Theorem 3.1 we see that the range function
τ ⋆ : N0 → R+ given by

τ ⋆
n =

log n

n
, n = 1, 2, . . . (9)

acts as acritical scaling for graph connectivity in
that it defines aboundary in the space of range
functions. Roughly speaking, forn large, a trans-
mission rangeτn suitably larger (resp. smaller) than
τ ⋆
n ensures that the graphG(n; τn) is connected

(resp. disconnected) with very high probability. The
precise technical meaning for suitably larger (resp.
smaller) is found at (7): For any range function
τ : N0 → R written in the form (6) with some
deviation functionα : N0 → R, we can write

τn = τ ⋆
n +

αn

n
, n = 1, 2, . . . . (10)

By Theorem 3.1 the perturbationsαn

n
from the criti-

cal scaling yield the one-law in the formP (n; τn) ≃
1 (resp. the zero-law in the formP (n; τn) ≃ 0)
provided limn→∞ αn = ∞ (resp. limn→∞ αn =
−∞) with no further constraint on the deviation
function α. This issue will be revisited in Section
IV.

IV. HOW STRONG IS THE CRITICAL SCALINGτ ⋆?

A number of definitions have been given in the
literature regarding critical scalings [31, p. 376].
In this section we explore their relevance for the
scalingτ ⋆ : N0 → R+ in the context of the random
graphG(n; τ).

With range functionτ : N0 → R, it is a simple
matter to check from (37) (with the help of (36))
that

lim
n→∞

P (n; τn) =







0 if limn→∞
τn

τ⋆
n

= 0

1 if limn→∞
τn

τ⋆
n

= ∞.
(11)

It is customary to summarize (11) by saying that
graph connectivity inG(n; τ) admits aweakzero-
one law, and the range functionτ ⋆ is the corre-
sponding (weak) critical scaling [31, p. 376]. This
terminology reflects the fact that the one law (resp.
zero law) emerges with range functionsτ : N0 → R

which are at least an order of magnitude larger
(resp. smaller) thanτ ⋆.

However, a much stronger conclusion than (11)
has been obtained by several authors, namely

lim
n→∞

P (n; cτ ⋆
n) =







0 if 0 < c < 1

1 if 1 < c.
(12)

It is easy to see that this last result still holds for
any range functionτ : N0 → R such thatτn ∼ cτ ⋆

n

for somec > 0 with

lim
n→∞

P (n; τn) =







0 if 0 < c < 1

1 if 1 < c.
(13)

The two zero-one laws (12) and (13) are equiva-
lent, and are already contained in Theorem 1 by
Appel and Russo [1, p. 352]. Muthukrishnan and
Pandurangan [32, Thm. 2.2] have also derived (12)
by a bin-covering technique.

We characterize (12)–(13) by saying that graph
connectivity in G(n; τ) admits astrong zero-one
law, and we refer to the range functionτ ⋆ as a
strong critical scaling [31]. Indeed, forn suffi-
ciently large, a transmission rangeτn suitably larger
(resp. smaller) thanτ ⋆

n ensuresP (n; τn) ≃ 1 (resp.
P (n; τn) ≃ 0) providedτn ∼ cτ ⋆

n with c > 1 (resp.
0 < c < 1). This is in sharp contrast with (11) in
that the one law (resp. zero law) still emerges with
range functionsτ : N0 → R which are larger (resp.
smaller) thanτ ⋆ but of thesameorder of magnitude
as τ ⋆!

It is easy to see that either (12) or (13) implies
(11), as would be expected. Moreover, it is also
straightforward to see that (12) is a mere byproduct
of Theorem 3.1: Indeed, for eachc > 0 we have

cτ ⋆
n =

1

n
(log n + αn) with αn = (c − 1)

log n

n



5

for all n = 1, 2, . . . so thatlimn→∞ αn = ∞ (resp.
limn→∞ αn = −∞) if c > 1 (resp.0 < c < 1).

Theorem 3.1 represents a considerable strength-
ening of (12)–(13) in that the zero-one law still
holds if we allow perturbations from the critical
scalingτ ⋆

n which are much smaller than(c − 1)τ ⋆
n

– For instance, the “small” deviations of the form
αn = ± log log n, which were not covered under the
zero-one law (12) (sinceαn = o(log n)), are now
covered by Theorem 3.1. In some sense, Theorem
3.1 corresponds to the casec = 1 in (12)–(13).
Therefore it seems appropriate to call the zero-
one law (7) avery strongzero-one law, and the
critical scaling τ ⋆ a very strong(and not merely
a strong) critical scaling for the property of graph
connectivity. This captures the extreme sensitivity
to perturbations from the critical scalingτ ⋆, as is
already apparent from graphs available in several
papers, e.g., see [13], [16]. This sharp phase transi-
tion is discussed formally in Section V.

V. TRANSITION WIDTHS

For eachn = 2, 3, . . ., the mappingτ → P (n; τ)
is continuous and strictly monotone increasing on
(0, 1). Given a in (0, 1), this guarantees the exis-
tence and uniqueness of solutions to the equation

P (n; τ) = a, τ ∈ (0, 1) (14)

and letτn(a) denote this unique solution, The main
result concerning the behavior ofτn(a) for largen
is also a consequence of (5).

Theorem 5.1:For everya in the interval(0, 1), we
have

τn(a) =
log n

n
− 1

n
log

(

log

(

1

a

))

+ o
(

n−1
)

= τ ⋆
n − 1

n
log

(

log

(

1

a

))

+ o
(

n−1
)

.(15)

Next, with 0 < a < 1
2
, we define

δn(a) := τn(1 − a) − τn(a).

The transition widthδn(a) measures the increase in
transmission range needed in then node network
to drive the probability of connectivity from levela
to level 1 − a. The more rapidlyτn(a) decays as a
function of n, the sharper the phase transition. The
following result is an easy corollary to Theorem 5.1.

Corollary 5.2: For everya in the interval(0, 1
2
),

we have

δn(a) =
C(a)

n
+ o

(

n−1
)

(16)

with constantC(a) given by

C(a) := log

(

log a

log(1 − a)

)

. (17)

It is a simple matter to check thata → C(a) is
decreasing on the interval(0, 1

2
) with lima↓0 C(a) =

∞ and lima↑ 1

2

C(a) = 0. These qualitative features
are in line with one’s intuition.

Recently Goel et al. [17, Thm. 1.1] have shown
that

δn(a) = O

(

√

− log a

n

)

. (18)

In fact these asymptotic bounds were established
for every monotone graph property. Corollary 5.2
markedly improves on (18) in thatexactasymptotics
are now provided and the rate of decayn−1 is
much faster than the rough asymptotic bound given
by (18). However, these conclusions hold only for
graph connectivity.

We now turn to the proof of Theorem 5.1 where
we shall use the notation

g(x) := e−e−x

, x ∈ R. (19)

Proof. We begin by restating (5) as follows: For
eachx in R and eachε > 0, there exists a finite
integern⋆(ε, x) such that

g(x)−ε < P (n; σn(x)) < g(x)+ ε, n ≥ n⋆(ε, x).
(20)

Now fix a in the interval (0, 1). The mapping
g : R → (0, 1) : x → g(x) defined at (32) is strictly
monotone and continuous withlimx→−∞ g(x) = 0
and limx→∞ g(x) = 1. Therefore, there exists a
unique scalarxa such thatg(xa) = a, namely

xa := − log (− log a) . (21)

Next, pickε sufficiently small such that0 < 2ε <
a and a + 2ε < 1. Repeatedly applying (20) with
x = xa+ε andx = xa−ε, we get

g(xa+ε) − ε < P (n; σn(xa+ε)) < g(xa+ε) + ε (22)

whenevern ≥ n⋆(ε, xa+ε), and

g(xa−ε) − ε < P (n; σn(xa−ε)) < g(xa−ε) + ε (23)
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whenevern ≥ n⋆(ε, xa−ε). In the remainder of
this proof, all inequalities are understood to hold
for n ≥ n⋆(a; ε) where we have setn⋆(a; ε) :=
max (n⋆(ε, xa+ε), n

⋆(ε, xa−ε)). Under these choices,
the inequalities (22) and (23) ensureσn(xa±ε) > 0
for n ≥ n⋆(a; ε).

Sinceg(xa±ε) = a±ε, the two chains of inequal-
ities at (22) and (23) become

a < P (n; σn(xa+ε)) < a + 2ε

and
a − 2ε < P (n; σn(xa−ε)) < a.

But the definitions ofτn(a) andτn(a±2ε) also give

P (n; τn(a)) < P (n; σn(xa+ε)) < P (n; τn(a + 2ε))

and

P (n; τn(a − 2ε)) < P (n; σn(xa−ε)) < P (n; τn(a)).

The strict monotonicity ofτ → P (n; τ) then implies

τn(a) < σn(xa+ε) < τn(a + 2ε)

and
τn(a − 2ε) < σn(xa−ε) < τn(a),

and we get

σn(xa−ε) < τn(a) < σn(xa+ε). (24)

Next, with

ξn(a) := τn(a) − σn(xa), n = 2, 3, . . . (25)

we obtain from (24) that

σn(xa−ε) − σn(xa) < ξn(a) < σn(xa+ε) − σn(xa).

It is now plain from the definition (4) that

xa−ε − xa ≤ nξn(a) ≤ xa+ε − xa (26)

since

σn(xa±ε) − σn(xa) = n−1 (xa±ε − xa) .

Finally, letting n go to infinity in (26)
yields xa−ε − xa ≤ lim infn→∞ (nξn(a)) and
lim supn→∞ (nξn(a)) ≤ xa+ε − xa. Given
that ε > 0 can be taken arbitrarily small
under the required conditions, it follows that
lim infn→∞ (nξn(a)) = lim supn→∞ (nξn(a)) = 0
since limε↓0 (xa±ε − xa) = 0. Thus,
limn→∞ (nξn(a)) = 0, whenceξn(a) = o(n−1).
Reporting this fact into (25) leads to

τn(a) = σn(xa) + o(n−1), n = 2, 3, . . .

and the desired result readily follows from (4) and
(21).

VI. SPACINGS AND CLOSED-FORM EXPRESSIONS

A natural approach to the derivation of (5) con-
sists in developing expressions for (2). To that end,
fix n = 2, 3, . . . and τ > 0. With the node loca-
tions X1, . . . , Xn, we associate rvsXn,1, . . . , Xn,n

which are the locations of thesen users arranged
in increasing order, i.e.,Xn,1 ≤ . . . ≤ Xn,n with
the conventionXn,0 = 0 and Xn,n+1 = 1. The
rvsXn,1, . . . , Xn,n are theorder statisticsassociated
with then i.i.d. rvs X1, . . . , Xn. We also define the
spacingrvs

Ln,k := Xn,k − Xn,k−1, k = 1, . . . , n + 1. (27)

The obvious relationLn,1+ . . .+Ln,n+1 = 1 already
suggests that the spacingsLn,1, . . . , Ln,n+1 should
exhibit some form of negative correlation; this will
be formalized in Lemma 10.2.

Interest in these spacings derives from the obser-
vation that the graphG(n; τ) is connected if and
only if Ln,k ≤ τ for all k = 2, . . . , n, so that

P (n; τ) = P [Ln,k ≤ τ, k = 2, . . . , n] . (28)

The following fact is well known [6, Eq. (6.4.3), p.
135], and will turn out to be useful in a number of
places: For any subsetI ⊆ {1, . . . , n}, we have

P [Ln,k > tk, k ∈ I]

=

(

1 −
∑

k∈I

tk

)n

+

, tk ∈ [0, 1], k ∈ I (29)

where we have used the notationxn
+ = xn if x ≥ 0

and xn
+ = 0 if x ≤ 0. With the help of (29), the

inclusion-exclusion formula (applied to (28)) easily
yields the closed form expression

P (n; τ) =
n−1
∑

k=0

(−1)k

(

n − 1

k

)

(1 − kτ)n
+. (30)

This expression has been rediscovered by several
authors, e.g., Godehardt and Jaworski [15, Cor. 1,
p. 146], Desai and Manjunath [7] (as Eqn (8) with
z = 1 and r = τ ), Ghasemi and Nader-Esfahani
[13] and Gore [16]. See also Devroye’s paper [9]
for pointers to an older literature.

While certainly pleasing, the expression (30) is
not well suited for the purpose of establishing (5).
This has prompted us to introduce other represen-
tations for the probability of graph connectivity (2)
in Sections VII and VIII.
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VII. A RESULT BY L ÉVY ON MAXIMAL

SPACINGS

The special role of the critical range functionτ ⋆ :
N0 → R+ can already be surmised from a number of
earlier limit results on maximal spacings. For each
n = 1, 2, . . ., the maximal spacingassociated with
the rvsX1, . . . , Xn is the rvM⋆

n given by

M⋆
n := max (Ln,k, k = 1, . . . , n + 1) . (31)

The convergence results given next are by now
classical; they were originally given by Lévy [28]
via geometric arguments, but have been rederived
by Darling [5], and others; see Devroye’s paper
[9] for additional references. In order to state these
results compactly, letΛ denote anyR-valued rv with
probability distribution given by

P [Λ ≤ x] = g(x) := e−e−x

, x ∈ R. (32)

Any rv distributed according to (32) is called a
Gumbel rv.

Theorem 7.1:We have
M⋆

n

τ ⋆
n

P−→ n 1 (33)

and
nM⋆

n − log n =⇒n Λ. (34)

In the formulation used here, the boundary points
of the interval[0, 1] are not automatically nodes for
the random graph (as is the case in the models
discussed in [11], [12], [16]). Consequently, we
modify the definition (31) by considering instead
the rvs

Mn := max (Ln,k, k = 2, . . . , n) , n = 2, 3, . . .
(35)

Given n = 2, 3, . . ., for each τ > 0, the graph
G(n; τ) is connected if and only ifMn ≤ τ , so
that (28) becomes

P (n; τ) = P [Mn ≤ τ ] . (36)

Thus, insights into (3) are likely to be gained
through limit results for the sequence{Mn, n =
1, 2, . . .}. In analogy with Theorem 7.1, we have
the following convergence results.

Theorem 7.2:We have
Mn

τ ⋆
n

P−→ n 1 (37)

and
nMn − log n =⇒n Λ. (38)

For future use we find it convenient to write

Λn := nMn − log n, n = 2, 3, . . . .

With the help of (36) we see that the convergence
(38) is a simple rewriting of (5) since

P (n; σn(x)) = P [Mn ≤ σn(x)] = P [Λn ≤ x] (39)

for each x in R and all n = 2, 3, . . .. Given
the pivotal role played by the convergence (38),
we provide below a direct proof of this result by
elementary arguments.

Proof. We note that (38) implies (37) by elementary
properties of weak convergence: Indeed,

Λn

log n
=

Mn

τ ⋆
n

− 1, n = 2, 3, . . .

so that Λn

log n
=⇒n 0 by virtue of (38). The desired

conclusion (37) follows from the fact that weak con-
vergence to a constant is equivalent to convergence
in probability to that constant [4, p. 25].

The starting point for proving the convergence
(38) is the following representation of the order
statisticsXn,1, . . . , Xn,n: Consider a collection of
{ξj, j = 1, 2, . . .} of i.i.d. rvs which are exponen-
tially distributed with unit parameter, and set

T0 = 0, Tk = ξ1 + . . . + ξk, k = 1, 2, . . . .

For eachn = 1, 2, . . ., the stochastic equivalence

(Xn,1, . . . , Xn,n) =st

(

T1

Tn+1

, . . . ,
Tn

Tn+1

)

(40)

is known to hold [35, p. 403] (and references
therein), whence

(Ln,1, . . . , Ln,n) =st

(

ξ1

Tn+1
, . . . ,

ξn

Tn+1

)

. (41)

With the help of (41), simple algebra shows that

Λn =st

n

Tn+1
· max (ξk, k = 2, . . . , n) − log n

=
n

Tn+1
· (max (ξk, k = 2, . . . , n) − log n)

−
(

1 − n

Tn+1

)

· log n (42)



8

where we can write
(

1 − n

Tn+1

)

· log n

=
n

Tn+1

(

Tn+1

n
− 1

)

· log n

=
n

Tn+1

·
√

n

(

Tn+1

n
− 1

)

· log n√
n

. (43)

Next let n go to infinity in (42) and (43). By the
Strong law of large Numbers, we have

lim
n→∞

Tn+1

n
= 1 a.s.

whereas the Central Limit Theorem yields

√
n

(

Tn+1

n
− 1

)

=⇒n U

with U denoting a zero-mean unit variance Gaussian
rv. As a result, it is easy to see that

n

Tn+1
·
√

n

(

1 − Tn+1

n

)

· log n√
n

P−→ n 0 (44)

by elementary properties of the convergence modes
for rvs [4]. It is also well known [10, Example 3.2.7,
p. 125] that

max (ξk, k = 2, . . . , n) − log n =⇒n Λ

so that
n

Tn+1
· (max (ξk, k = 2, . . . , n) − log n) =⇒n Λ.

(45)
Combining (44) and (45) leads to the desired result
(38).

To the best of the authors’s knowledge, the
method of proof used given here appears to be
new. Theorem 7.1 can be established along the
same lines; in fact it is not too difficult to see that
Theorem 7.1 and Theorem 7.2 are equivalent.

VIII. A P OISSON APPROXIMATION

Fix n = 2, 3, . . . and τ in (0, 1). For eachi =
1, . . . , n, nodei is said to be abreakpointnode in
the random graphG(n; τ) whenever (i) it is not the
leftmost node in[0, 1] and (ii) there is no node in
the random interval[Xi−τ, Xi]. The numberCn(τ)
of breakpoint nodes inG(n; τ) is given by

Cn(τ) :=

n
∑

k=2

χn,k(τ)

where the{0, 1}-valued rvsχn,1(τ), . . . , χn,n+1(τ)
are the indicator functions defined by

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1.

The graph G(n; τ) is connected if and only if
Cn(τ) = 0, and the representation

P (n; τ) = P [Cn(τ) = 0] (46)

follows. This points to the possibility that the con-
vergence (3) can be studied by developing a con-
vergence theory for the rvs{Cn(τn), n = 1, 2, . . .}
under appropriate conditions on the range function
τ : N0 → R.

The main result along these lines takes the form
of a Poisson approximation. Before presenting it,
we need some additional notation: For any pair of
probability mass functions (pmfs)µ and ν on N,
we define the total variation distance betweenµ =
(µ(x), x ∈ N) andν = (ν(x), x ∈ N) by

dTV (µ; ν) :=
1

2

∞
∑

x=0

|µ(x) − ν(x)|.

It is easy to check that

|µ(x) − ν(x)| ≤ dTV (µ; ν), x ∈ N. (47)

Also, if X and Y are N-valued rvs distributed
according to the pmfsµ and ν, respectively, we
shall write dTV (X, Y ) for dTV (µ, ν). Throughout
let Π(µ) denote a Poisson rv with parameterµ.

Theorem 8.1:For eachn = 2, 3, . . . andτ in the
interval(0, 1), we have

dTV (Cn(τ); Π(λn(τ))) ≤ Bn(τ) (48)

where the quantitiesλn(τ) andBn(τ) are given by

λn(τ) = E [Cn(τ)] = (n − 1) (1 − τ)n (49)

and

Bn(τ) = (n−1) (1 − τ)n−(n−2)
(1 − 2τ)n

+

(1 − τ)n . (50)

This result is established in Section X with the
help of the Stein-Chen method [3] – In fact it is
already given as Theorem 6.1 in [2, p. 83] with a
slightly different proof.
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IX. POISSON CONVERGENCE AND FINITE NODE

MODELS

An immediate, and important, consequence of
Theorem 8.1 is the Poisson convergence discussed
below.

Theorem 9.1:For eachx in R, we have

lim
n→∞

dTV (Cn(σn(x)); Π(e−x)) = 0 (51)

with the range functionσ(x) : N0 → R given by (4).

Proof. Fix n = 2, 3, . . . andτ in the interval(0, 1);
the notation is that of Theorem 8.1. The triangular
inequality for the total variation distance yields

dTV (Cn(τ); Π(e−x)) ≤ dTV (Cn(τ); Π(λn(τ)))

+ dTV (Π(λn(τ)); Π(e−x))

and the estimate

dTV (Π(λn(τ)); Π(e−x)) ≤ |λn(τ) − e−x|

is well known [29, p. 58]. Combining these two
facts with the bound (48) we find

dTV (Cn(τ); Π(e−x)) ≤ Bn(τ)+|λn(τ)−e−x|. (52)

Finally, replaceτ by σn(x) in (52), and letn go
to infinity in the resulting inequality. It is a simple
matter to check thatlimn→∞ Bn(σn(x)) = 0 and
limn→∞ |λn(σn(x))− e−x| = 0. This establishes the
convergence (51).

Given the discrete nature ofN, the convergence
(51) in the total variation distance is equivalent [3,
p. 254] to the convergenceCn(σn(x)) =⇒n Π(e−x),
so that

lim
n→∞

P [Cn(σn(x)) = k] =
(e−x)

k

k!
e−e−x

(53)

for each k = 0, 1, . . .. An equivalent result was
already given by Godehardt and Jaworski [15, Thm.
12, p. 157] in terms of the number of connected
components inG(n; τ), which is given byCn(τ)+1.
See also a similar result for the corresponding model
on the unit circle [30, Thm. 8, p. 172].

The proof of Theorem 9.1 yields quite a
bit more than the convergence (53): Since
P [Cn(σn(x)) = 0] = P (n; σn(x)), the bound (52)

(with the help of (47)) provides a means to control
the convergence (3) as it implies

|P (n; σn(x)) − e−e−x|
≤ Bn(σn(x)) + |λn(σn(x)) − e−x| (54)

for all n = 2, 3, . . . and arbitraryx in R. This ap-
proximation can be leveraged to deal with situations
involving a finite number of nodes. For instance, the
requirement

|P (n; σn(x)) − e−e−x| ≤ δ

for someδ > 0 can be guaranteed by requiring

Bn(σn(x)) + |λn(σn(x)) − e−x| ≤ δ. (55)

In particular, witha in (0, 1) and xa as given by
(21) we find

|P (n; σn(xa)) − a| ≤ δ

provided (55) holds withx replaced byxa.
Before moving on to the proof Theorem 8.1 in the

next section, we note that the Poisson approximation
also yields arate of convergence in (38): Indeed,
using (39) in the bound (54), we find

∣

∣

∣
P [nMn − log n ≤ x] − e−e−x

∣

∣

∣

≤ Bn(σn(x)) + |λn(σn(x)) − e−x| (56)

for all n = 2, 3, . . . andx in R. To the best of the
authors’s knowledge, this results appears to be new.

X. A PROOF OFTHEOREM 8.1

We begin with a simple technical fact concerning
binary valued rvs. For somen = 2, 3, . . ., consider
a collection of{0, 1}-valued rvsξ1, . . . , ξn defined
on the probability space(Ω,F , P). Next, with P⋆

n

denoting the collection of all non-empty subsets of
{1, . . . , n}, we define

P (K) := P [ξk = 1, k ∈ K] , K ∈ P⋆
n.

Lemma 10.1:The probabilities{P (K), K ∈
P⋆

n} collectively determine the joint pmf of the
{0, 1}n-valued rv(ξ1, . . . , ξn).

Proof. Pick an arbitrary non-zero elementa =
(a1, . . . , an) in {0, 1}n, and write K(a) = {k =
1, . . . , n : ak = 1} and K(a)c = {k =
1, . . . , n : ak = 0}. Direct inspection yields

P [ξk = ak, k = 1, . . . , n] = E





∏

k∈K(a)

ξk

∏

k∈K(a)c

(1 − ξk)




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so that

P [ξk = ak, k = 1, . . . , n] =
∑

K∈Pn(a)

c(K)P (K)

for some appropriate collectionPn(a) of subsets of
{1, . . . , n}, and coefficients{c(K), K ∈ Pn(a)}
taking values±1. We have used the convention
∏

k∈K(a)c(1 − ξk) = 1 when K(a) is empty. The
proof is completed upon noting that

P [ξ1 = . . . = ξn = 0]

= 1 −
∑

a 6=0
P [ξk = ak, k = 1, . . . , n]

where
∑

a6=0 denotes summation over all non-zero
elementsa in {0, 1}n.

For eachn = 2, 3, . . . and i = 1, . . . , n, let Kn,i

denote the set of integers{1, . . . , n} from which we
have deletedi.

Lemma 10.2:Fix n = 2, 3, . . . and τ in the in-
terval (0, 1). For eachi = 1, . . . , n, we have the
stochastic equivalence

[(χn,k(τ), k ∈ Kn,i)|χn,i(τ) = 1]

=st

(

χn,k

(

τ

1 − τ

)

, k ∈ Kn,i

)

. (57)

Proof. Fix i = 1, . . . , n. By Lemma 10.1, it suffices
to show that

P [χn,k(τ) = 1, k ∈ K|χn,i(τ) = 1]

= P

[

χn,k

(

τ

1 − τ

)

= 1, k ∈ K

]

(58)

for any K in P⋆
n which does not containi.

For any suchK in P⋆
n which does not contain

i, let |K| denote its cardinality. Repeatedly making
use of (29) we get

P [χn,k(τ) = 1, k ∈ K|χn,i(τ) = 1]

= P [Ln,k > τ, k ∈ K|Ln,i > τ ]

=
P [Ln,k > τ, k ∈ K; Ln,i > τ ]

P [Ln,i > τ ]

=
(1 − (|K| + 1)τ)n

+

(1 − τ)n

and

P

[

χn,k

(

τ

1 − τ

)

= 1, k ∈ K

]

= P

[

Ln,k >
τ

1 − τ
, k ∈ K

]

=

(

1 − |K| τ

1 − τ

)n

+

=
(1 − (|K| + 1)τ)n

+

(1 − τ)n .

The validity of (58) follows by direct comparison.

The coupling used in the proof of Theorem 6.1 in
[2, p. 83] is given directly in terms of the spacings
Ln,1, . . . , Ln,n but is in the same spirit as the one
given here. We now turn to the proof of Theorem
8.1. Fix n = 2, 3, . . . and τ in the interval(0, 1):
From (29) it is plain that the rvsLn,1, . . . , Ln,n

are exchangeable; see also (41) for an additional
confirmation. Leveraging this fact we see that

E [Cn(τ)] = (n − 1)P [Ln,2 > τ ]

and

E
[

Cn(τ)2
]

=

n
∑

k=2

n
∑

ℓ=2

P [Ln,k > τ, Ln,ℓ > τ ]

= (n − 1)P [Ln,2 > τ ]

+(n − 1)(n − 2)P [Ln,2 > τ, Ln,3 > τ ] .

Repeatedly using (29), we find

λn(τ) = E [Cn(τ)] = (n − 1) (1 − τ)n (59)

and

E
[

Cn(τ)2
]

= λn(τ) + (n − 1)(n − 2) (1 − 2τ)n

+ .
(60)

We then observe that the rvsχn,1(τ), . . . , χn,n(τ)
are negatively related(in the technical sense given
in [3, p. Defn. 2.1.1, p. 24]). This follows from (57)
for all i = 2, . . . , n in view of the obvious coupling
inequalities

χn,k

(

τ

1 − τ

)

≤ χn,k(τ), k = 1, 2, . . . , n.

As a result, the basic Stein-Chen inequality [3, Cor.
2.C.2, p. 26] takes on the simpler form

dTV (Cn(τ); Π(λn(τ)))

≤
(

1 − e−λn(τ)

λn(τ)

)

(λn(τ) − Var[Cn(τ)])

≤ λn(τ) − Var[Cn(τ)]

λn(τ)
. (61)
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Direct substitution from (59) and (60) gives

λn(τ) − Var[Cn(τ)]

= λn(τ) −
(

E
[

Cn(τ)2
]

− E [Cn(τ)]2
)

= −(n − 1)(n − 2) (1 − 2τ)n

+

+ (n − 1)2 (1 − τ)2n
,

and the conclusion (48) follows from (61) upon
noting that

λn(τ) − Var[Cn(τ)]

λn(τ)
= Bn(τ).

XI. A DDITIONAL COMMENTS

The zero-one laws for graph connectivity and the
asymptotics of the transition widths were shown to
all flow from the single key convergence result (5).
We presented two very different approaches to this
result – One relies on results by Lévy on maxi-
mal spacings, while the other exploits a Poisson
convergence result for the number of breakpoint
users under the scalings (4). It is worth pointing out
that a similar situation exists for geometric random
graphs in higher dimensions, with appropriate mod-
ifications and at the expense of significant technical
difficulties.

The discussion begins with the observation that
in higher dimensions it is easier to begin with
the absence of isolated nodes rather than attack
directly graph connectivity. The argument is then
completed by showing the asymptotic equivalence
between these two graphs properties [1], [33], [34].
The absence of isolated nodes is naturally associated
with the largest nearest-neighbor link[1], [8], a
quantity which in the one-dimensional case reduces
to the maximal spacing. The appropriate version of
Theorem 7.1 should then be a limiting result for the
largest nearest-neighbor link (suitably normalized
and centered); such results are indeed available in
the literature under various assumptions, e.g., see
[8, Thms. 1.2-1.5, p.68] and [33, Eqn. (3), p. 341].
As the notion of breakpoint nodes is meaningless in
dimension two and higher, attention shifts instead to
the number of isolated nodes and Poisson conver-
gence is shown to hold for this quantity under the
appropriate scaling [27].

At this point the reader may wonder as to what
becomes of the results given here when the nodes

are distributed independently on the interval[0, 1]
according to anon-uniform distributionF . When
F admits a non-vanishing densityf , the strong
zero-one law was developed in [23] (through the
appropriate version of (37)) while the very strong
zero-one law can be found in [24] (where it is
established by means of the method of first and
second moments). At the time of this writing the
analogs of Theorem 5.1 and Corollary 5.2 are not
known. The case when the density vanishesf at
isolated points is explored for a particular family of
densities in [22].
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