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Abstract— Consider n points (or nodes) distributed and biomedical research to name a few; see the
uniformly and independently on the unit interval [0, 1]. monograph by Penrose [34] for a comprehensive
less than some given threshold value. For the underlying Gupta and Kumar [18] have recently drawn attention

random graph we derive zero-one laws for the property ) h . .
of graph connectivity and give the asymptotics of the to the two-dimensional version through their use of

transition widths for the associated phase transition. Thee the popular disk model.
results all flow from a single convergence statement for the  In this paper we consider the simplest of ge-
probability of graph connectivity under a particular class  ometric random graph models, namely the ones
of scalings. Given the importance (_)fthis result, we give tv_vo defined over finite (one-dimensional) intervals —
separate proofs; one approach relies on results conceming cqnsidery, points (or communication nodes) which
maximal spacings, while the other one exploits a Poisson L ) .
convergence result for the number of breakpoint users. are dlsft”b,Uted uniformly and mdependen'gly on the
(generic) intervall0, 1]. Two nodes are said to be
Keywords: Geometric random graphs, Conneggdjacent (or to communicate with each other) if
tivity, Critical scalings, Zero-one laws, Phase tranheir distance is less than some given transmission
sitions. ranger > 0. This one-dimensional model has been
proposed for wireless networks constrained over
|. INTRODUCTION “linear highways,” e.g., see [7], [11], [12], [13],

Geometric random graphs appear in settings H%]\/ [32].

diverse as statistical physics, pattern recognition € focus on the connectivity of the induced graph
whenn becomes large and the transmission range

Han Guang was with the Department of Electrical and Computgs appropriately scaled with, i.e., the transmission

Engineering, and the Institute for Systems Research, Uhitye ; ;
of Maryland, College Park, MD 20742, U.S.A. He is now Withrange is made to depend an throth SC8.|II‘IgS

the Advanced Network Technology Group, Motorola Inc., 144T : NO_—> R :n — 7, It is well known tha_‘t the
W. Shure Drive, Arlington Heights, IL 60004, U.S.A. E-mail:graph is connected (resp. not connected) with a very

guang.han@motorola.com QEigh probability (as: becomes large) depending on
‘

Armand M. Makowski is with the Department of Electrical an . . ... .
Computer Engineering, and the Institute for Systems RekearNOW the scaling used deviates froneritical scaling

University of Maryland, College Park, MD 20742, U.S.A. Eima 7* : Ny — R. This critical scaling, given by (9),

armand@isr.umd.edu. ; ; FAA-
The material in this paper was presented in part at the IrrahguhaS the fO"OWIng roth operatlonal meaning. Let

Workshop, Information Theory and Applications, Univeysif Cali- P(n; T) denote the probability th(?lt t.h’e node net-
fornia, San Diego (CA), February 2006 and at the IEEE Intésnal  Work is connected under transmission rangd-or

2006. !

This work was prepared through collaborative participaiio the larger (resp. smaller) thary; ensuresP(n;7,) ~ 1
Communications and Networks Consortium sponsored by the (resp. P(n;7,) ~ 0). Such statements are known

S. Army Research Laboratory under the Collaborative Telcgyo in the literature asgero-onelaws once the precise

Alliance Program, Cooperative Agreement DAAD19-01-2-D0The hnical . f itablv | I
U. S. Government is authorized to reproduce and distribepeints LECNNICAl meaning tor suitably larger (resp. smaller)

for Government purposes notwithstanding any copyrighmtit  has been elucidated, see e.g., [1], [21], [32]. Phase
thereon. The views and conclusions contained in this doot@e  transitions are associated with such zero-one laws

those of the authors and should not be interpreted as repirge¢he . . .
official policies, either expressed or implied, of the ArmgdRarch [26] and sharp asymptotics are sometimes available

Laboratory or the U. S. Government. for the corresponding transition width [19], [20].



The one-dimensional models are arguably tlepacings induced by i.i.d. samples drawn from the
least geometric in nature, and as such occupyuaiform distribution on finite intervals [3, Chap. 7].
somewhat singular place in the literature on gedhe contributions of the paper can be summarized
metric random graphs [34, p. 283]. This is reflecteak follows:
by the continuing attention they have received from Lévy’s result on maximal spacings Fhe first
research communities with various (non-geometriapproach relies on the fact that the maximal spacing
perspectives: The monograph by Godehardt [l4iduced by the node positions provides an immedi-
deals with applications to cluster analysis, and tlae characterization of graph connectivity. We then
exhaustive study in [15] provides a direct combbbtain (1) as a byproduct of classical results con-
natorial analysis of many results of interest. Appekrning the asymptotic theory of maximal spacings.
and Russo [1, p. 352] leverage the connection wilthe result goes back the work of Lévy [28], but we
maximal spacings, while Muthukrishnan and Paprovide here a simple proof which appears to be
durangan [32, Thm. 2.2] make use of bin-coveringew [Section VII].
techniques. Stein-Chen approximationNext we characterize

As a result of these efforts, many questiorgraph connectivity through the number of break-
concerning graph connectivity have by now begmoint nodes which counts the number of connected
answered, albeit in various forms of completenesomponents minus one. A key result is a Poisson
However, some of the results have been reproducggpbroximation for this count variable through the
independently, are scattered in multiple literaturé&iein-Chen method [Section VIII with a proof in
and are not always couched in graph-theoreSBection X]. This approach provides convergence to
terms. Here we provide a unified presentation af Poisson random variable under the scaling (4),
these results, both old and new, in their sharpest well as arapproximation(in the total variation
form; the discussion emphasizes the single conveerm) which can be used to glean information on
gence statement the corresponding rate of convergence. As a result

we are now in a position to understand the perfor-
) —e¢ " zeR. (1) mance offinite node graphs [Section IX] through
an explicitly computable bound on the difference

lim P (n; logn+x

n

as the source for all relevant results. This con- ‘ ( 10gn+x) . R
j——— | —e ¢ |, z€

vergence points to the special role played by the n;
scalingsn — 222 and foreshadows the form (9)
of the critical scaling. forall n =2,3,.... As an added bonus, this bound
The convergence (1) paves the way to a numb&n be leveraged to obtain a rate of convergence for
of results: From it we first can derive a zero-onkévy’s original result. This time, the convergence
law for graph connectivity [Section Ill]. The version(1) is an easy consequence of the aforementioned
given here is stronger than the one usually discusdeaisson convergence.
in the literature, and for this reason we refer to it We close the paper [Section Xl] with several
as a very strong zero-one law [Section IV]. Thipointers: The two approaches given here have
zero-one law was already obtained by the authasalogs in geometric random graphs of dimension
by means of a different technique in [21]. Théwo and higher. When nodes are placed according
convergence (1) leads easily to precise asymptottosan arbitrary distribution, results have been devel-
on the width for the phase transition inherent iaped by the authors in a series of recent papers [22],
the very strong zero-one law [Section V]; thesg3], [24].
asymptotics were already announced in [19], [20]. A word on the notation and conventions in use:
A closed-form expression faP(n; 7) is available All limiting statements, including asymptotic equiv-
[Section VI]. However, there does not appear @ences, are understood with going to infinity.
simple way to use it in order to establish (1). Givelhe random variables (rvs) under consideration are
the central place occupied by this convergence, \a# defined on the same probability tripl€, 7, P).
shall present two very different approaches to iBrobabilistic statements are made with respect to
proof — Each proof makes use of a different chathis probability measur®, and we denote the cor-
acterization of graph connectivity in terms of theesponding expectation operator By The notation

n



P, » (resp.=,) is used to signify convergence Theorem 2.1:For eachr in R, we have
in probability (resp. weak convergence) with
going to infinity. Also, we use the notatioa,; to
indicate distributional equality. The indicator func-

tion of an event£' is denoted byl [E]. Theorem 2.1 has several byproducts which are
discussed in the next three sections. In the course
[I. THE MODEL AND A KEY CONVERGENCE of the paper two very different approaches will be

e~

(5)

lim P(n;o,(x)) =€

RESULT presented to establish (5).
We start with a sequencéX;, i = 1,2,...}
of i.i.d. rvs which are distributed uniformly in the ~ !ll. A ZERO-ONE LAW AND ITS CRITICAL
interval [0, 1]. For eachn = 2,3,..., we think of SCALING
Xi,...,X, as the locations of. nodes (or users), We start by noting that there is no loss of gener-
labelledl, . ... n, in the intervall0, 1]. Given a fixed ality in writing any range functiom : Ny, — R in

distance (or transmission range) > 0, nodesi the form

andj are said to be adjacent jifX; — X,| < 7, in

which case an undirected edge exists between them. 7»

This notion of adjacency amongst nodes gives rise . ,

to an undirected geometric random graph, thereafl@f SOme deviation function : Ny — R — Just take

denotedG(n; 7). As usual, the grapty(n; 7) is said

to be connected if every pair of nodes can be linked

by at least one path over the edges of the graph, and heorem 3.1:For any range function : N, — R

we write written in the form (6) for some deviation function
a: Ny — R, we have

1
:E(]ogn—l—an), n=12,.... (6)

a, =nT, —logn, n=12 ...

P(n;1):=P[G(n;T) is connectel  (2)

0 if lim, o o, = —00
We refer to the quantity?(n; 7) as the probability — lim P(n;7,) =
of graph connectivity. ObviouslyP(n;7) = 1 if e 1 if limy, oo vy = +00.
7 > 1. We also find it convenient to sét(n; 7) = 0 (7)

if 7<0.

We are interested in understanding how the prob-In [21], the authors gave a direct derivation of
ability of graph connectivity behaves when the nunf-heorem 3.1 by the method of first and second
bern of nodes becomes large and the transmissioroments, an approach widely used in the theory
range T is scaled appropriately. Thus, with rangef Erd6s-Renyi graphs [25, p. 55]. Here we take
function orscalingr : Ny — R : n — 7,, we a different approach: The form of (6)—(7) suggests
investigate the limit interpreting (5) (via (4)) as amterpolation result

) betweenr = —oo andx = co. This is indeed borne
,}EEOP(W Tn) () out by the proof of Theorem 3.1 given next, which

L : xploits only the validity of (5).
whenever it exists. We allow scalings to take o% ploits only the validity of (5)

negative values as a matter of convenience in orqgrroof
to simplify the presentation in a number of place\ﬁritte'n i
(with the help of the convention following (2)).
The basic message of the paper is that the nee
asymptotics pertaining to (3) all flow from a single
statement which we now present: With eachin P(n;on(x)) < P(n;1,), n>n(w)

R, we associate the range functiefiz) : Ng — R . . ,
defined by since the mapping — P(n;7) is monotonically

increasing for eaclh = 2,3,.... Letting n go to

1 . . . . . . .

() = ogn + x7 n—1.2... 4) ;Eg?lty in this last inequality, we conclude from (5)
n

Note thato, () > 0 for all n sufficiently large. e <liminf P(n; 7).

n—oo

Consider a range functiom : Ny — R
n the form (6) withlim,, ., c,, = oo. Thus,
for everyx in R, there exists an integet(x) such
xr < a, for all n > n(z), in which case



We get the one-law upon noting that can be  With range functionr : Ny — R, it is a simple
made arbitrarily large in this last inequalitymatter to check from (37) (with the help of (36))

This implies liminf, .., P(n;7,) = 1, whence that
lim, .o, P(n;7,) = 1. The casdim,, .., a,, = —00 0 if lim, ..2==0
can be handlednutatis mutandisvith details left lim P(n;7,) = !
to the interested reader. | oo 1if lim, o = = 0.
’ (11)
We note that Theorem 3.1 can be consolidatéigis customary to summarize (11) by saying that
with (5) through a single statement. graph connectivity inG(n;7) admits aweakzero-
Theorem 3.2:For any range function: N, — R one law, and the range functiort is the corre-
written in the form (6), we have sponding (weak) critical scaling [31, p. 376]. This

terminology reflects the fact that the one law (resp.
(8) zero law) emerges with range functions N, — R
. . which are at leastan order of magnitude larger
whenevery = lim,, ., «,, (possibly+oo). gesp. smaller) than™.
a

Theorem 3.2 is in fact equivalent to (5), and cah yyq\vever, a much stronger conclusion than (11)

be established from it by arguments similar to the o haen obtained by several authors, namely
ones used in the proof of Theorem 3.1; details are ’

lim P(n;7,) =e© "

n—~00

left to the interested reader. 0 if 0<e<1
From Theorem 3.1 we see that the range function lim P(n;cr;) = _ (12)
™ : Ny — R, given by Lif 1<e
. logn It is easy to see that this last result still holds for
TW=— "= L2,... (9) any range functiorr : Ny, — R such thatr, ~ et

acts as acritical scaling for graph connectivit _nfor somec > 0 with
iti i ivity i .
g grap Y 0 if 0<ex1

that it defines aboundaryin the space of range ) .

functions. Roughly speaking, for large, a trans- Jim P(n;7) = . (13)
mission range, suitably larger (resp. smaller) than 1 1l<e
7* ensures that the grapt(n;7,) is connected The two zero-one laws (12) and (13) are equiva-
(resp. disconnected) with very high probability. Thent, and are already contained in Theorem 1 by
precise technical meaning for suitably larger (respppel and Russo [1, p. 352]. Muthukrishnan and
smaller) is found at (7): For any range functiofPandurangan [32, Thm. 2.2] have also derived (12)
7 : Ny — R written in the form (6) with some by a bin-covering technique.

deviation functiona : Ny — R, we can write We characterize (12)—(13) by saying that graph
L ap connectivity in G(n;7) admits astrong zero-one
=T b= n=12 (10) law, and we refer to the range functiort as a

strong critical scaling [31]. Indeed, form suffi-
ciently large, a transmission rangg suitably larger
; (resp. smaller) tham ensuresP(n;7,) ~ 1 (resp.
1 (re_sp. the zero-law in the forrf(n;fn) ~ 0) P(n;7,) ~ 0) providedr, ~ c7* (with i > 1 (resp.
provided lim,, o @, = o0 (resp. lim,—cn = 4 "' 1) This is in sharp contrast with (11) in

_OO).W'th no _fur_ther constraint on the_ deV|at_|on[hat the one law (resp. zero law) still emerges with
function a. This issue will be revisited in Section

By Theorem 3.1 the perturbatiods from the criti-
cal scaling yield the one-law in the fori(n; 7,,) ~

range functions : No — R which are larger (resp.

V. smaller) than* but of thesameorder of magnitude
ast*!
V. HOW STRONG IS THE CRITICAL SCALINGT*? It is easy to see that either (12) or (13) implies

A number of definitions have been given in th€ll), as would be expected. Moreover, it is also
literature regarding critical scalings [31, p. 376traightforward to see that (12) is a mere byproduct
In this section we explore their relevance for thef Theorem 3.1: Indeed, for eaetr> 0 we have
scaling7* : Ny — R, in the context of the random )

1 logn
graphG(n; 7). Ty,

_— ith o, = (¢ — 1
n(ogn+an) with a,, = (c )n




for all n = 1,2,... so thatlim,,_.., a,, = oo (resp.  Corollary 5.2: For everya in the interval(0, %),

lim,, . a,, = —o0) if ¢ > 1 (resp.0 < ¢ < 1). we have
Theorem 3.1 represents a considerable strength- S,(a) = Ca) +o(n ) (16)
ening of (12)—(13) in that the zero-one law still n

holds if we allow perturbations from the criticalwith constant”(a) given by
scaling 7 which are much smaller thafx — 1)7*
— For instance, the “small” deviations of the form C(a) = log <loi) ‘ (17)
a, = *+loglog n, which were not covered under the log(1 —a)

zero-one law (12) (since,, = o(logn)), are now

covered by Theorem 3.1. In some sense, Theordiris @ simple matter to check that — C(a) is
3.1 corresponds to the case= 1 in (12)—(13). decreasing on the intervéd, 1) with lim, o C(a) =
Therefore it seems appropriate to call the zerge andlim,;1 C(a) = 0. These qualitative features
one law (7) avery strongzero-one law, and theare in line with one’s intuition.

critical scaling7* a very strong(and not merely Recently Goel et al. [17, Thm. 1.1] have shown
a strong) critical scaling for the property of grapkhat

connectivity. This captures the extreme sensitivity 5u(a) = O ( | —log a) (18)

to perturbations from the critical scaling, as is " n '

already apparent from graphs available in several

papers, e.g., see [13], [16]. This sharp phase tran&-fact these asymptotic bounds were established
tion is discussed formally in Section V. for every monotone graph property. Corollary 5.2
markedly improves on (18) in thakactasymptotics

are now provided and the rate of decay! is
V. TRANSITION WIDTHS much faster than the rough asymptotic bound given
For eachn = 2,3, . .., the mappingr — P(n; ) by (18). However, these conclusions hold only for

is continuous and strictly monotone increasing difaph connectivity.
(0,1). Givena in (0,1), this guarantees the exis- We now turn to the proof of Theorem 5.1 where

tence and uniqueness of solutions to the equatiol® Shall use the notation

P(n;7)=a, 7€(0,1) (14) glx):=e*", x€eR (19)

and letr, (a) dgnote this unique solution, The maifpbyoof. We begin by restating (5) as follows: For
result concerning the behavior of(a) for largen eachz in R and eache > 0, there exists a finite

is also a consequence of (5). integern* (s, z) such that
Theorem 5.1:For every in the interval0, 1), we
have g(x) —e < P(n;04(x)) < g(z)+¢, n2>n'(e,2).
(20)
To(a) = logn _ 1log (log (1)) +o(n") Now fix a in the interval (0,1). The mapping
n n a g:R—(0,1): 2 — g(x) defined at (32) is strictly

1 1 1 1 1Y (15 monotone and continuous witlm, .., g(x) = 0
= Ta o808 +0(n") (18) ang lim, . g(z) = 1. Therefore, there exists a
unique scalar, such thatg(z,) = a, namely

Next, with 0 < a < %, we define x, = —log(—loga). (21)

dn(a) :==7,(1 —a) — m(a). Next, picke sufficiently small such thét < 2¢ <

a anda + 2¢ < 1. Repeatedly applying (20) with
The transition widthj, (a) measures the increase iy = ;... andz = z,_., we get

transmission range needed in thenode network

to drive the probability of connectivity from leval — 9(Za+e) — € < P(n;0n(Zate)) < 9(Tase) +€ (22)
to level 1 — a. The more rapidlyr,(a) decays as a henevem > n* and

function of n, the sharper the phase transition. The verm 2 n'(¢, Tate),
following result is an easy corollary to Theorem 5.1.g(x,—.) —¢ < P(n;0,(24—c)) < g(za—c) + £ (23)



whenevern > n*(e,z,-.). In the remainder of VI. SPACINGS AND CLOSEBFORM EXPRESSIONS
this proof, all inequalities are understood to hold
for n > n*(a;¢) where we have set*(a;e) :=
max (n*(e, Ta1e), n*(€, z4—c)). Under these choices
the inequalities (22) and (23) ensurg(z,+.) > 0
for n > n*(a;¢).

Sinceg(z,+.) = a+e, the two chains of inequal-
ities at (22) and (23) become

A natural approach to the derivation of (5) con-
sists in developing expressions for (2). To that end,
fix n = 2,3,... and7 > 0. With the node loca-
tions X,..., X, we associate rvs\,, 1, ..., X,
which are the locations of these users arranged
in increasing order, i.e.X,; < ... < X,,, with
the conventionX,, = 0 and X,,,,;,1 = 1. The

a < P(n;0,(Ta4e)) < a+2e rvs X, 1, ..., X, are theorder statisticassociated
and with then i.i.d. rvs X4, ..., X,,. We also define the
a—2 < Pnjop(x.-c)) < a. Spacingrvs

But the definitions ofr,(a) andr,(a£2¢) alsogive L, ;= X, p — Xpup1, k=1,...,n+1. (27)

P(n;7(a)) < P(n;0n(2are)) < P(niTula+22)) 1he opvious relatior,, 1 4. . .4 Ly 41 = 1 already
and suggests that the spacinds i, ..., L, ,+1 Should
P(n;mo(a — 22)) < P(n; 0n(Ta_z)) < Pln; ma(a)). exhibit some f(_)rm of negative correlation; this will
be formalized in Lemma 10.2.
Interest in these spacings derives from the obser-
To(a) < 0y (Taye) < T(a + 2e) vation that the graptG(n;7) is connected if and
only if L,,, <7 forall k=2,...,n, so that

The strict monotonicity of — P(n; 7) then implies

and
Tala — 2¢) < on(Ta—c) < Ta(a), Pn;t)=P[L,; <7, k=2,...,n]. (28)
and we get . .
The following fact is well known [6, Eq. (6.4.3), p.
On(Ta—c) < Tu(a) < on(Tate). (24)  135], and will turn out to be useful in a number of
Next, with places: For any subsétC {1,...,n}, we have
gn(a) = Tn(a') - Un(xa)v n=23,... (25) P [Ln,k > 1y, ke ]]
we obtain from (24) that n
O_n(xa_€> B O'n(.l’a) < £n<a) < O_n<xa+€) B O'n(xa>- = <1 — kze;tk> , k€ [07 1]7 ke 1(29)
_l’_

It is now plain from the definition (4) that

where we have used the notatioh = =" if © >
Lag—e — Lg S ngn(a) S xa—l—a — Ty (26) Ny ; - O

andz} = 0 if z < 0. With the help of (29), the

since inclusion-exclusion formula (applied to (28)) easily
On(Tase) — Op(Ta) = 1" (Tose — Ta) . yields the closed form expression

Finally, letting n go to infinity in (26) nl n—1

yields z,_. — xz, < liminf, . (n&,(a)) and Pn;7) = Z(_l)k< e )(1 —kr)%. (30)

limsup,_., (n&,(a)) < x40 — z,. Given k=0

that ¢ > 0 can be taken arbitrarily smallThis expression has been rediscovered by several
liminf,, o (nn(a)) = limsup, . (n&.(a)) = 0 p. 146], Desai and Manjunath [7] (as Eqn (8) with

since  lim.jp (rose —20) = 0. ThUS, > = andr = ), Ghasemi and Nader-Esfahani
lim;, .o (n€n(a)) = 0, whenceg,(a) = o(n™"). [13] and Gore [16]. See also Devroye’s paper [9]
Reporting this fact into (25) leads to for pointers to an older literature.

Ta(a) = op(z,) +o(n™h), n=23,... While certainly pleasing, the expression (30) is

ot well suited for the purpose of establishing (5).

his has prompted us to introduce other represen-
tations for the probability of graph connectivity (2)
in Sections VII and VIII.

and the desired result readily follows from (4) an
(21).



VII. A RESULT BY LEVY ON MAXIMAL

SPACINGS For future use we find it convenient to write
The special role of the critical range functionh:
Ny — R, can already be surmised from a number of Ay i=nM, —logn, n=2,3,....
earlier limit results on maximal spacings. For ea

C\PVith the help of (36) we see that the convergence

= 1,2,..., the maximal spacingassociated with . . » .
i S X e (38) is a simple rewriting of (5) since

the rvs Xy, ..., X, is the rv M’ given by
M} :=max (L, k=1,...,n+1). (31) P(n;on(x)) =P[M, <o,(x)]=P[A, <z| (39)

n

The convergence results given next are by NOWr each+ in R and alln = 2.3.. . Given
c!assical; th(_ay were originally given by Levy [28]th pivotal role played by the cc;n\}ergence (38),
via geometric arguments, but have been rederiv, provide below a direct proof of this result by

by Darling [5], and others; see Devroye’s PaP&liementary arguments
[9] for additional references. In order to state these '

results compactly, lek denote anyR-valued rv with
probability distribution given by

PA<z]=g(x):=e°", z€R. (32)

Proof. We note that (38) implies (37) by elementary
properties of weak convergence: Indeed,

An Mn

Any rv distributed according to (32) is called a logn - ™ -1 n=23..
Gumbel rv.

Theorem 7.1:We have so that 2= —, 0 by virtue of (38). The desired
M: p conclusion (37) follows from the fact that weak con-
~ n 1 (33) vergence to a constant is equivalent to convergence

" in probability to that constant [4, p. 25].
and The startin int f ing th
nM* —logn —s, A. (34) g point for proving the convergence

(38) is the following representation of the order

statistics X, 1, ..., X,,,: Consider a collection of
In the formulation used here, the boundary point{g;, j = 1,2,...} of i.i.d. rvs which are exponen-

of the interval[0, 1] are not automatically nodes fottially distributed with unit parameter, and set

the random graph (as is the case in the models

discussed in [11], [12], [16]). Consequently, we Ty, =0, T, =& +...+&, k=1,2,....

modify the definition (31) by considering instead

the rvs For eachn = 1,2, .. ., the stochastic equivalence
M, -=max (L,g, k=2,...,n), n=23,... T, T,
(35) Xty X)) =st <T11,...,T 1) (40)
Given n = 2,3,..., for eacht > 0, the graph " "
G(n; 7) is connected if and only ifM,, < 7, so is known to hold [35, p. 403] (and references
that (28) becomes therein), whence
P(n;7)=P[M, <T7]. (36) i
.. . . . ( 15 ) Ln,n) —st ( 51 PICI g ) . (41)
Thus, insights into (3) are likely to be gained Tov Lo

through limit results for the sequendé/,, n = _ )
1,2,...}. In analogy with Theorem 7.1, we have With the help of (41), simple algebra shows that

the following convergence results. n
Theorem 7.2:We have An = T, mnax (&, k=2,...,n) —logn
M, f
S (37) = " (max(&, k=2,...,n) —logn)
T Tn+1
and n
M, — logn —., A, (38) — (1 — n+1) -logn (42)



where we can write where the{0, 1}-valued rvsx,,1(7), ..., Xnn+1(7)
n are the indicator functions defined by
<1 — ) -logn

T Xnk(T) :=1[Lox>7], k=1,....,n+1.
T 1) -logn
Tot1 n s The graphG(n;7) is connected if and only if
T, 1 C,(1) =0, and the representation
n n n
T P(n;7) =P[Cy(7) = 0] (46)
Next letn go to infinity in (42) and (43). By the
Strong law of large Numbers, we have follows. This points to the possibility that the con-
o Thia vergence (3) can be studied by developing a con-
,}LIEO " =1 as. vergence theory for the r'iCiy(7,), n=1,2,...}
whereas the Central Limit Theorem yields undlgr ap]%roprlate conditions on the range function
T . Ng — IN,
vn (Tn+1 _ 1) — U The main result along these lines takes the form
n of a Poisson approximation. Before presenting it,

with U denoting a zero-mean unit variance Gaussi¥f¢ need some additional notation: For any pair of
rv. As a result, it is easy to see that probability mass functions (pmfg) and v on N,
T l we define the total variation distance betwgen-
" /m (1 _ ) Jdogn p o 44y (ul), x € N) andv = (v(z), = € N) by
Tn+1 n \/ﬁ
by elementary properties of the convergence modes d ) 1 - _
for rvs [4]. It is also well known [10, Example 3.2.7, vimiv) 2 ; @) = ()]

p. 125] that
max (&, k=2,....n) —logn —sn A It is easy to check that
so that \(z) —v(z)| < dpry(u;v), z€N.  (47)
T:+1 - (max (&, k=2,...,n) —logn) =~ A. Also, if X and YV are N-valued rvs distributed

(45) according to the pmfg. and v, respectively, we

Combining (44) and (45) leads to the desired ressifall write dry(X,Y) for dry(u,v). Throughout
(38). m letII(x) denote a Poisson rv with paramejer

Theorem 8.1:For eachn = 2,3, ... andr in the

To the best of the authors’s knowledge, thlgterval(o,l),we have

method of proof used given here appears to be ey (Co(7): TIOL (7)) < Bu(7) (48)
new. Theorem 7.1 can be established along the B -

same lines; in fact it is not too difficult to see thajyhere the quantities, (7) andB,(r) are given by
Theorem 7.1 and Theorem 7.2 are equivalent.
M) =E[Cu(r)] = (n=1)(1=7)"  (49)
VIIl. A POISSON APPROXIMATION
Fix n =2,3,... and7 in (0,1). For eachi = and
1,...,n, nodei is said to be areakpointnode in (1—27)"
the random grapli(n; 7) whenever (i) it is not the B, (7) = (n—1) (1 — 7)" —(n—2)—-5=. (50)
leftmost node in[0, 1] and (ii) there is no node in (1-7)
the random intervalX; — 7, X;|. The numbe(C,,(7)
of breakpoint nodes ifiz(n; 7) is given by This result is established in Section X with the
n help of the Stein-Chen method [3] — In fact it is
Co(1) == an’k(ﬂ already given as Theorem 6.1 in [2, p. 83] with a
PR slightly different proof.



IX. POISSON CONVERGENCE AND FINITE NODE (with the help of (47)) provides a means to control
MODELS the convergence (3) as it implies
An immediate, and important, consequence of |P(n;on(z)) —e™® 7|
Theorem 8.1 is the Poisson convergence discussed < Bu(on(2) + [Malon(z)) —e™*|  (54)
below. -

Theorem 9.1:For eache in R. we have for all n = 2,3,... and arbitraryz in R. This ap-
proximation can be leveraged to deal with situations

lim dpy (Cy(on(x)); (™)) =0  (51) involving a finite number of nodes. For instance, the
nee requirement

with the range function (z) : Ny — R given by (4). |P(n;on(z)) — e | <6

for someéd > 0 can be guaranteed by requiring
Proof. Fixn =2,3,... andr in the interval(0, 1) Bo(00(2)) + [An(0m(z)) — e77| < 6. (55)
the notation is that of Theorem 8.1. The triangular N _
inequality for the total variation distance yields N particular, witha in (0,1) and z, as given by
(21) we find
dry (Ca(r)iT(e ™)) < dry(Clm): (A7) Plnon(z)) — a| <6

dpy (IL(A, (7)); TI(e™ : i
+ dry (T(An(7)); 11(e™)) provided (55) holds with: replaced byz,.

and the estimate Before moving on to the proof Theorem 8.1 in the
next section, we note that the Poisson approximation
dry (IL(AL(7)); (e™)) < [Ap(T) — 7| also yields arate of convergence in (38): Indeed,

using (39) in the bound (54), we find
is well known [29, p. 58]. Combining these two

facts with the bound (48) we find P [nM, —logn < ] —e™*

Ay (Co(r)sTH(E™)) < Bo(r)+ A (r) —e 1. (52) < Baloal@)) +|dulonla)) — e - (56)
forall n =2,3,... andz in R. To the best of the
Finally, replacer by o,,(z) in (52), and letn go authors’s knowledge, this results appears to be new.
to infinity in the resulting inequality. It is a simple
matter to check thatim, .., B,(0,(z)) = 0 and X. A PROOF OFTHEOREM 8.1

limy oo |An (0 (2)) — 77| = 0. This establishes the —\yq begin with a simple technical fact concerning
convergence (51). binary valued rvs. For some = 2,3, ..., consider
a collection of{0, 1}-valued rvs¢y, ... ¢, defined
Given the discrete nature of, the convergenceOn the probability spacg(2, 7, P). Next, with P;
(51) in the total variation distance is equivalent [3jenoting the collection of all non-empty subsets of
p. 254] to the convergend®, (c,,(z)) =, II(e7*), {l....,n}, we define

so that P(K)=P[ =1, ke K], KeP;.

Lemma 10.1:The probabilities{P(K), K €
Prx} collectively determine the joint pmf of the

for eachk = 0,1,.... An equivalent result was {0, 1}"-valued (&, ... &).
already given by Godehardt and Jaworski [15, Th'Broof
12, p. 157] in terms of the number of connecteg
components ir(n; 7), which is given byC,, (7 @
See also a similar result for the correspondlng moo}él
on the unit circle [30, Thm. 8, p. 172].

The proof of Theorem 9.1 yields quite a {

—x

lim P[Cy(on(z)) = k] = D e (53)

Plck an arbitrary non-zero element =
an in {0,1}", and write K (a ) {k =

ap = 1} and K(a)* {k =
n: a; = 0}. Direct inspection yields

IT & 11 (1—€k)]

bit more than the convergence (53): SincB&r=ax, k=1,...,n
P[C.(on(z)) = 0] = P(n;o,(x)), the bound (52)

kEK(Q)  keK(@)e
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so that and

Plg=ar, k=1,....n]= Y c(K)P(K) P ka(liT):l,k‘EK]

KePn(Q) T
:P{Lnk>—,keK}
for some appropriate collectigR, (a) of subsets of -7 .
{1,...,n}, and coefficients{c(K), K € P,(a)} _ (1_| 7 )
taking values+1. We have used the convention 1—=7),
[liex(a)(1 — &) = 1 when K(a) is empty. The (1— (K| +1)7)t
proof is completed upon noting that = =7
Ple = ... =& =0 The validity of (58) follows by direct comparisom.
= 1- = k=1,...
Zas«AO S = ax, el The coupling used in the proof of Theorem 6.1 in
. 2, p. 83] is given directly in terms of the spacings
Whereza¢0 denotes summation over all non-zer w1r-.. L, but is in the same spirit as the one

elementsa in {0, 1}". B given here. We now turn to the proof of Theorem

8.1. Fixn = 2,3,... and 7 in the interval (0, 1):

For eachn = 2.3 andi = 1,....n, let k,, From (29) it is plain that the rvd, q,..., L,
denote the set Of’intege{g n} from which we are exchangeable; see also (41) for an additional
have deleted. confirmation. Leveraging this fact we see that

Lemma 10.2:Fix n = 2,3,... andt in the in- E[C.(T)]=(n—1)P[L,2 > 7]
terval (0,1). For eachi = 1,...,n, we have the 44
stochastic equivalence n n

E[Co(r)?] = Y. PlLyp>7 Loy >7)
[(Xn,k(T)a ke Kn,i)|Xn,i(7-) - 1] k=2 (=2
. = (n—1P[Ly2 > 7]
ﬂt(MW(1—4»k€K@>' &7 (0= 1)(n— P [Lus > 7, Ls > 7).

Repeatedly using (29), we find

L N MA(T) =E[Co(1)] =(n-1) A -7)" (59
Proof. Fixi=1,...,n. By Lemma 10.1, it suffices and

to show that
E [Co(7)2] = A7) + (n = 1)(n— 2) (1 - 27)}

Plxai(t) =1, k€ K|xni(r) =1 (60)
beni(7) beni(r) =11 We then observe that the r¥s,1(7), ..., Xnn(T)

=P {Xn,k ( T ) =1, ke K} (58) arenegatively relatedin the technical sense given

1—7 in [3, p. Defn. 2.1.1, p. 24]). This follows from (57)
for any K in P* which does not contai for all i=2,...,ninview of the obvious coupling
n inequalities

For any suchK in Pr which does not contain
i, let | K| denote its cardlnallty Repeatedly making P < T ) <xui(T), k=1,2,....n

use of (29) we get L=7
As a result, the basic Stein-Chen inequality [3, Cor.
Plxnk(t) =1, k € K|xni(r) =1] 2.C.2, p. 26] takes on the simpler form
= PlLyx>T, k€ K|L,; > 7] dry (Cn(7); TI(AL(7)))
_ PLyy>T, k€K L,; > 7] 1— e_’\”(T
- e < (S5 ) ~ VarlC, ()
1 - (|K|+1)7)"
(1= (K| + D)r)% o M Ve 61)

(1—-7)" An(T)
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Direct substitution from (59) and (60) gives  are distributed independently on the intery@1]
\ VarlC' according to anontuniform distribution F. When
n(7) = Var[Co(7)] F admits a non-vanishing density, the strong

A7) = (B [Cu(7)?] = E[Ca()]?) zero-one law was developed in [23] (through the
—(n—1)(n—2)(1—27)" appropriate version of (37)) while the very strong
Y (n—1)2(1— 7)™ zero-one law can be found in [24] (where it is

established by means of the method of first and
and the conclusion (48) follows from (61) uporsecond moments). At the time of this writing the

noting that analogs of Theorem 5.1 and Corollary 5.2 are not
known. The case when the density vanisifeat
An(T) = Var[C), ) - / )
(7) 3 (ir)[ (7)] = B,(7). isolated points is explored for a particular family of

densities in [22].
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