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Abstract

We consider the geometric random graph where n points are
distributed independently on the unit interval [0, 1] according to
some probability distribution function F . Two nodes commu-
nicate with each other if their distance is less than some trans-
mission range. When F admits a continuous density f which
is strictly positive on [0, 1], we show that the property of graph
connectivity exhibits a strong critical threshold and we identify
it. This is achieved by generalizing a limit result on maximal
spacings due to Lévy for the uniform distribution.
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1 Introduction

Starting with a recent paper by Gupta and Kumar [10], there has been
renewed interest in geometric random graphs [19] as models for wireless net-
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works. Although much of the subsequent work has been carried out in di-
mensions two and three, some attention has been given to one-dimensional
case, e.g., see [3, 5, 6, 7, 8, 9, 13, 15, 18, 17, 22, 23, 24] and references therein.

Most of these references deal with the following situation: The network
comprises n nodes which are distributed independently and uniformly on the
interval [0, 1]. Two nodes are then said to communicate with each other if
their distance is less than some transmission range τ > 0. In this setting it is
well known that the property of network connectivity admits strong zero-one
laws which are associated with a sharp phase transition [3, 5, 6, 8, 13, 15, 17].

In this paper, we consider the case when the nodes are placed indepen-
dently on the interval [0, 1] according to an arbitrary distribution F . We
only assume that F admits a continuous density f which is strictly positive
on [0, 1]. Under this assumption we show (Theorem 2.1) that the property
of network connectivity also obeys a strong zero-one law and we identify the
corresponding critical threshold. This answers an open problem stated in
[17].

We approach this problem through the asymptotic properties of maximal
spacings from the univariate distribution F . The main technical contribution
of the paper, summarized in Proposition 4.3, represents a generalization of
a well-known result obtained by Lévy for the maximal spacings under the
uniform distribution [4, 16]. The limiting result obtained here is related to
earlier results of Deheuvels [2, Thm. 4, p. 1183], and is also compatible with
a multi-dimensional version of a result by Penrose [20].

The paper is organized as follows: The model and main result (Theorem
2.1) are presented in Section 2. Section 4 organizes the proof of Theorem 2.1
into two key technical steps, given as Propositions 4.1 and 4.2. In Section 5,
a representation of spacings associated with the uniform distribution is given
in terms of i.i.d. exponentially distributed rvs. This representation is key to
the approach used in establishing Propositions 4.1 and 4.2 given in Sections 6
and 7, respectively. We give some concluding remarks and an open problem
in Section 8

2 Model and main results

First a word on notation and conventions: We assume that the rvs under
consideration are all defined on the same probability triple (Ω,F , P). All
probabilistic statements are made with respect to this probability measure P.
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The notation
P→ n (resp. =⇒n) is used to signify convergence in probability

(resp. convergence in distribution) with n going to infinity. Also, we use the
notation =st to indicate distributional equality.

Let {Xi, i = 1, 2, . . .} denote a sequence of i.i.d. rvs which are distributed
on the unit interval [0, 1] according to some common probability distribution
function F . We assume that F admits a density function f : [0, 1] → R+

which is continuous on the interval [0, 1], and write

f� = inf (f(x), x ∈ [0, 1]) . (1)

The continuity of f on the compact [0, 1] guarantees that this infimum is
achieved by at least one element x� in [0, 1]. Throughout we make the key
assumption that

f� = f(x�) > 0. (2)

Of course such minimizers are not necessarily unique.
For each n = 2, 3, . . ., we think of X1, . . . , Xn as the locations of n nodes,

labelled 1, . . . , n, in the interval [0, 1]. Given a fixed transmission range τ > 0,
two nodes are said to be connected or adjacent if their distance is at most τ ,
i.e., nodes i and j are connected if |Xi−Xj | ≤ τ , in which case an undirected
edge is said to exist between these two nodes. This notion of connectivity
gives rise to the undirected geometric random graph GF (n; τ). We write

P (n; τ) := P [GF (n; τ) is connected]

where as usual, GF (n; τ) is said to be connected if every pair of nodes can
be linked by at least one path over the edges of the graph. We refer to the
quantity P (n; τ) as the probability of graph connectivity. We shall find it
convenient to set P (n; τ) = 1 for τ ≥ 1.

A range function τ is defined as any mapping τ : N0 → R+. The range
function τ � : N0 → R+ defined by

τ �
n =

log n

n
, n = 1, 2, . . . (3)

occupies a special place with respect to zero-one laws for graph connectivity
in GF (n; τ).

Theorem 2.1 Consider a range function τ : N0 → R+ such that

lim
n→∞

τn

τ �
n

=
c

f�
(4)
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for some c > 0. Under the enforced assumptions, it holds that

lim
n→∞

P (n; τn) =

⎧⎨⎩ 0 if 0 < c < 1

1 if 1 < c.
(5)

Theorem 2.1 is the main result of the paper; its proof is outlined in Section
4 with the technical details presented in Sections 5, 6 and 7. Theorem 2.1
identifies the range function τ �

F : N0 → R+ given by

τ �
F,n =

1

f�
· log n

n
=

1

f�
· τ �

n , n = 1, 2, . . . (6)

as the critical scaling for graph connectivity. Roughly speaking, for n large,
a communication range τn suitably larger (resp. smaller) than τ �

F,n ensures
that the graph GF (n; τn) is connected (resp. disconnected) with very high
probability if τn ∼ cτ �

F,n if c > 1 (resp. 0 < c < 1).
It is customary [18, p. 376] to summarize (5) by stating that the range

function τ �
F : N0 → R+ is a strong threshold. This is to be contrasted with

the statement, readily implied by Theorem 2.1, to the effect that

lim
n→∞

P (n; τn) =

⎧⎪⎨⎪⎩
0 if limn→∞ τn

τ�
F,n

= 0

1 if limn→∞ τn

τ�
F,n

= ∞
(7)

with range function τ : N0 → R+. According to (7), the one law (resp. zero
law) emerges when considering range functions τ : N0 → R+ which are at
least an order of magnitude larger (resp. smaller) than τ �

F . Contrast this
with (5) where the one law (resp. zero law) does hold with range functions
τ : N0 → R+ which are not only larger (resp. smaller) than τ �

F but of the
same order of magnitude as τ �

F ! It is therefore natural to refer to the situation
(7) as one where the range function τ �

F is a weak threshold [18, p. 376].
Note that τ � is also a weak threshold for connectivity under any distribu-

tion F satisfying the assumptions of Theorem 2.1, a somewhat robust, albeit
weak, conclusion. When f� = 0, a blind application of (6) yields τ �

F,n = ∞ for
all n = 1, 2, . . .. This begs the question as to what is the appropriate analog of
Theorem 2.1 when the density f vanishes. In [14] the authors show through
a counterexample that only weak critical thresholds exist when f� = 0.
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3 Preliminaries

Fix n = 2, 3, . . . and τ in (0, 1). With the node locations X1, . . . , Xn, we
associate the rvs Xn,1, . . . , Xn,n which are the location of the n users arranged
in increasing order, i.e., Xn,1 ≤ . . . ≤ Xn,n with the convention Xn,0 = 0
and Xn,n+1 = 1. The rvs Xn,1, . . . , Xn,n are known as the order statistics
associated with the rvs X1, . . . , Xn. We also define the spacings

Ln,k := Xn,k − Xn,k−1, k = 1, . . . , n + 1. (8)

The graph GF (n; τ) is connected if and only if Ln,k ≤ τ for all k = 2, . . . , n,
so that

P (n; τ) = P [Mn ≤ τ ] (9)

where
Mn := max (Ln,k, k = 2, . . . , n) . (10)

The first step in establishing Theorem 2.1 lies in the following equivalence.

Lemma 3.1 Under the enforced assumptions, the convergence (5) under (4)
is equivalent to

f�
Mn

τ �
n

P→ n 1. (11)

In other words, the zero-one law of Theorem 2.1 is an expression of a
limiting property of the maximal spacings {Mn, n = 2, . . .}. Establishing
(11) is the main technical contribution of this paper and we summarize it in
Proposition 4.3 for easy reference.

Proof. First, we note that (11) is equivalent to

f�
Mn

τ �
n

=⇒n 1 (12)

since the modes of convergence in distribution and in probability are equiv-
alent when the limit is a constant. However, the convergence (12) amounts
to

lim
n→∞

P (n;
c

f�

τ �
n) =

⎧⎨⎩ 0 if 0 < c < 1

1 if 1 < c.
(13)
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We conclude by noting that (5) under (4) is equivalent to (13). This con-
clusion is a simple consequence of the fact that the function τ → P (n; τ) is
monotone increasing on [0, 1]. Details are left to the interested reader.

We close this section with some easy facts concerning F and f : By virtue
of (2), the mapping F : [0, 1] → [0, 1] is strictly increasing, hence invertible.
Let F−1 : [0, 1] → [0, 1] denote the inverse mapping of F . This inverse map-
ping is strictly increasing and continuous since F is itself strictly increasing
and continuous. Also the differentiability of F implies that of F−1. Differ-
entiating both sides of the identity F−1(F (t)) = t on [0, 1] and making use
of the chain rule, we get

d

dt
F−1(t) =

1

f(F−1(t))

=
1

g(t)
, 0 ≤ t ≤ 1 (14)

where the mapping g : [0, 1] → R+ is defined by

g(t) = f(F−1(t)), 0 ≤ t ≤ 1.

As a result, we can write

F−1(x) =

∫ x

0

1

g(t)
dt, 0 ≤ x ≤ 1

since F (0) = 0.
Consider any x� in [0, 1] which achieves the minimum of f . By the strict

monotonicity of F under (2), there exists a unique t� in [0, 1] such that
F−1(t�) = x�, namely F (x�) = t�. Note that x� = 0 (resp. 0 < x� < 1,
x� = 1) if and only if t� = 0 (resp. 0 < t� < 1, t� = 1). Moreover, as the
composition of two continuous mappings, the mapping g is also continuous
and (2) yields the bound

g(t) ≥ g(t�) = f(x�) = f�, 0 ≤ t ≤ 1. (15)

4 An outline of the proof

In addition to the i.i.d. [0, 1]-valued rvs {Xi, i = 1, 2, . . .}, consider a second
collection of i.i.d., rvs {Ui, i = 1, 2, . . .} which are all uniformly distributed on
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[0, 1]. In analogy with the notation introduced earlier, for each n = 2, 3, . . .,
we introduce the order statistics Un,1, . . . , Un,n associated with the n i.i.d.
rvs U1, . . . , Un and we again use the convention Un,0 = 0 and Un,n+1 = 1.

Key to our approach is the well-known stochastic equivalence

(X1, . . . , Xn) =st (F−1(U1), . . . , F
−1(Un)) (16)

which leads to the representation

(Xn,1, . . . , Xn,n)

=st (F−1(Un,1), . . . , F
−1(Un,n)). (17)

It is now plain that

Mn = max (Ln,k, k = 2, . . . , n)

=st max

(∫ Un,k

Un,k−1

1

g(t)
dt, k = 2, . . . , n

)
as we note that

F−1(Un,k) − F−1(Un,k−1) =

∫ Un,k

Un,k−1

1

g(t)
dt

for each k = 1, . . . , n + 1.
These observations suggest that the convergence (11) is likely to emerge

as a consequence of limiting properties of the rvs {Un,k, k = 0, . . . , n + 1}
and of properties of the function f (via g). As we shall see shortly, this is
indeed the case. We shall find it convenient to write

Mu
n := max

(
Lu

n,k, k = 2, . . . , n
)

(18)

with
Lu

n,k := Un,k − Un,k−1, k = 1, . . . , n + 1. (19)

The quantities defined at (19) and (18) coincide with the quantities defined
at (8) and (10), respectively, when F is the uniform distribution on [0, 1].

For each n = 1, 2, . . ., define the rv M̃n by

M̃n := max

(
Lu

n,k

g(Un,k−1)
, k = 2, . . . , n

)
.

The next result shows that when establishing (11) we can replace Mn by the

simpler quantity M̃n.
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Proposition 4.1 Under the enforced assumptions, it holds that

Mn − M̃n

τ �
n

P→ n 0. (20)

Proposition 4.1 is established in Section 6. We next show that the con-

vergence (11) indeed holds when Mn is replaced by M̃n.

Proposition 4.2 Under the enforced assumptions, it holds that

f�
M̃n

τ �
n

P→ n 1. (21)

We give a proof of Proposition 4.2 in Section 7. Combining Proposition
4.1 and Proposition 4.2 readily leads to the desired result.

Proposition 4.3 Under the enforced assumptions, the convergence state-
ment (11) holds.

If we specialize either Proposition 4.2 or Proposition 4.3 to the case when
F is the uniform distribution, we get

Mu
n

τ �
n

P→ n 1 (22)

since f� = 1. This result was already obtained by Lévy [4, 16], and yields
Theorem 2.1 when F is the uniform distribution. Theorem 2.1 is now within
easy reach: Just combine Lemma 3.1, and Proposition 4.3.

5 A useful representation

The starting point in proving Propositions 4.1 and 4.2 resides in the represen-
tation (17). We shall leverage it by relying on a useful representation of the
order statistics {Un,k, k = 0, 1, . . . , n + 1} via i.i.d. exponential rvs: Thus,
consider a collection of {ξj, j = 1, 2, . . .} of i.i.d. rvs which are exponentially
distributed with unit parameter, and set

T0 = 0, Tk = ξ1 + . . . + ξk, k = 1, 2, . . . .
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For all n = 1, 2, . . ., the stochastic equivalence

(Un,1, . . . , Un,n) =st

(
T1

Tn+1
, . . . ,

Tn

Tn+1

)
(23)

is known to hold [21, p. 403] (and references therein).
This representation makes it possible to provide an elementary proof for

a technical fact used repeatedly in what follows. For each n = 1, . . ., let
Kn denote a non-empty subset of {1, . . . , n + 1}, and let |Kn| denote its
cardinality. Also set

M(Kn) := max (ξk, k ∈ Kn) .

Lemma 5.1 The convergence

M(Kn)

log n

P→ n 1 (24)

takes place whenever there exists some θ in (0, 1] such that

lim
n→∞

|Kn|
n

= θ. (25)

Proof. Fix n = 1, 2, . . . and t ≥ 0. By independence, we get

P [M(Kn) ≤ t] = P [ξk ≤ t, k ∈ Kn]

=
(
1 − e−t

)|Kn|

so that

P

[
M(Kn)

log n
≤ t

]
=

(
1 − e−t log n

)|Kn|

=

(
1 − n1−t

n

)|Kn|
.

With the help of (25) it is straightforward to check that

lim
n→∞

P

[
M(Kn)

log n
≤ t

]
=

⎧⎨⎩ 0 if 0 ≤ t < 1

1 if 1 < t.
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As this last convergence implies

M(Kn)

log n
=⇒n 1,

the convergence (24) follows from the fact that convergence in distribution
is equivalent to convergence in probability when the limit is a constant.

Lemma 5.2 Under the assumptions of Lemma 5.1 we also have

1

τ �
n

(
max

(
Lu

n,k, k ∈ Kn

)) P→ n 1. (26)

Proof. By virtue of (19) and the stochastic identity (23), we need only
show that

1

τ �
n

(
max
k∈Kn

(
ξk

Tn+1

))
P→ n 1, (27)

a convergence statement which is equivalent to

n

Tn+1

M(Kn)

log n

P→ n 1. (28)

The validity of this convergence statement follows from Lemma 5.1 and from
the fact that

lim
n→∞

Tn+1

n
= 1 a.s. (29)

by the Strong Law of Large Numbers.

Specializing this last result to Kn = {2, . . . , n}, we get the convergence
(22) originally obtained by Lévy [4, 16].

6 A proof of Proposition 4.1

Fix n = 2, 3, . . . and pick k = 2, . . . , n. Upon writing

∆n,k :=

∫ Un,k

Un,k−1

1

g(t)
dt − Un,k − Un,k−1

g(Un,k−1)

=

∫ Un,k

Un,k−1

(
1

g(t)
− 1

g(Un,k−1)

)
dt,
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we find

|∆n,k| ≤ f−2
�

∫ Un,k

Un,k−1

|g(t) − g(Un,k−1)| dt.

Recalling the definition (19), we then get

|∆n,k| ≤ f−2
� Gn,k · Lu

n,k

where we have set

Gn,k := max (|g(t) − g(Un,k−1)| , Un,k−1 ≤ t ≤ Un,k) .

These facts lead to

|M̃n − Mn| ≤ max (|∆n,k|, k = 2, . . . , n)

≤ f−2
� max

(
Gn,k · Lu

n,k, k = 2, . . . , n
)

≤ f−2
� Gn · Mu

n

where Mu
n is defined at (18) and

Gn := max (Gn,k, k = 2, . . . , n) .

The bound

|M̃n − Mn|
τ �
n

≤ f−2
� Gn · Mu

n

τ �
n

is now immediate. Thus, from (22) we see that (20) holds if we show that

Gn
P→ n 0. In other words, for arbitrary ε > 0, we need to show that

lim
n→∞

P [Gn > ε] = 0. (30)

To do so, we recall that the mapping g is continuous on the compact
[0, 1], hence uniformly continuous on [0, 1]. Thus, for every ε > 0, there
exists δ = δ(ε) > 0 such that with x and y in [0, 1],

|g(x) − g(y)| ≤ ε (31)

whenever |x − y| ≤ δ.
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Fix ε > 0 and consider an arbitrary integer n = 2, 3, . . .. Obviously,
Gn ≤ ε if and only if Gn,k ≤ ε for all k = 2, . . . , n. In view of the comments
at (31), this will occur if Lu

n,k ≤ δ for all k = 2, . . . , n, a condition equivalent
to Mu

n ≤ δ. Consequently,

P [Gn ≤ ε] ≥ P [Mu
n ≤ δ] ,

or equivalently,
P [Gn > ε] ≤ P [Mu

n > δ] . (32)

But we have Mu
n

P→ n 0 by virtue of (22) since limn→∞ τ �
n = 0. Therefore,

limn→∞ P [Mu
n > δ] = 0 and we readily get (30) upon letting n go to infinity

in the inequality (32). This completes the proof of Proposition 4.1.

7 A proof of Proposition 4.2

Fix n = 2, 3, . . .. By virtue of (23), the representation

M̃n =st max

(
ξk

Tn+1 · g(Tk−1

Tn+1
)
, k = 2, . . . , n

)
holds so that

M̃n

τ �
n

=st
n

Tn+1
· M̂n

log n

where we have used the notation

M̂n := max

(
ξk

g(
Tk−1

Tn+1
)
, k = 2, . . . , n

)
.

By the Strong Law of Large Numbers (29), the convergence (21) will be
established if we show that

f�
M̂n

log n

P→ n 1. (33)

Thus, we need to show that for every ε > 0, we have

lim
n→∞

P

[∣∣∣∣∣f�
M̂n

log n
− 1

∣∣∣∣∣ ≥ ε

]
= 0 (34)
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and this is equivalent to establishing the simultaneous validity of the two
convergence statements

lim
n→∞

P

[
1 + ε ≤ f�

M̂n

log n

]
= 0 (35)

and

lim
n→∞

P

[
f�

M̂n

log n
≤ 1 − ε

]
= 0. (36)

To do so, we start with the easy upper bound

f�
M̂n

log n
≤ M({2, . . . , n})

log n
, n = 2, 3, . . . (37)

so that the convergence (35) now follows readily from (24) (specialized to
Kn = {2, . . . , n}).

The proof of (36), given next, is somewhat more involved. It will require
the introduction of a family of lower bounds (in contrast with the proof
of (35) which relied on the single upper bound (37)): Pick any element x�

in [0, 1] which achieves the minimum of f . We structure the forthcoming
discussion according to whether x� = 0, 0 < x� < 1 and x� = 1. Below we
give a complete discussion for the case 0 < x� < 1, as the two other cases
can be handled mutatis mutandi.

Thus, with 0 < x� < 1, we have 0 < t� < 1 where t� = F (x�). Now pick
θ such that

0 < θ < min(t�, 1 − t�). (38)

For each n = 2, 3, . . ., we introduce Kn(θ) as the subset of {1, . . . , n + 1}
defined by

Kn(θ) := {	n(t� − θ)
, . . . , 	n(t� + θ)
}.
Since we are interested in limiting results, we need only consider n ≥ n�(θ)

with n�(θ) = 2(t�−θ)−1 (as we do from now on), in which case 	n(t�−θ)
 ≥ 2
and Kn(θ) ⊆ {2, . . . , n}. The lower bound

M̂n(θ) ≤ M̂n (39)

is then immediate where we have set

M̂n(θ) := max

(
ξk

g(Tk−1

Tn+1
)
, k ∈ Kn(θ)

)
.
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To proceed, we observe the following elementary facts: For each a = 0,±1,
it is plain that

lim
n→∞

	n(t� + aθ)

n

= t� + aθ,

so that

lim
n→∞

T�n(t�+aθ)�−1

Tn+1
= t� + aθ a.s. (40)

by the Strong Law of Large Numbers. Building on this observation, with
η > 0, we introduce for each n ≥ n�(θ), the events

Ωa
n(θ; η) :=

[∣∣∣∣T�n(t�+aθ)�−1

Tn+1
− (t� + aθ)

∣∣∣∣ ≤ η

]
where a = 0,±1. If we set

Ωn(θ; η) := ∩a=0,±1 Ωa
n(θ; η),

then the convergence (40) implies

lim
n→∞

P [Ωn(θ; η)] = 1, η > 0. (41)

Fix n ≥ n�(θ) and pick η > 0 such that θ + η < t� < 1 − (θ + η). Such
a choice of η is possible under (38), in which case on the event Ωn(θ; η), the
inequalities ∣∣∣∣Tk−1

Tn+1
− t�

∣∣∣∣ ≤ (θ + η), k ∈ Kn(θ) (42)

hold.
We are now in a position to complete the proof: Fix ζ > 0 and set

δ = δ(ζ) where δ(ζ) insures (31) (with ε replaced by ζ) as a result of the
uniform continuity of g. Pick θ in (0, 1) and η > 0 such that θ + η ≤ δ, By
selecting θ and η sufficiently small, one can ensure that the constraints (38)
and θ + η < t� < 1 − (θ + η) can also be satisfied simultaneously. With this
choice, it follows from (42) that the inequalities∣∣∣∣g(Tk−1

Tn+1

)
− g(t�)

∣∣∣∣ ≤ ζ, k ∈ Kn(θ)

all hold on the event Ωn(θ; η). Therefore,

f� ≤ g

(
Tk−1

Tn+1

)
≤ f� + ζ, k ∈ Kn(θ)
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since g(t�) = f(x�) = f�, and we obtain the inequality

(f� + ζ)−1 · M(Kn(θ)) ≤ M̂n(θ). (43)

We now return to the lower bound (39). On the event Ωn(θ; η), for a

given ε > 0, the inequality f�
M̂n

log n
≤ 1 − ε, when coupled with (43), readily

implies
M(Kn(θ))

log n
≤ a(ε; ζ) (44)

with

a(ε; ζ) := (1 − ε) · f� + ζ

f�
.

As a result, by standard bounding and decomposition arguments, we get

P

[
f�

M̂n

log n
≤ 1 − ε

]

≤ P

[[
M(Kn(θ))

log n
≤ a(ε; ζ)

]
∩ Ωn(θ; η)

]
+ P [Ωn(θ; η)c]

≤ P

[
M(Kn(θ))

log n
≤ a(ε; ζ)

]
+ 1 − P [Ωn(θ; η)] . (45)

Note that (36) needs to be established only for 0 < ε < 1 for otherwise the
convergence is trivially true. Thus, pick 0 < ε < 1 and note that ζ > 0 can
be selected sufficiently small such that a(ε; ζ) < 1. Indeed this last condition
is equivalent to

ζ <
ε

1 − ε
· f�.

With such a selection of ζ , Lemma 5.1 (with Kn = Kn(θ)) implies

lim
n→∞

P

[
M(Kn(θ))

log n
≤ a(ε; ζ)

]
= 0. (46)

Let n go to infinity in (45). The desired result (36) follows from (41) and
(46).

The cases x� = 0 and x� = 1 can be analyzed in a similar way: Now,
still with t� = F (x�), we have t� = 0 and t� = 1, respectively. As a re-
sult we need only change the definition of Kn(θ) to read {2, . . . , 	n(t� + θ)
}
and {	n(t� − θ)
, . . . , n}, respectively, for n large enough in order to ensure
Kn(θ) ⊂ {2, . . . , n}. This completes the proof of Proposition 4.2.
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8 Concluding remarks

Strong versions of Lévy’s result Slud has shown [25, Thm. 2.1, p. 343]
that

nMu
n − log n = O(log log n) a.s. (47)

so that the convergence (22) also holds in the a.s. sense.
The convergence (11) is compatible with a multi-dimensional result ob-

tained by Penrose [20]: Formally setting d = 1 in Theorem 1.1 [20, p. 247]
(discussed under the dimensional assumption d ≥ 2), we obtain (11) in its
a.s. form.

Connections with earlier results In principle, Proposition 4.3 would
follow from results by Deheuvels [2, Thm. 4, p. 1183]. However, these
earlier results are given under stronger conditions than the one used here: (i)
The minimizer x� appearing in (2) is assumed to be an isolated minimizer;
(ii) For some finite constant r > 0, we have 0 < dr ≤ Dr < ∞ where1

dr := lim inf
h→0

f(x� + h) − f(x�)

|h|r

and

Dr := lim sup
h→0

f(x� + h) − f(x�)

|h|r .

Neither conditions (i) nor (ii) are needed here, but the result (11) is not as
sharp as the earlier results in [2]. As a result of this trade-off, we are able to
give a simple and direct proof of the convergence (11).

Zero-one laws and critical transmission ranges For each n = 2, 3, . . .,
the critical transmission range for the n node network is defined as the rv
Rn given by

Rn := min (τ > 0 : G(n; τ) is connected) .

In short, Rn is the smallest transmission range that ensures that the node
set X1, . . . , Xn forms a connected network. The obvious identity

Rn = Mn

1This is the form that the conditions take when x� is an interior point of the interval
[0, 1]. Obvious modifications need to be made when either x� = 0 or x� = 1.
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leads to an operational interpretation of critical thresholds: By Lemma 3.1,
the range function τ �

F : N0 → R+ is a strong critical threshold if and only
if Rn ∼ τ �

F,n for n large in some appropriate distributional sense (formalized
at (11)). Thus, the critical threshold serves as a proxy or estimate of the
critical transmission range for the many node networks.

Refinements As pointed out earlier, (11) was already obtained by Lévy
[4, 16] when F is the uniform distribution. In fact, this result (in the form
(22)) was given a direct proof at the end of Section 5. However, it is also
known [4, 16] that

nMu
n − log n =⇒n Λ (48)

where Λ is a Gumbel variable. To the best of the authors’s knowledge, it
is not known whether the analog of (48) also holds more generally for an
arbitrary probability distribution F satisfying (2), say in the form

nf�Mn − log n =⇒n Λ′ (49)

for some rv Λ′. Of course, the validity of (49) may require additional con-
ditions on the continuous density function f . Results such as (48) and (49)
imply (22) and (11), respectively, and can be viewed as complementing these
results.

Interest in such questions arises from the following observation: In the
uniform case, the convergence (48) implies exact asymptotics on the tran-
sition width for the phase transition associated with the property of graph
connectivity [12, 15]. The validity of (49) would immediately yield a similar
result under more general node placement distributions.
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