48 research outputs found

    The Bolzano-Weierstrass Theorem is the Jump of Weak K\"onig's Lemma

    Full text link
    We classify the computational content of the Bolzano-Weierstrass Theorem and variants thereof in the Weihrauch lattice. For this purpose we first introduce the concept of a derivative or jump in this lattice and we show that it has some properties similar to the Turing jump. Using this concept we prove that the derivative of closed choice of a computable metric space is the cluster point problem of that space. By specialization to sequences with a relatively compact range we obtain a characterization of the Bolzano-Weierstrass Theorem as the derivative of compact choice. In particular, this shows that the Bolzano-Weierstrass Theorem on real numbers is the jump of Weak K\"onig's Lemma. Likewise, the Bolzano-Weierstrass Theorem on the binary space is the jump of the lesser limited principle of omniscience LLPO and the Bolzano-Weierstrass Theorem on natural numbers can be characterized as the jump of the idempotent closure of LLPO. We also introduce the compositional product of two Weihrauch degrees f and g as the supremum of the composition of any two functions below f and g, respectively. We can express the main result such that the Bolzano-Weierstrass Theorem is the compositional product of Weak K\"onig's Lemma and the Monotone Convergence Theorem. We also study the class of weakly limit computable functions, which are functions that can be obtained by composition of weakly computable functions with limit computable functions. We prove that the Bolzano-Weierstrass Theorem on real numbers is complete for this class. Likewise, the unique cluster point problem on real numbers is complete for the class of functions that are limit computable with finitely many mind changes. We also prove that the Bolzano-Weierstrass Theorem on real numbers and, more generally, the unbounded cluster point problem on real numbers is uniformly low limit computable. Finally, we also discuss separation techniques.Comment: This version includes an addendum by Andrea Cettolo, Matthias Schr\"oder, and the authors of the original paper. The addendum closes a gap in the proof of Theorem 11.2, which characterizes the computational content of the Bolzano-Weierstra\ss{} Theorem for arbitrary computable metric space

    The cohesive principle and the Bolzano-Weierstra{\ss} principle

    Full text link
    The aim of this paper is to determine the logical and computational strength of instances of the Bolzano-Weierstra{\ss} principle (BW) and a weak variant of it. We show that BW is instance-wise equivalent to the weak K\"onig's lemma for ÎŁ10\Sigma^0_1-trees (ÎŁ10\Sigma^0_1-WKL). This means that from every bounded sequence of reals one can compute an infinite ÎŁ10\Sigma^0_1-0/1-tree, such that each infinite branch of it yields an accumulation point and vice versa. Especially, this shows that the degrees d >> 0' are exactly those containing an accumulation point for all bounded computable sequences. Let BW_weak be the principle stating that every bounded sequence of real numbers contains a Cauchy subsequence (a sequence converging but not necessarily fast). We show that BW_weak is instance-wise equivalent to the (strong) cohesive principle (StCOH) and - using this - obtain a classification of the computational and logical strength of BW_weak. Especially we show that BW_weak does not solve the halting problem and does not lead to more than primitive recursive growth. Therefore it is strictly weaker than BW. We also discuss possible uses of BW_weak.Comment: corrected typos, slightly improved presentatio

    On the strength of weak compactness

    Full text link
    We study the logical and computational strength of weak compactness in the separable Hilbert space \ell_2. Let weak-BW be the statement the every bounded sequence in \ell_2 has a weak cluster point. It is known that weak-BW is equivalent to ACA_0 over RCA_0 and thus that it is equivalent to (nested uses of) the usual Bolzano-Weierstra{\ss} principle BW. We show that weak-BW is instance-wise equivalent to the \Pi^0_2-CA. This means that for each \Pi^0_2 sentence A(n) there is a sequence (x_i) in \ell_2, such that one can define the comprehension functions for A(n) recursively in a cluster point of (x_i). As consequence we obtain that the Turing degrees d > 0" are exactly those degrees that contain a weak cluster point of any computable, bounded sequence in \ell_2. Since a cluster point of any sequence in the unit interval [0,1] can be computed in a degree low over 0', this show also that instances of weak-BW are strictly stronger than instances of BW. We also comment on the strength of weak-BW in the context of abstract Hilbert spaces in the sense of Kohlenbach and show that his construction of a solution for the functional interpretation of weak compactness is optimal

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example

    Towards computable analysis on the generalised real line

    Full text link
    In this paper we use infinitary Turing machines with tapes of length Îș\kappa and which run for time Îș\kappa as presented, e.g., by Koepke \& Seyfferth, to generalise the notion of type two computability to 2Îș2^{\kappa}, where Îș\kappa is an uncountable cardinal with Îș<Îș=Îș\kappa^{<\kappa}=\kappa. Then we start the study of the computational properties of RÎș\mathbb{R}_\kappa, a real closed field extension of R\mathbb{R} of cardinality 2Îș2^{\kappa}, defined by the first author using surreal numbers and proposed as the candidate for generalising real analysis. In particular we introduce representations of RÎș\mathbb{R}_\kappa under which the field operations are computable. Finally we show that this framework is suitable for generalising the classical Weihrauch hierarchy. In particular we start the study of the computational strength of the generalised version of the Intermediate Value Theorem

    Completion of Choice

    Full text link
    We systematically study the completion of choice problems in the Weihrauch lattice. Choice problems play a pivotal role in Weihrauch complexity. For one, they can be used as landmarks that characterize important equivalences classes in the Weihrauch lattice. On the other hand, choice problems also characterize several natural classes of computable problems, such as finite mind change computable problems, non-deterministically computable problems, Las Vegas computable problems and effectively Borel measurable functions. The closure operator of completion generates the concept of total Weihrauch reducibility, which is a variant of Weihrauch reducibility with total realizers. Logically speaking, the completion of a problem is a version of the problem that is independent of its premise. Hence, studying the completion of choice problems allows us to study simultaneously choice problems in the total Weihrauch lattice, as well as the question which choice problems can be made independent of their premises in the usual Weihrauch lattice. The outcome shows that many important choice problems that are related to compact spaces are complete, whereas choice problems for unbounded spaces or closed sets of positive measure are typically not complete.Comment: 30 page

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page
    corecore