5 research outputs found

    Empirical Evaluation of Real World Tournaments

    Full text link
    Computational Social Choice (ComSoc) is a rapidly developing field at the intersection of computer science, economics, social choice, and political science. The study of tournaments is fundamental to ComSoc and many results have been published about tournament solution sets and reasoning in tournaments. Theoretical results in ComSoc tend to be worst case and tell us little about performance in practice. To this end we detail some experiments on tournaments using real wold data from soccer and tennis. We make three main contributions to the understanding of tournaments using real world data from English Premier League, the German Bundesliga, and the ATP World Tour: (1) we find that the NP-hard question of finding a seeding for which a given team can win a tournament is easily solvable in real world instances, (2) using detailed and principled methodology from statistical physics we show that our real world data obeys a log-normal distribution; and (3) leveraging our log-normal distribution result and using robust statistical methods, we show that the popular Condorcet Random (CR) tournament model does not generate realistic tournament data.Comment: 2 Figure

    Election with Bribed Voter Uncertainty: Hardness and Approximation Algorithm

    Full text link
    Bribery in election (or computational social choice in general) is an important problem that has received a considerable amount of attention. In the classic bribery problem, the briber (or attacker) bribes some voters in attempting to make the briber's designated candidate win an election. In this paper, we introduce a novel variant of the bribery problem, "Election with Bribed Voter Uncertainty" or BVU for short, accommodating the uncertainty that the vote of a bribed voter may or may not be counted. This uncertainty occurs either because a bribed voter may not cast its vote in fear of being caught, or because a bribed voter is indeed caught and therefore its vote is discarded. As a first step towards ultimately understanding and addressing this important problem, we show that it does not admit any multiplicative O(1)O(1)-approximation algorithm modulo standard complexity assumptions. We further show that there is an approximation algorithm that returns a solution with an additive-ϵ\epsilon error in FPT time for any fixed ϵ\epsilon.Comment: Accepted at AAAI 201
    corecore