54 research outputs found

    Ensemble learning using multi-objective optimisation for arabic handwritten words

    Get PDF
    Arabic handwriting recognition is a dynamic and stimulating field of study within pattern recognition. This system plays quite a significant part in today's global environment. It is a widespread and computationally costly function due to cursive writing, a massive number of words, and writing style. Based on the literature, the existing features lack data supportive techniques and building geometric features. Most ensemble learning approaches are based on the assumption of linear combination, which is not valid due to differences in data types. Also, the existing approaches of classifier generation do not support decision-making for selecting the most suitable classifier, and it requires enabling multi-objective optimisation to handle these differences in data types. In this thesis, new type of feature for handwriting using Segments Interpolation (SI) to find the best fitting line in each of the windows with a model for finding the best operating point window size for SI features. Multi-Objective Ensemble Oriented (MOEO) formulated to control the classifier topology and provide feedback support for changing the classifiers' topology and weights based on the extension of Non-dominated Sorting Genetic Algorithm (NSGA-II). It is designated as the Random Subset based Parents Selection (RSPS-NSGA-II) to handle neurons and accuracy. Evaluation metrics from two perspectives classification and Multiobjective optimization. The experimental design based on two subsets of the IFN/ENIT database. The first one consists of 10 classes (C10) and 22 classes (C22). The features were tested with Support Vector Machine (SVM) and Extreme Learning Machine (ELM). This work improved due to the SI feature. SI shows a significant result with SVM with 88.53% for C22. RSPS for C10 at k=2 achieved 91% accuracy with fewer neurons than NSGA-II, and for C22 at k=10, accuracy has been increased 81% compared to NSGA-II 78%. Future work may consider introducing more features to the system, applying them to other languages, and integrating it with sequence learning for more accuracy

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Text detection and recognition in images and video sequences

    Get PDF
    Text characters embedded in images and video sequences represents a rich source of information for content-based indexing and retrieval applications. However, these text characters are difficult to be detected and recognized due to their various sizes, grayscale values and complex backgrounds. This thesis investigates methods for building an efficient application system for detecting and recognizing text of any grayscale values embedded in images and video sequences. Both empirical image processing methods and statistical machine learning and modeling approaches are studied in two sub-problems: text detection and text recognition. Applying machine learning methods for text detection encounters difficulties due to character size, grayscale variations and heavy computation cost. To overcome these problems, we propose a two-step localization/verification approach. The first step aims at quickly localizing candidate text lines, enabling the normalization of characters into a unique size. In the verification step, a trained support vector machine or multi-layer perceptrons is applied on background independent features to remove the false alarms. Text recognition, even from the detected text lines, remains a challenging problem due to the variety of fonts, colors, the presence of complex backgrounds and the short length of the text strings. Two schemes are investigated addressing the text recognition problem: bi-modal enhancement scheme and multi-modal segmentation scheme. In the bi-modal scheme, we propose a set of filters to enhance the contrast of black and white characters and produce a better binarization before recognition. For more general cases, the text recognition is addressed by a text segmentation step followed by a traditional optical character recognition (OCR) algorithm within a multi-hypotheses framework. In the segmentation step, we model the distribution of grayscale values of pixels using a Gaussian mixture model or a Markov Random Field. The resulting multiple segmentation hypotheses are post-processed by a connected component analysis and a grayscale consistency constraint algorithm. Finally, they are processed by an OCR software. A selection algorithm based on language modeling and OCR statistics chooses the text result from all the produced text strings. Additionally, methods for using temporal information of video text are investigated. A Monte Carlo video text segmentation method is proposed for adapting the segmentation parameters along temporal text frames. Furthermore, a ROVER (Recognizer Output Voting Error Reduction) algorithm is studied for improving the final recognition text string by voting the characters through temporal frames

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches
    • …
    corecore