
The Neocognitron as a System for 
HandAvritten Character 

Recognition: 
Limitations and Improvements 

David R. Lovell 

A thesis submitted for the degree of Doctor of Philosophy 

Department of Electrical and Computer Engineering 

University of Queensland 

March 14, 1994 



THEUliW^^ 

This document was prepared using T^X and WT^^. 

Figures were prepared using tgif which is copyright © 1992 William Chia-Wei Cheng 

(william(Dcs .UCLA. edu). 

Graphs were produced with gnuplot which is copyright © 1991 Thomas Williams and 

Colin Kelley. 

T^ is a trademark of the American Mathematical Society. 



Statement of Originality 

The work presented in this thesis is, to the best of my knowledge and belief, original, 

except as acknowledged in the text, and the material has not been subnaitted, either 

in whole or in part, for a degree at this or any other university. 

David R. Lovell, 

March 14, 1994 



Abstract 

This thesis is about the neocognitron, a neural network that was proposed by Fuku- 

shima in 1979. Inspired by Hubel and Wiesel's serial model of processing in the visual 

cortex, the neocognitron was initially intended as a self-organizing model of vision, 

however, we are concerned with the supervised version of the network, put forward 

by Fukushima in 1983. Through "training with a teacher", Fukushima hoped to 

obtain a character recognition system that was tolerant of shifts and deformations 

in input images. Until now though, it has not been clear whether Fukushima's ap- 

proach has resulted in a network that can rival the performance of other recognition 

systems. 

In the first three chapters of this thesis, the biological basis, operational principles 

and mathematical implementation of the supervised neocognitron are presented in 

detail. At the end of this thorough introduction, we consider a number of important 

issues that have not previously been addressed^. How should S-cell selectivity and 

other parameters be chosen so as to maximize the network's performance? How 

sensitive is the network's classification ability to the supervisor's choice of training 

patterns? Can the neocognitron achieve state-of-the-art recognition rates and, if 

not, what is preventing it from doing so? 

Chapter 4 looks at the Optimal Closed-Form Training (OCFT) algorithm, a 

method for adjusting S-cell selectivity, suggested by Hildebrandt in 1991. Exper- 

iments reveal flaws in the assumptions behind OCFT and provide motivation for 

the development and testing (in Chapter 5) of three new algorithms for selectivity 

^ at least not with any proven degree of success 
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adjustment: SOFT, SLOG and SHOP. Of these methods, SHOP is shown to be 

the most effective, determining appropriate selectivity values through the use of a 

validation set of handwritten characters. 

SHOP serves as a method for probing the behaviour of the neocognitron and is 

used to investigate the effect of cell masks, skeletonization of input data and choice 

of training patterns on the network*s performance. Even though SHOP is the best 

selectivity adjustment algorithm to be described to date, the system's peak correct 

recognition rate (for isolated ZIP code digits from the CEDAR database) is around 

75% (with 75% reliability) after SHOP training. It is clear that the neocognitron, 

as originally described by Fukushima, is unable to match the performance of to- 

day's most accurate digit recognition systems which typically achieve 90% correct 

recognition with near 100% reliability. 

After observing the neocognitron's failure to exploit the distinguishing features 

of different kinds of digits in its classification of images, Chapter 6 proposes modifi- 

cations to enhance the networks ability in this regard. Using this new architecture, 

a correct clcissification rate of 84.62% (with 96.36% reliability) was obtained on 

CEDAR ZIP codes, a substantial improvement but still a level of performance that 

is somewhat less than state-of-the-art recognition rates. Chapter 6 concludes with 

a critical review of the hierarchical feature extraction paradigm. 

The final chapter summarizes the material presented in this thesis and draws the 

significant findings together in a series of conclusions. In addition to the investigation 

of the neocognitron, this thesis also contains a derivation of statistical bounds on the 

errors that arise in multilayer feedforward networks as a result of weight perturbation 

(Appendix E). 
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Notation 

This thesis adheres to a number of stylistic conventions that are intended to assist 

the reader. Descriptions of experiments and algorithms are isolated from the main 

text and printed in special fonts. Experiments, and any tables or figures pertaining 

to them, are printed in a sans serif type style. Algorithms are printed in an italic 

font. 

Scalar quantities are generally represented by lower-case italics (e.g. x = 2), 

vector quantities are written in lower-case, bold italics (e.p> x ~ [xi,... ,a:„]) and 

sets are written in upper-case italics {e.g. X = %). 
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Ai the set of input C-cell locations for an S-cell in layer £ 

(Equation (3.9)) 
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tum in MLP systems 

a^ vector of weights  linking  C-cells  to  an  S-cell  (see 

page 75) 

bi(k) inhibitory coefficient linking V-celFs to the k^^ S-plane 

within layer i 

Ci{i^) single fixed weight linking a C-cell to an V-cell (Equa- 

tion (3.6)) 

ci vector of fixed weights linking a C-cell to an V-cell (see 

page 75) 

S(jS( C-cell mask parameters 

Di the set of input S-cell locations for a C-cell in layer i 

diiif) single fixed weight linking an S-cell to a C-cell (Equa- 

tion (3.7)) 
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Symbol Meaning 

Cent 

SQ 

V 

It 

jt{K, k) 

rCj rC, rKj 

Kci 

Ksi 

e 
MLP 

min ^^^(fc) 

NMSE 

n 

NCMLP 

1/ 

OCFT 

0(0 

the difference between desired and actual S-cell out- 

puts (see page 139) 

critical value of quadratic error function 

quadratic error function 

learning rate 

S-cell mask parameter 

S to C-pIane connection (je{K,k) = 1 if S-plane K is 

connected to C-plane k^ otherwise 7^(«, A:) = 0) 

cell-plane indices 

number of C-planes in layer £ 

number of S-planes in layer i 

layer index 

MultiLayer Perceptron 

weakest seed-cell output in response to a training pat- 

tern for S-plane k in layer £ (Equation (5.1)) 

weakest seed-cell activity in response to a training pat- 

tern for S-plane k in layer £ (Equation (5.4)) 

Normalized Mean Squared Error 

position vector of a cell in relation to the input array 

NeoCognitron plus MultiLayer Perceptron 

location of the seed-cell for the m*^ training pattern of 

the k^^ S-plane within layer £ 

position vector of one cell relative to another 

Optimal Closed-Form Training 

threshold-linear S-cell transfer function 

(Equation (3.2)) 

C-cell transfer function (Equation (3.4)) 
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Symbol Meaning 

P 

Rt 

SHOP 

SLOG 

SOFT 

learning rate in layer I 

correlation coefficient 

set of all i^^ layer selectivities considered by SHOP 

selectivity of the cells within S-plane k in layer i 

selectivity of the S-cells within layer i 

Selectivity Hunting to Optimize Performance 

S-cell saturation parameter used in early implementa- 

tion of the neocognitron (see page 85) 

Single Layer Optimization by Gradient descent 

Sub-Optimal Feature-based Training 

vector whose elements correspond to the square root 

of the elements of Ci 

s{x^y)^s'{x^y)^s"{x^y)     similarity and modified similarity measures between 

vectors x and y (see Equations (3.11) to (3.13)) 

threshold parameter (see page 78) 

threshold angle (see page 78) 

set of threshold angles for layer i (see page 94) 

threshold angle of the k}-^ S-plane (see page 94) 

angle between weight vectors a^(i) and a^d) (Equa- 

tion (4.3)) 

the set of training patterns for the k^^ S-plane within 

layer i (Equation (3.8)) 

the m}^ training pattern of the k^^ S-plane within layer 

threshold of confusion (see page 181) 

threshold of validity (see page 181) 

r 

Or 

e Tfc 

e »j 

kt 

tkem 

''conf 
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Symbol Meaning 

ucii^y ^) the output of the C-cell at location n in the A;'** C-plane 

of layer £ (Equation (3.3)) 

'^^^min guaranteed minimum S-cell response (see page 112) 

UQ^_I vector of seed-cell inputs corresponding to the TTI'** 

training of the k^^ S-plane of layer £ (see page 75) 

U5/(TI, k) the output of the S-cell at location n in the A;*^** S-plane 

of layer £ (Equation (3.1)) 

Uct-i vector of inputs to the S-cell at location n in the A:'** 

S-plane of layer £ (see page 75) 

WV/(TI) the output of the V-cell at location n in layer £ (Equa- 

tion (3.5)) 

vsein) output of normalizing cell used in early implementa- 

tions of the neocognitron (see page 84) 

XS((TI, k) the activity of the S-cell at location n in the k^^ S-plane 

of layer £ (Equation (5.3)) 

C desired S-cell output (see page 139) 
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The following notation applies to the research on the statistics of errors in multilayer 

networks (presented in Appendix E). 

Symbol Meaning 

nt 

a 
A a 

ea 

Co 

W 

Wi 

Wi 

^w 

Xi 

Xi 

Vx 

y 

y 

number of inputs to a unit 

number of inputs to a unit in layer £ 

the nominal value of a unit's activation 

the actual value of a unit's activation 

the error in a unit's activation 

bound  on  the expected value of error  in  a unit's 

activation 

bound on the variance of error in a unit's activation 

magnitude of the largest possible weight 

the nominal value of the i^^ weight of a unit 

the actual value of the i*** weight of a unit 

the error in the i^^ weight of a unit 

bound on the expected value of error in a unit's weights 

bound on the variance of error in a unit's weights 

magnitude of the largest possible input 

the nominal value of the i*'^ input to a unit 

the actual value of the i^^ input to a unit 

the error in the i*"^ input to a unit 

bound on the expected value of error in a unit's inputs 

bound on the variance of error in a unit's inputs 

the nominal value of a unit's output 

the actual value of a unit's output 

the error in a unit's output 

bound on the expected value of error in a unit's output 

bound on the variance of error in a unit's output 



Preface 

This preface serves as a roadmap to help you (the reader) to navigate your way 

through the rest of this thesis. To make sure you're not about to embark on a 

wasted journey, you should have a clear idea of where this dissertation is headed 

and the route that it follows. 

This thesis deals with the neocognitron^ an artificial neural network proposed 

by Kunihiko Fukushima for off-line character recognition (of digits in particular). 

Figure 0.1 may be helpful at this point. Why, though, should we be interested in 

a machine that reads digits? In a narrow sense, such a system has a number of 

direct applications, such as reading post (ZIP) codes on mail items or recognizing 

the numbers that have been written on tax forms, say. But in a wider context, 

the study of any character recognition system is part of a quest to unlock the full 

potential of human-machine interaction. 

If the principles of a digit recognition system could be applied to larger domains 

of symbols then we would have the basis of a new means of communicating with 

computers. Effective off-line handwritten character recognition (HWCR) would be 

to information processing what the printing press has been to written language. The 

on-line pen computers that have recently been developed signal the beginning of a 

new phase in human-machine communications but there is a long way to go before 

we will see machines that have anywhere near the power and flexibility of the human 

reader. That goal will not be attained without the sort of basic research presented 

in this thesis- 

The main reason for studying the neocognitron in particular is that its capabili- 

1 
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Visual Pattern Recognition 

I 
Character Recognition     Image Understanding        Scene Analysis 

HWCR OCR 

Off-line On-line 

Digits Alphanumerics Symbols Non-Roman 
Alphabets 

Neural Networks     Statistical Expert Systems 

Neocognitron   Multilayer Perceptron 

Figure 0.1: Character recognition falls under the auspices of visual pattern recognition and deals 
with the interpretation of written or printed symbols. Machines have been used to recognize 
symbols printed by other machines since the early days of electronics; this aspect of character 
recognition is referred to as optical character recognition (OCR). This thesis is concerned with a 
more difficult problem: that of recognizing symbols written by the human hand. 

The study of handwritten character recognition (HWCR) comes in two flavours. There is on-line 
HWCR, which makes use of dynamic information about written characters (i.e. the movements of 
the writer's pen) to effect recognition. And then there is off-line HWCR, which looks at how to 
classify someone's writing without dynamic information. We will be looking at a system that has 
been designed to classify off-line images of digits. 

The ten Arabic numerals are a small, but useful, subset of the characters that humans use 
in written communication. Many approaches, including statistical techniques and expert systems 
have been brought to bear on the problem of classifying digit images by machine. The system that 
we shall explore is a particular kind of artificial neural network known as the neocognitron. 
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ties as a digit recognition system had not previously been thoroughly investigated to 

any meaningful extent. Until now, there have been no published accounts of the net- 

work's performance on large amounts of handwritten digits and, therefore, no way of 

telling whether Fukushima's ideas constitute a worthwhile approach to handwritten 

digit recognition. The critical review of the neocognitron contained in this thesis 

aims to provide a balanced assessment of its strengths and weaknesses. With that 

review as a foundation, almost all of the new ideas proposed in the following chapters 

attempt to improve upon Fukushima's original model. 

Before we take a closer look at what this thesis contains, it is worth pointing out 

the level of background knowledge that the reader is assumed to have. Like most 

artificial neural networks, the neocognitron was developed as a result of a precedent 

established by Nature. One of the goals of neural network research is to capture and 

utilise those aspects of biological systems that allow animals to perform complex 

tasks. In the case of the neocognitron, Fukushima has attempted to employ some of 

the principles of mammalian vision to enable the network to recognize handwritten 

characters. Since this thesis has been written from an engineering perspective, it 

is not expected that the reader should have any great knowledge of neuroscience. 

However, some background in artificial neural networks is assumed (e.g. terms like 

neuron^ unity synapse and weight should not cause concern and the reader should be 

aware of the basic principles and philosophy of neural computation). 

Outline of the thesis 

Our exploration of the neocognitron commences by considering Hubel and Wiesel's 

serial model of vision (Chapter 1). The pioneering work of these two neuroscien- 

tists in mapping cell function throughout the mammalian vision system inspired 

the architecture and operational principles of the neocognitron. Although later in- 

vestigations revealed certain shortcomings in the strict serial hierarchy that Hubel 

and Wiesel proposed, we shall see that their idecis do account for many significant 
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aspects of biological vision. 

Fukushima's abstraction of Hubel and Wiesel's ideas is introduced in Chapter 2. 

The neocognitron is one of the most complicated neural networks to have been 

described, so that chapter makes extensive use of figures and diagrams to help 

explain the system's operation. Chapter 3 comprises a more concise description 

of the neocognitron and Fukushima's supervised training algorithm. At the end of 

Chapter 3, we consider a number of issues that previous research has left unresolved. 

How do the parameters involved in the network affect its performance? Are all 

those parameters actually necessary and, if so, can we adjust them to enhance the 

neocognitron's classification rate? Finally, there is the question of whether the 

neocognitron is able to fulfill Fukushima's aims and operate effectively as a robust 

character recognition device. 

Thomas Hildebrandt has tackled the problem of how to choose the values of 

the selectivity parameters within the neocognitron. Chapter 4 thoroughly examines 

Hildebrandt's Optimal Closed-Form Training (OCFT) algorithm and looks at the 

experimental behaviour of the network after undergoing that method of training. 

The findings of that chapter provide motivation for the development and testing 

of three new selectivity adjustment algorithms in Chapter 5: SOFT, SLOG and 

SHOP. 

The experiments described in Chapter 5 show that the SHOP algorithm can 

be used as a tool to investigate the behaviour of the neocognitron. This thesis 

contains the results of tests that used SHOP to explore the effect of cell masks, 

skeleton!zation of input data, and choice of training patterns on the network's per- 

formance. The insights afforded by SHOP allow us to pinpoint weaknesses in the 

neocognitron and Chapter 6 describes how these shortcomings can be mitigated to 

improve the cleissification rate of the network. On a more general note, at the end 

of Chapter 6 we are in a good position to look for weaknesses in the hierarchical 

feature extraction^ paradigm and the opportunity is taken to discuss two perceptual 

^Hierarchical feature extraction describes the way that the neocognitron, and some other neural 
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phenomena that are not embodied by that model. 

The final chapter reviews the material presented in this thesis and the major 

findings are brought together in a series of conclusions. Chapter 7 finishes with 

some critical comments on the neocognitron and the way that it has been investi- 

gated. The four appendices that follow Chapter 7 contain information about the 

experiments conducted in this thesis: details about modifications to the processing 

units described by Fukushima (Appendix A); a description of the data used to train 

and test the experimental networks (Appendix B); specifications of the networks 

used in each experiment (Appendix C); tables of results (Appendix D). Appendix E 

presents results concerning the effects that weight errors have on the outputs of 

multilayer feedforward networks; this work was motivated by the desire to find out 

how weight quantization would affect the neocognitron. 

systems, process images. The underlying philosophy is to think of complicated patterns as arrange- 

ments of simpler sub-patterns (or features) which, in turn, are made up even simpler features. If 

we imagine a complicated pattern as being composed in this manner then we could identify that 

pattern by using a hierarchy of feature detectors. Very simple features would be extracted from 

the pattern in the initial stage of processing, then, in the next stage, certain arrangements of these 

features would be detected. Further on up the hierarchy, the arrangements of features become 

progressively more complex until the combination of features that is to be detected represents the 

entire image that we originally wanted to identify. 



Preface 

Original contributions 

The original contributions of this thesis are listed below: 

1. A detailed and critical review of the neocognitron, from its foundations in 

low level biological vision through to Fukushima's 1991 implementation [58]. 

This review includes a slightly more detailed analysis of S-cell function than 

presented by Fukushima [49] or Hildebrandt [77] and also contains a chronology 

of the neocognitron's development. 

2. Additional notation is introduced to allow a concise algorithmic description of 

Fukushima's supervised training scheme, Hildebrandt's OCFT method and 

three other new training techniques. 

3. An investigation of Hildebrandt's OCFT algorithm. The ideas and assump- 

tions behind Hildebrandt's algorithm are thoroughly explored. Imposing Hil- 

debrandt's optimality criteria upon the neocognitron is shown to produce a 

neocognitron with a very poor ability to recognize patterns, owing to the phe- 

nomenon of training feature rejection. OCFT's failure is related to unrealistic 

assumptions about the distribution of training patterns. 

4. A new selectivity adjustment algorithm, designed to eliminate training fea- 

ture rejection. The SOFT algorithm produces a network that achieves much 

higher classification rates than OCFT although the shortcomings of both 

these techniques suggest that selectivities should not be adjusted on the basis 

of restrictive assumptions about training pattern distributions. 

5. A second selectivity adjustment algorithm (SLOG) that was inspired by psy- 

chological observations about high level vision. While not as effective as 

SOFT, the SLOG algorithm serves to demonstrate problems inherent in 

Fukushima's use of digit fragments to train intermediate layers of the neo- 

cognitron. 
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6. Development of SHOP, an algorithm that uses a validation set of real world 

digits to determine effective selectivity values, SHOP addresses many of the 

weaknesses found in OCFT, SOFT and SLOG and, as a result, is the most 

effective means of adjusting selectivities that has been described to date. 

7. The use of SHOP to explore the influence of cell masks, skeletonization of 

input data and choice of training patterns on the behaviour of the neocog- 

nitron. Experimental findings suggest that cell masks are unnecessary and, 

contrary to Fukushima's opinion, that there is no need to redesign the first 

layer of the neocognitron to cope with unskeletonized images. The profound 

effect that the supervisor's choice of training patterns ha^ on the network's 

classification rate suggests that these patterns should be chosen by some other 

method, more directly related to performance. 

8. Introduction of the NCMLP architecture. By replacing final layer C-cells by 

a multilayer perceptron, the NCMLP substantially improves on the perfor- 

mance of Fukushima's neocognitron. This indicates that, while layers of S and 

C-cells may extract features reasonably well, it is inappropriate to use them 

to perform classification. 

9. Evaluation of the neocognitron's abilities as a digit recognition system. The 

neocognitron performs poorly in comparison to state-of-the-art systems and, 

despite higher classification and reliability statistics, the NCMLP barely man- 

ages to come close to the recognition rates achieved by other techniques. This 

is the first time that a thorough evaluation of the neocognitron (i.e. one based 

on large amounts of real world testing data) has been published. 

10. Critical comments on the neocognitron and the hierarchical feature extraction 

paradigm in general. Based on the experimental evidence accumulated in this 

thesis, the strengths and weaknesses of the neocognitron are established. Some 

of the shortcomings of existing hierarchical feature extraction techniques are 

also discussed. 
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11. Theoretical upper bounds on the expectation and variance of output error in 

multilayer feedforward networks with perturbed weights and inputs. 



Chapter 1 

The Visual Pathway 

The neurophysiology of the human body is one of nature's best kept secrets. Al- 

though vast amounts of time and effort have been applied to unraveling its mystery, 

careful reading of some of the vast amounts of literature that have resulted leaves 

one with the impression that the essence of the nervous system is still obscure. 

Since the 16th century, scientists like William Harvey have known details of the 

gross anatomy of the human body: that our hearts are connected to our lungs so 

that we may revitalize our blood, that our knee-bones are connected to our thigh- 

bones so that we may run, jump and stand still. However, it has only been within 

this century that neuroscientists have become aware of connections between certain 

groups of neurons in the mammalian nervous system. Even so, they are often at a 

loss as to why such areas should be connected in the first place. That is not to say 

that significant advances in neuroscience have not been forthcoming. 

This chapter examines one of the major developments of the last three decades of 

neuroscience: the mapping of the mammalian visual pathway. The reader should be 

cautioned that (a) investigation of this mapping is an ongoing process (b) scientific 

opinion regarding the function of components of the visual system is subject to 

change (c) to give a complete and accurate summary of this topic is beyond the 

scope of this dissertation and the expertise of the author^. Our main concern is to 

^The author recommends David Hubel's book Eye, Brain and Vision [87] which provides an 
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show how certain concepts pertaining to the mammalian visual system have been 

employed in the neocognitron. As such, we shall focus (pardon the pun) on what is 

known about the detection of position and shape of visual stimuli. 

1.1    The Neuroanatomy of the Mammalian Vi- 

sual Pathway 

Most animals, homo sapiens included, rely heavily on vision for survival. A narrow 

frequency band of electromagnetic radiation which we call the visible spectrum con- 

veys so much information to humans that many of us regard it as the most important 

of the five senses. 

Our eyes are our gateway to the visual world. In the eye (Figure 1.1), light 

radiated or reflected from objects around us is focussed onto the retina [29] by two 

refractive elements: the cornea and the lens. The retina is composed of three layers 

of neurons at the back surface of the eye and is about 1mm thick. The presence of 

light stimulates neural activity in photoreceptors, known as rods and cones, which 

are actually in the back layer of the retina. 

The middle layer of the retina is largely composed of bipolar cells^ which transmit 

neural activity from the rods and cones to the retinal ganglion cells in the next layer 

of the retina. Horizontal cells run parallel to the layers of the retina, linking rods 

and cones to bipolar cell inputs. Amacrine cells have a similar orientation but link 

the outputs of the bipolar cells to the retinal ganglion cells. 

The retinal layer nearest the lens contains only retinal ganglion cells. These 

neurons receive input from bipolar and amacrine cells and their axons form the 

optic nerve which passes back into the interior of the brain. 

A substantial amount of processing occurs in the eye between the point of entry 

excellent introduction to the field and is targeted at the reader who has a scientific background 

but not necessarily any experience in biology. 
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of visual stimulus and the point of departure of neural information along the optic 

nerve. In terms of sheer numbers, the eye "sees" the world through about 125 million 

rods and 5.5 million cones but only 900,000 optic nerve fibres pass information back 

to the brain [69]. This is due to convergence of a number of rod and cone outputs 

to a single retinal ganglion cell; the rate of this convergence varies according to 

the particular area of the retina being considered. The fovea is the central region 

of the retina where our vision is most acute. Here, there is about a one-to-one 

correspondence between photoreceptors and ganglion cells. At the periphery of 

the retina, however, ganglial cells receive inputs from hundreds of rods and cones. 

Consequently, we obtain a vague impression of our surroundings with our peripheral 

vision and rely upon the foveal portion of our retina to provide detailed information 

about our visual environment. 

Nature (usually) blesses us with two eyes and this binocular system of vision 

allows us to perceive the world in three dimensions. It is at the optic chiasm that the 

optic nerves carrying information from the right and left eyes first meet (Figure 1.2). 

The fibres of each optic nerve pass through the optic chiasm uninterrupted, although 

about half the fibres from a specific eye cross over to the hemisphere of the brain 

opposite the eye of origin. The remaining fibres follow a path deeper into their 

original hemisphere. 

The two bundles of nerve fibres which exit the optic chicism are known as optic 

tracts and, due to the bifurcation at the chiasm, each tract contains nerve fibres 

which originated in a particular half of the visual fields of both eyes. The net result 

of this is that the left optic tract carries neural information from the left visual fields 

of both eyes (and conversely for the right optic tract). 

The majority of visual fibres in each optic tract terminate in the left and right 

lateral geniculate nuclei (LGN). At this point in the visual pathway, the flow of 

information becomes more complicated than in earlier stages.   Most of the cells in 

^Smaller numbers of optic tract fibres also pass to areas of the brain which control our fixation 

of gaze, coordinate-ordinate our eye movements and pupil size etc. [69, p.748]. 
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Cornea 

Retinal ganglion   Bipolar 
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Amacrine Horizontal 
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Figure 1.1: Schematic of the human retina (adapted from [87]). 
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Figure 1.2: The flow of visual information in the human visual pathway, from retina to cortex. 
This sectional view shows the right visual field in red and the left field in blue (adapted from [87]). 
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Figure 1.3: Here are two neighbouring retinal ganglion cells whose receptive fields overlap (purple 
region) (adapted from [87]). 
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the lateral geniculate nuclei send axons out to the cerebral cortex but some connect 

locally to other lateral geniculate cells. Most of the input to the geniculate nuclei 

comes from the optic tracts but a significant amount of input also comes from the 

cerebral cortex and the brainstem reticular formation (which appears to control our 

attention to stimuli). We shall consider the route taken by the majority of fibres to 

the visual cortex since it is the cell responses in these cortical areas that was the 

inspiration for the neocognitron. 

The largest part of the brain in homo sapiens is the cerebral cortex which is 

familiar to us as the slimy grey convoluted organ seen in biology classes and horror 

movies. The cortex forms the outer layers of the brain and consists of an immense 

number of neurons (estimates say around 10^** given about 10^ per square millimetre 

of cortical surface) organized into distinct strata and richly interconnected. In fact, 

much of the region of the brain within the grey m.atter of the cortex is devoted to 

"wiring" different arecis of the cortex together. The visual cortex refers to one of those 

areas (it is also designated as Area 17 in Brodniann's scheme of cytoarchitectural 

fields [13, p.21]) and is found at the very back of the brain. 

Neural activity within Area 17 is communicated to other regions of the cerebral 

cortex. Processing of visual information in these higher cortical areas allows us 

to perform tasks like reading, appreciating a picturesque sunset or recognizing our 

grandmothers. However, since the operating principles of the neocognitron are based 

primarily upon the mammalian visual system up to and including the visual cortex, 

we shall stop our journey down the visual pathway at this point. 

This section has detailed the general structure of the visual system from retina 

to cortex. The following section looks at how some of the component neurons within 

that structure transform'the light which enters our eyes. 
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1.2    Neurophysiology of the Visual Pathway 

The visual pathway is much more than a means of transmitting information from 

the front to the back of one's head. Had nature wished to accomphsh just that, a 

bundle of axons from each retina to the visual cortex would have sufficed. What 

neuroscientists have discovered is that, through a hierarchy of neuronal interconnec- 

tions in the visual pathway, cells within the visual cortex respond to specific features 

of the stimulus presented to the eye. The sort of visual features that can elicit a 

response from cortical cells include lines and edges of specific orientations, lines of 

a particular length, perhaps moving in a particular direction and/or at a particular 

speed. Cortical cells can respond to highly specific aspects of the visual input. 

So how has all this been established? This knowledge has been attained primar- 

ily by observing what sort of images stimulate specific cells within the brain. This 

has usually been done through experiments on live, anaesthetized animals^ using an 

opthalmoscope (which allows the experimenter to project a stimulus into the sub- 

ject's eye and observe the pattern of light formed on the retina) and a microelectrode 

(which can record the electrical impulses emitted from a particular neuron). 

The first part of the visual pathway to be studied Wcis the retina. Since initial 

experiments in the late nineteenth century [149] the retinal physiology of many 

species has been investigated.   Practical difficulties in recording the behaviour of 

rod and cone cells have meant that we are still acquiring knowledge about these 

photoreceptors [123].   For the purposes of this discussion, it will be sufficient to 

know that rods and cones contain different kinds of pigment molecules which absorb 

photons of different wavelengths. (Rods contain one type of pigment, cones contain 

three types and are responsible for our colour vision.)   Chemical processes within 

the photoreceptors convert any absorbed light energy into electrical activity. Thus, 

^Fish and cats seem to be popular subjects for retinal observations. Cats, nionkeys and the 

occasional human have been used for mapping the mammalian visual cortex. Some questions con- 

cerning the validity of findings in vision research with non-human species are tackled by Crawford 

et ai in [24]. 
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the neural processing of visual information begins. 

In the area of the retina outside the fovea, the middle layer retinal cells accept 

input from groups of neighbouring photoreceptors. This introduces the concept of 

the receptive field of a cell and is illustrated in Figure 1.3. With respect to vision, this 

term refers to the area of the retina that connects to a cell further along the visual 

pathway. Since there is generally a high number of overlapping input connections 

between adjacent cells in each layer of the retina, receptive fields of adjacent cells also 

overlap to some extent. Hence, stimulus in one cell's receptive field may provoke a 

response in other cells whose overlapping receptive fields are also receiving stimulus. 

The receptive fields of both bipolar and retinal ganglion cells are organized in 

ce7iire-5urrounf/configurations (first recorded by Kufl[ler [97] in feline retinal ganglion 

cells). This arrangement means that a cell responds when the stimulus in the centre 

of its receptive field is of opposite strength to that outside the centre (i.e. in the 

surround) of the cell's receptive field. "Opposite strength", in this instance, implies 

that a centre-surround cell will either (a) respond vigorously to a bright light in the 

centre of its receptive field with a darkened surround {on-centre cell) or (b) respond 

vigorously to a dark centre with a light surround (off-centre cell). Uniform stimulus 

of a centre-surround receptive field cell does not provoke much response from that 

cell because excitation from one region {e.g. the centre of an on-centre cell) tends 

to cancel inhibition from the other (e.g. the surround of an on-centre cell) [7]. This 

mutual cancellation of responses is called antagonism. 

Centre-surround receptive fields neatly accomplish the detection of relative dif- 

ferences in illumination. Such cells respond weakly to uniform, or diffuse light, and 

strongly to stimuli which contain different levels of intensity. This allows you to 

read this thesis by candle light or bright sunshine; centre-surround cells in the vi- 

sual pathway react to the different amounts of light reflected by the black print and 

the white paper - not the absolute amount of light energy which enters our eyes. 

For the reader who wishes to pursue this topic, Fiorentini et al. [34] give a detailed 

review of the relation between receptive fields and light/dark perception. 
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Further along the visual pathway, the cells within the later geniculate nuclei 

demonstrate centre-surround characteristics similar to those of bipolar and retinal 

ganglion cells. As noted in the previous section, the complexity of information flow 

increases at this stage of the visual system. So too does the nature of visual stimuli 

which can excite cells within the lateral geniculate nuclei [19,180]. It is not necessary 

to go into detail about the response of lateral geniculate cells to moving stimuli, since 

that aspect of their behaviour is not crucial to our understanding of the primary 

visual cortex. 

It 15 crucial to note that the fibres leaving the lateral geniculate nuclei along the 

optic radiations project onto the cortex in an orderly manner. The mapping of input 

from retina to primary visual cortex is topographically organized^^ so that there is 

a systematic, almost linear connectivity between receptive fields in the retina and 

regions in Area 17. 

Hubel and Wiesel's discovery of the nature of visual cortex cell receptive fields 

makes for fascinating reading and this story is well told elsewhere [86,87], In 1958, 

armed with opthalmoscope, projection screen and microelectrode, Hubel and Wiesel 

presented a variety of visual stimuli to a cat and observed what inputs made the 

cat's cortex tick^. It soon became apparent that cells within the visual cortex were 

not responsive to the dark/light spots that retinal ganglion and lateral geniculate 

cells were stimulated by. In fact, it was almost by accident that Hubel and Wiesel 

activated the particular cell they were observing by projecting the image of a dark 

line moving across a white background onto that cell's receptive field. 

Over the next few years, Hubel and Wiesel accumulated their observations of 

cortical cell responses to different stimuli and built a comprehensive picture of the 

functional architecture of the visual cortex [84,85].   Their findings are integral to 

"^A fact which has been known from clinical observations of people with localized damage to 

their visual cortex (cortical hemianopsia [159]). Such damage causes local blindness as though the 

corresponding area in the retina had been destroyed. 
'Since the microelectrode was connected to an audio amplifier, each impulse emitted by a neuron 

would cause an audible "tick", similar to the noise made by a Geiger counter. 
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current knowledge of the visual pathway and are summarized in the following sub- 

sections. 

1.2.1     Cells with "simple'' receptive fields 

When an experimenter's microelectrode happens upon a cell with a simple receptive 

field (Hubel and Wiesel use the term simple cell), it is possible to map the excitatory 

and inhibitory regions of the receptive field by monitoring the cell's response to 

a spot of light. After probing a good many simple cells in the cortices of cats 

and monkeys, neuroscientists have found that simple receptive fields come in three 

typical arrangements [85] shown in Figure 1.4. To elicit strong response from a 

simple cell, the excitatory regions of the receptive field should receive light and the 

inhibitory regions should be darkened. It is not too difficult to see that simple cells 

are excellent at detecting the presence of simple visual features, such as lines and 

edges of a particular orientation. 

Experiments have shown that simple cells respond optimally to a specific orien- 

tation of the stimulating slit or edge. Stimulus rotation of 10** either side of that 

angle causes a major reduction in cell activity; all response ceases when the stimulus 

is perpendicular to that optimal direction. Investigations to date indicate that equal 

numbers of simple cells exist for all observable stimulus orientations and cells with 

similarly oriented receptive fields can be found clumped together in the cortex. 

Even when our gaze is fixated, our eyes are continually in motion (under normal 

conditions). It is perhaps no surprise that many simple cells are sensitive to the m^o- 

tion of a stimulus across their receptive fields. The direction of stimulus motion can 

also be an important factor in determining the strength of a simple cell's response. 

If we consider only the orientation selectivity property of simple cells, a neuronal 

implementation can be proposed. Figure 1.5 shows a number of on-centre LGN cells 

with excitatory connections to a single simple cell. The LGN cells are arranged so 

that the maximum stimulation of the simple cell will occur when a light strip is 
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projected onto the centre of its receptive field. Note that this cascade of cells means 

that simple cell receptive fields are elongated and larger than those of cells in the 

LGN. In general, the further that a given cell is along the visual pathway, the more 

complicated is the stimulus needed to elicit a response from that cell and the larger 

is that celPs receptive field. 
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Figure 1.4: These diagrams are stylized representations of the simple receptive fields found by 
Hubel and Wiesel. Cells with these receptive field maps will respond when the regions marked 
*+' are more brightly illuminated than the regions marked *-'. All orientations of these elongated 
simple receptive fields can be found in the visual cortex. 

Simple cell 

Centre/surround 
receptive fields 

Figure 1.5: A possible neural implementation of a simple receptive field. Five LGN cells with 
overlapping centre-on receptive fields have excitatory connections to the simple cell (whose receptive 
field is the outlined rectangle). The receptive field of the simple cell could be mapped using a spot 
stimulus but the simple cell would respond maximally to a bright slit lying across the excitatory 
centres of the LGN receptive fields. 
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1,2.2    Cells with "complex" receptive fields 

The next level of sophistication in Area 17 is provided by complex cells. Like their 

simple counterparts, complex cells respond to stimuli such as lines and edges of a 

particular orientation. However, the exact location of the stimulus is of no concern 

to a complex cell, as long as it is within that cell's receptive field. A typical set of 

complex cell stimulus responses is shown in Figure 1.6. 

Cells with complex receptive fields are affected more strongly by moving, rather 

than stationary stimuli and, in many instances, respond best to one direction of 

movement in particular. A neural mechanism for this directional selectivity was 

proposed by Barlow and Levick [8] but, since we are going to be concerned primarily 

with static images, we present a model (suggested by Hubel and Wiesel) which 

accounts for the response of complex cells to stationary stimuli only (see Figure 1.7). 

The initial experiments performed by Hubel and Wiesel examined the cells in 

the feline visual cortex (later investigations used the macaque monkey as a subject). 

Within the VI region^ of the cat's cortex, they found that all cells can be classified 

as having either simple or complex receptive fields. When the adjacent regions of the 

cortex, V2 and V3, were examined, Hubel and Wiesel identified cells that responded 

to even more specific stimuli than complex cells. 

The cytoarchitectonic organization of the feline cortex is generally described in terms of the 

primary, or airiate cortex (VI), and two contiguous regions, V2 and V3. The visual cortex of the 

monkey contains additional visual areas, known as V4 and V4A. Although there is correspondence 

between regions V2 and V3 in the cat, and Area 17 and 18 in Brodmann's cytoarchitectonic map 

[13, p.187], the reader should be aware that different species of mammals have unique schemes of 

cortical organization [155]. 
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stimulus on Stimulus on 

Figure 1.6: A correctly oriented slit stimulus (the white bar) can elicit a response from a complex 
cell no matter where it lies within the cell's receptive field (the gray region). The cell's activity is 
shown as a train of neural impulses which occur when the slit is illuminated (stimulus on). 

Comptax cell 

Simple cells 

Simple receptive fields 

Figure 1.7: Hubel and Wiesel proposed that complex cells receive excitatory inputs from neigh- 
bouring simple receptive fields of similar preferred orientation. When a line or edge stimulus of 
the correct orientation falls within the receptive field of one of the simple cells, the complex cell is 
activated by that cell's response. 
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1,2.3    Cells with "hypercomplex" receptive fields 

With both simple and complex cells that respond to oriented slit-like stimuli, the 

length of the slit is of no consequence to the cell's activity once the slit extends outside 

the receptive field. A characteristic of a lower-order kypercomplex cell is that there 

is a specific length of visual stimulus that will provoke maximum response. This 

type of behaviour is called end-stopping and can be explained in terms of excitatory 

and inhibitory regions within the receptive field. 

In keeping with the idea of a hierarchical vision system, Hubel and Wiesel sug- 

gested a scheme to implement end-stopping using neural elements that had pre- 

viously been investigated (Figure 1.8). This was certainly not the only possible 

arrangement which could explain lower-order hypercomplex cell response and an 

alternative model, which is supported by some experimental evidence, is depicted 

in Figure 1.9. 

A small percentage of the cells examined in V3 of the cat demonstrated end- 

stopping behaviour but would respond to slit or edge stimuli in two perpendicular 

orientations. It has been supposed that this phenomenon arises when two lower- 

order hypercomplex cells have excitatory connections to the cell giving the response 

(termed a higher-order hypercomplex cell as in Figure 1.10). 

The sorts of visual features that appear to elicit response from hypercomplex 

cells are light-dark stimuli containing corners, curves and broken lines. Certain 

lower-order hypercomplex cells have been found to respond equally well to dark or 

light slit stimuli providing, of course, that the slit is a suitable length. 
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Complex receptive 
fields 

Lower-order hypercomplex eel Complex cells 

Figure 1.8: This neural interconnection scheme could implement an end-stopped hypercomplex 
receptive field. The lower-order hyperconiplex cell receives inhibition from the two outer complex 
receptive fields and excitation from the middle region. If the illuminated bar extends into the 
inhibitory regions, the response of the hypercomplex cell will be reduced. The optimum stimulus 
for such a cell is a bright bar, long enough to cover the length of the excitatory region. 

Complex receptive 
fields 

Lower-order hypercomplex ceN Complex cells 

Figure 1.9: This hypothetical arrangement of complex cells can also implement an end-stopped 
hypercomplex receptive field. The hypercomplex cell receives excitation from the inner receptive 
field and inhibition from its surrounds. Complex cells have been found in layer VI of the primate 
cortex with receptive fields large enough to overlap the inner region to the required extent [63]. 
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Lower-order 
hypercomplex 
receptive fields 

Lower-order hypercomplex 
ceHs 

Higher-Older 
hypercomplex cell 

Figure 1.10: A possible scheme to achieve end-stopping of stimuli in two perpendicular directions. 
The higher-order hypercomplex cell receives excitatory inputs from two suitably oriented lower- 
order hypercomplex receptive fields. Note that this diagram does not show the series of neuronal 
interconnections required to implement the lower-order hypercomplex receptive fields. These re- 
ceptive fields could be implemented by a cascade of LGN, simple and complex cells, as seen in 
Figures 1.5 and 1.7. 
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1.2.4     Summary of cortical cell characteristics 

Here is a good point to recap certain details about the cells found along the visual 

pathway (see Table 1.1). The reader should not cLssume that the discussion presented 

paints a complete picture of the functional characteristics of cortical cells. Issues such 

as sustained and transient responses of cortical cells, stereopsis, and colour vision 

are outside the scope of this thesis and are only mentioned here for completeness. 

Henry [74] presents a thorough review of the visual cortex cell characteristics should 

the reader desire further information. 

The purpose of this chapter is to introduce the serial hierarchy model of vision 

upon which the neocognitron is based. It would be remiss not to mention some of 

the problems that neuroscientists have found with this hypothesis. 
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Location Cell type Stimulus required to cause activity 

retina 

rods and cones light energy (i.e. photons) 

bipolar cells 

retinal ganglion cells 

LGN cells 

non-uniform illumination of the receptive field such 

that there are different amounts of light falling on 

the centre and surround. 
LGN 

visual cortex 

simple cells 

correctly oriented slit or edge illumination of a par- 

ticular region within the receptive field, 

often a particular direction of stimulus motion is pre- 

ferred. 

complex cells 

correctly oriented slit or edge anywhere within the 

receptive field, 

respond more strongly to moving, rather than static, 

stimuli. 

lower-order 

hypercomplex cells 

optimum stimulus is a correctly oriented line, slit or 

edge, anywhere within the receptive field and moving 

at a critical speed, 

the length of the stimulus has a critical value for 

which the response of the cell is maximized. 

higher-order 

hypercomplex cells 

response is typically elicited by a slit or edge stim- 

ulus, of a preferred length, oriented at a particular 

angle or at 90* to that angle. 

Table 1.1: Summary of typical stimuli that cells in the mammalian visual system are sensitive to. 
Creutzfeldt and Nothdurft [25] developed an ingenious scheme for recording the way that visual 
cells respond to complicated images and their results provide an excellent accompaniment to this 
table. 
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1.3     Evidence against aspects of the serial pro- 

cessing model 

So far, the visual pathway has been described in terms of a converging cascade of 

neuraJ components: photoreceptors to retinal ganglion cells to LGN cells, onwards to 

simple, complex and, finally, hypercomplex cells. This serial processing philosophy 

is evident in the design of Fukushima's neocognitron and was originally proposed 

by Hubel and Wiesel. In most fields of science, when a significant hypothesis is put 

forward to explain some observed phenomena, it is subject to intense and rigorous 

scrutiny to test its validity. Neuroscience is no exception to this process and the 

idea of hierarchical, serial connections between cells in the visual cortex has had to 

be revised as a result of further experimentation. 

A number of studies suggest a degree of parallel processing within the visual 

system (see [13, Section 11.4]). We shall mention two investigations which clearly 

demonstrate certain shortcomings in the serial model. Both studies describe stimuli 

that complex cells respond well to, but which fail to activate simple cells. This 

suggests that there exists some direct link between cells in the LGN and complex 

cells, bypassing simple cells altogether. 

In 1975, Movshon [131] investigated responses of cells in the cat's striate (visual) 

cortex to stimuli moving at diflferent velocities. Vision researchers usually describe 

the size of a stimulus in terms of the angle, at the lens, which it subtends; the rate 

of stimulus movement is therefore expressed as an angular velocity. What Movshon 

found was that simple cells preferred a much lower stimulus velocity (2.2°/s on 

average) than complex cells (18.8**/s on average). Movshon concluded that no simple 

hierarchical model could account for behaviour he observed. 

Further evidence against Hubel and Wiesel's serial processing model was reported 

in the mid-seventies by Hammond and MacKay [70,71]. Instead of dark/light slit 

and edge stimuli, Hammond and MacKay used a "textured" bar as their stimulus^. 

"^The texture of the bar was generated using a random sequence of black and white dots. 
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When the textured bar Wcis swept across a similarly textured background strong 

responses were obtained from all 132 complex cells encountered [71]. However, none 

of the 120 simple cells that were recorded showed more than an extremely weak 

response to the same stimulus. Again, it would appear that the simple cells are 

somehow bypassed and complex cells perhaps receive their input directly from cells 

in the LGN. 

The experiments performed by Movshon, Hammond and MacKay clearly demon- 

strate shortcomings in the hypothetical hierarchical model of visual processing. It is 

interesting to note that both studies utilize moving stimuli. Since the neocognitron 

has been designed for the analysis of static images, we shall look at one further 

experiment which is relevant to stationary stimuli (and which also explains why it is 

more common to read about "cells with simple receptive fields" rather than "simple 

cells"). 

By applying a drug called bicucuUine to specific cells in the visual cortex, Sillito 

discovered that the characteristic behaviour of so-called simple and complex cells 

could be radically altered [156]. BicucuUine blocks the effect of the important in- 

hibitory neurotransmitter 7-aminobutyric acid (GABA for short) and was applied 

in such a way as to affect only one or two neurons adjacent to the recording mi- 

croelectrode. When bicucuUine was applied to cells with simple receptive fields, the 

cells became responsive to a correctly oriented stimulus anywhere within the cell's 

receptive field — a characteristic of complex receptive fields. This was not in agree- 

ment with the idea that the typical responses of a simple cell arose via excitatory 

connections to groups of centre/surround LGN cells as depicted in Figure 1.5. 

In the presence of bicucuUine, cells with complex receptive fields would respond 

strongly to slit stimuli both in a preferred orientation and also in a perpendicular 

orientation. Again, this disagreed with the serial processing model in which a com- 

plex cell receives only excitatory inputs from simple cells with neighbouring, and 

similarly oriented, receptive fields. 

Sillito's experiments, in addition to making a strictly serial visual system less 
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plausible^ show that the functional responses of cortical cells can change, according 

to locaj conditions. In one circumstance, a cell may behave as though it had a simple 

receptive field but, if the balance of excitation and inhibition it receives is altered, 

that same cell may respond in the manner of a cell with a complex receptive field. 

Is that cell simple or complex? The answer is that such labels do not accurately 

reflect innate properties of the cell. Accordingly, literature on the subject now refers 

to the type of receptive field (e.g. simple, complex) that a cell hcis at a given time 

rather than branding the cell itself as simple or complex, etc. 

Having taken pains to make the distinction between the terms "simple cell" and 

a "cell with a simple receptive field" etc., we shall ignore such semantic nuances and 

use the terms interchangeably throughout the rest of this thesis. The point of the 

exercise (and indeed this whole section) is to show the reader that the mammalian 

visual system is not strictly serial hierarchy. This has been shown in experiments 

that use moving stimuli or abnormal chemical conditions and does not imply that a 

serial processing model is of no utility to the processing of static images. 

1.4     Summary 

The information presented in this chapter forms the foundation for the construction 

of a complete and accurate description of the neocognitron. In explaining the con- 

cept of a serial hierarchical vision system, much of the terminology used to describe 

the neocognitron has also been introduced. 

The mammahan visual system receives input in the form of visible light. Pho- 

toreceptors in the retina absorb this light, emitting neural signals in the process 

which, in turn, stimulate bipolar and retinal ganglion cells. The centre-surround 

nature of these cells' receptive fields causes them to respond strongly to differential 

illumination. 

In the foveal region of the retina, where visual acuity is at its highest, there 

is a one-to-one correspondence between photoreceptors and retinal ganglion cells. 
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Elsewhere, the outputs of many photoreceptors converge on single ganglion cells, 

significantly compressing the neural representation of our visual environment. 

Information from each retina passes along the optic nerves, through the optic 

chiasm and into the lateral geniculate nuclei. The cells within the LGN do not appear 

to exert any profound transformation upon the neural information they receive other 

than organizing retinal signals into right and left visual field components. From the 

LGN, information is topographically mapped onto the visual cortex where it is 

further processed by simple, complex and hypercomplex cells. 

The terms "simple", "complex" etc. refer to the types of stimuli that elicit 

responses from these cells. In a serial model of vision processing, the visual input 

required to activate a cell within the cortex becomes progressively more complicated 

further along the visual pathway The hypothesis made by Hubel and Wiesel was 

that information was processed by a cascade of cells: LGN to simple, simple to 

complex and so on. Despite certain shortcomings in Hubel and Wiesel's strict serial 

model of vision, much of their pioneering work bears relevance to vision research 

today. Even though our knowledge about the visual pathway has increased, the 

neocognitron is still based on the ideas developed by Hubel and Weisel in the 1950s 

and '60s. 
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It is important to note that nowhere in this chapter ha,s there been any mention 

of a part of the visual pathway (or the rest of the brain) in which the meaning 

of visual input is determined. This point bears closer examination. The great 

histologist, Santiago Ramon y Cajal, showed, using the Golgi method of staining, 

that neurons in the cortex are connected in localized columns [150] (see also [107]). 

Signals entering the cortex from a single nerve fibre can propagate throughout the 

entire thickness of the cortex (approximately 2mm) in three or four synapses and the 

resulting lateral spread of activity is limited to a few millimetres (rather than large 

expanses of the cortex). Thus, a specific region of the cortex is said to perform local 

processing of information. The implication of this for cells in the visual cortex is that 

any given cell is not going to receive and integrate data from disparate sections of 

the visual field. As experiments have demonstrated, individual cortical cells process 

information from clumps of adjacent photoreceptors. 

"It follows that this [the visual cortex] cannot by any stretch of the 

imagination be the place where actual perception is enshrined." 

David Hubel and Torsten Wiesel [86, p. 132] 



Chapter 2 

An Informal Introduction to the 

Neocognitron 

The current renaissance of interest in artificial neural systems may lead the casual 

observer to assume that biologically inspired methods of computation are every 

bit as new and exciting as the popular media make them out to be. There is 

no doubt that artificial neural networks are exciting (at lesist to artificial neural 

network researchers) but they can hardly be labeled cis "new". The fundamental 

principles behind most of today's connectionist research were described by scientists 

like McCuUough and Pitts [122] and Donald Hebb [72] before the middle of this 

century. 

In the 1950s and 60s, networks of perceptrons, sigma-pi units and threshold logic 

elements were regarded as promising approaches to problems whose solutions had 

proven difficult on traditional von Neumann machines. Although these networks of 

artificial neurons were successfully applied to a number of tasks, the hope that they 

would be capable of complex pattern recognition was dashed by Minsky and Papert 

in 1969. Their book Perceptrons [127] showed that the neural systems of the day 

were unable to learn certain basic input-output relations and thus, were unlikely to 

be useful for solving typical "real-world" problems. 

•62' 
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It was almost two decades after Perceptrons was published that enthusiasm in ar- 

tificial neural networks was rekindled. The multilayer neural network (described by 

Rumelhart, Hinton and Williams in 1986 [151]) and the backpropagation algorithm} 

ase largely responsible for the popularity of artificial neural networks today. How- 

ever, the achievements of the pa^t five years of connectionism should not be allowed 

to eclipse entirely the significance of work done during the 70s and early 80s. 

2.1     The Cognitron 

It Weis in the first half of the 1970s that Kunihiko Fukushima developed the cognitron 

[38,41,56] at the Auditory and Visual Science Research Division of the Nippon Hoso 

Kyokai Research Laboratories in Tokyo. The self-organizing learning scheme of 

the cognitron was directly inspired by the observed development of the mammalian 

cortex in abnormal visual environments. 

With Hubel and Wiesel's findings about neuron function in the feline cortex well 

established, Blakemore and Cooper [14] went on to investigate how these cortical 

cells developed orientation selective behaviour. As explained in Chapter 1, the 

visual cortex of a mammal normally contains orientation selective cells such that 

no particular preferred orientation predominates. After raising kittens in a visual 

environment that consisted solely of black and white stripes in one orientation, 

Blakemore and Cooper could find no cells within the kittens' cortices that had 

developed a preferred stimulus orientation perpendicular to those stripes. 

Fukushima took Blakemore and Cooper's observations as evidence that the 

synapses of cells in the visual pathway are modified to match the nature of the 

stimuli they are exposed to. This idea was not new; the hypothesis was put forward 

by Hebb [72] twenty-six years earlier, but Fukushima extended the concept so that 

unsupervised learning in a multilayer neural network could be achieved. 

^This optimization technique was discovered first by Werbos [176], later by Parker [140] and 

for the third, and final, time by Rumelhart, Hinton and Williams [151]. 
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Conventional Hebbian learning dictates that a synaptic connection between a 

neuron and one of its inputs should be reinforced only when the neuron and its 

input are simultaneously active. When such a scheme was applied to the perception 

based brain models of the 1970s, the neurons generally developed similar synaptic 

connections. The resulting system of redundant synapses was not considered as 

being effectively self-organized. 

Fukushima's extension to Hebbian learning made use of the fact that neighbour- 

ing neurons in the visual pathway generally receive input from similar regions of 

preceding {afferent) cells. To ensure that neighbouring neurons did not all develop 

the same connections, Fukushima proposed the following [41, p.6): 

"The synaptic connection c from cell x to cell y is reinforced if and only 

if the following two conditions are simultaneously satisfied: 

L Presynaptic cell x fires 

2. None of the postsynaptic cells situated near cell y fires more strongly 

than y." 

This principle of self-organization was successfully implemented in the cognitron. 

The network proved to be capable of "learning" several different 2-dimensional input 

patterns i.e. specific cells within the cognitron would become responsive to particular 

input patterns after a period of unsupervised adaptation. At the time, the cognitron 

was a significant new paradigm for neural organization. Fukushima saw the potential 

for a powerful pattern recognition system based on some of the ideas and operating 

principles that had made the cognitron a success. 

2.2    The Neocognitron 

The cognitron exhibited brain-like behaviour in a number of ways. Using layers of 

neurons with localized connection regions (an abstraction of Cajal's observations of 
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the visual cortex [150]), cells within the cognitron could be trained to discriminate 

between different stimuli via a biologically plausible learning scheme. Fukushima 

took certain aspects of the cognitron and combined them with Hubel and Wiesel's 

hierarchical vision model to synthesize a neural network that behaved, in many 

respects, like the mammalian visual system: the neocognitron [39,40,42,43,44,45,48, 

49,50,53,54,55,58]. Not only could this system self-organize to distinguish between 

different input patterns, it was capable of generalizing so that distorted versions 

of training exemplars could also be recognized. Furthermore, the response of the 

network was essentially unaffected by any translation of the input pattern. When 

the neocognitron was first proposed, no other artificial neural system could rival its 

similarity to the human visual process. 

There are many reasons for pursuing the goal of artificial vision. One such reason 

is to obtain greater insight into the workings of the visual pathway by modelling 

its behaviour with a well defined system. This appears to have been one of Fuku- 

shima's initial motives; his early papers on the neocognitron stress its similarity 

to the mammalian visual process. However, four years after the model was first 

introduced, Fukushima shifted the emphasis of the neocognitron from being a bi- 

ologically plausible abstraction of basic vision to becoming a powerful system for 

pattern recognition. The self-organization scheme used to train the network was 

dropped in favour of a supervised learning algorithm and Fukushima left no doubt 

about why this was done [44, p.829]: 

"In the new model, the algorithm for the reinforcement of synapses is 

determined from a standpoint of an engineering application to a design of 

a pattern recognizer rather than from that of pure biological modelling. 

That is, the algorithm is determined with the criterion of obtaining a 

better performance in handwritten character recognition." 

This engineering application of the neocognitron provides motivation for some 

of the investigations described in this dissertation. When Hubel and Wiesel pro- 

posed their hierarchical model of the visual cortex, other neuroscientists critically 
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evaluated the validity of their hypothesis. Part of the research detailed in this thesis 

critically evaluates the performance of the neocognitron as a handwritten character 

recognition system. 

The previous paragraph raises the question "Surely it is well known whether or 

not the neocognitron is a good character recognition system? (After all, it's been 

around for over a decade.)" It is true to say that the neocognitron is well respected 

as a shift invariant, distortion tolerant classifier but, to date, there have been no 

studies published that assess the performance of the system to any useful extent. 

Fukushima's neocognitron is often cited and described in the neural network 

literature but^ in comparison to more recently proposed networks (such as the back- 

propagation trained multilayer perceptron), the number of experiments done using 

the neocognitron is small. The neocognitron is a complicated network (a sentiment 

expressed by other investigators [73, p.199] [175, p.187]) and it is the author's opin- 

ion that this is why its behaviour has not been examined as closely as that of other, 

simpler, neural systems. 

Achieving an understanding of the neocognitron can be a daunting task: its 

mathematical description makes use of unfamiliar terminology and its structure is 

not as easy to visualize as a multilayer perceptron. Existing literature tends to 

concentrate upon a concise mathematical description of the neocognitron and it can 

take some time for the reader to comprehend the mechanism by which the network 

achieves recognition. The purpose of this chapter is to give the reader an intuitive 

grasp of the way the neocognitron works before the complete mathematical model 

is described. We shall examine how the neocognitron processes information from 

input to output and relate that to the model of the visual pathway described in 

Chapter 1. 
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2.2.1 Input to the network 

Although we perceive our surroundings in three dimensions^ our retinas only "see" a 

two dimensional representation of the world; stereopsis is achieved by integrating the 

different images formed on each of our retinas. Still, monocular vision is sufficient 

for the tcLsk of handwritten character recognition. The neocognitron's input can be 

thought of as a single, coarsely sampled retinal image. 

For computational convenience, images that are to be classified by the neocog- 

nitron are represented as a rectangular array of pixels known as a cell-plane. Our 

visual "wetware"^ is perfectly capable of processing information from millions of 

photoreceptors, however, serial computer simulations of the neocognitron constrain 

the input to be of more modest proportions: typically a 19 x 19 pixel array (although 

input cell-planes as large as 19 x 199 and 128 x 128 have been implemented [132] 

[124]). 

The processing strategy of the neocognitron is modeled on the mammalian vi- 

sual cortex and, as such, does not incorporate an explicit mechanism for the image 

contrast normalization performed in early stages of the visual pathway {i.e. centre- 

surround retinal ganglion and lateral geniculate cells). Instead, it is assumed that 

input patterns will be preprocessed so that pixel values are within suitable ranges. 

Fukushima originally used bilevel input values but fixed range grayscale inputs can 

also be handled [110]. 

2.2.2 First layer simple cells 

The terminology used to describe the first stage of processing units in the neo- 

cognitron clearly shows the extent to which Fukushima was influenced by Hubel 

and Wiesel's work. There are some organizational differences between the primary 

stages of the visual cortex in mammals and the first layer of the neocognitron, but 

essentially, both systems implement the extraction of simple, local features from the 

^A term coined by science-fiction writers as a biological analogy of computer hardware. 
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visual input. Here the word "feature" is used to denote a component of the image 

being processed. A bright slit stimulus (in some part of the retina) or a fragment of 

a straight line (in some part of the neocognitron's input cell-plane) are examples of 

what we refer to as features. 

There is a strong similarity between the processing performed by the mammalian 

visual system (or its abstraction, the neocognitron) and the techniques employed in 

syntactic pattern recognition [37]. Each of these approaches to image classification 

relies upon being able to decompose input pattern representations into arrange- 

ments of features, or pattern primitives. For instance, handwritten characters can 

be thought of, in general, as sets of lines, loops, corners and curves, set down in 

particular spatial relationships. 

The hypothetical vision mechanism implemented by the neocognitron is bcLsed 

upon the idea that we perceive and identify patterns by decomposing visual informa- 

tion into a feature representation; input recognition will occur if that arrangement of 

features corresponds to a familiar pattern. Perception (in the human visual system) 

takes place on a number of levels: within the author's view at this moment is an 

arrangement of geometric shapes — an ellipse, a hexagon and some rectangles — 

which, on a different level, identifies the object as being a drinking glass^. Fuku- 

shima's system attempts to represent input data in terms of features characteristic 

of handwritten digits in order to "perceive" the input as resembling a number from 

'0' to '9'. The first layer of simple cells represents the input pattern as a composition 

of rudimentary features, 3x3 cells in size. Before we present an example of this, 

some of the nomenclature used to describe the neocognitron will be explained. 

As mentioned previously, one difference between the neocognitron and the mam- 

malian visual cortex is the way in which their component cells are organized. Fuku- 

^It is interesting to note that Sacks [152, Ch.l] has reported instances of people with brain 

damage that renders them almost incapable of independently recognizing familiar objects - an 

affliction known as visual agnosia. When asked to identify a household item, such subjects typically 

refer to the object in terms of its shape {e.g. boxlike, spherical) and feel {e.g. metallic, fabric) but 

cannot perceive the item at the level required to put a name to it. 
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shima uses certain naming conventions to reflect the structure of the neocognitron: 

planes of simple cells and complex cells (which will be discussed in the next section) 

are referred to £LS S-planes and C-planes, respectively. The first layer of S-planes 

is labeled "USl" and the individual planes within that layer are called "USl.O", 

"USl.l", ..., etc. In a similar fashion, the first layer of C-planes, "UCl", contains 

planes labeled as "UCl.O", "UCl.l", and so on. For brevity, Fukushima uses S-cells 

and C-cells as contractions of the terms simple cells and complex cells'*. 

Without considering how a set of 3 x 3 features can be chosen, let us look at how 

a particular digit can be decomposed, or mapped into a feature representation by 

the neocognitron. Figure 2.1 shows the activity present in the twelve S-planes in the 

first layer of the neocognitron described by Fukushima in [48]. The input pattern 

is the digit '9*, displayed on a 19 x 19 plane of cells. Interposed between the input 

array and each of the twelve S-planes are the 3x3 features that the cells in each 

plane are responsive to. 

In this thesis, diagrams used to display the state of the cells in the neocognitron 

will use black squares to denote activation. In any particular cell-plane, the activa- 

tions will be normalized so that the cell with the greatest activity will be represented 

by the largest square. If none of the cells in a cell-plane are active, then that plane 

will be shown as an empty square. 

It is difficult to show even the first section of the neocognitron in complete detail 

— there are 4693 cells to display in the input and first layer S-planes. Figure 2.1 

also gives an enlarged view of the first layer S-cell plane US 1.6. At this resolution, 

it should be apparent that maximum S-cell activity is produced at locations where 

the input activity matches exactly the feature that the cells are tuned to respond 

'^ Within the neocognitron there is another variety of neuron known as the V-cell. The purpose 

of these elements is to inhibit S-cell response to features that do not sufficiently resemble their 

preferred stimulus. There is no clear physiological analog for the V-cell but Fukushima [41, section 

5.3] cites evidence [32,144] which supports his use of this third species of neuron. We shall give a 

more detailed explanation of the V-cell in the next chapter since an understanding of its function 

is not crucial to the present discussion. 
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Figure 2.1: The activities that occur when a pattern is presented at the input layer (UCO). Each 
of the twelve USl planes contains cells sensitive to a particular 3x3 feature. US1.6 is responsive 
to vertical line segments only and the response of its cells to the input pattern is shown enlarged. 
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Figure 2.2: Afferent connections to the cells in an S-plane come from overlapping regions of the 
preceding cell-plane. 

to.   Each S-plane can be thought of as implementing a 2-dinriensional correlation 

between the input pattern and a particular 3x3 feature. 

The neural structure which implements this feature/input correlation is stylized 

in Figure 2.2. Each S-cell in S-plane USl.6 (or indeed any of the first layer S-planes) 

receives input from a particular 3x3 cluster of cells in the preceding layer. Just 

like the retinal ganglion cells shown in Figure 1.3, the S-cells have overlapping input 

regions which are arranged so as to uniformly cover the preceding cell-plane. For 

clarity, only three of these connection regions are shown in Figure 2.2. Only the 

lower right hand region contains a fragment of the input pattern which matches the 

preferred stimulus of the cells in S-plane USl.6. Hence, the cell connected to that 

region is strongly activated. 

The strengths of the connections that link cells, within the same S-plane, to their 

input regions, are identical. This condition, known as weight sharing is enforced 

during the training of the network — a procedure which is discussed at the end of 

this chapter.  The effect of this strategy is that, no matter where an input feature 
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occurs, its presence will be detected by an S-cell at a corresponding location within 

an S-plane (presuming that the cells in the S-plane are tuned to respond to that 

feature). Weight sharing explicitly implements a degree* of translational invariance 

within the neocognitron. But weight sharing alone will not allow the neocognitron 

to mimic the human visual system's tolerance to distortion and deformation of 

patterns. 

2,2.3    First layer complex cells 

What should an effective artificial implementation of a biological complex cell ach- 

ieve? Of primary importance, is that the cell should be responsive to a particular 

type of input stimulus at any location within its receptive field. Since the neocogni- 

tron aims only to classify stationary input patterns, there is no need to implement 

any of the dynamic behaviour which hats been observed in real complex cells. 

Fukushima's interpretation of the complex cell (or more briefly, the C-cell) is 

directly based on Hubel and WieseFs hypothetical model, shown in Figure 1.7. The 

C-cells within the neocognitron have purely excitatory connections to the the S- 

cells that precede them. Any activity in an afferently connected S-cell will evoke a 

response from all of the C-cells which receive input from it. 

The input regions of a plane of C-cells in the neocognitron uniformly cover the 

preceding S-plane (or S-planes, since a C-plane may receive input from a several 

sources). C-cell input regions overlap each other in a manner similar to that depicted 

in Figure 2.2. To reduce the complexity of the connection diagram, Figure 2.3 shows 

the afferent cells that connect to a single UCl cell. In such a connection scheme, a 

C-cell receives input from a number of S-cells. If a preferred stimulus is presented 

within any of the input regions of those S-cells, the excitatory connections from the 

S-cells ensure that the C-cell will be activated. 

Again, using the neocognitron detailed in [48], we may observe the activities 

^Barnard and Casasent have shown that the neocognitron is not entirely insensitive to transla- 

tions of input patterns [91. 
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Figure 2.3: The first layer C-cell has a 3 x 3 input region in the preceding S-plane. The overlapping 
S-cell input regions give the C-cell a receptive field of 5 x 5 cells. 

present during the processing of a digit (Figure 2.4). Qualitatively, the effect of the 

C-cells is to smear the patterns of activity occurring in preceding layer S-planes. We 

shall discuss in Subsection 2.2.4 how this allows the neocognitron to recognize input 

patterns that have been significantly distorted. 

Note that no two C-planes are connected to the same S-plane, although some of 

them receive input from two S-planes simultaneously. These convergent connections 

allow a C-plane to detect two (similar) types of input features that a single S-plane 

alone could not extract. The result of combining the responses of S-planes USl.7 

and USl.8, which extract fi] and [5 features respectively, is that cells in C-plane 

UCl.5 are tuned to lines oriented at 15° anticlockwise from vertical. No single S-cell 

with a 3 X 3 receptive field could integrate feature information in this way. 

Conceptually, this overview of the neocognitron is almost complete. Although 

the process of training the network is yet to be discussed, the remainder of the 

structure of the neocognitron is functionally identical to the first layer arrays of 

S and C-planes which we have described in subsections 2.2.2 and 2.2.3. However, 

unless you are already familiar with the neocognitron, it will not be clear how further 

layers of S and C-cells can implement character recognition. This is the subject of 

the following section. 
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2,2A     Layer 2, and beyond 

Hubel and Wiesel's studies of the mammalian visual cortex have clearly shown that 

the stimuli required to elicit a response from a cortical neuron become more complex 

the further along the visual pathway the neuron is located. The first layer S and 

C-cells are similar in many respects to the simple and complex cells observed in 

the visual pathway. Although the behaviour of the second layer S-cells is somewhat 

less reminiscent of lower-order hypercomplex cell response, the stimuli required to 

activate these cells are certainly more sophisticated than those which activate USl 

cells. 

In the hierarchical model of vision, cortical cells detect complex stimuli by inte- 

grating the outputs of cells sensitive to simpler features. As shown in Figure 2.5, the 

cells in the US2 S-planes of the neocognitron receive input from regions in all UCl 

cell-planes. In the previous layer, the activity in each UCl cell-plane corresponded 

to the presence of a certain 3x3 feature in the input pattern; in this layer, the 

function of the US2 cells is to detect the presence of particular arrangements of 

these rudimentary features^. We shall discuss how these feature arrangements are 

learnt shortly, but, for example, typical input features detected by US2 cells include 

ends of lines, segments of curves and intersecting lines. 

Like the cells in the first layer S-planes, cells within a particular US2 cell-plane 

share the same weights. First layer weight sharing was explained in Subsection 2.2.2, 

but since the connection scheme is slightly more involved in the second, and higher 

layers of the neocognitron, we shall explain these circumstances carefully, with ref- 

erence to Figure 2.6. 

Each S-cell has a set pf weights which can be thought of in terms of a number of 

distinct subsets. Each subset of weights links the cell to a region in a preceding C- 

plane; there is one subset of weights for each C-plane. All S-cells, in a given S-plane, 

have identical subsets of weights in each of the preceding C-planes.   However, the 

^The pattern primitives used by Fukushima to train the US2 cells in the neocognitron are shown 

in Figure B.2 in Appendix B. 
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Figure 2.6: This diagram shows the weights connecting regions in all UCl planes to two S-cells in 
the US2.18 S-plane. The links between the top right input regions in each UCl plane and the top 
right US2.18 cell are omitted for clarity (see Figure 2.5). Both the input regions shown within a 
particular UCl plane are at locations corresponding to the different positions of the two US2.18 
S-cells. The connection weights from all regions within the same C-plane are identical. 
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location of an S-cell's input regions in those C-planes corresponds to the position of 

the S-cell within its own plane. Figure 2.6 shows two cells, within the same S-plane, 

and their corresponding subsets of weights in the previous C-planes. 

This system of connections allows S-planes to detect the presence of specific 

combinations of features in the C-planes of the previous layer. Integrating feature 

information in this way means that successive layers of the neocognitron can detect 

input patterns of increasing complexity. The function of each of the final layer S- 

cells in the neocognitron is to "look" for an arrangement of input features which 

corresponds to a particular class of input pattern. Recognition in the neocognitron 

is essentially a matter of all the right features being present in all the right places. 

In real life, letters and digits are rarely hand-written with any precision. The 

scribblings that we read and write each day must contain certain features charac- 

teristic of the Roman alphabet or the Arabic numerals in order to be understood, 

but there is considerable leeway in how these features can be arranged to form rec- 

ognizable symbols. Although not immediately apparent, it is the C-cells within the 

neocognitron that allow the network to correctly classify characters written in a 

variety of styles. 

Figure 2.5 clearly shows that C-planes "blur" the pattern of activations from 

preceding S-planes. Any active cells within a C-plane will appear in clumps, due to 

the overlapping input regions of adjacent C-cells. By representing the location of 

features with these clusters of activity, a degree of tolerance to feature deformation 

is provided. Suppose a particular USl feature is slightly shifted from its "ideal" 

position, i.e. the position that will elicit maximum response from a US2 cell trained 

to recognize that feature. Blurring the activity caused by the presence of the USl 

feature ensures that there will still be a significant number of active cells at the 

correct position of the S-cell's input region. As long as the shift is not too great, 

the S-cell will respond, although with less strength than if the feature was correctly 

located (see Figures 2.7 and 2.8). 

In addition to blurring the pattern of activations from preceding S-planes, C-cells 
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Figure 2.7: Represents the weights connecting an S-cell to eight input regions in preceding C-planes. 
Maximunrj S-cell response will be achieved if the pattern of activity in the C-planes is perfectly 
correlated to these weights. 
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Figure 2.8: This diagram shows C-cell activity. If the location of a particular feature is shifted 
in relation to the other input regions (i.e. the feature in UC1.4) only partial correlation between 
weights and activations in that region can occur. The response of the S-cell is diminished. If the 
presence of features was represented only by single celts then exact positioning of features would 
be required to elicit any S-cell response. 

also serve to compress the representation of feature information in the neocognitron. 

Using overlapping input regions, a plane of C-cells can represent incoming S-cell 

activity at a lower resolution without the use of subsampling {i.e. without discarding 

information about S-cell activity). Figure 2.9 shows how C-plane input regions can 

be arranged to implement this spatial compression of activation. 

The structure and the processing performed in subsequent layers of the neocog- 

nitron, are essentially the same as in the first and second layers of the network (see 

Figure 2.10). Each layer in the neocognitron consists of a number of S-planes, to 

detect the location of particular features, and a number of C-planes, which com- 
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Figure 2.9: The overlapping input regions of the C-cells uniformly cover the preceding S-plane. 
The outputs of all S-cells are monitored but the resolution of the representation of S-plane activity 
is reduced. 

press the representation and blur the location of those features. Input classification 

is achieved by steadily extracting and compressing feature representations until the 

input is represented by the activities of a number of C-cells in the final layer of the 

network. 

Each final layer C-cell corresponds to a particular class of input pattern. Activity 

in one of those cells implies a certain resemblance between the input and the pattern 

clcLSs corresponding to that cell. The final layer C-cell which responds most strongly 

to an input pattern indicates the class of that pattern. 

The caption of Figure 2.10 gives some idea of the total size of the network. It 

should be pointed out that there'have been implementations of the neocognitron 

larger than that described in [48] (see, for example, [58]) but the network described 

here will form the basis of many of the investigations described in this thesis. The 

question which must now be addressed is how such a large system of neurons and 

connections can be organized to perform character recognition. 
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Figure 2.10: Fukushima's 1988 implementation of the neocognitron [48] in its entirety. The brack- 
eted numbers describe how many cells are contained within the cell-planes of each layer. This 
diagram shows the activity of approximately 35,000 S and C-cells in a network with over 6.4 mil- 
lion connections; still several orders of magnitude smaller than estimates of the numbers of neurons 
and connections in the human visual cortex, but comparatively large for an artificial neural net- 
work. 
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2.3    Learning in the neocognitron 

As pointed out at the start of Section 2.2, the neocognitron may be trained by 

either supervised or unsupervised learning schemes. Fukushima himself observed 

that a self-organized neocognitron, though more biologically plausible than a teacher 

trained network, performs comparatively poorly as a recognition system. Both learn- 

ing schemes are similar in many respects though, and each will be discussed in this 

section. 

One requisite common to both methods of adaptation is that learning must 

proceed a layer at a time, i.e. organization of a particular layer takes place only 

after subsequent layers have been trained. This requirement has intuitive appeal; 

the network cannot learn to recognize complicated arrangements of input features 

until it has learned to detect the rudimentary pattern primitives of which they are 

composed. 

Furthermore, essentially the same weight update rule is used in both approaches 

— weights linking a cell to its inputs are reinforced in a Hebbian manner. What 

sets the two learning schemes apart is the method used to select the cell that will 

have its input connections strengthened. 

Note that only the feature extracting S-cells have modifiable connections in the 

neocognitron. The weights linking C-cells to their input regions are determined 

prior to the training of the network. Fukushima specified that these connections be 

strongest in the centre of the C-cell's input region so as to accentuate the C-cell's 

response to S-cell activity in that area. We shall see in later chapters that this 

strategy does not necessarily have any positive effect on the network's classification 

performance. 

2.3.1    Unsupervised learning 

Unsupervised training of the neocognitron involves presenting the network with 

typical examples of handwritten characters without providing any information as to 
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which category they belong to. The aim of self organization is for the network to 

develop connections to final layer cells so that activity in a particular cell corresponds 

to the presence of a certain type of input pattern. Thus, the network becomes able 

to distinguish between different classes of input. 

Like many unsupervised training algorithms {e.g. Sanger's Generalized Hebbian 

Algorithm [153], Linsker*s Infomcix Principle [112]), self-organization of the neocog- 

nitron commences with small random values being cissigned to the adaptive weights. 

After an input exemplar is presented to the network, a seed cell is chosen from the 

S-planes of the layer that is being trained. During each iteration of training, only 

the seed cell has its input weights reinforced and it is selected in accordance with 

the learning paradigm used in the cognitron (see page 34) — to be selected as a seed 

cell, an S-cell must respond more strongly to the input feature within its receptive 

field than any of its immediate neighbours. 

This competitive approach to seed cell selection is applied across all S-planes in 

the layer that is being trained. Out of all the S-cells which share the same input 

regions (and hence receptive fields), only the cell with the strongest response to 

the input pattern has its weights updated. Seed cell weights are reinforced using 

Hebbian adaptation and then all other S-cells within the seed cell's plane adopt 

those updated weights. Thus, the learning algorithm explicitly implements weight 

sharing- 

Fukushima's unsupervised training method ensures that different S-planes be- 

come responsive to different input features. After a seed cell has been located within 

a certain S-plane and the cells within that plane have had their weights updated, 

those S-cells are only responsive to a particular type of input feature. Thus, when 

other different features appear in the input pattern, the cells in the updated S-plane 

are unresponsive and seed cells are selected from other S-planes in that layer. 

There are a number of problems inherent to unsupervised learning that diminish 

its appeal as a method for training the neocognitron. Firstly, there is the question of 

when to stop the training process; if the network is to be used for a practical purpose 
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Figure 2.11: These are the weights of the first layer S-planes, developed by self-organization in 
Fukushima's 1982 implementation of the neocognitron [43]. The network was trained with ten 
different patterns (the digits '0* to *9'). 

(such as digit classification), one must be able to determine when the network is 

ready and able to be applied to that tcisk. Obviously, a useful point to halt self- 

organization is after the neocognitron has successfully learned to distinguish between 

different classes of input. But this can only be determined by testing the performance 

of the network from time to time to see if it classifies inputs in the desired manner. 

The question of what constitutes "the desired manner" of classification is posed 

uneasily in the context of self-organization. Proponents of unsupervised learning 

seldom admit that "successful self-organization" of a system is generally equivalent 

to that happy condition where "the system behaved as its designer expected it to". 

This issue is fundamental to all adaptive systems and highlights the fact that "super- 

vised" and "unsupervised" learning can be viewed as different levels of application 

of a priori knowledge to the solution of a problem. 

A second difficulty with "learning without a teacher", as Fukushima refers to it, 

is that learning in the neocognitron is limited by the system's architecture. There is 

no guarantee that a particular number of S and C-planes will be sufficient to absorb 

the feature information necessary for a particular recognition task. An attempt to 

circumvent this problem, using constructive techniques, has been reported [169] but 

that approach has not proved to be a great success [88]. Figure 2.11 shows that, even 

with ample numbers of S and C-planes in the network, Fukushima's self-organization 

scheme still results in a degree of redundancy in feature extraction; a number of the 

features learnt in that example are translations of other first layer weight patterns. 

While such redundancy may be vital in a biological vision system (to cope with 

the inevitable damage or destruction of neurons), it is unnecessary in an artificial 

setting and does not enhance the network's ability to recognize images. 
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Thirdly, Fukushima pointed out that successful unsupervised training of the 

neocognitron required judicious choice of network parameters [43, Section 6.3]. In 

light of these shortcomings, it is hardly surprising that Fukushima searched for, and 

found, a more practical method for training the neocognitron. 

2.3.2     Supervised learning 

The major differences between unsupervised and supervised learning in the neocog- 

nitron may be summarized as follows: in the unsupervised case, correlations between 

input patterns and initial small random weights determine which S-planes respond 

to which features; with supervised learning, the supervisor designates a number of 

similar input features for each S-plane to learn to extract. 

This method of learning places the onus on the supervisor to select a set of 

features that will enable the neocognitron to distinguish between different classes 

of input patterns. Appendix B shows the feature set that was used by Fukushima 

to train the S-cells in a four layer neocognitron [48]. It is obvious that a network 

trained with this set of patterns is intended to perform digit recognition. 

Instead of the redundant first layer features that were learned through self or- 

ganization (Figure 2.11), supervised learning can train the USl planes to respond 

to twelve differently oriented sections of lines (see Figure B.l in Appendix B). Sec- 

ond, third and fourth layer S-planes are trained to detect "meaningful" features 

(i.e. meaningful in the context of digit recognition). This kind of training scheme 

attempts to make the most of any a priori information about the problem to be 

solved. 

To describe the process of supervised learning, we shall consider the training of 

the cells in the US2.32 plane of the neocognitron in [48]. Initially, all S-cell weights in 

this plane will be zero. The first of the four 9x9 cell training patterns (see page 225) 

is presented in the middle of the input cell-plane and the resulting activation of the 

network is propagated back to the C-planes immediately before layer US2. For this 
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to occur, the US 1 cell-planes must already be trained. 

In this supervised learning scheme, the cell in the middle of the S-plane being 

trained is generally designated as the seed cell of the plane^. The Hebbian weight 

update ensures that the change in seed cell weights is proportional to the activity in 

the input regions of the seed cell. Thus, after S-plane US2.32 has been completely 

trained, the weights of the seed cell, and (through weight sharing) every other cell 

in the plane, are proportional to the sum of input region activities over the past four 

training pattern presentations. As soon as all US2 planes have been trained in this 

manner, organization of the US3 planes can commence. 

This method of learning has two significant advantages over many other super- 

vised training algorithms. The time taken to train the network shown in Figure 2.10 

with Fukushima's algorithm is in the order of a few minutes; gradient descent tech- 

niques can successfully organize a similarly structured network in a few days [103]. 

The second benefit of Fukushima's training scheme is that the internal representa- 

tion of input data formed by the neocognitron can be readily interpreted. Activity 

in a given S-plane implies that the feature "learned" by the cells of that plane is 

present in the input pattern. While today's researchers probe and analyse their 

layers of hidden units, in search of deeper meaning and statistical revelations, the S 

and C-planes of the neocognitron read like an open book. 

Now, to the disadvantages. The strength of Fukushima's supervised training in 

allowing a priori knowledge to be employed to a significant extent is also its Achilles' 

Heel. Gradient descent algorithms can flounder around for days before finding fea- 

tures that can be used to classify input patterns. Conversely, the neocognitron can 

rapidly learn a set of "meaningful" input features which may prove to be almost 

entirely unrelated to the nature of the patterns to be classified. If the supervisor 

deems a particular set of training features to be characteristic of input patterns, it 

is not assured that his or her estimation will be useful in a practical context. 

As Fukushima concluded [58], it is desirable to strike a happy medium between 

^An exception to this rule has been made for third layer S-planes [48,581. 
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the speed of supervised training and the data-driven solutions that can eventually 

be found with unsupervised methods. A possibility for future investigation would be 

to use Fukushima's supervised training scheme to prime the weights of cells in the 

neocognitron. Gradient descent techniques could then be used to tune the network's 

weights to obtain high classification performance with real-world data®. 

Now that the structure, operation and training of the neocognitron have been 

described in general terms, it is appropriate to consider the network's correspondence 

to the hierarchical model of vision detailed in Chapter 1. 

2.4     The neocognitron in relation to biological vi- 

sion 

Fukushima provides a clear analogy between the neocognitron and the visual cortex. 

Figure 2.12 was published in [40] and [42]; we are now in a position to assess the 

validity of the correspondences it suggests. 

Not only does the neocognitron represent an abstraction of the serial model of 

processing in the visual cortex, Fukushima has made use of certain observations 

of higher cortical functioning to implement associative memory. Using techniques 

similar to those of Hubel and Wiesel, responses to complex visual stimuli by neurons 

in the inferotemporal (IT) cortex [68,154] and superior temporal polysensory (STP) 

area [18] of the macaque monkey have been recorded. Fukushima hypothesized that 

such responses, caused by stimuli as sophisticated as circles, squares, triangles [154] 

and even faces [18], arise because cells in the IT and STP regions are organized 

hierarchically, like the simple and complex cells of the visual cortex. 

In light of the contradictory evidence discussed in Chapter 1, Hubel and Wiesel's 

^Attempts have been made to apply directly the redoubtable backpropagation algorithm to 

training the neocognitron. The study performed by Okada and Fukushima [137] showed some 

promise for this approach but certain shortcomings were evident. As yet, no implementation of 

the proposed supervised-neocognitron + gradient-descent scheme has been reported. 
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[* visual area 4'—association area  

.    , , lower-order _ higher-order  ^ - ^grandmother 
.retina    LGN, — stfnple ► complex "hypercomplex  hypercomplex ^~* ^ cell? 

UCO ^ US1  *- UC1  -| ^ US2 * UC2 -j •*> US3 ► UC3 -: 

-> modifiable synapses 

 ► unmodifiable synapses 

Figure 2.12: Fukushima drew this relationship between the neocognitron and Hubel and Wiesel's 
hierarchical vision model. The "association area" of the neocognitron extends the hierarchical 
structure of layers one and two and is based upon experimental observations of neurons in higher 
cortical regions. 

serial model is a naive portrayal of visual cortex organization. To extrapolate that 

model to the IT and STP regions of the cortex is to drastically oversimplify the 

biological vision process. Van Essen and Maunsell [171] suggest a more realistic (and 

certainly more complex) anatomical hierarchy of visual areas within the macaque 

cortex but the functional organization of the visual pathway is open to debate. 

Certain discrepancies between the neocognitron and the visual pathway clearly 

arise because of the software versus wet ware implementations of the two systems. 

The regular cellular organization of the neocognitron is influenced as much by the 

data structures used in computer programming, as it is by the neuroanatomy of the 

visual cortex. Furthermore, as Hecht-Nielsen points out [73, p.206], "Fukushima 

does not specify a legal [sic] neural network mechanism for accomplishing ... weight 

sharing". Weight sharing is simply a convenient artifice that mimics the uniform 

coverage of the retina by receptive fields of all orientations. 

The translationally invariant response of the neocognitron, caused by the weight 

sharing S-cells, is often used to emphasize the biological inspiration of this network. 

This issue is worthy of a brief comment. Eye movement obviously accounts for our 

ability to recognize stimuli at different physical locations, but what happens if we are 

denied the opportunity to refocus our gaze on to a translated pattern? Experiments 

which restrict vision in this way suggest that the human visual system does not 
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respond in a translationally invariant manner, even when stimuli are shifted around 

regions of similar visual acuity [136], 

The correspondence between the neocognitron and the visual cortex is strongest 

at the initial stages of both systems. Comparison of later stages is hindered by 

the fact that an accurate functional model of higher cortical processing has not 

yet been established. However, the transformations exerted by each layer of the 

neocognitron have a ready interpretation — combinations of features are extracted 

from the outputs of the preceding layer and the representation of these feature 

combinations is blurred and compressed. Described in these terms, the neocognitron 

can be viewed as a massive compression algorithm to reduce pixel information into 

a small set of activations that represent the similarity between the input pattern 

and each of the output classes. But is this process of compression analogous to the 

way that we recognize patterns? Section 5.2 will tackle this question using evidence 

gathered from psychological experiments. 

From a conceptual standpoint, the meaning of the final layer output of the neo- 

cognitron is problematic. Fukushima proposes that we interpret final layer output 

as meaning "the input belongs to class X" whereas, since this layer is functionally 

no different to the previous stages, the output really only implies that "the input 

contains features which are characteristic of class X". As we shall see later, this 

distinction becomes pertinent to classification tasks where the features of one input 

class are actually a subset of the features of another class. 

It is good to keep in mind the admonition of Hubel and Wiesel which concluded 

the previous chapter. If the higher layers of the neocognitron are based upon the 

paradigm of the visual cortex, can the neocognitron really be expected to mimic the 

way humans perceive patterns? 
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2.5    The neocognitron in perspective 

This chapter has given an overview of the structure, function and training of Fuku- 

shima's neocognitron. Much of what has been presented builds upon the ideas and 

discoveries detailed in Chapter 1 and should clarify the relation between the neo- 

cognitron and biological vision. 

As an abstraction of the hierarchical vision model, the neocognitron could (per- 

haps unkindly) be considered to be an unreasonable extrapolation of a flawed hy- 

pothesis. Fukushima concedes [42, p.269] that Hubel and Wiesel's ideas about serial 

vision have been contradicted but makes the important point that such contrary ev- 

idence 

".. .would not, however, completely deny the hierarchical model, if we 

consider that the hierarchical model represents only the main stream of 

information flow in the visual system." 

Taking this idea into account, and remembering that the network was designed 

to process static, monocular greyscale patterns, the neocognitron can be viewed in 

its proper perspective — as a system which incorporates some of the processing 

methods observed in the mammalian visual cortex. What remains to be seen is the 

extent of the neocognitron's utility in an engineering context — as a robust pattern 

recognition device. 



Mr Ellis:       What's that Tomkinson? 
[Mr Ellis is looking up at the end of the classroom where 
there stands the prow of a fourteen-thousand-ton ice-breaker. 
Tomkinson is on the deck, some forty feet up with welding 
equipment. Me shouts down.] 

Tomkinson: It's a model ice-breaker, sir. 
Mr Ellis:        It's a bit big for a model, isn't it, Tomkinson? 
Tomkinson: It's a full-scale model sir... 
Mr Ellis:        It's not a model if it's full-scale, Tomkinson, it's an ice-breaker. 

from Tomkinton'B School Days [138]. 

Chapter 3 

Seeing by Numbers 

The neocognitron can be described by an abundance of buzz words such as "mas- 

sively parallel multilevel neural network" [124] and "multilayer hierarchical replicated- 

weight neural network" [21j. It would, however, be incorrect to refer to the neo- 

cognitron as a brain model. As this chapter will show, the neocognitron can be 

precisely described by a few equations and diagrams, a feat that will probably never 

be accomplished for the biological brain. 

An underlying goal of artificial neural network research is to obtain the best 

of both worlds — the natural and the artificial. To begin with, machine pattern 

recognition was firmly grounded in the artificial [1] but the limited success of this 

approach prompted researchers, like Fukushima, to look towards nature for inspira- 

tion. The capabilities of computers have steadily increased over the years, so that 

it is now possible to simulate natural systems of neurons with unprecedented accu- 

racy. This prospect of realistic brain models prompts the question of whether an 

artificial neural network, with a closer resemblance to the visual cortex than the 

neocognitron, could equal, or better, the recognition performance of Fukushima's 

system. 

Such a question highlights the fact that cybernetics strives to achieve a care- 
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ful synthesis of natural and artificial qualities. Although our brains are excellent at 

pattern recognition, they are prone to fatigue and have complex operational require- 

ments. The appeal of a highly accurate digit recognition system that only works for 

40 hours each week and is unhappy with its position in life, is open to question. 

The sophistication and realism of brain models will surely continue to increase, 

but, in the author's opinion, practical neural net based systems will retain their 

simple, mathematically tractable rules of operation. In this chapter we shall consider 

the rules upon which the neocognitron is based. 

3.1    A note on terminology and organization 

The mathematical description of an artificial neural network is a curious process. 

Neither derivation nor analysis, theorem nor proof, the sequences of equations which 

relate the variables and parameters of a neural system are generally denied the 

traditional frameworks that most forms of mathematical exposition utilize. 

Many connectionist models can be described with elegant simplicity, a quality 

that has done much to foster their popularity in a scientific community devoted 

to Occam's Razor. Alas, the neocognitron is not such a model. Nevertheless, the 

author will attempt to organize the formal presentation of the neocognitron into a 

logical progression of concepts. Three major issues will be addressed in the following 

order 

1. the organization of the cells in the neocognitron 

2. the interconnections between them 

3. the functional description of those cells. 

Sections 3.2, 3.3 and 3.4 show how Fukushima has formally described these sub- 

jects. The remainder of this chapter presents an interpretation of those formal 

descriptions. 
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In preparing this chapter, it was necessary to choose either to adopt Fukushima's 

system of terminology (used by virtually all neocognitron literature) or to develop 

alternative (and improved) notational conventions. The nomenclature used through- 

out this dissertation is that proposed by Fukushima. Despite certain shortcomings 

in this approach, it was decided that adding to the already substantial amount of 

notation used to describe the neocognitron would clarify only a few points at the 

expense of clouding many other issues. Even so, for the sake of both completeness 

and clarity, new notation to describe training patterns is presented in Section 3.4 

(completeness) and abbreviated vector notation is defined in Section 3.5 (clarity). 

Note also that, since its inception, certain aspects of the neocognitron have been 

altered by Fukushima. These changes will be mentioned in Section 3.7. We shall 

adhere to Fukushima's most recent complete description of the neocognitron [58] in 

the following discussion. 

3.2     The morphology of the neocognitron 

There are three different types of processing element in the neocognitron — the S 

and C-cells, which have already been discussed at some length, and the K-ce//, whose 

function will be explained in Section 3.4. Any individual S or C-cell is identified by 

four pieces of information: 

• the type of cell (S or C) 

• the layer, ^, that the cell belongs to 

• the cell-plane, k, that it is part of 

• the location, n, of the cell within that cell-plane. 

Thus, the outputs of S and C-cells are given the general notation use{n,k) and 

uct{n,k). 
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V-cells provide information to S-cells about the annount of activity present within 

each S-cell's input regions. Only one V-cell plane ( V-plane) per layer is necessary to 

store the values of weighted root-mean-square input region activity (see Figure 3.4), 

hence a particular V-cell is specified by 

• the type of cell (i.e. V) 

• the layer^ ^, that the cell belongs to 

• the location^ n, of the cell within the V-plane. 

V-cells are given the general notation uvein). 

In a particular instance of the neocognitron, the values that are possible for the 

parameters £, k and n are determined by the architecture of the network. The 

numbers of S and C planes in the ^** layer of the network are specified by the values 

Kst and Kce respectively. In layer ^, the S-planes are numbered 1 to Kst, the 

C-planes range from 1 to Kc( (see Figure 3.1). A cell's location within an S, C or 

V-plane is specified by a 2-dimensional position vector, n. This vector describes the 

position of a celPs receptive field centre in relation to the input cell plane UCO, as 

depicted in Figure 3.2. 
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k=1=K 

k=1 

k=2 

k=3 

k=1 

k=2 

k=1 

k=2 

-D  k=1 

-n  k=2 

k=K. -n  k-K^ 

k=K. k=K. 

uco US1       UC1 US2    UC2 

Figure 3.1: Cell-planes are identified by a serial number k.  When it is necessary to refer to two 
cell-planes in different layers, Fukushinna uses K to denote the second serial nunnber. 
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UCO 

Figure 3.2: The position of a cell within its plane is given by the coordinates of its projection onto 
the input cell plane. This projection is the centre of the cell's receptive field and may lie outside 
the physical input cell-plane, UCO. In this diagram, the UCO plane is 11 x 11 cells in size and the 
location of the black cell is at n = (2,12). 

Figure 3.3: The weight sharing mechanism used in the neocognitron makes it convenient to specify 
a particular connection in terms of u, the position of a source cell within a destination cell's input 
region. In this 5x5 cell input region the black cell is at i/ = (-1,0). 
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3.3     The synaptic organization of the neocogni- 

tron 

The neocognitron is structured like a large sandwich of alternating S and C-plane 

layers. Only adjacent layers of cell-planes are directly connected and, as shown in 

Figure 2.6, an S-cell is connected with cells in all immediately preceding C-planes. 

Individual links from C-cells to an S-celP are identified by four pieces of information 

• the /flyer, £, of the S-plane that they connect to 

• the serial number^ k^ of that S-plane 

• the serial number, /c, of the C-plane from which the link originates 

• the location, i/, within the connection region, A^, of the C-cell from which the 

link originates. 

A C to S-cell weight is given the general notation a^(i/, «,A;). Since all cells in 

a particular S-plane k share the same weights, the connection ai{i/,«, k) does not 

contain the argument n to define a specific S-cell as the destination of that link. 

The location of a link's source cell is identified by the position vector i/, defined (as 

shown in Figure 3.3) so that the cell central to the input region is at i/ = (0,0). 

S-cell weights, and in fact all other weights and parameters in the neocognitron, 

have non-negative values. 

S-cells also receive input from subsidiary V-cells (see Figure 3.4). The strength 

of effect that V-cells have on the cells in a given S-plane, A:, is determined by the 

positive value of the inhibitory coefficient bf(k). 

Figure 3.4 shows that V-cells are linked with preceding C-planes in the same way 

that S-cells are. Unlike C-plane to S-cell weights, however, the connections between 

^The prepositions to and from specify the direction of information flow along a connection 

between cells. The output of a source cell flows to a destination cell; a destination cell receives 

input from a source cell. 
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K=1 ic=2 K^3 K»4 KsS 

UV2 

UC1 

US2 

k=1 k=2 k=3 ks4 k=5 

Figure 3.4: V-cells have fixed weight links to input regions in all immediately preceding C-planes. 
The output of each V-cell is approximately equal to the magnitude of activity within its input 
regions. In layer ^, every cell in S-plane Jb receives inputs from a V-cell that has the same input 
regions. The strength of this input is weighted by the inhibitory coefficient bi{k). 

C-planes and any V-cell are fixed and specified as a function of a C-cell's position, 

I/, within the connection region At. Each of the sets of weights (or masks) between 

a V-cell in layer i and the previous C-planes is denoted Ci(t/). 

The connections from S-cells to a C-cell are also fixed and expressed as a function 

of S-cell position within a C-cell input region, D^ A set of S-cell to C-cell weights 

IS given the notation df{i/). Since a particular C-plane can receive input from one 

or more S-planes, S to C-plane connectivity is described by the factor j(/c,ik).   If 
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S-plane K and C-plane k are connected, then j(/c,A:) > 0 ^, otherwise j(«,A;) = 0. 

Table 3.1 gives a summary and example of parameters used to describe neo- 

cognitron structure; this information alone is, however, insufficient to completely 

specify the configuration of a network. Although the notation that has been de- 

fined so far is essential for the description of S, C and V-cell function, it does not 

provide a means to express the spatial relationships and interconnectivity between 

cells. Rather than formalize this issue with more definitions, Fukushima presents 

this information diagrammatically, as shown in Figure 3.5. 

Figure 3.5 succinctly captures much of how the neocognitron is organized and is 

similar in majiy respects to the stained cross-sections of the cerebral cortex often seen 

in neuroanatomy texts. For simplicity, this diagram presents connection information 

as though there were but a single S and C-plane in each layer of the network; links 

between additional cell-planes obey the same scheme of interconnection. Figure 3.5 

shows how the ratios of S and C-cells in layers two, three and four cause activity 

to converge to a single cell. Overlapping connections ensure this compression is 

achieved without subsampling. It is also apparent that the finite width of cell 

planes can cause cells at the edge of a plane to receive only partial connection to 

the previous layer. In practice, when the connection region of a cell extends beyond 

the boundaries of a preceding cell plane, any links to non-existent cells are treated 

as connections to cells with zero output. 

^Fukushima, although he does not actually state it, implies that the actual value o( j{K,k) 

for connected cell-planes is 1. In the unsupervised version of the neocognitron, there is a one-to- 

one correspondence between S and C-planes in any given layer, i.e. Kst = ^ct- S to C-plane 

connection in this case is defined by 

{1    if K = Jb 

0    otherwise. 

The S to C-plane connections of a neocognitron trained with supervision are, like the training 

patterns, determined by the supervisor. 
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General Notation Represents Specific Values 

i4i 3 X 3 C-cell region 

At 
single connection region from a C-plane in 

layer £ — 1 to an S or V-cell in layer £ 
i42 5 X 5 C-cell region 

J43 5 X 5 C-cell region 

^45x5 C-cell region 

Di 3 X 3 S-cell region 

Dt 
single connection region from an S-plane 

in layer £ to a C-cell in the same layer 
D2 7 X 7 S-cell region 

D3 5 X 5 S-cell region 

D4 3 X 3 S-cell region 

Ksi = 12 

Ksi number of S-planes in layer £ J^S2 — 38 

Ks3 = 35 

KS4 = 11 

Kci = S 

Kct number of C-planes in layer £ Kc2 = 19 

I<C3 = 23 

Kc4 = 10 

Table 3.1: Synaptic and structural parameters for the neocognitron. The specific values cited in 
the right hand column refer to Fukushima's 1988 implementation of the neocognitron [48]. 
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uco US1   UC1 US2 UC2 US3   UC3 US4UC4 

Figure 3.5: This two dimensional *slice' through the neocognitron shows the interconnections 
between one S and C-plane from each layer of the network. This information is based on the 
network described in [48]. 
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3.4    The "cytology" of the neocognitron 

Now that the naming conventions used by Fukushima have been presented, the 

equations that govern S, C and V-cell function can be defined, as can the rules that 

specify the evolution of weights in the neocognitron. This section is deliberately 

terse; explanation of the following equations is relegated to Section 3.5 so that the 

definition and interpretation of cell function can remain distinct. 

The output of an S-cell in the k^^ S-plane of the i^^ layer of the neocognitron is 

given by 

def usi{n, k)    =    ri<p 

Kct-\ 
1+53    H  at{i/,K,k)-uci~\{n-{-i/,K) 

-1 

1 + 
re 

r/ + l 
bi{k) • uve{n) 

,   (3.1) 

All but two of the terms in the above equation have already been mentioned. <^() 

is referred to as a threshold-linear transfer function and is defined by 

V?(x)    =^   i 
0   if X < 0 

X   if 0 < a:. 
(3.2) 

The selectivity parameter, rt determines how closely the cell's input must correspond 

to the inputs it has been trained with in order to elicit a response. Discussion of 

how this parameter should be chosen forms the majority of Chapter 5. The double 

summation in the numerator of Equation (3.1) is a weighted sum of the outputs of 

C-cells in the preceding layer. C-cell output is expressed as 

uce{n,k)   t:'   xp —> 

K;=I i^eDe 
(3.3) 

where 

def i^ix) '^=' ip(x) 

l+(^(x)' 

The transfer function, ^(-j, limits C-cell output to the range [0,1). 

(3.4) 
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V-cells have an inhibitory effect and serve to normalize an S-cell's response with 

respect to its input region activity. A V-celPs output is equal to the weighted root- 

mean-square value of the C-cell activity within its input regions: 

uve{n)    = 
N 

E     E  c^(i/)-u2,^_i(n + i/,/c). (3.5) 

All that remains to be discussed in this section are the four different kinds of 

weights used in the neocognitron: a^(i/,K,/:), b({k), C({i/) and di(i/). The first two 

of these weights are determined by the neocognitron training process, the last two 

are specified algebraically as 

CiM   =   7^""' (3.6) 

d,{u)   =   Sf^Se^^K (3.7) 

where 0 < 7^, ^^ < 1 and 0 < Sg. 

The sequence of operations used to train the neocognitron can be effectively de- 

scribed using pseudo-code. This approach will allow us, in later chapters, to present 

modifications to Fukushima's learning algorithm as straightforwardly as possible. 

Before presenting Fukushima's supervised training algorithm^ it is necessary to de- 

fine notation for the training exemplars. 

Supervised training of the neocognitron requires that each S-plane is exposed to 

one or more training patterns.  We define the set of training patterns for S-plane k 

in layer £ as 

where \tk4 is the number of elements in tkt- The seed-cell riktm (see Subsection 2.3.2), 

is associated with the TTI'^ training pattern. Both the training patterns and their 

corresponding seed-cell locations are specified by the supervisor. 

^For reasons discussed in Section 2.3, only the so-called iraining-wiih-a-ieacher meWioA of learn- 

ing will be detailed in this thesis. The reader is referred to [43] for information about unsupervised 

learning in the neocognitron. 
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Algorithm 3.1 (Fukushima's Supervised Training Algorithm) 

Assuming that all connections described by ae{i/^ /c, k) and bt{k) are initially equal 

to zero, the process of training a neocognitron with layers 1 to L can be written as 

follows. 

procedure tra,in^eocognitron() { 
for £ = 1 to I { 

trsiinJskyer(£) ; 
} 

} 
procedure trajDJayer(i) { 

for ib = 1 to Ksi { 
for m = 1 to \tkt\ { 

UCO = tkim ; 
for Jayer = Otoi-l{ 

activsite(layer) ; 
} 
train^-C€U(nktTnt ^t 0 i 

} 
} 

} 
procedure trainS.cen(nktm, k, ^) { * Update the a<(i/,K;,Jb) and bi(k) weights 

for K = 1 to Kct-i { # for each C-plane in the preceding layer 
for all ue At { # and lor all input region cell positions 

a/(i/, K, k) ~ a/(i/, K, k) + qf c/(i/) • uci-iiriktm + i^,«) ; 
} 

} 
bi{k) = bt{k) + qi ■ uvtiriktm) ; 

} 

# For each layer of the neocognitron 
# learn S-cell weights. 

# Update S-plane weights 
# for each S-plane in layer i 
It and lor each training pattern ol the fc**^ S-plane, 
# Load the m"* pattern into the input plane, 
# propagate activity Irom input to layer £—1, 

# then update the weights of the seed cell. 

The procedure activa,te(i) represents the propagation of activity from the S-cell 

inputs to the C-cell outputs of layer £, according to the transformations defined 

by Equations (3.1) to (3.5). The parameter qi is a positive number known as the 

learning rate of layer i. 

This concludes the formal specification of the neocognitron but there is still much 

more to tell. Several people (including Fukushima) have analyzed the way in which 

the neocognitron implements feature extraction [49,77,91]. The following section is 

intended to give an intuitively appealing interpretation of the equations which have 
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just been introduced and establishes some concepts which will be useful to us in 

later chapters. 

3.5     The calculation of similarity 

The neocognitron is based on the notion of similarity. On the small scale, individual 

S-cells calculate the similarity between the patterns of activity in their input regions 

and the features that they have been trained to respond to. On the large scale, the 

outputs of the neocognitron represent the similarities between the input pattern and 

each of the different classes of input that the network has learned to recognize. How- 

ever, only the similarity calculated by S-cells has a direct mathematical expression 

(Equation (3.1)). This expression can also be viewed from a geometrical perspective, 

since weights and inputs can be represented in Euclidean space. Before rendering 

this geometric interpretation of S-cell behaviour, we shall define some useful vector 

notation. 

If the connection region of an ^^ layer S-cell is defined as the set of all input cell 

position vectors in a preceding C-plane 

def 
=      {l/i,I/2,...,I/|>4,|}, (3.9) 

then the weight, input and mask vector of any cell in the k*'^ S-plane of layer £ can 

be written as 

def ai = 

ai{uul,k) 
a;(i/2,l,A;) 

a({i/\,2,k) 
ai{u2,2,k) 

«^(*^M^h2,A:) 

at{u\At\',I<ct-\,k) 

def 
,   Uct-l   = 

uci-\{n -\- Ui.l) 

uct-i{n-\-1/2,1) 

uc^_i(n + i/|^,|,l) 
uc^-i(»i + *^i,2) 
i/c^_i(n +1/2,2) 

uc^_i(n + i/|^^|,2) 

_ uci-\(n-}-i/\AthKct-i) _ 
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j def and   Ct = 

Q(2) 

ci{\At\) 

Q(I) 
c/(2) 

Ci{\AA) 

ci{\At\) . 

respectively. The vector of seed-cell inputs corresponding to the m^^ training pattern 

of the k^^ S-plane in layer £ is denoted by 

UCi-l(nktm + 1^1,1) 
UC(-l{nktm + '^2,1) 

uce-iirikim + *^i,2) 
uci-i{nkim + *^2,2) 

u m 
Cl-l 

d«r 

wc/-i(njt/m + '^|>i/h2) 

_ uce-i(nkim + i^\Ae\iKce-i) _ 

We also introduce the element-by-element multiplication operator 0. This operator 

is defined for a pair of A'^ element vectors so that 

xOy = (3.10) 

Both the inputs and weights of an S-cell are vectors in pattern space and a 

convenient measure of their similarity is the cosine of the angle between them. The 

degree of similarity between these two vectors is defined as 

s[a(,uce-i)    = 
|a/| kc^-iT (3,11) 
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(b) 

Figure 3.6: (a) A two dimensional example of vectors ac, y and the angle between them, 9xy. 
(b) The locus of cos^xy   y as y takes all possible directions in the plane. 

O 

Figure 3.7: The locus of s"(Xyy) • y for all possible directions of y in two dimensions. Since 
0T = cos~* r, the higher the threshold, the narrower the locus about ae beconies. Thus, high values 
of r restrict the range of input vectors for which s"{x,y) is greater than zero {i.e. the acceptance 
region. A). In two dimensions, A is a. triangular region (between the dotted lines above), in three 
dimensions it is conical, and in higher dimensions the shape of the acceptance region is described 
as a hypercone. 

that is, the cosine of Oa(Uce-i (see Figure 3.6(a) for an example). Figure 3.6(b) 

shows (in two dimensions only) the direction cosine surface described when the 

similarity measure of vectors x and y is projected in the direction of y. Note that 

when 6xy is obtuse, the value of s{x^y) becomes negative which is why the locus 

is a single circle"*. 

Since there may not necessarily be any activity within a cell's input regions (i.e. 

every element of uci-i could be 0), Equation (3.11) can not be used directly as a sim- 

ilarity measure in the neocognitron. The S-cell function described in Equation (3.1) 

^Not, as is shown in Figure 1 of [77], two osculating circles. 
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is based upon a variation of Equation (3.11) 

s{ae,uce-i)   =    .  . ,    ,. ^ f- (3.12) 1 + \ai\ \uc^-l\ 

This modified similarity measure avoids the problem of zero length input vectors 

and is approximately equal to the similarity measure of Equation (3.11) when 

\ai\ \uci-i\ >► 1 (a condition which can be assured by using a large learning rate, 

e.g. qt ftJ 10^). The relation between Equations (3.1) and (3.12) is not immediately 

apparent; subsequent equations should clarify the situation. 

The purpose of an S-cell is to respond to an input that is sufficiently similar 

to the patterns that it has been trained with. Fukushima has incorporated Equa- 

tion (3.12) into the mathematical description of the S-cell so that the degree of input 

and weight vector similarity necessary for non-zero S-cell response can be adjusted. 

By introducing a threshold parameter, r E [—1,1], and a threshold-linear transfer 

function, Equation (3.2), a further measure of similarity can be defined by 

s'{a(,uce~i) -r def /// \     ael s (ae,uce~i)   =   f (3.13) 
1-r 

U s'(ai,uci-i) "i" T, the non-negative function <^(-) ensures that s'\ai.,uct-\) = 0. 

If, however, the weight and input vectors are similar enough that s\ai.,uct-\) > r 

then 0 < s"{ae,uce-i) < 1. Since s'{a(,uct-i) « cos^a/iic/-i (^^^ Kl \'^ce-i\ > 

1), the parameter r defines a threshold angle Or — cos~* r . Figure 3.7 presents a 

geometrical interpretation of Equation (3.13), showing how r can control the range 

of input vectors that make s"{-) positive. The volume of pattern space in which 

s"{') > 0 is referred to as the acceptance region^ A. 

Equation (3.13) and parameter r do not appear in other literature about the 

neocognitron. They were introduced as mathematical stepping-stones towards the 

understanding of Fukushima's S-cell implementation however, they are used again in 

the modified version of the S-cell described in Appendix A. Instead of r, Fukushima's 

S-cell description uses a selectivity parameter, r, to regulate the acceptance region. 

The threshold parameter of Equation (3.13) is related to this quantity by r = 
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r/(r 4- 1), r > —0.5, hence 

s"(at,uct-i)   =   ^ 
s'{at,ucf-i) - r + 1 

1 - r-f 1 
=   (f[{r + l)s\aiy uci-i) - r] (3.14) 

Some algebraic manipulation and approximation is required to transform this equa- 

tion into Equation (3.1). Using the fact that ip{r - z) = r - (fi{z), for positive values 

of r, and substituting in the definition of Equation (3.11), we obtain 

=    r ■ ip 

r + 1  ,  s {a^,uce-i) - l| 

r + l     1-|-a^^t*c/-] -1 

=    r • (p 

r       1-I-|a^| |wc^_i| 

-1 (3.15) 

Under the assumption that 

r + 1 |a^||^c^-i|    >    li (3.16) 

we can approximate Equation (3.15) so that 

3"{at,uct-\)    «   r-v? 
1 -^ at'^uci-i 

1 + r-f 1 |adl«c^-i| 
-1 (3.17) 

and the right hand side of this equation now ha^ essentially the same form as Equa- 

tion (3.1) which we re-present below 

def ust{n,k)    =    Tt'ip 

i^ct~\ 
14-   ^     Y^  ai(y,K,k)-uct-\{ri^-v,K) 

-1 

1 + rt 

rf-\-l 
bi(k) ■ uvi{n) 

(3.1) 

Although the equivalence of the numerators of Equations (3.1) and (3.17) is read- 

ily apparent, the correspondence between the denominator terms bf{k)uvi{fi) and 

\af\ |wc7/-i| is not explicit. It is tempting to assert, ELS Hildebrandt did in [77], that 
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bi(k) « |a/| and uvt(n) w |itc/-i|- These approximations, while made with a cer- 

tain amount of mathematical license, may be safely adopted by the casual reader 

(who, at this juncture, may prefer to go to the next section). 

An accurate interpretation of the relation between |a<| |iic7^-i| and bi(k)uvi(n) 

can be achieved by considering the evolution of the S-cell weights under Algo- 

rithm 3.1. After the presentation of all training patterns <wi>^W2» •• • i<Jb/|«,k^|» the 

weight vector of an S-cell in plane k of layer i is equal to 

\tki\ 

at   =   ?^-E^'©^c/-i- (3.18) 
m=l 

Using vector notation, V-cell output is written as 

=   \J(y/ce ■ uct-\)'^{y/ci• Uc(~i) 

=   |v/^0u?,.i|, (3.19) 

and, accordingly, the inhibitory coefficient after training is 

\tkt\   

m=l 

m=l 

Equations (3.19) and (3.20) show that uv((n) ^ \uct-i \ and bt{k) ^ |a^|, but, with a 

little rearrangement, the link between a(^uce-\ and bi(k)uve(n) can be elucidated. 

With Equation (3.18) the weighted sum of inputs ag^uct-i can be expressed as 

/M \ 
ae'^uct-i   =   9^ • I X; Q 0 u^^_j j ^uci-i 

=   9^- ( E V^O^c^-ij (v^0i^c/-i), (3.21) 

and the denominator term be(k)uve(n) becomes 

/\tkt\ \ 

bt{k)uve(n)   =   qe\^^\V^(Gu^^_M\^fQuci-i\. (3.22) 
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Figure 3.8: A two-dimensional example of the Cauchy-Schwartz inequality. Note that since vectors 
xi, X2 and X3 all have similar directions, the length of their sum is only slightly less than the sum 
of their lengths. 

The second magnitude term of Equation (3.22) is obviously equal to the magnitude 

of the second term of the inner product of Equation (3.21). The first magnitude term 

of Equation (3.22) is related to the magnitude of the first term of Equation (3.21) 

by the Cauchy-Schwartz inequality 

\tki\ 
> 

m=l m=l 
(3.23) 

and, since the training patterns for a given S-plane are highly similar, both sides of 

Equation (3.23) are almost equal (see Figure 3.8). 

So what has all the manipulation and approximation of this section accom- 

plished? Most importantly it shows how the output of an S-cell is a measure of 

similarity between input and weight vectors. Note that there are other ways to view 

S-cell behaviour: Johnson, Daniell and Burman [91] showed that an S-cell could be 

regarded as a quadric discriminant function. However, their description does not 

have the intuitive appeal of the analysis we have just presented. 

Nowhere is the concept of an S-cell as a similarity measure more plainly sym- 

bolized than in Figure 3.7; this interpretation of S-cell function is far more useful 

towards understanding the neocognitron than any of the equations given in this 

chapter. This leads to another question concerning the complexity of Fukushima's 

S-cell description:  why design a rather intricate approximation of a modified simi- 
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■ ■ ■ 
■ ■ ■ 
■■■ 
■ ■ ■ 
■   ■   M 

Figure 3.9: This is a typical pattern of C-cell activity caused by the presence of a single active 
S-cell in a preceding S-plane. The overlapping 5x5 input regions of the cells in this C-plane are 
weighted so as to emphasize the effect of S-cells central to each region. 

larity measure (Equation (3.1)) when the S-cell response shown in Figure 3.7 could 

be realized far more directly {e.g. by Equation (3.13))? 

Equation (3.1) has been inherited from Fukushima's development of the cog- 

nitron and the unsupervised version of the neocognitron. In both these systems 

weights evolve incrementally from correlations between initial small random weights 

and features present within training pattern. However, the supervised version of 

the neocognitron is devoid of any random influence; the weights are deterministic 

and many aspects of the S-cell description which would be necessary in the unsu- 

pervised case, seem superfluous as a result. This has provided motivation for some 

of Appendix A which presents a feasible alternative to the S-cell defined by Equa- 

tion (3.1). Having now discussed S-cell function to a considerable extent we shall 

turn our attention to Fukushima's description of the C-cell. 

3.6    Blurring the issue 

In contrast to the mathematics of the S-cell, Equations (3.3) and (3.4) are quite 

straightforward to analyze. Since all the fixed weights, di(i/), that connect C-cells 

from preceding S-cells are positive, any S-cell activity within a C-cell's connection 

region, Z)/, will elicit a response from that C-celL Equation (3.7) ensures that the 

nearer an S-cell is to the centre of a C-cell's input region, the larger the weight is 
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that connects them. This fact, coupled with the overlap between the input regions 

of different C-cells, means that a single active S-cell will provoke a "blob" of C- 

cell responses, as shown in Figure 3.9. In essence, a plane of C-cells performs the 

function of a spatial filter, blurring the sharp detail of the patterns of activity in 

preceding S-planes. 

As explained in Section 3.3, C-cell synapses are arrange so that network activity 

becomes compressed into a progressively smaller representation in later stages of the 

neocognitron. Barnard and Catsasent [9] pointed out that this comparison spoils the 

neocognitron's invariance to shifts in pattern position. They did, however, add that, 

with the appropriate choice of compression ratio between S and C-planes, partial 

shift invariance could be preserved. 

There is not much more to say, in this section, about the C-cell and the reader 

may wonder why, in comparison, there has been so much more discussion of the S- 

cell. This is partly because the C-cell (despite its name) is mathematically much less 

complex than the S-cell and has fixed, as opposed to adaptive, weights. In addition, 

the actual purpose of the C-cell is not easy to define precisely, so no rigorous analysis 

can be undertaken to see whether it achieves some theoretical objective. Certainly, 

planes of C-cells serve to compress and blur the representation of activity but, unlike 

the feature extraction done by S-cells, these tcisks are hard to quantify, making it 

difficult to cLSsess the effectiveness of Fukushima's C-cell description. 

There is definitely much more to say, in this chapter, about Fukushima's overall 

description of the neocognitron. It is possible (although somewhat unlikely) that this 

chapter appears to the reader as a fairly seamless exposition of Fukushima's work 

whereas, in actuality, it is a patchwork of ideas taken from the many neocognitron 

papers that he has published since 1979. The next section attempts to point out 

one or two missing patches. 
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3.7    A chronology of the neocognitron 

In the space of over a decade one might expect that aspects of a complex artificial 

neural network would be changed as the behaviour of the system becomes more fully 

understood. Fukushima has made remarkably few alterations to the neocognitron 

since it was first introduced which, for those studying this area, is both good and 

bad news. It is good in the sense that it gives researchers a solid foundation of ideas 

to examine. Unfortunately, confusion about precise details can arise as a result of 

minor differences between Fukushima's publications. For the benefit of those who 

need to know the particulars of the neocognitron in full, we shall review the history 

of its development. 

NB. The information presented in this section is for historical completeness only 

and must not be confused with the S, C and V-cell definitions made earlier in 

this chapter. Note also that the following list does not include all of Fukushima's 

publications; only those in which his description of the network is first altered are 

mentioned. 

1980 First journal publication of the self-organizing neocognitron [40]. The S-cell 

description is essentially^ the same as Equation (3.1). C-cells, on the other 

hand, are defined so as to incorporate a normalizing cell, analogous to the 

V-cell: 

def uci(ke,n)    =    0 
1 -f vse{n) 

where 

and 

def      1     ^' 
vsi{n)    =    -rr X;   E ^H*^) * "5^(^i,n + i/), 

^k minor difference between the denominators of these equations is compensated for in the 
learning rule [40, Equation (8)]. 
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(As mentioned in the footnote on page 69, the unsupervised version of the neo- 

cognitron has the same number of S and C-planes so that Ksi = Kci = Ki.) 

The precise form of the fixed weights is left unspecified, although Fukushima 

does say that both sets of weights should be monotonically decreasing func- 

tions of |i/| and that 

1982 In [43] Fukushima and Miyake show that S-cell function can, under certain 

circumstances, be related to the Weber-Fechner model of neuron activation [69, 

p.594]. They also give a simplified example of how first layer S-cell selectivity 

can be determined. 

1983 Fukushima, Miyake and Ito publish details of a new version of the neocogni- 

tron which uses supervised training to attain better recognition performance 

than the self-organized version [44]. The definition of C-cell function is changed 

to that of Equation (3.3) and the factor j;(«, k) is used to express intra-layer 

S and C-plane connectivity. 

1988 In the first of two papers published in Neural Networks [48], Fukushima de- 

scribes a restructured neocognitron for digit recognition, complete with train- 

ing patterns and connection diagram (see Figure 3.5). For reasons that are not 

obvious, Fukushima incorporates a positive constant, a^, to determine "... the 

level at which activation starts in the input-output characteristic of the S-cell." 

use{n, k)    =    vt'<p 

at -^ —- • hi{k) ■ uvi{n) 

-1 

Having introduced this new constant, Fukushima gives no mention of its precise 

value. There is still no word a^ to the calculation of the fixed weights ct(y) 

and di(t/). 
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1991 Co-authored by Nobuaki Wake, [58] is Fukushima's most detailed description 

of the neocognitron. For the first time, sufficient information is presented 

in this single paper to allow other researchers to simulate the neocognitron 

precisely. In a brief appendix, Fukushima describes all network parameters, 

including the ce(i/) and di(t/) weights (see Equations (3.6) and (3.7)). 

Since 1991, Fukushima has proposed a number of modifications to the neocogni- 

tron, including the addition of bend-detecting and edge-extracting cells [53,54], and 

dual C-cell layers [78]. Fukushima states that these alterations improve the net- 

work's performance but offers no measure of the improvement obtained. One of our 

objectives is to establish a benchmark to which modified versions of the neocognitron 

can be compared. 

Others continue to develop recognition systems based upon the neocognitron [26, 

27,35,64,81,82,92,111,118,125,126,132,165,185], as well as hardware implementations 

of Fukushima's network [21,89,177]. Furthermore, the selective attention neocogni- 

tron (SAN), a version of the neocognitron (proposed by Fukushima [46,47,51,52]) 

that incorporates feedback, has also proved to be popular [93,148,174]. Despite all 

the literature that has been devoted to the neocognitron, some profound questions 

remain unanswered. 

3.8    A few loose ends 

... And a number of these profound questions will probably stay that way for many 

years to come. Issues such as the size of network required to give valid generalization 

or the best choice of training patterns for a given problem are tantalizingly beyond 

the grasp of today's researchers. Not only that, but they are also beyond the scope of 

this thesis which aims to tackle questions of more modest proportions. For the most 

part, we shall look at factors affecting the performance of the neocognitron with fixed 

structure and training set, thereby avoiding the problems mentioned previously. 

The formal presentation contained in Section 3.4 shows that there is a plethora 
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of parameters attendant to the neocognitron. Selectivity parameters, S-cell mask 

parameters, C-cell mask parameters; at each layer of the neocognitron r/, 7^, 6^^ 

St and qi must be chosen — the question is how? Many of the relevant papers 

neglect even to mention these variables, let alone how they have been selected. 

There has been almost no literature dedicated to methods of parameter tuning in 

the neocognitron. The word "almost" would have been replaced by "absolutely" 

were it not for Thomas Hildebrandt's 1991 publication of an "optimal" closed-form 

training algorithm, a scheme which not only promised to determine S-cell weights 

(as Algorithm 3.1 already does) but also to adjust S-cell selectivities to "optimum" 

values. Chapter 4 takes a critical look at this algorithm and that critique, in turn, 

provides motivation for new algorithms developed in Chapter 5. 

Another question which existing literature leaves unresolved is that of how well 

the neocognitron performs as a pattern recognition system. By the end of this 

thesis, we shall have thoroughly established the capabilities of the neocognitron £LS 

a system for handwritten digit classification. Along the way, we shall be dealing 

with a host of subsidiary issues such as the effect of cell masks on classification 

performance, the validity of Fukushima's supervised training scheme, and the con- 

sequences of skeletonization of input data. In other words, one of the main aims of 

the research described in this thesis is to provide the first comprehensive assessment 

of the neocognitron. 



Chapter 4 

The Optimal Closed-form 

Training Algorithm 

1983 marked the year in which Fukushima's emphasis on the neocognitron shifted 

from it being a plausible model of biological vision to it becoming an effective system 

for character recognition (see page 35). We have already touched upon the historical 

development of Hubel and Wiesel's serial model of vision and its relation to the 

neocognitron. However, we have not yet delved into the rich history of machine 

character recognition. 

Coincident ally, when Hubel and Wiesel were busy exploring the mammalian 

visual pathway in the 1950s and '60s, engineers at RCS, ETL and IBM were busy 

exploring the potential of computers for optical character recognition. These two 

areas of research were different sides of the same coin. As the neuroscientists worked 

to unravel how the brain performs visual pattern recognition, the engineers worked 

to develop systems that could perform visual pattern recognition as effectively as 

the brain. Great progress hcis been made, both in the neuroscience of vision and in 

machine pattern recognition. The history of optical character recognition (OCR), 

the field of pattern recognition which is of most interest to us, is well documented 

by Mori, Suen and Yamamoto in [130]. 

88 
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While the neocognitron, at the time of its introduction, may have been unrivaled 

as a model of visuaJ pattern recognition, when it entered the arena of OCR in 1983, 

it faced plenty of competition. Before we can assess how the neocognitron stands up 

to the challenges of other character recognition techniques, we must first be sure that 

we can obtain peak classification performance from the network so that meaningful 

comparisons can be made. 

One of the parameters which has the most significant effect on the neocogni- 

tron's performance is S-cell selectivity. As mentioned in the conclusion of the pre- 

vious chapter, the issue of how to choose S-cell selectivities in the neocognitron 

was only recently addressed by Thomas Hildebrandt in his paper "Optimal Train- 

ing of Thresholded Linear Correlation Classifiers" [77]. In this paper, Hildebrandt 

describes an Optimal Closed-Form Training (OCFT) algorithm for adjusting selec- 

tivities in the neocognitron. To most readers, the implication of the word "optimal" 

is that the algorithm is intended to somehow maximize the performance of network. 

In this chapter we shall see that the OCFT procedure does something else entirely. 

4.1     More definitions 

Hildebrandt introduces some useful definitions to formalize the description of the 

OCFT algorithm. We shall adapt some of Hildebrandt's notation to fit in with the 

terminology which has already been presented in this thesis. 

4.1.1     Generalization and discrimination 

Because of the arrangement of connections in the neocognitron, a vector of activities, 

uct-i (as defined on page 75), is the input to an S-cell at position n in each of Kst 

different S-planes. We can think of the outputs of each of these S-cells as membership 

functions that indicate the extent to which the input, itcz-i, belongs to each of Ksi 

different classes. 
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The S-cell definition (Equation (3.1)) ensures that 0 < us({k,n) < 1 and an 

input, Uct-i, is said to be accepted by class k if use{k,n) > 0. If that same input 

causes a cell in S-plane k to respond so that u$i{k,n) > usiii^n), for every i ^ k^ 

then that input is referred to as a member of class k. 

In pattern space, the set of inputs accepted by class k form the acceptance region^ 

Ak, of that class. Hildebrandt defines the generalization of a layer of S-planes (or 

indeed, any collection of membership functions) as the fraction of pattern space in 

which an input is accepted by any of the classes 

generalization    = 

Ksi 

(4.1) 
|V| 

In this definition, V represents the set of all possible input patterns. The discrim- 

ination of the layer of S-planes is defined as the fraction of pattern space in which 

an input is accepted by at most one class 

discrimination   =    1 — 
u   ^. ^ A 

(4.2) 
|V| 

Now that these two key terms have been defined we can go on to look at Hilde- 

brandt's statement of what constitutes an optimal classifier. 

4.1.2    Hildebrandt's definition of an optimum classifier 

From the introductory statement of [77], it would appear that Hildebrandt was 

motivated by experimental shortcomings of the neocognitron: 

"In experiments applying Fukushima^s network to real data, however, 

we noticed that it WCLS sometimes difficult to obtain good discrimination 

and classification simultaneously." 

No details of these experiments are given so it is unclear whether Hildebrandt is 

referring to the final output of the neocognitron or the output of intermediate layers 
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of S-cells. Figure 2.10 shows that more than one output category can be active at 

the same time in the neocognitron, indicating an overall discrimination of less than 

unity. Particularly in the first and fourth layer, it is evident that often two or more 

S-cells at the same position in different S-planes will be active at the same time. 

Thus, the discrimination of individual layers of S-planes is also less than unity. 

The generalization abilities of the neocognitron are somewhat less apparent. 

Perhaps the network would not respond to certain patterns which, to the human 

observer, were obviously digits, leading Hildebrandt to declare that good general- 

ization Wets sometimes unattainable. 

The definition of an optimum classifier stems from a statement made in Section 

II-B of [77]: 

**.. . we desire a classifier which simultaneously maximizes generalization 

and discrimination. Since the acceptance regions defined by the correla- 

tion functions [i.e. S-cells] are convex, discrimination is a nonincreasing 

function of generalization, and a unique optimum exists in that case. 

However it is difficult to find that point in general. We therefore fix the 

discrimination value and seek a maximum subject to that constraint." 

The phrase "simultaneously maximize" is problematic; does Hildebrandt mean to 

attain a generalization and discrimination of unity or to maximize the sum of general- 

ization and discrimination or something else entirely? Fortunately, the last sentence 

of the quotation simplifies and clarifies what Hildebrandt intends to achieve. 

Throughout [77], Hildebrandt chooses to fix the desired discrimination to 1 be- 

cause "...it is easy to conceptualize ...". This constraint ensures that there is 

no overlap between the acceptance regions of a set of classifiers. Thus, "the opti- 

mal classifier is defined to be one that maximizes generalization subject to mutual 

exclusion of acceptance regions." 
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4,1.3    Iterative training vs. optimal closed-form training 

After briefly outlining the structure of the neocognitron [77, Sections III-A — III- 

B], Hildebrandt describes the process of iterative training. His description is in 

accordance with Fukushima's supervised training algorithm (Algorithm 3.1) except 

for two details. In step (4) of the iterative training process, Hildebrandt states that, 

at the end of each training iteration for a particular S-cell "The selectivity value 

is also reinforced by adding ... a small increment to it." He does not say whether 

this iterative training procedure is intended to be an interpretation of Fukushima's 

supervised training algorithm; we make this point since none of Fukushima's papers 

make mention of increasing cell selectivity during training^. 

The second difference between the iterative training process and Fukushima's 

supervised learning scheme occurs when Hildebrandt specifies stopping criteria for 

the iterative process: "This procedure is repeated until the percentage of misclassi- 

fications fall below a preset threshold or no further improvement is made, or until 

the correct classification rate begins to fall." Again, none of Fukushima's papers 

discuss such an issue in relation to supervised learning. A sufficiently large choice 

of qi ensures that only one pass through the training set is required for supervised 

training of the neocognitron [58]. 

Hildebrandt then declares three drawbacks of the iterative training algorithm. 

1. "There is no intuitively satisfying stopping criterion for training." Hildebrandt 

says that enough iterations of the training process will result in the selectivity 

of any S-cell being incremented to the point at which even its own training 

patterns are rejected. This situation does not occur with Fukushima's super- 

vised training algorithm since Fukushima's scheme does not increment S-cell 

selectivity. 

2. ".. .even if training proceeds to a point at which there are no ambiguous clas- 

^In a recent paper [55], Fukushima did make mention of reducing selectivity after training was 
complete. 
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sifications (two or more cells responding simultaneously to the input pattern) 

of the training data, a new training sample can generate ambiguous response." 

This means that there can be overlap of acceptance regions within the neo- 

cognitron even though all training exemplars are completely discriminated, 

3. "... it is easy to construct cases in which the training procedure will not finish." 

Since Hildebrandt asserts that there is no "intuitively satisfying" criterion 

for determining when the neocognitron has finished training, this is a moot 

point. As mentioned in Chapter 3, supervised training of the neocognitron 

makes use of a set of features chosen by the supervisor and there is obviously 

a possibility that a pathological set of training features could be specified 

so that the neocognitron fails to classify test data. To varying extents, all 

learning algorithms rely upon the availability of a representative set of training 

examples, Fukushima's supervised training algorithms is no exception. 

As a preface to the presentation of the OCFT algorithm proper, Hildebrandt 

states that "Recognizing that the above iterative training procedure is neither op- 

timal nor guaranteed to terminate, an optimal closed-form training procedure is 

easily superior [emphasis supplied]." We shall describe the OCFT procedure and 

then test the validity of this assertion. 

4.2     The OCFT algorithm proper 

OCFT is applied to the neocognitron layer by layer, starting with layer L There 

are two phases involved in training each layer. Firstly, the S-cell weight vectors^ are 

established in much the same way as in Fukushima's training scheme (except that 

Hildebrandt discards the exponential S-cell msisk, C((t/)^ an issue which is discussed 

in Section 6.1). Once this is complete, the OCFT procedure adjusts the selectivities 

of the S-cells in the layer to make their acceptance regions CLS large as possible without 

-^Hildebrandt sometimes refers to these weight vectors as templates. 
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overlapping. This process starts with the S-planes with the two most similar weight 

vectors (i.e. those with the smallest angle between them, and therefore the largest 

cosine). Their threshold angles^ are set so that their acceptance regions bisect the 

angle between the two weight vectors. Thus both acceptance regions are made 

equally large and as large possible without overlapping. 

The two S-planes with the next-most-similar weight vectors are then considered. 

If neither S-plane has been assigned a selectivity, selectivities are again chosen so 

that the S-plane acceptance regions bisect the angle between the two weight vectors. 

If one of the S-planes has already had its selectivity set, the other plane's selectivity 

is chosen to give the largest acceptance region possible without overlap. If both 

selectivities have already been determined, no adjustments are made. This procedure 

repeats using the S-planes with the next-most-similar pair of weight vectors until 

all Ksi selectivities have been assigned. 

Figures 4.1, 4.2 and 4.3 depict the assignment of acceptance regions in the three 

different cases mentioned above.    We formally present the OCFT procedure in 

Algorithm 4.1 but before doing so we need to describe some additional notation. In 

the ^** layer of the neocognitron Oij is the angle between the weight vectors of the 

i^^ and j'** S-planes. If we denote these vectors as a^(i) and ai(j) respectively then 

A     def f at{i)'^ae{j) \ 
%    =    arccos    ■    ...., . 4.3) 

\\at{i)\\ae{j)\J 

Since OCFT determines selectivities for individual S-planes within layer i, we use 

the notation rjt/ to represent the selectivity of the k*'^ S-plane. For convenience 

Algorithm 4,1 describes S-cell acceptance regions in terms of threshold angles. The 

selectivity of S-plane k is related to that plane's threshold angle, Or^, by 

 »^—    =    cos &T,. 
Tkt + 1 

cos Ort 
Tkt   = V- 4.4 1 — cos drk 

All layer i threshold angles form the set 0^ = {^^^ : k € {1,2,... ,7^:5/}}.   A 

value of zero is used to represent an undetermined threshold angle and, since all 

^See page 78 for a definition of this term. 
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Figure 4.1: When the weight vectors of two S-planes are to have their selectivities determined by 
the OCFT algorithm, three situations can arise. In this case, neither S-plane has been assigned a 
selectivity, so OCFT sets the threshold angles of both S-planes so that their acceptance regions 
(indicated by the dashed lines) bisect the angle between the two weight vectors. 

Figure 4.2: When one S-pIane's selectivity has already been defined (in this example, the selectivity 
of S-plane j), OCFT sets the other S-plane's threshold angle as large as possible without causing 
acceptance region overlap. 

Figure 4.3: If, as a result of previous iterations of the OCFT procedure, both S-planes have already 



96 Chapter 4: The Optimal Closed-form Training Algorithm 

threshold angles are initially undetermined^ 6r^ = 0 for all A: € {1,2,..., Kst] at the 

commencement of the OCFT algorithm. 

The set 0 contains the angles formed by every distinct pair of weight vectors, 

a/(i) and a/(;), whose thresholds have not yet been considered by the OCFT 

algorithm. 0 is initially expressed as 

e   =   {%:i,i€{l,2,...,/<5/} A ^■<i}. (4.5) 

As the threshold angles of S-planes i and j are determined, so the angle between 

vectors at(i) and a((j) is removed from the set 0. When all threshold angles have 

been determined, 0 is empty. 
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Algorithm 4.1  (The Optimal Closed-Form Training Algorithm) 

As in the case of Fukushima's supervised training algorithm^ this training scheme 

commences with all connections a^(i/,«,A:) and bi(k) set to zero. 

procedure tr3un-neocognitron() { 
for £ = 1 to L { 

traiDJayer(£) ; 
optimize^electivities(£) ; 

) 
} 
procedure trainJayer(£) { 

for t = 1 to Ks£ { 
for m = 1 to |Tjfe/| { 

UCO = Utm ; 
for layer = 0 to £ - 1 { 

activate(Iayer) ; 
} 
traJn-S-ceU(Tikim, k, i) ; 

} 
} 

procedure train^~cell(nktm, k, £) { 
for K = 1 to Kci-i { 

for all 1/ ^ At { 
at{u, K, k) = at(u, K, k)-i- qt • Q(I/) 

} 
} 
bi{k) = btik) -I- qi ■ uvdnkim) ; 

} 
procedure optimize-selectivities(i) { 

e = {9ij :iJe{l,...,Kst} A i < j] 

while e 7^ 0 do { 

find i,j such that 0ij = min0 ; 

if (Or, = 0 and Orj = 0) then { 

Or, =0r,  =0ij/2- 

} 
else if (Or, > 0 and 0rj = 0) then 

} 
else if (^r. = 0 and 0T, > 0) then 

# For each layer of the neocognitron 
# learn S-cell veights 
# then adjust S-cell selectivities. 

# Update S-plane weights 
# for each S-pleoie in layer £ 
# and for each training pattern of the 
# k^^  S-plane. 
# Load the m^^  pattern into the input plane, 
# propagate activity from input to layer £—1, 

U  then update the weights of the seed cell 

# Update the a/(i>',K,A;) and bi{k)  weights 
# for each C-plane in the preceding layer 
# and for all input region cell positions. 

# Tune the selectivities of layer £ 
; # 0 is the set of angles between all 
# distinct pairs of weight vector. 
# While there are  still weight vector pairs 
# to be considered, 
# find the weight vector pair {ai{i),ai{j)) 
# with smallest angle between them. 
# If neither weight's threshold angle has 
# been defined, 
# set both threshold auigles to be equal 
# to the bisecting angle. 

{ # If only the threshold angle of at{i) 
# has been defined, 
# set Or   to the remainder. 

{ # If only the threshold angle of ai{j) 
# has been defined, 
# set $T,  to the remainder. 



98 Chapter 4: The Optimal Closed-torm Training Algorithm 

} 

} else {} ^ Else both threshold angles are delined - 
# do nothing. 

6 = 6-{^,j} ; # remove $ij Irom the set of unconsidered 
} # weight vector angles. 
for ib = 1 to Kst { * ^or «ach S-plane in layer i 

rjk/= arccosdrfc/(l - arccos^rfc) ; * set the selectivity corresponding to $r^ 
} 

Note that Hildebrandt did not advocate the use of exponential S and C-cell masks 

(this issue is dealt with in Section 6.1). Although Q(I/) and dt{u) are used in the 

above procedures, the effect of these masks is canceled by setting 7/ = ^^ = 1 (see 

Equations (3.6) and   (S.l)). 

Hildebrandt makes some significant statements at the conclusion of the presen- 

tation of the OCFT algorithm [77, Section III-E]: 

"We assume that the training samples are representative of the sample 

distribution from which they are drawn. Therefore, as the number of 

training samples grows, their average approaches the true class average. 

Under the cissumption that within-class distributions are symmetrical, 

coincidence of the template [i.e. weight vector] with the class average is 

the optimal condition. Therefore our choice of templates in the closed- 

form training procedure is optimal." 

In the paragraph above, two major assumptions, essential to the development of 

OCFT, are revealed: firstly, that the training samples are representative of each of 

the classes to be identified and, secondly, that within-class distributions of patterns 

are symmetrical. Since the selection of training examples is entirely at the discretion 

of the supervisor, the responsibility for ensuring that these assumptions hold is also 

placed squarely in the hands of the supervisor. While it may be a realistic prospect 

for a supervisor to obtain representative samples of symmetrically distributed fea- 

ture data in two or three dimensions, S-cell inputs are vectors in TV-space, where N 

is typically > 100 and chances of training inputs conforming to Hildebrandt's as- 

sumptions are difficult to estimate. (Certainly, the sum of the 1-5 training patterns 
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per S-plane used by Fukushima would seem to give a poor estimate of the class 

average of each S-plane.) 

Hildebrandt concludes his discussion of the OCFT algorithm by stating that he 

ha^ 

"... presented an algorithm for selecting the parameters of a neocogni- 

tron-type classifier whose execution time is finite, and can be determined 

in advance. The resulting network parameter selection is optimal in the 

sense of maximizing generalization while maintaining mutual exclusion. 

This training procedure is therefore closed-form and optimal, as was 

promised." 

The second half of [77] introduces the general linear models a type of classifier 

with the same structure as Fukushima's S-cell. This model applies a linear transfor- 

mation to input data so as to orthogonalize the weight vectors of cells in different 

S-planes and thereby increase the generalization which can be achieved. The general 

linear model seems to be a promising approach to solving the problem of determin- 

ing selectivities in the neocognitron and we shall consider its merits towards the end 

of this chapter. Our immediate concern is to examine the effect of the OCFT on 

the performance of the neocognitron. 

4.2.1     The performance of the neocognitron after optimal 

closed-form training 

The neocognitron, like most neural networks, is an example of a complex system. 

That is, although its microscopic operation (i.e. cellular function) is well charac- 

terized and amenable to theoretical analysis, its macroscopic behaviour cannot be 

deduced from such information. Apparently, the only way to determine the full scale 

behaviour of the network is to simulate the system in its entirety. 

In the following experiment, and throughout the rest of this dissertation, when- 
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ever figures describing the performance of the neocognitron are presented it is im- 

plicit that these figures were obtained through simulation of the network. 

Experiment 4.1 (Comparison of OCFT with Fukushima's Supervised Training al- 

gorithm) 

This experiment aimed to establish whether OCFT resulted in a neocognitron with 

better classification performance than Fukushima's original network. Two networks were 

considered; both were identical, in structure, to Fukushima's 1988 implementation of the 

neocognitron [48] and both had the same initial parameters as given in Table C.l. The 

first of these networks (which we shall refer to as NC-F) was trained using Fukushima's 

training data (Figures B.l to B.4) according to Fukushima's Supervised Training algo- 

rithm (Algorithm 3.1). 

The second network (which we shall refer to as NC-H) was trained with Fukushima's 

training data in conjunction with Hildebrandt's OCFT algorithm (Algorithm 4.1). 

Since Fukushima's Supervised Training algorithm makes no adjustment to the selec- 

tivities of the S-cells, the r^ parameters in the NC-F network remained as specified in 

Table C.l. 

Hildebrandt's OCFT algorithm, however, changed the selectivity of each S-plane, 

and the values to which the r^e parameters were adjusted are listed in Table D.l. There 

are two points worth noting about the values shown in Table D.l: 

1. An S-plane with a selectivity of 2.4142 has a weight vector that is orthogonal to 

the weight vectors of all the other S-planes. within its layer. To put it another 

way, if the A;*** S-plane has such a weight vector then 

Okj = W     for all j ^ k. 

Hence, 

=   45°, 
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Training Algorithm % Correct % Misclassified % Rejected % Reliability 
Fukushima's Supervised Training 
OCFT 

52.50% 
3.25% 

26.25% 
10.00% 

21.25% 
86.75% 

66.67% 
24.53% 

Table 4.1: Classification performance of a neocognitron trained using Fukushima's method and Hilde- 
brandt's closed-form training algorithm. Note that % Reliability = 100 x % Correct/(% Correct + % 
Misclassified). 

SO 

rjt/   = 
arccos 45* 

1 — arccos 45° 
=   2.4142. 

2. Two S-planes with selectivities of oo have linearly dependent weight vectors.   If 

this is the case for the i^^ and j*"^ S-pIanes then 

a^(i/, /c, i) = n af(i/y AC, j)     for some n ^ 0. 

This means that 0ij = 0 so that Or, = ^TJ = 0 also. Thus 

arccos 0° 
rie = Tjt   = —■ 1 — arccos 0 

=    oo. 

When both networks had been completely trained, their classification performance 

was evaluated using the test set of 400 digits described in Section B.3. The results 

are given in Table 4.1 and it is clear that OCFT does not improve the classification 

performance of the neocognitron. 

Table 4.1 clearly shows that the classification performance of a neocognitron after 

OCFT is far worse than one trained by Fukushima's supervised learning algorithm. 

Initially, these results were surprising, after all, the OCFT scheme was supposedly 

superior to Fukushima's training algorithm. Close examination of the network after 

learning by OCFT revealed that certain S-planes had unusually high selectivities 

and did not respond to the presence of features which, by observation, were quite 

similar to the ones with which they were trained. When the response of these S- 

planes to their original training features was tested, it became clear that many of 

these training features also failed to elicit any response. 
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Figure 4.4: A two dimensional example 
showing that, once training is complete, an 
S-cells weight vector a/ is proportional to 
the vector sum of the inputs presented dur- 
ing training uj;/_i + "c^-i + • • " 

Figure 4.5: Any training algorithm which 
chooses selectivity independently of these 
training vectors runs the risk of setting r^ 
so high that one or more of the training vec- 
tors falls outside the acceptance region, as is 
the case for exemplar u^^_j. 

a^(i) 

Figure 4.6: The greater the similarity between 
the weight vectors of two S-planes, ai{i) and 
at{j), the more acute the angles at the apexes 
of both acceptance regions. Not only is it possi- 
ble for some of the training input vectors of one 
S-plane to fall outside that plane's acceptance 
region, they may actually lie inside the adjacent 
acceptance region of another S-plane. 
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4.2.2    Why doesn't the OCFT algorithm improve classifi- 
cation performance? 

There appear to be two reasons why OCFT causes a decrease in classification per- 

formance. As we have already hinted, the chances of actual data conforming to the 

distribution assumptions upon which the OCFT is batsed are small. Furthermore, 

if a network trained using OCFT cannot even classify training exemplars correctly, 

there is little hope of it being able to cope better with test data. 

But why would this training feature rejection occur in the first place? The rejec- 

tion of training features arises because the OCFT procedure determines selectivities 

on the basis of the average of S-plane training features. OCFT offers no guaran- 

tee whatsoever that S-plane selectivity will be adjusted so that individual training 

vectors lie within the appropriate acceptance regions. This concept is depicted in 

Figures 4.4, 4.5 and 4.6. 

The effect of training feature rejection upon the performance of the neocognitron 

is twofold. During training, the weights and selectivities of S-planes are adjusted a 

layer at a time (see Algorithm 4.1). Only when the weights and selectivities of first 

layer S-planes have been determined can training proceed to the second layer, and so 

on. Thus, if a training feature is rejected by an S-plane in layer ^, S-planes in higher 

layers receive no information about the presence or absence of that feature. If that 

feature happens to be part of a higher layer training pattern, there is no way for 

higher layer S-planes to detect it. Training feature rejection stops certain features 

from being detected and stops any patterns that contain rejected sub-features from 

being properly detected a^ well. 

The author decided to write a short note to the IEEE Transactions on Neural 

Networks of the experimental performance of OCFT [115]. There were two main 

reasons for doing this. Firstly, to show that it was unwarranted to claim the OCFT 

was superior to Fukushima's training scheme; secondly, to ensure that other re- 

searchers, when confronted with this "optimal" training algorithm, would be fully 
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aware that Hildebrandt had not meant that OCFT optimized the classification per- 

formance of the neocognitron. The next section considers Hildebrandt's response to 

the author's criticisms. 
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4.3     Some comments from Hildebrandt 

Hildebrandt's response [76] to the criticisms of the OCFT algorithm made by Lovell, 

Tsoi and Downs commences with a precis of the problems detailed in [115]. 

"In the training procedure I proposed, the template vector in each cell is 

set equal to the mean vector of the corresponding class, and the selectiv- 

ity parameters are adjusted such that all of the cones [i.e. the hyperconic 

acceptance regions] are as large as they can be without overlapping. Un- 

fortunately, the packing of cones in n-space (n > 3) leaves gaps between 

them. On the other hand, to make them larger would violate the restric- 

tion that a classifier assign only one class label to any given input" 

After this introduction, Hildebrandt states that the neocognitron, when trained 

by Fukushima's methods, is not, in itself, a classifier. The reasoning behind this is 

that the output vector of such a network may contain several active elements and, in 

interpreting that output, the most active element is taken to be the class assigned by 

the neocognitron. Hildebrandt terms this procedure as a winner-take-all operation. 

"...in this case [i.e. the network trained according to Fukushima's 

scheme], mutual exclusion of the regions of response of the cells on the 

output layer is not required. That is, the network is not a classifier. 

What is done instead is an implicit winner-take-all operation is per- 

formed on the output of the network, and the classification performance 

of the network is scored using this. Since a winner-take-all network can 

cover all of the input space while the nonintersecting cones of a neo- 

cognitron classifier cannot, it is theoretically impossible for the network 

trained using the closed-form procedure to do better*, and it is of little 

surprise that its performance is worse on a practical example." 

° Assuming that the templates are the same in both networks and only the selectivity parameters 

differ. 
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While it is important to recognize the distinction between Fukushima's winner- 

take-all network and the neocognitron classifier produced by OCFT, we must keep 

in mind that the central issue is that of which training scheme is better? 

The reader should also be aware that the assumption made in Footnote (a) does 

not hold in practice. For NC-F and NC-H to learn the same weight vectors at 

every layer (as assumed in the footnote), both training schemes must commence 

with identical selectivities which are only altered after all weight vectors have been 

learned. Adjusting selectivities after weight vectors have been learnt alters the 

patterns of activity evoked by training features at each layer of the neocognitron. 

The effect of that would be to ruin the correspondence between weight vectors and 

training features which would, in turn, degrade recognition performance. It has been 

stressed that both Algorithm 3.1 and Algorithm 4.1 train the weights and adjust the 

selectivities of S-planes layer by layer. To perturb the selectivities of the network 

after all weights have been established is to chase a moving target. 

Hildebrandt's next comment suggests that Footnote (a) may have been referring 

to a network in which only the final layer is exposed to OCFT. In that case, the 

weights of NC-F and NC-H would have been identical, however "... in the network 

constructed using the closed-form training procedure [NC-H], mutual exclusion is 

enforced on the first three layers, as well as on the final layer on which classification 

depends." Nowhere in [77] did Hildebrandt recommend that OCFT be applied 

to the output layer alone. If that had been the case, then the question of how to 

choose lower layer selectivities would have had to have been addressed in [77]. The 

OCFT algorithm was presented as a method for determining selectivities in the 

entire neocognitron and that is precisely what was done with NC-H. Hildebrandt 

considers it "unnecessarily restrictive" to enforce mutual exclusion on intermediate 

layers of the neocognitron but does not suggest an alternative to that restriction. 

The general linear model which was also proposed by Hildebrandt in [77] receives 

mention in [76]: 
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"... it should be noted that the comparison is made with the poorer of 

two models presented in my paper. The general [linear] model deforms 

the regions of response of the cells so that they are ellipsoidal in cross 

section, and arranges them so that the input space is covered maxi- 

mally, subject to the mutual exclusion constraint. Since gaps remain in 

the response regions it still cannot perform as well as a winner-take-all 

network, but it performs better than the simple closed-form model." 

So it seems that, despite the promise of the general linear model, its practical perfor- 

mance will still be surpassed by training schemes which, like Fukushima's supervised 

training algorithm, make no restrictions about the overlap of S-cell acceptance re- 

gions. 

In the conclusion of [76], Hildebrandt clearly states that the author^s note achieved 

one of its objectives which was "... to show that closed-form algorithms cannot be 

applied automatically in every layer of a network." 

4.4     Summary 

Let us review, in point form, the major issues discussed in this chapter. 

• Hildebrandt's definitions of generalization and discrimination have been intro- 

duced. 

• Using the terms generalization and discrimination, Hildebrandt's definition of 

an optimal classifier has been presented: "... the optimal classifier is defined 

to be one that maximizes generalization subject to mutual exclusion of the 

acceptance regions." 

• In Subsection 4.1.3, Hildebrandt's interpretation of Fukushima's supervised 

training algorithm, the iterative training procedure^ has been examined and 

two important differences between these supposedly identical training schemes 

were noted. 



IQg Chapter 4: The Optimal Closed-form Training Algorithm 

• 

• 

Hildebrandt considered there to be three drawbacks to an iterative training 

scheme for training the neocognitron. Each of these disadvantages was criti- 

cally reviewed in Subsection 4.1.3. 

In an attempt to avoid the shortcomings of iterative training, Hildebrandt pro- 

posed an optimal closed-form training (OCFT) scheme for the neocognitron. 

With the help of some additional notation, the OCFT algorithm has been 

described, both formally (Algorithm 4.1) and informally, in Subsection 4.2. 

• Two assumptions about the distribution of training exemplars underpin the 

OCFT procedure. These assumptions have been clearly stated and then crit- 

icised. 

• Experimental evidence hcis been presented which shows that the neocogni- 

tron trained by OCFT performs poorly as a classifier in comparison to the 

neocognitron trained by Fukushima's original methods. 

• The low performance of networks trained by OCFT has been explained in 

terms of training feature rejection^ that is, the adjustment of S-cell selectivities, 

without reference to the patterns used to form the weight vectors, so that one 

or more training patterns no longer elicit S-cell response. 

• Hildebrandt's comments on the problems experienced by OCFT have been 

examined and, in doing so, the criticisms levelled at OCFT in this chapter 

have been affirmed. 

So, at the end of this chapter, the question of how to choose selectivities so as to 

maximize the classification performance of the neocognitron remains unanswered. 

The reason for the failure of the OCFT was, in part, due to invalid assumptions 

about the distribution of feature data in pattern space. This prompts a further 

question: is the neocognitron's representation of information suitable for classifying 

patterns? Lev Goldfarb addresses the general issue of data representation in clas- 

sification systems in his monograph "A new approach to pattern recognition" [66]. 
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Goldfarb queries the appropriateness of the Euclidean representation of data com- 

monly used in pattern recognition, suggesting that many classification problems are 

better suited to what he terms a "structural" (syntactic) approach [37]. From Gold- 

farb's point of view, the neocognitron would probably appear to be an interesting 

synthesis of syntactic and decision-theoretic methods. As to whether the neocog- 

nitron effects a suitable representation of data, we shall adopt Goldfarb's assertion 

(which he, in turn, has adopted from [10, p. 2]) that ".. .the final criterion for de- 

ciding whether a model is 'good' is whether it yields useful information." Thus, the 

peak performance of the neocognitron on real world data will be its hallmark. 

The following chapter is dedicated to finding methods to maximize the neocog- 

nitron's classification performance with respect to its selectivity parameters. 



Chapter 5 

Three New Algorithms For 

Determining Selectivity 

Over the course of Chapters 1, 2 and 3, we have built a detailed description of 

the neocognitron using the neurophysiology of the mammalian visual pathway as 

a foundation. It should now be clear that Fukushima has provided a biologically 

inspired framework in which character recognition may take place. 

However, the question central to this thesis is not "can the neocognitron rec- 

ognize handwritten characters?" but "can the neocognitron recognize handwritten 

characters lue//?" As we have seen in the previous chapter, the classification per- 

formance of the neocognitron is inextricably linked to the selectivities of the S-cells 

within the network. Chapter 4 also shows that the only practical algorithm that 

has been proposed for selectivity adjustment is seriously flawed. We are left with a 

network that hcts the potential to be an effective system for handwritten character 

recognition, but no means by whidi to exploit that potential. 

As the title of this chapter suggests, three new approaches for selectivity adjust- 

ment will be presented. The first of these (SOFT) alleviates the problem of training 

feature rejection that was experienced by Hildebrandt's OCFT algorithm. The sec- 

ond algorithm (SLOG) takes its inspiration from results obtained by Latimer [100, 

110 
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101,102] on modelling cumulative gaze fixation time of human subjects on 2-D pat- 

terns. The third approach to selectivity adjustment (SHOP) is reminiscent of a two 

factor experiment and, despite its simplicity, hcis revealed a number of interesting 

characteristics of the neocognitron. 

We shall present each algorithm in turn, giving background information where 

appropriate, and, at the end of this chapter, we will compare the effectiveness of 

these three new methods for selectivity adjustment. 

5.1     Sub-Optimal Feature based Training 

The last chapter showed that OCFT does not enhance the performance of the 

neocognitron. It would be a shame if the criticisms presented thus far could not 

be used to rectify the problem of training feature rejection experienced by OCFT; 

that would surely be a positive step towards salvaging some of the ideas crafted by 

Hildebrandt. 

In his response to the author's criticisms of OCFT, Hildebrandt claimed that 

the enforcement of mutually exclusive acceptance regions in the middle layers of 

the neocognitron was unnecessarily restrictive. Perhaps if that constraint were re- 

laxed, in some systematic manner, the classification ability of the network could be 

improved to a useful degree. Hildebrandt suggests one method to achieve this [77, 

Section III-D]: 

"It is easy to consider modifications to this procedure which will generate 

partial classifiers that obey specific criteria. For example, we can allow 

each pair of acceptance regions to overlap by a predetermined angle by 

adding that angle to Ou in the above equations." 

Still, this approach does not provide a solution to training feature rejection. Hilde- 

brandt's requirement of "a predetermined angle" places us back at square one: there 

is no mention of how this angle should be determined.  Indeed, it is easy to imag- 
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ine situations where, despite the increased size of overlapping acceptance regions, 

training features still fail to be recognized. Clearly, the training features themselves 

must be involved in the determination of acceptance regions if we are to ensure the 

proper recognition of these features. 

The algorithm which we present in this section guarantees that the response 

of an S-cell to each of its training patterns is greater than zero. For convenience, 

this algorithm is described by the acronym SOFT: Sub-Optimal Feature-based 

Training. By Hildebrandt's definition, any algorithm which allows overlap of ac- 

ceptance regions is sub-optimal To ensure S-cell response to training features, a 

training algorithm must be feature based to some extent. 

The strategy of SOFT is to scale the response of an S-cell to a training feature by 

adjusting the cell's selectivity from its initial value. This adjustment is done using 

the training pattern which elicits the weakest response from the S-cell. We can use 

the general notation of previous chapters to describe this process. The output of 

the seed cell in the k^^ S-plane of layer ^, in response to the m'** training pattern, 

is usi{nktmik). The selectivity of that cell is initially rk(. We define the weakest 

response to a training pattern for this S-plane CLS 

def 
mi ̂ usiik)    =   rnin usi(nktm,k). (5.1) 

What SOFT does is to adjust the selectivity of the S-cell from rkt to rj.^ so that the 

weakest S-cell response to a training pattern becomes use . . The value us( . is 

referred to as the guaranteed minimum S-cell response and satisfies 0 < Use ■ < 1- 

To put it another way, SOFT adjusts S-cell selectivity so as to guarantee a minimum 

S-cell response to a//training patterns (see Figures 5.1 to  5.4). 

To show how this selectivity adjustment can be achieved, we must present some 

new definitions. We use Equations (3.1), (3.14) and (3.17) to form the approximation 

us((n,k)   w   s''(ae,uce-i) 

=   <p[(rke-\'l)s'(ae,uct-i) -rke]. (5.2) 

We must also define the approximate activation of an S-cell so that SOFT can deal 
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Figure 5.1: As in Figure 4.4, this diagram is 
a two dimensional example of an S-cell weight 
vector, ai, after the presentation of three train- 
ing patterns. 

Figure 5.2: Let us suppose that, initially, the 
selectivity of the cell in Figure 5.1 is such that 
the first training feature is rejected. 

Figure 5.3: For a given training pattern, the 
output of the S-cell is equal to the length of the 
line from the origin to the locus of S-cell output 
(the teardrop shaped lobe) in the direction of 
the appropriate input vector. 

Figure 5.4: SOFT adjusts the selectivity of the 
S-cell to ensure that the smallest output, in re- 
sponse to a training vector, is equal to ust ■ . 
Notice that, in this case, the response of the S- 
cell to the second and third training patterns is 
increased. 
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with training patterns that cause the argument of (p['] to be negative. This situation 

will occur when the vector of input activities, uci-iy lies outside the cell's current 

acceptance region. The approximate activation (which, for convenience, we shall 

refer to simply as the activation) of an S-cell is defined as 

def xse{n, k)    =    {rki + l)s\at, uce-i) - Vki, (5.3) 

In a similar fashion to Equation (5.1), the minimum value of S-cell activation, in 

response to a training vector, is defined as 

^^^xstik)    =   rnin xseinktm^k). (5.4) 

s'{a(yUce-i) is the modified similarity measure (Equation (3.12)) and depends 

only on the angle formed between the vector of inputs to an S-cell, uce-ii and that 

cell's weight vector, a(. Using Equation (5.3), we can calculate what the modified 

similarity measure of an S-cell must be, given that the activation and selectivity of 

the cell are mmjc^^^jt) sind rkt^ respectively: 

s(ai,uct-i)  =   rr^- (5-^) rki + 1 

The goal of SOFT is to adjust rkc to rj^^ so that min xstik) ^^^^ ^^ equal to ugg ■ . 

This means that 

"5Vn   =   K^ + iy(«^i^c^-i)-''w- (5.6) 

Rearranging Equation (5.6) to isolate the required selectivity value gives 

s'(a(,uce-i)-us/. 
rut   = (5.7) 

I - s'(ae,uci-i)    ' 

and substituting in Equation (5.5) gives an explicit expression for the value of rj.^ 

in terms of the current selectivity and cell activation, and the desired output: 

V       rw + 1       / 
^^f /rw 4-7nm__/M\       * i^'^) 

1- 
rk(-\- 
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Now we can incorporate Equation (5.8) into a precise specification of the SOFT 

algorithm. 

Algorithm  5.1  (The Sub-Optimal Feature based Training Algorithm) 

As in the case of Fukushima's supervised training algorithm, this training scheme 

com,m,ences with all connections ae{i/j«, k) and 6/(A:) set to zero. 

procedure tra.in-neocognitron() { 
for ^ = 1 to L { 

traJnJayer(£) ; 
tuneJay€r(£) ; 

} 
) 

procedure trainJay€r(£) { 
for Jb = 1 to Ksi { 

for m = 1 to |71t/| { 

UCO = tktm ; 
for layer = 0 to ^ - 1 { 

activate(layer) ; 
} 
trainS.cell(nktm, ^j £) \ 

It For each layer of  the neocognitron 
# learn S-cell weights 
# then adjust S-cell selectivities. 

Update S-pleoie neights 
for each S-plaoie in layer £  and 
for each training pattern of 
the Jb*** S-pl2Lne. 
Load the m}^  pattern into the input plane, 
propagate activity from input... 
to layer ^ — 1, 

# then update the veights of the seed cell 

} 
} 

procedure trainS-cell(nktm, ^t ^) { 
for K = 1 to Kci-i { 

for all u £ Ai { 

} } 
ai(iy, K, k) = at{u, K, k) + qt ■ c/(r/) 

Update the a/(i/, K, k)  and bt(k)  veights 
for each C-plane in the preceding layer 
amd for all input region cell positions 

} 
bi(k) = bi(k) + qt ■ U[/t{nkim) 

procedure tun€Jayer(£) { 
for ib = 1 to Kse { 

rjb/ = 1 i 
mm ^s/ (fc) = 1 i 
for m = 1 to \Tki\ { 

UCO = tkim ; 
for layer = 0 to ^ { 

activate(layer) ; 
} # If seed-cell's activation < 
# update the current minimum S 
if xst{nkim,k) < min^5,(it) then 
"»»nrs,(lr) = xsti'n-kim,'^)  ; 

# Tune the selectivities 
# for each S-plane in layer £. 
# Initialize selectivity of the k^^  S-pleme, 
# initialize minimum S-cell response, and 
# for each training pattern of 
# the Ar*^ S-plane 
# load the m^^ pattern into the input plsine 
# and propagate activity from input. . . 
# to layer £. 

current minimum then 
-cell response. 
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) 

) 
# Adjust rki so  that the minimum S-call response 
# to any training pattern will be us<n^in. 

} 

5.1.1    Practical issues in applying SOFT 

SOFT is a systematic way of relaxing the restriction of mutual exclusion between 

S-cell acceptance regions and thereby alleviates the problem of training feature re- 

jection in the neocognitron. This new method of selectivity adjustment should not, 

however, be seen as a panacea for the ills of the neocognitron; SOFT causes three 

major difficulties with the training of the neocognitron: 

1. Instead of eliminating (or even reducing) the number of parameters that need 

to be chosen, SOFT replaces the set of selectivity parameters with a set of 

guaranteed minimum S-cell response parameters. Although we can specify a 

range^ of suitable use • values for any S-cell in layer i^ we have no guidelines 

as to how to choose a particular use ■   value within that range (see Figure 5.5). 

^The smallest value of w^^^^jj^ is set by the requirement of no feature rejection (i.e. usi ■ > 

0). The definition of the similarity measure implemented by the neocognitron (Equation (3.13)) 

restricts the largest value of "s/^jn- Equation (3.13) introduces a threshold, r 6 [-1,1], into the 

definition of a modified similarity measure which Fukushima then implements using a selectivity 

parameter r, where r = r/{r-\- 1). Note that r G [-1,1] implies that r 6 [-0.5, oo). 

If we substitute Equation (5.5) into Equation (5.6) we find that 

Since mm,^,(jfc) < 1, it follows that {rtt -\- min x^^(^t))/{rkt. + 1) < 1 and so the largest possible 

value of U5/rnin ^^ given by considering the smallest possible value of r^^, that is -0.5. Hence the 

largest value of usi^.^ that can be achieved with r^^ € [-0.5, oo) is 

V      nt-\-l      ) 

In summary, given an initial S-cell selectivity, rki, and minimum activation, »n»nrs((*:)> we can 

calculate the range of 115/       that can be achieved with a valid adjusted selectivity, rj,^. 
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2. We cannot apply SOFT to S-cells that have but a single training pattern 

(Figure 5.6). After training is complete, an S-cell with only one training 

pattern will have the weights 

and when we compute the activation of this S-cell in response to its training 

vector we have xst{nkn,k) = 1- From Equation (5.8) we can see that an 

activation of 1 means that r|^^ —> oo (for 0 < ust - < 1). Even if it were pos- 

sible to implement such a value of rj^^, the S-cell would respond only when the 

inputs to the cell are identical to the cell's weight vector, effectively removing 

any capacity for that S-cell to generalize. 

3. The experimenter indirectly determines the selectivity of S-cells through his 

or her choice of training features. Using SOFT with a set of highly similar 

training vectors will result in an S-cell with a very narrow acceptance region. 

Certainly, all the training vectors of that particular S-cell are guaranteed to 

elicit a non-zero response, but, unless the actual distribution of typical fea- 

tures is tightly clumped within that acceptance region, the cell will be far too 

selective. 

On the other hand, a single rogue training vector which is substantially dis- 

similar (in the Euclidean sense) to the other training vectors of an S-cell will 

cause the acceptance region to balloon out to encompass it. In all likelihood, 

an S-cell with such a low selectivity will be responsive to virtually any feature 

and, therefore, not be of much use within the neocognitron. 

Figures 5.7 and 5.8 illustrate the difficulty described here. To use Hildebrandt's 

terms, finding the appropriate balance between generalization and discrimina- 

tion is still a problem. 

The reader should be aware that the issues described in this section only became 

apparent through practical experimentation with SOFT {i.e. the author located 

the pitfalls in this approach by falling into them). One of the aims of this chapter 
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is to make a balanced assessment of each new algorithm presented. As we have 

seen in Chapter 4, algorithms for training the neocognitron should be evaluated 

experimentally to establish whether they are of practical value. The next section 

determines whether the three problems that have been discussed here are a major 

handicap to the application of SOFT to the neocognitron. 

5.1.2    Experimental application of SOFT 

One of the first goals in experimenting with a supervised learning algorithm is to 

establish whether it can produce a system that can correctly classify the data that 

it was trained with. It was found that OCFT failed to adjust the selectivities of 

the neocognitron so as to achieve this (see Subsection 4.2.1). SOFT, on the other 

hand, produced a neocognitron that manages to correctly identify all layer 4 training 

patterns; a promising beginning. 

Experiment 5.1 (To establish whether SOFT can adjust a neocognitron to cor- 

rectly classify training data] 

David Simon's 1992 implementation of the neocognitron (see Table C.2) was trained 

using SOFT and Fukushima's training data (Figures B.l to B.4). Since a number of 

S-planes (including all S-planes in layer 1, US2.16. US2.35, US3.4, etc.) had single 

training patterns, the selectivities of these S-planes were not adjusted from the initial 

values given in Table C.2. 

The function of the fourth layer of the neocognitron is to classify digit data, as 

opposed to previous layers which serve only to detect features. As such, SOFT was 

not applied to layer 4 and selectivities within that layer were set to 1.0. This was 

done to ensure that layer 4 S-cells had equally sized acceptance regions and took into 

consideration that SOFT could not be used to adjust S-plane US4.6 (since Fukushima 

specified only one training pattern for that plane). 

In the absence of any firm guidelines, the guaranteed minimum S-cell response pa- 

rameters of the second and third layers were set to us2       = 0.5 and 1/53   .   = 0 75 
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Figure 5.5: By varying r^i, we can produce a 
family of S-cell output loci, giving us a range of 
feasible use- values. In this figure, three dif- 
ferent choices of rke give us three different non- 
zero S-cell outputs for the input vector Wcz-i- 
It is unclear which choice is the best. 

Figure 5.6: If an S-cell has a single training 
vector then there is no way to adjust the se- 
lectivity so that the cell gives an output of any- 
thing other than 1 (in response to that vector). 

Figure 5.7: Highly similar training vectors will 
cause SOFT to produce a highly selective S- 
cell. 

Figure 5.8: It only takes one unusual training 
feature to radically alter the acceptance region 
produced by SOFT. 
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Table D.2 gives a list of the selectivities that SOFT chose for the network in this 

experiment. 

Once training was complete, the layer 4 training patterns were presented to the 

network which was observed to classify each pattern correctly. 

Experiment 5.1 shows that the three practical problems discussed in Subsec- 

tion 5.1.1 do not have as profound an effect on SOFT as the problem of training 

feature rejection had on OCFT. Note, however, that a number of ad hoc specifica- 

tions had to be enforced in Experiment 5.1 (i.e. the choice of guaranteed minimum 

S-cell response parameters and the selectivity values of S-planes with single training 

features). As long as the neocognitron is hampered by parameters which cannot be 

chosen in some systematic manner, its appeal will fall short of similarly structured, 

fully adaptive networks (such as described in [103]). 

Despite difficulties in choosing use • parameters, it would be informative to 

look at the classification performance of a network trained with SOFT (if only to 

see whether the network generalizes more effectively than one trained using Hilde- 

brandt's algorithm). 

Experiment 5.2 (The classification performanceof the neocognitron (after training 

with SOFT) on a variety of data) 

The network described in Experiment 5.1 was used to classify three different sets of 

data: Lovell's set of 400 digits (see Section B.3), 400 digits from the CEDAR database 

(before thinning) and that same set of CEDAR digits, after thinning by SPTA [133] (see 

Section B.5). The classification performanceof the network is given in Table 5.1 below. 

Digit set % Correct % MIsclassified % Rejected % Reliability 
Lovell's 
CEDAR 
CEDAR (thinned) 

74.00% 
47.25% 
51.50% 

26.00% 
52.00% 
48.50% 

0.00% 
0.25% 
0.00% 

74.00% 
47.61% 
51.50% 

Table 5.1: Classification performance of Simon's 1992 implementation of the neocognitron (Table C.2) 
after training with SOFT. 
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The results of Experiment 5.2 highlight the potential danger of being misled 

through the use of "artificially" generated data. Although the digits in the public 

domain test set (described in Section B.3) were generated by a human hand (the 

author's), the form of each digit was, very probably, influenced by the author's 

knowledge of the set of features used to train the neocognitron. In Table 5.1, the re- 

sults obtained with the second and third digit sets indication the sort of performance 

that could be expected in a "real-world" situation. 

It is not surprising to observe that thinned digits are classified with slightly more 

accuracy than unthinned digits, considering that the training data (Figures B.l 

to B.4) consisted of fragments of thinned digits. This reinforces the intuitive notion 

that the neocognitron will perform better (i.e. correctly classify a greater percentage 

of digits) when the training data bears a closer resemblance to fragments of typical 

test data. Keeping this concept in mind, we move on to the final experiment of this 

section. 

The next experiment with SOFT had two main objectives: to try to maximize 

the performance of a neocognitron (trained by SOFT) on real-world data, and, 

to avoid the problem of S-planes with single training patterns. To achieve these 

objectives, a new set of training patterns (based on features present in digits from 

the CEDAR database) was created and a new network structure was implemented. 
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Experiment 5.3 (Application of SOFT to a neocognitron with a novel structure 

and training set) 

A new set of training features was created (see Section B.2) in an effort to improve 

the neocognitron's classification performance on CEDAR ZIP code digits. The structure 

of the neocognitron was modified from Simon's implementation to accommodate an 

additional number of training features {i.e. the number of S and C-planes in the network 

was increased — see Tables C.2 and C.4 and also Table C.7). 

Throughout this experiment, first layer selectivities retained Fukushima's original 

value (ri= 1.7). Second and third layer selectivities were set using SOFT with us2 = 

U53^,„ = 0.3. Note that, as in Experiments 5.1 and 5.2, the value of 1*5^ . parameters 

was arbitrary. Table D.3 provides a list of the selectivities chosen by SOFT in this 

experiment. 

As mentioned in Experiment 5.1, the function of the final layer S and C-planes {i.e. 

classification) is quite different from that of cell-planes in preceding layers (i.e. feature 

detection). Hence, the classification performance of the neocognitron is particularly 

sensitive to layer 4 selectivity values. Taking this into account, a number of tests were 

performed on the new network to try to establish an effective way of adjusting final layer 

selectivities. 

Test 1 

The network was tested on 400 unthinned CEDAR digits with r4= 1.0 {i.e. SOFT was 

not applied to layer 4). The network correctly classified 55.75% of the digits, misclassified 

26.75% and rejected 17.50%. 

Test 2 

The network was tested on 400 thinned CEDAR digits, again, with r4= 1.0. The net- 

work's recognition of thinned digits was slightly better than it's recognition of unthinned 
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digits in the previous test: 58.75% were correctly identified, 26.00% were misclassified 

and 15.25% were rejected. 

Test 3 

After SOFT had been applied to the final layer (with W54 . = 0.3), the network 

was tested using 400 thinned CEDAR digits. (The fourth layer selectivities that were 

calculated by SOFT are given in Table D.3.) The use of SOFT in this instance did not 

result in a significant change in recognition performance. In this third test, the network 

achieved a correct classification rate of 57.50%, with 28.25% of digits misclassified and 

14.25% rejected. 

We can observe from the confusion matrix obtained in this test (Table 5.2) that input 

patterns representing '6's are correctly recognized much less often than other classes of 

digits. It was hypothesized that this imbalance was due to an unsuitable choice of 

the selectivities of S-planes US4.14 and US4.15 by SOFT. The procedure employed 

in the last test of this experiment attempted to avoid this maladjustment of final layer 

selectivities. 

Test 4 

This test evaluates a method for calculating final layer selectivities using information 

about the average outputs of layer 4 S-planes with typical digit data. It was hoped that 

the approach described here would avoid the problem discussed in Item 3 of Subsec- 

tion 5.1.1, by adjusting selectivity based on S-cell response to a large number of digits, 

rather than just a handful of training examples. 

SOFT was not directly applied to layer 4. Instead, 1000 thinned CEDAR digits (100 

from each digit class) were presented to the network and the final layer C-cell outputs 

were recorded. (For this part of the test, the selectivities of the layer 4 S-cells was set to 

r4= 1.0.) Then, the average output of the C-cells was calculated for each of the input 
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classes. These average class output values (shown in Table 5.3) give us a general idea 

of how the network responds to each different class of digits. 

SOFT was then used to adjust the final layer selectivities so that the average output 

of a C-cell, in response to an input that it was supposed to recognize, would be approx- 

imately 0.3. The new selectivity values were given by applying Equation (5.8) to layer 4 

S-planes, this time using the average output of the C-cell corresponding to a particular 

digit class in place of the mmx5,(fc) parameter. Note that it is only feasible to apply this 

method when final layer C-cells have weighted max transfer functions (see Section A.2) 

with flat masks (^4= 64= 1.0). In this situation, the output of any final layer C-cell is 

equal to the maximum incoming S-cell activation. The average output of a final layer 

C-cell is therefore directly influenced by the selectivity of immediately preceding S-cells, 

and will obey (approximately) the relation of Equation (5.8). 

Using the first row of Table 5.3 as an example, we substitute values for Vkt (10), 

use ■ (0.3) and average C-cell output into Equation (5.8) to get the new selectivity 

value (r[() which will make the average output of UC4.0 approximately equal to 0.3: 

1.0 + 0.380\     ^„ 
0.3 

/1.0 + Q.380\ _ 
\    1.0 + 1    )~ 

""^^   ~ /1.0 +0.380 

=   1.260. 

_ /1.0 + 0.38Q\ 
~\    1.0+1    ) 

Table 5.4 lists the adjusted selectivity values obtained with all final layer C-cells. 

Since the implementation of the neocognitron that was used had a number of layer 4 

S-planes for each layer 4 C-cell, the selectivity values in each row of Table 5.4 were 

applied to every S-plane connected to the corresponding C-cell. A complete list of the 

selectivities of each final layer S-plane is given in Table D.3. 

With the layer 4 selectivities adjusted in the manner described, the classification 

performance of the network was evaluated using 400 thinned CEDAR digits; 60.50% of 

these digits were correctly classified, 31.50% were misclassified and 8.00% were rejected 

by the network. 

Table 5.6 gives a summary of the results obtained in the different tests of this 
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experiment. 
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Input 0 Litput class 
Class 0 1 2 3 4 5 6 7 8 9 Reject 

0 22 0 1 15 0 0 1 0 0 0 1 
1 0 35 0 0 2 0 0 1 0 0 2 
2 3 0 25 0 5 0 0 5 0 0 2 
3 0 1 4 26 0 0 1 3 0 0 5 
4 0 10 0 0 22 0 0 0 0 0 8 
5 0 0 0 10 0 19 3 0 1 0 7 
6 2 9 3 5 0 0 8 0 1 0 12 
7 0 1 6 0 0 0 0 24 0 0 9 
8 3 0 6 4 0 2 0 1 20 0 4 
9 0 0 2 0 0 0 0 2 0 29 7 

Table 5.2: The confusion matrix that resulted from the application of SOFT to layer 4 of the neocog- 
nitron. 

Input Average C-cell output 
Class UC4.0 UC4.1 UC4.2 UC4.3 UC4.4 UC4.5 UC4.6 UC4.7 UC4.8 UC4.9 

0 0.380 0.005 0.074 0.020 0.001 0.007 0.015 0.026 0.001 0.010 
1 0.000 0.475 0.000 0.000 0.172 0.000 0.000 0.000 0.000 0.000 
2 0.038 0.003 0.198 0.000 0.010 0.000 0.000 0.172 0.000 0.002 
3 0.007 0.000 0.018 0.130 0.001 0.043 0.056 0.029 0.000 0.000 
4 0.000 0.260 0.000 0.000 0.312 0.000 0.000 0.000 0.000 0.010 
5 0.003 0.002 0.003 0.021 0.009 0.210 0.051 0.002 0.000 0.010 
6 0.018 0.086 0.002 0.000 0.035 0.007 0.064 0.000 0.000 0.000 
7 0.004 0.000 0.111 0.000 0.004 0.000 0.000 0.307 0.000 0.001 
8 0.019 0.011 0.004 0.002 0.008 0.029 0.001 0.009 0.103 0.003 
9 0-036 0.000 0.010 0.000 0.000 0.004 0.000 0.024 0.000 0.391 

Table 5.3: The average output of each final layer C-cell in response to 100 digits from each possible 
class of input. Within any given row of this table, the highest average output corresponds to the class 
of digit that was applied to the network. For example, when 100 different 'O's were classified, the C-cell 
UC4.0 had the highest output (0.380, on average) of all final layer C-cells. 

Ideally, all outputs, other than the one corresponding to the class of digit being presented, should 
be equal to zero. However, certain pairs of digit classes (for example '2's and 7's) elicit reasonable 
responses (on average) from two different C-cells, and some digit classes (such as '6's) evoke hardly 
any response at all. 
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Digit 
Class 

Average response of 
corresponding C-cell 

New 
Selectivity 

0 0.381 1.260 
1 0.475 1.667 
2 
3 

0.198 
0.130 

0.746 
0.610 

4 0.311 1.034 
5 0.210 0.772 
6 0.064 0.495 
7 0.307 1.020 
8 0.103 0.560 
9 0.391 1.298 

Table 5.4: The average outputs of final layer C-cells, in response to digits that each cell is expected to 
recognize, are listed above. Also shown for each C-cell are the selectivities of afTerent S-cells that will 
cause the average C-cell output to be approximately equal to 0.3. 

Input Output class 
Class 0 1 2 3 4 5 6 7 8 9 Reject 

0 20 0 2 4 0 0 13 0 0 0 1 
1 0 25 0 0 U 0 0 1 0 0 3 
2 1 0 23 0 5 0 1 7 1 0 2 
3 0 1 3 14 0 3 11 5 0 0 3 
4 0 2 0 0 32 1 0 0 0 1 4 
5 0 0 0 2 0 26 8 0 1 0 3 
6 0 2 3 0 11 0 20 0 1 0 3 
7 0 0 4 0 1 0 0 27 0 0 8 
8 0 0 4 1 0 4 3 3 23 0 2 
9 0 0 2 0 0 1 0 2 0 32 3 

Table 5.5: This confusion matrix was obtained by testing the network on 400 thinned CEDAR digits 
after the final layer selectivities had been set according to Table 5.4. 

Test Digit type Layer 4 conditions % Correct % Misclassified % Rejected % Reliability 
1 unthinned r4= 1.0 55.75% 26.75% 17.50% 67.58% 
2 thinned r4= 1.0 58.75% 26.00% 15.25% 69.32% 
3 thinned SOFT 57.50% 28.25% 14.25% 67.10% 
4 thinned average-SOFT 60.50% 31.50% 8.00% 65.76% 

Table 5.6:  Results of Tests 1-4.   Each test used a set of 400 CEDAR digits to assess the network's 
classification performance. 
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In comparison to the results of Experiment 5.2, the performance of the neocogni- 

tron in Experiment 5.3 shows that we can achieve some improvement in classification 

rate by using SOFT in conjunction with training features typical of the data be- 

ing classified. Unfortunately, the degree of improvement is not sufficient to suggest 

that the use of SOFT could produce a neocognitron capable of state-of-the-art digit 

recognition performance (i.e. correct classification of around 90% with close to 100% 

reliability [130,164]). 

One eispect of Experiment 5.3 that has not been explained is that the new set 

of training features had to be developed in conjunction with the SOFT algorithm 

to ensure that SOFT resulted in "reasonable" selectivities. It was in the devel- 

opment of the training features (a task that, according to Fukushima [55, Section 

5], "requires a large amount of labor") that the sensitivity of SOFT to the choice 

of training patterns became apparent (see Figures 5.7 and 5.8). There were two 

methods of avoiding this problem: either the appropriate us( . parameter could be 

adjusted, or the training features could be altered so a^ to increase or decrease the 

minimum S-cell activation that they produced. The latter technique was employed 

in the creation of the new training set and it took several drafts of training pat- 

terns, for each layer, to produce acceptable selectivities; thus, SOFT became less 

systematic and more ad hoc. 

Test 4, in Experiment 5.3, represents the first attempt to directly incorporate 

"real-world" data into the process of selectivity adjustment in the neocognitron. 

This idea is integral to the attainment of good classification performance on hand- 

written digits and will be incorporated into the training algorithm presented in Sec- 

tion 5.3. In this instance though, Table 5.6 shows that the slight increase in correct 

recognition achieved in Test 4 was made at the expense of decreased reliability. 

Although SOFT represents a significant improvement upon OCFT, application 

of this new technique is problematic. There are still parameters to be chosen and 

no guidelines as to how to choose them so as to maximize, or at least enhance, the 

classification abilities of the network.   Furthermore, the difficulties experienced in 
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applying new training patterns lessen the generality of the approach. One thing that 

SOFT does demonstrate is that Euclidean metrics are not necessarily equivalent to 

the perception of visual similarity. 

Like Hildebrandt's OCFT algorithm, practical realities have done much to clut- 

ter the tidy theoretical concept of SOFT. This section has achieved the aim of 

presenting a technique of selectivity adjustment that salvages some of the ideas put 

forward by Hildebrandt. However, it is the author's conviction that the geometric 

assumptions, upon which OCFT and SOFT are based, should be put aside. 

5.2     Single Layer Optimization by Gradient de- 

scent 

The neocognitron has been put forward, not just as a model which incorporates 

aspects of low level vision, but as a system which can recognize symbols and patterns. 

The study of high level vision and cognition of visual form lies within the realms of 

experimental psychology and, in this section, we shall consider some fundamental 

issues pertaining to how humans perform pattern recognition. 

The multidisciplinary nature of vision research is reflected, perhaps, by the incon- 

sistency of terminology used to describe visual processes. Zusne [186, Ch. 6, Section 

3] remarks that nonpsychologists (in this case electrical engineers) have preferred the 

term recognition to denote any process in what psychologists term the perception of 

form. Thus, for us to gain some understanding of the psychological perspective on 

pattern recognition, we must undertake an examination of the perception of visual 

form. 

5.2.1     The psychology of visual form perception 

The amount of literature on visual form perception prohibits a detailed overview of 
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Visual Form Perception (2-D) 

Metrics of Form 
[Attneave k Arnoult 1956] 

Feature-based Hypotheses of 
Form Perception 

[Sutherland 1968; Gibson 1969] 

Experiments to Test these 
Hypotheses 

Verbal/Written 
Response 
[Pasnak 1971; 

Pasnak & Tyer 1985, 
1986] 

^Motor 
Response 

Eye Movement 
[Mackworth k 
Morandi 1967; 

Baker k Loeb 1973; 
Bozkov et al. 1982; 
Bohdanecky et al. 

1987; 
Latimer 1988, 1990, 

1992] 

Figure 5.9: An outline of the areas of form perception research that are relevant to this section of 
work. 

the field^, so the following review concentrates upon areas which have direct bearing 

upon the new ideas proposed in this section. For the purposes of this discussion it is 

useful to group different aspects of form-perception research according to Figure 5.9. 

World War II spurred a great deal of interest in understanding how humans vi- 

sually perceived their surroundings. In the early 1950s, the seminal works of James 

Gibson [62] and Fred Attneave [3] were fostered by the US military; indeed a signif- 

^the bibliography of Zusne's 1970 survey contains over 2500 entries [186]. For the interested 

reader, Pinker [146] provides a good introduction to visual form perception in general and Quinlan 

[147] gives an overview of 2-D shape recognition research. 
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icant proportion of today's vision research is still funded by defense departments all 

over the world. Attneave, in association with Malcolm Arnoult, went on to publish 

methods for systematic construction of 2-D stimuli, methods which were to be used 

in many form-perception experiments in later years [4]. 

Towards the end of the 1960's, two "feature" theories of pattern recognition were 

proposed. The first of these was put forward by Sutherland and was specifically 

concerned with recognition of visual form [167], The second theory, presented by 

Eleanor Gibson [61, p. 116], was more general in that it effectively described the 

process of differentiation between stimuli in any of the sensory modalities. 

Sutherland suggested a model to explain some of the notable characteristics of 

biological vision systems; the similarity between Sutherland's model and the neo- 

cognitron is evident: 

"The model has three parts: (1) A processor that extracts local features 

from the input picture preserving information about the spatial relation- 

ships between the features. (2) A mechanism that induces an abstract 

description of the output from the processor. (3) A store in which such 

descriptions are held."  [167]. 

The correspondence of Sutherland's and Fukushima's models can be attributed to 

the profound influence that Hubel and Wiesel's findings had over both authors. 

However, it is Gibson's ideas about the discrimination of stimuli that are more 

pertinent to this section of work. In the summary of [61, Ch. 6], Gibson recapitulates 

six propositions regarding perceptual development; the following three are relevant 

to this discussion: 

• "... in a multi-discrimination-learning task, the subject learns by discovering 

the dimensions of difference between members of the set of stimuli presented, 

and will afterwards be able to transfer them to new members of the set." 

• "... learning of differences should be facilitated when distinctive features are 

emphasized in training." 
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• "... discrimination will be optimal when feature differences between pairs of 

stimuli are maximal, and poorest when they are minimal." 

Since Gibson's and Sutherland's feature theories were first postulated, many 

experiments have been performed to validate or refute these hypotheses. Generally 

speaking, these experiments have demonstrated that the parts of a pattern "that are 

most unique and idiosyncratic to each pattern are most utilized by the perceiver in 

discriminating the pattern" [142]. The experiments performed in studies on visual 

form perception in humans can be grouped into three categories [186, Ch. 6, Section 

1], based on the way in which subjects' responses are measured (see Figure 5.9): 

1. Verbal/written response experiments, which typically require subjects to clas- 

sify, or describe, stimuli. 

2. Motor response experiments, encompassing activities such as sorting or repro- 

duction of forms. 

3. Eye movement experiments, which involve observing a subject's spontaneous 

sequence of fixations on a visual stimulus. Zusne [186, Ch. 6, Section l.A] 

gives an overview of the three main methods for recording eye movements: 

corneal reflection, direct observation of eye motion and electrooculography. 

It is worthwhile noting that a number of researchers [5,67,119] have established a 

link between eye movement recordings and subjective written or verbal descriptions 

of the important features within a given stimulus: "Ratings of importance were 

highest for sections of figures fixated for longer duration..." [5]. Eye movement 

recording provides the researcher with a direct means of observing the details that 

a subject uses in the discrimination/recognition of a visual form. Using this exper- 

imental technique, Latimer has analysed the eye movements of subjects in various 

pattern perception tasks [101], most notably character recognition [100,102]. 
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5.2.2     Cumulative fixation time and character recognition 

So far, mention has been made of a number of experiments whose results have lent 

more weight to feature theories of pattern recognition [5,15,16,119,141,142,143]. It 

is important to note that these studies have made use of random geometric forms as 

a means to elicit some kind of response from the subjects. The following discussion 

bridges the gap between these general perception of form experiments and the area 

of primary concern to this thesis — character recognition. 

It would seem quite sensible to say that we distinguish between alphanumeric 

characters in the same way that we discriminate random geometric forms {i.e. by 

utilizing the most discriminating local feature of the patterns). However, something 

a little stronger than intuitive appeal is needed if we are to make use of an idea in a 

scientific context. After all, why should our recognition of letters and digits (which 

we have seen so many times before) resemble the strategy we employ to distinguish 

between novel random forms? 

Latimer has explored the psychophysics of single character recognition in a series 

of experiments, and has shown that the way in which we recognize numbers and 

letters is in accordance with the theories of Gibson and Sutherland^. Latimer's 

work on visual perception of characters can be thought of as a logical progression of 

three stages. 

In the initial phase of his research, Latimer introduced cumulative fixation time 

(CFT) as an analytically tractable measurement of a subject's visual attention to 

different parts of an image [100]. Latimer's method for recording CFT was to par- 

tition an entire stimulus image into a rectangular grid of cells and accumulate the 

total time that a subject's gaze was focussed within each grid cell. This approach 

disregards dynamic aspects of eye-movement (e.g. the scanning sequence) and re- 

^The reader is referred to SutclifTe [166] for an information theoretic perspective on the discrim- 

ination of objects by their features. Of special interest is a graphic comparison of text with high 

information features removed to the same text with low information features deleted [166, Table 

5). 
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suits in a two-dimensional histogram of fixation durations for a given stimulus. This 

histogram, or CFT plot, is amenable to statistical analyses (such as cluster analy- 

sis) that may reveal underlying trends in the way in which a subject perceives the 

stimulus. 

The second stage of Latimer's research [101] established the correspondence be- 

tween CFT recordings and previous experiments (see e.g. [141]) that were designed 

to test feature theories of pattern perception. Although the geometric form discrim- 

ination results presented in [101] were somewhat preliminary, they were consistent 

with those obtained in experiments on the recognition of other stimuli, such as up- 

percase alphabetic characters [99]. Latimer's findings supported the notion that 

recognition is mediated by the extraction, comparison and differential weighting of 

the local features of visual patterns. 

Latimer's third line of investigation is of particular relevance to this section of 

work. In his 1992 paper [102], Latimer, using uppercase alphabetic characters as 

stimuli, compares the CFTs of a number of subjects with the weights learned by 

a two layer Madaline [178,179] that has been trained to distinguish between the 

stimulus images. Both the human subjects and the artificial neural network tended 

to assign more weight to those regions of the images that were most idiosyncratic. 

Latimer's third experiment forges the conceptual link between the feature theories 

of perception of form and a methodology which can be practically applied to the 

machine recognition of patterns. 

The network developed by Latimer was meant to be an artificial model of the 

human tendency to utilize distinguishing features in recognizing visual patterns; no 

attempt was made to exploit the ideas behind this model in a practical character 

recognition system. In the next section, we shall consider how the gradient-descent 

learning rule used in Madaline networks can be employed within the neocognitron. 
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5.2.3     Making the neocognitron "look"  for distinguishing 
features 

The training method used by the neocognitron (see Section 3.4) adjusts the weights 

of each S-plane in a given layer, one plane at time, without regard for the weights 

of other S-planes in that layer. For example, the weights within plane US2.0 are 

completely independent of the weights learned in other second layer S-planes (see 

Figure 5.10). In the training schemes discussed so far, the only time that S-cell 

parameters are adjusted on the basis of the outputs of other S-cells in the same 

layer is after weight updates within the layer are complete. 

As a result of this approach to training, there is no direct way for S-cells to 

learn which features distinguish the patterns they are supposed to detect from the 

patterns that they are supposed to reject. The consequences of this can be seen in 

Figure 2.10: the output of the network indicates that the input pattern represents 

a '9' but is also highly similar to a '0'. In practice, post-processing may reject such 

an image due to uncertainty as to whether it is actually a '9' or a *0'. Certainly, all 

the component features of a '0' are present in the input image. However, the output 

of the network indicates that the neocognitron is not exploiting the descending tail 

of the digit to discriminate between the two classifications of the input image (at 

least not to the same extent that a human observer would). 

The training of the Madaline that Latimer used [102], is fundamentally differ- 

ent to the learning methods discussed so far in that, on the presentation of each 

training pattern, the weights of all units within a layer are updated simultaneously. 

Figure 5.11 shows that one unit can have its weights updated to increase its output 

in response to a training pattern. However, unlike the neocognitron, other units 

within the layer can have their weights modified to decrecise their response to that 

pattern at the same time. The net effect of this training scheme is for units to be- 

come sensitive {i.e. develop large connection weights) to the idiosyncratic features 

that distinguish different clctsses of training patterns. 
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UC1 

US2 

UC1 

US2 

on on 

Figure 5.10: The figures on this page depict the weight update process during the presentation of 
two different training patterns. In each presentation, the desired outputs of the final layer units 
(either "on" or "ofF*) are written below those units. Activation flows from top to bottom in these 
diagrams and only those weights that are currently being updated are shown (symbolized by the 
lines connecting the layers of units). 

This figure shows the learning process used in OCFT, SOFT and Fukushima's training scheme. 
S-plane weights are updated a plane at a time and S-planes within the same layer are never exposed 
to each other's training patterns. 

on     off     Off     off     Off     off      Off Off    on    off    off    off    off    off 

Figure 5.11: In networks like the multilayer perceptron and the MADALINE, weights to ni/output 
units are updated each time a new training pattern is presented to the network. In this way, output 
units learn to respond to certain patterns and not to respond to others. 

on off        off 

UC1 

US2 

off on off 

Figure 5.12: By employing parallel weight update techniques, as used by Latimer (and shown 
m Figure 5.11), it should be possible for S-cells to become more responsive to the distinguishing 
features of the patterns that they are to detect. In this situation, S-cells are trained to detect their 
specified patterns and reject any others. 
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In this section we propose a version of the neocognitron which employs a similar 

learning technique to the Madaline and perceptron networks. Since the new training 

method is a gradient descent technique that is applied to each layer of the neocog- 

nitron in succession, it is referred to as SLOG — Single Layer Optimization by 

Gradient-descent. To accommodate gradient descent learning within the network, 

the function of the S-cell is changed to that of a "conventional" artificial neuron (i.e. 

weighted sum of inputs plus sigmoidal transfer function). As well as simplifying the 

computation of S-cell output, this alteration removes the selectivity parameter from 

the neocognitron. Cells within different S-planes learn to discriminate between dif- 

ferent training features during the weight update process^ rather than by selectivity 

adjustment after weights have been learnt. 

5.2.4     A formal description of SLOG 

Instead of adding to the substantial number of variables used to describe the neo- 

cognitron, this section redefines certain aspects of the network, specifically, the op- 

eration of the S-cell. These new definitions are in effect within this section only 

and are not to be confused with the "standard" implementation of the neocognitron 

given in Chapter 3. 

We shall redefine the output of an S-cell within the k^^ S-plane of layer £ to be 

usein, k)    =    (j> Y2     Y^   a((i/,K,k)'Uci-iin-\-t/,K)-\-be(k) (5.9) 

where hi{k) is the bias of the S-cell and </>(•) is a sigmoidal transfer function of the 

form 

<^(x)   ^M   —^ . (5.10) 

The transfer function (^(•) makes the S-cell slightly more complex than the Adalines 

used in Latimer's system. However, by limiting the S-cell's output to the range 

(0,1), the sigmoidal transfer function allows C-cell operation to remain as originally 

described by Fukushima. 
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The artificial neuron described by Equations (5.9) and (5.10) is the building 

block of the multilayer perceptron (MLP), a network that is often trained by back- 

propagation of error [140,151,176]. Unlike the MLP, whose internal representation 

of patterns is not explicitly defined, the supervisor specifies the general behaviour of 

each S-cell by nominating training patterns for each S-plane. This allows the train- 

ing of the neocognitron to be decomposed into learning a cascade of single layer 

mappings. 

SLOG cycles through the training patterns of each layer, commencing with USl. 

All S-cell weights are adjusted to reduce the squared difference, £g, between the 

actual and desired outputs of first layer S-cells, for all of the training patterns of that 

layer. When the quadratic error function falls below a critical value, ScHt (> t)), the 

first layer S-cells are deemed to be sufficiently well trained and the weight adjustment 

process moves on to the second layer of S-cell weights. This training cycle progresses 

through each layer in succession until every layer hcis learned the desired mapping. 

There are a number of ways to adjust the weights and bias of an S-cell. When 

training pattern tktm is presented to the network, the actual output of the seed-cell 

in the JC*"^ S-plane of layer £ is written as use{nktm^^)' The desired output of that 

S-cell is denoted by ( and, if it is supposed to detect the pattern tkimi we have C = 1» 

otherwise C = 0. Using standard backpropagation, the weights and bias of an S-cell 

would be adjusted by the increments 

Aa/(i/,/c,;C)   =   qc<t>' 

X (C - usi(nkimX)) ■ uci-i{n-\- V,K), (5.11) 

Ab.iK)   =   q,-4>' 
K=l   i/^j\f 

x(C-«s4njt^^,;C)) (5.12) 

where 

<f> (xo) = - 
X=Xo 
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To reduce the amount of computation required during training, the weight update 

rules described above were abandoned in favour of those proposed by Solla et al. 

[158]: 

=   qf e 'Uci-iin-^- I/.K) (5.13) 

Abi{IC)    =   qf{C-usi{num,fC)) 

=   qie. (5.14) 

Using these update equations saves having to calculate the (j>'{x) during each itera- 

tion of training although, strictly speaking, we are no longer minimizing the squared 

error between actual and desired outputs^. Algorithm 5.2 is a concise description of 

SLOG. 

^Equations (5.13) and (5.14) minimize the relative entropy of the mapping implemented by the 

network [158, Equation 2.16.]. 
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Algorithm 5,2 (The single Layer Optimization by Gradient-descent 

Algorithm) 

Unlike previous training algorithms, SLOG requires that training commences 

with ai{i/j K, k) and bi(k) weights set to small random values [.kolen pollack.]. For 

clarity, the weight update rules given below utilise incremental updating [.hertz 

kroghj, p. 119], that is, weights are updated after each pattern is presented. In 

practice, weight updates were made after each epoch of training (i.e. after the pre- 

sentation of all patterns, for a given layer) by accumulating the incremental changes 

to S-cell weights. 

procedure train~neocognitron() { 
for ^ = 1 to L { 

do{ 
tr3Jning.cycle(i) ; 

} 
until £Q < Sent ; 

} 
} 
procedure training,cycle(i) { 

SQ = 0; 

for Jk = 1 to Kst { 
for m = 1 to iTjt^l { 

UCO = tum ; 
for layer = 0 to £ { 

&ciivate(layeT) ; 
} 
update.weightsfnfc/^, k,t) \ 

} 
} 

procedure update.weights(nktm, k, ^) { 

for /C = 1 to Ksi { 
\i{K = k) { 

C = l; 
} 
else { 

} 

# For each layer of the neocognitron. 
# train layer I  on all its 
# training patterns 
# until the squsired difference betveen 
# the actual and the taurget outputs 
# is less thaui some critical value. 

# Set the squared (ie. quadratic) error to 0. 
# Update S-plane aeights 
# for each S-plane in layer I  and 
# for each training pattern of the Jk*** S-plane. 
# Load the m*^ pattern into the input plane, 
# propagate activity from input to layer £, 

# then update the weights of all S-planes in 
# the layer. 

# Update the weights of layer i 
# so that the output of the seed-cell 
# in the A:*** S-plane is 1 while all other 
# S-plemes have outputs of 0. 
# Consider each S-plame in turn: 
# if we are looking at the k^^  S-plsuie, 
# the target output is 1, 

# otherwise, 
# the target output is 0. 

# Set £ to the error 
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} 
} 

SQ = SQ + e^ ; # and increment the cumulative squared error, 
for K = 1 to Kct-i { # For each preceding C-plane 

for all 1/ G J4/ { # and lor all input region cell positions 
# update the input veights 

ai{u, K, /C) = a/(t/, K,/C) + qt€ ■ uct-i{nktm + i^, «) i 
} 
bt{fC) = bt(fC)-i-qt • £ ; # and the bias «eight. 

} 

5.2.5     Practical issues in applying SLOG 

To apply gradient descent learning to the neocognitron, we have had to make some 

profound changes to the way in which S-cells operate. Although these changes allow 

us to avoid the problem of selectivity adjustment (simply because the selectivity 

parameter is not incorporated into the S-cell description of Equation (5.9)), there 

are three aspects of SLOG that prove troublesome in its practical application. 

1. In contrast to Fukushima's original training scheme, the successful convergence 

of SLOG is quite sensitive to the value of learning rate that is used. Although 

we can state that 0 < qe < 1 for gradient descent to stand a chance of working, 

it is difficult to estimate a good choice of learning rate a priori. 

During experiments, oscillatory behaviour of the squared error, over a num- 

ber of training epochs, WCLS taken as an indication of a too high value of q^. 

Although a number of authors have proposed methods for adjusting learning 

rate during training [20,36,90,172], in the experiments described in the Subsec- 

tion 5.2.6, satisfactory convergence was achieved by restarting training with a 

reduced value of q^. 

2. As is the case with many gradient descent optimization algorithms, it is not 

precisely clear when SLOG should cease updating S-cell weights. The stop- 

ping criterion used in Algorithm 5.2 is ba^ed on whether the squared error for 

the current epoch is less than some critical value SCTU (> 0). 
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A number of experimenters have used cross-validation methods to assess when 

to cease training. Generally speaking, cross-validation [173] evaluates a sys- 

tem's generalization performance, at regular intervals during training, with 

a set of exemplars that have not been used in training (the validation set). 

Training is halted when the proportion of the validation set that is correctly 

classified by the system reaches its peak. However, since the neocognitron is to 

be trained with a relatively small number of patterns, each of which has been 

chosen (by the supervisor) to represent some essential aspect of handwritten 

digits, we cannot afford the luxury of a validation set. Thus, the question of 

when to stop training becomes more a matter of the experimenter^s judgment 

(and patience) than a quantitative decision. 

This is a relatively minor concern but worth noting since this is the first 

neocognitron training algorithm to be presented that is not guaranteed to 

terminate after a predictable number of iterations. 

3. Not only is the number of S-cell training patterns small in comparison to the 

size of training sets commonly reported in neural network literature, the num- 

ber of S-cell training patterns is small in comparison to the dimensionality of 

each S-celFs input space. For example, an S-cell in the third layer of Fuku- 

shima's 1988 implementation of the neocognitron [48] has a 5 x 5 input region 

in each of 19 preceding C-planes, giving a total of 475 inputs (plus one bias 

input). In Fukushima's training set however, there are only 73 different third 

layer training patterns. This situation occurs in all but the first layer of the 

network in [48] where there are 12 different training patterns to train units 

with 9 inputs (and 1 bias connection). 

When there are A^ training vectors for an S-cell with d inputs (not including 

the bias), and A'^ < d -{- l^ there are infinitely many weight vectors that can 

implement the desired input-output mapping^ (see [75, Section 5.4, 5.5]). As 

^provided (1) that the training vectors form a set of points in general position and (2) that all 

target output values lie within the range of an S-cell's output. 
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we shall see, the network's ability to generalize effectively is hampered because 

the S-cell input-output mappings of layers 2, 3 and 4 are underconstrained. 

The aim of the SLOG algorithm is to get S-cells to correctly discriminate be- 

tween training features as a result of the weight update process, not through selec- 

tivity adjustment. As with the SOFT algorithm, experiment was required to to 

establish the practical feasibility of this psychologically inspired approach. 

5.2.6     Experimental application of SLOG 

Training each layer of the neocognitron with SLOG turned out to be as involved as 

developing the new set of training features for the SOFT algorithm. The experi- 

ments presented in this section are a synopsis of about 20 individual tests performed 

with the SLOG algorithm. (Note that the same network (fully detailed in Table C.3) 

wcis used in all of the experiments in this section.) 

As in the testing of the SOFT algorithm, the first experimental goal wa^ to 

establish whether SLOG could get the neocognitron to classify its training patterns 

correctly. The training of the network was an incremental process and each of the 

Experiments 5.4 to 5.8 describes the adaptation of S-cells within a particular layer. 

Experiment 5.4 (To establish whether SLOG can train the first layer of a neo- 

cognitron) 

The first layer of a modified version of Fukushima's 1988 implementation of the 

neocognitron (see Table C.3) was trained using SLOG and Fukushima's training data 

(Figure B.l). In addition to Fukushima's patterns, a blank image was incorporated into 

the training set; all S-cell target outputs were 0 for this extra training pattern. 

Over 37 epochs of training, the squared error decreased monotonically to a value of 

less than 0.001. At that point, training was stopped and the outputs of the first layer 

S-planes, in response to a complete digit, were recorded.   From the responses of the 
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S-planes (Figure 5.13), it was evident that SLOG had not resulted in a satisfactory set 

of S-cell weights. 

The spurious activity shown in the S-planes of Figure 5.13 is an indication of the 

lack of training patterns in comparison to the number of weights being adjusted. 

Although the S-cells responded correctly to their training exemplars (as evidenced 

by the low squared error), they failed to generalize in the desired manner simply 

because they had received too few examples of the sort of responses that were 

generally desired. 

A larger set of training examples was needed but it was not obvious how ad- 

ditional exemplars were to be obtained. The solution that was adopted took into 

account that the network's shift invariant response to patterns is hard-wired^ i.e. shift 

invariance is achieved though overlapping local receptive fields and shared weights. 

Within a given S-plane, a specific S-cell is not expected to respond to shifted ver- 

sions of its training patterns; adjacent cells fulfill that task. Thus, as well as being 

trained to respond to its original training patterns, an S-cell can also be trained not 

to respond to shifted versions of those patterns. In Experiment 5.5, shifted training 

patterns were used to increase the size of the first layer's training set by a factor of 

9, resulting in improved feature detection. 

Experiment 5.5 (To establish whether SLOG can train the first layer of a neo- 

cognitron using an augmented training set) 

SLOG was used to train the first layer of the network described in Experiment 5.4. 

This time, the training set comprised shifted versions of Fukushima's exemplars (see 

Figure 5.14) as well as his original training data. 

The squared error dropped to below 0.001 after 57 epochs of learning and weight 

adjustment was then stopped. A complete digit was presented to the network and the 

activity in the first layer was recorded. The resulting outputs and weights of each S- 

plane are shown in Figure 5.15 and it is clear from that diagram that the increased 
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Figure 5.13: The weights (3x3 matrices) and outputs of the USl S-planes after the presentation of 
the digit '9' to the neocognitron. Disregarding the uniform presence of small levels of activation, it can 
be seen that the test digit has elicited spurious responses from many of the S~cells. Note, also, the 
small central weight indicates that SLOG causes no significance to be attached to the central input 
of each S-cell. 

Figure 5.14: The set of training patterns can be augmented with shifted versions of Fukushima's 
exemplars. By virtue of the inter-layer connection scheme, shift invariance is built into the neocognitron 
and, in recognition of this, USl cells should be trained not to respond to translated versions of their 
original training patterns. This figure shows the unshifted training pattern for S-plane US2.2 (centre) 
with versions of that pattern that have been shifted by 1 element horizontally and/or vertically. 
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Figure 5.15: After using SLOG in conjunction with an augmented training set, the spurious S-cell 
responses shown in Figure 5.13 were eliminated. In addition, the extra training examples revealed the 
importance of the central S-cell input to correct feature extraction. 
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size of training set produced S-cells with better feature extracting abilities than those in 

Experiment 5.4. 

Experiments 5.4 and 5.5 suggest that SLOG is effective in training S-cells given 

sufficient training exemplars. The results of the next experiment lend further cre- 

dence to that suggestion. 

Experiment 5.6 (To establish whether SLOG can train the second layer of a 

neocognitron) 

After the first layer weights of the neocognitron had been adjusted in Experiment 5.5, 

SLOG was applied to the second layer of the network. 

Initially, only Fukushima's original exemplars were used in training the second layer 

but, as in Experiment 5.4, many spurious responses were observed in a number of 5- 

planes (Figure 5.16), despite the network's convergence to a squared error of less than 

0.0001. 

In an attempt to improve S-cell response, the weights of the second layer S-cells were 

reset to small random values and training was recommenced, this time using a training 

set that had been augmented with shifted training patterns. The additional patterns 

were generated by shifting Fukushima's original exemplars by 2 elements horizontally 

and/or vertically. 

The amount of translation applied to the second layer training patterns was larger 

than that applied to the patterns of the first layer to account for the blurring performed 

by first layer C-cells. Given that UCl cells cause the activation of preceding S-cells to be 

spread over a 5 x 5 region, translating an input image by only 1 element has a negligible 

effect on the pattern of activity that reaches the second layer. It was considered that a 

training exemplar shifted by 2 elements would produce a pattern of activity which was 

sufficiently different (from that produced by the unshifted exemplar) for a US2 cell to 

be trained not to respond to it. 

Training concluded after 12 epochs when the squared error dropped below 0.05. The 

network's response to a complete digit was tested and indicated that the use of the 
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augmented training set reduced, but did not eliminate, spurious S-cell activity in the 

second layer (see Figure 5.17). Although further training decreased the squared error, 

the network's response to test digits remained essentially the same, i.e. there was always 

a small component of spurious activity within some second layer S-planes. 

Experiment 5.6 showed that using shifted training patterns to augment the train- 

ing set is not an ideal method for enhancing S-cell generalization. Although SLOG 

minimizes the squared error between actual and target S-cell outputs, when a rel- 

atively small set of training examples is used this minimization does not produce 

S-cells that detect the sorts of features desired. The shortcomings of this gradient de- 

scent technique serve to highlight Fukushima's ingenuity in developing an algorithm 

that could train a very large network with a comparitively small set of examples. 

So far, the experiments presented have dealt with the training of the first half 

of the neocognitron. In the following two tests, the use of SLOG on the S-cells of 

layers 3 and 4 is described. 

Experiment 5.7 (To establish whether SLOG can train the third layer of a neo- 

cognitron) 

SLOG was applied to the third layer S-celt weights of the neocognitron described in 

the previous experiment. Fukushima's set of third layer training patterns was augmented 

by exemplars that had been translated by 3 elements horizontally and/or vertically. As 

in Experiment 5.6, an increased amount of translation was used so that the shifted 

training patterns would produce patterns of activity quite different to those elicited by 

the unshifted patterns. 

After 11 epochs, the squared error had fallen below 0.01 and training was stopped. 

A complete digit was presented to the network and the outputs of the third layer S-cells 

were measured (Figure 5.18). The amount of activity observed within layer 3 S-planes 

was less than that found within Fukushima's original neocognitron after the presentation 

of the same digit.   However, as Figure 5.18 shows, the third layer S-planes correctly 
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Figure 5.16: Training second layer S-planes with Fukushima's original data alone results in adequate 
feature extraction in some cases (the top four cell-planes) but a great deal of spurious response in 
others (the lower cell-planes). The patterns of activity shown in this figure were produced by the same 
test input used in Experiments 5.4 and 5.5 (i.e. the digit '9'). 

The reader is reminded that the sorts of features that each S-ptane should respond to are shown in 
Figures B.l to B.4. 

US2.0 US2.1 US2.2 US2.3 

US2.7 US2.10 US2.17 US2.18 

Figure 5.17: When the second layer training set was augmented with translated versions of the original 
patterns, the amount of spurious S-cell activity was reduced. Features that were supposed to be detected 
by specific S-plancs elicited significant response in the correct locations of those S-planes (US2.0, US2.2 
and US2.3); in other S-planes there was little activity. 
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detected the presence of appropriate features in the test pattern, indicating that SLOG 

had successfully trained the third layer of the network. 

Experiment 5.8 (To establish whether SLOG can adjust a neocognitron to cor- 

rectly classify training data) 

The fourth layer of the neocognitron was trained using SLOG and Fukushima's orig- 

inal training patterns. Unlike previous experiments, shifted versions of training patterns 

were not employed. This was because, at the final layer of the neocognitron, translations 

of the input patterns have negligible effect on the output of the network (due to the 

feature extraction and compression of representation performed in preceding layers). 

After 8 epochs of training the squared error of the system had dropped to less than 

0.0001. Training was stopped at that point and the layer 4 training patterns were 

presented to the network. All of these patterns were correctly classified. 

Experiment 5.8 ha^ shown that SLOG is capable of doing what OCFT could 

not, that is, train the neocognitron to correctly classify all of the fourth layer training 

patterns. The final experiment in this section looks at how the SLOG trained 

network performs with real-world data. 

Experiment 5.9 (The classification performanceof the neocognitron (after training 

with SLOG) on a set of real world data) 

The network described in Experiment 5.8 was used to classify a set of 400 digits from 

the CEDAR database, both before and after thinning by SPTA [133] (see Section B.5). 

The performance statistics of the SLOG trained neocognitron are shown in Table 5.8 

below and the confusion matrix obtained with the thinned CEDAR digits is given in 

Table 5.7. 

The results presented in Table 5.8 show that SLOG does not produce a neocog- 

nitron that can generalize to any useful extent. Such poor performance on real-world 
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• ■ • 

US3.2 US3,5 US3.7 US3.8 US3.34 

Figure 5.18: After training with an augmented set of training patterns, the third layer S-planes could 
correctly detect the presence of certain features within a test digit. The responses of these S-planes after 
being trained by SLOG were somewhat smaller than in Fukushima's original neocognitron. Further 
training did not increase the third layer S-plane outputs so it was decided to move on to the training 
of the final layer. 

The reader is again referred to Figures B.l to B.4 for information on the features that S-planes arc 
responding to in the diagrams of this section. 

Input Output class 
Class 0 1 2 3 4 5 6 7 8 9 Reject 

0 20 3 0 0 4 0 3 1 0 9 0 
1 0 31 0 0 9 0 0 0 0 0 0 
2 2 4 3 0 20 0 0 10 0 1 0 
3 0 0 2 25 8 0 0 5 0 0 0 
4 0 15 0 0 24 0 0 1 0 0 0 
5 1 4 4 12 11 0 1 0 3 4 0 
6 0 13 0 0 19 0 6 1 0 1 0 
7 0 15 3 0 12 0 0 10 0 0 0 
8 2 5 0 0 13 0 0 4 13 3 0 
9 1 8 1 0 12 0 0 7 0 11 0 

Table 5.7: When all four layers of S-cells had been trained with SLOG, 400 thinned CEDAR digits 
were used to test the classification performance of the network. The confusion matrix that was obtained 
shows that the network does not generalize well, almost certainly as a result of the lack of training 
data. 

Digit set % Correct % Misclassified % Rejected % Reliability 
CEDAR 
CEDAR (thinned) 

19.25% 
35.75% 

80.75% 
64.25% 

0.00% 
0.00% 

19.25% 
35.75% 

Table 5.8:   Classification performance of a modified version of the neocognitron (Table C.3) after 
training with SLOG. 
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data is almost certainly due to the use of a few hundred hand-crafted training pat- 

terns to train a network which has around 20,000 free parameters. Experiments 5.5, 

5.6 and 5.7 made use of shifted versions of Fukushima*s training patterns to augment 

the training sets of layers 1, 2 and 3, and, to a degree, this technique improved S- 

cell behaviour. However, multiplying the number of hand-crafted exemplars in this 

artificial manner is unlikely to be as effective as using a large training set containing 

a rich variety of real-world data. Unfortunately, it would be innpracticable to obtain 

sufficient real-world digit fragments to train layers 1, 2 and 3 (this is said in light 

of the inordinate amount of time and effort taken to develop the 444 new training 

patterns used in Experiment 5.3). 

The choice of training patterns also hcLS a subtle effect on the way that we 

monitor the adaptation of the network. An inadequate training set renders the 

squared error unreliable as a measure of system performance. In other words, the 

squared error obtained with a sparse set of training examples tells us very little 

about how the neocognitron will generalize. This means that we have to resort to 

direct observation of S-plane response to evaluate whether training has produced the 

desired S-cell behaviour, thus lessening the appeal of SLOG as a learning method. 

This has not been the first time that gradient descent learning has been applied to 

the neocognitron: Okada and Fukushima also experimented with backpropagation 

as a means of training all layers of the neocognitron simultaneously [137]. Given 

that Okada and Fukushima used only five patterns to train a network one third the 

size of the one used in Experiments 5.4 to 5.9, it is not surprising that they reach the 

fairly conservative conclusion that "... the neocognitron came to recognize deformed 

test patterns correctly provided the deformation was not so large." 

It would be remiss to discuss gradient descent learning in the neocognitron with- 

out reference to the work of Le Gun et ai [103,105]. Although Le Gun and his 

colleagues give only cursory acknowledgment of the similarities between their net- 

work and Fukushima's neocognitron, these systems bear a strong resemblance to 

each other.   The high performance of Le Gun et a/.'s system is achieved through 
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the use of large amounts of real-world training data and a method of reducing the 

number of adjustable weights during learning [104]. 

The methods used by Le Cun et a/, could also be applied to the neocognitron 

but, since the two systems are already quite similar, it is improbable that this would 

result in a digit recognition system superior to both networks. It is worth noting 

that one of the main reasons for investigating SLOG was its novelty as a training 

scheme (and, consequently, its potential to produce a network that could outperform 

existing systems). 

SLOG is a learning algorithm that was developed as a result of psychophysical 

evidence of visual feature weighting in humans. The negative results obtained in this 

section reflect a lack of variety in the data appUed to the learning algorithm, rather 

than shortcomings in feature-bcised theories of form perception per se. Because it 

would be difficult to obtain a wide selection of data to train the intermediate layers of 

the neocognitron {i.e. fragments of handwritten digits), we shall turn our attention 

from SLOG to an algorithm that relies upon a large set of complete ZIP code digits 

in determining effective selectivity values. 

5.3    Selectivity Hunting to Optimize Performance 

Let us put the knowledge we have gained so far to good use. Bearing in mind the 

shortcomings of the training schemes that have been investigated, what sort of issues 

should we consider in designing an effective method for adjusting selectivities in the 

neocognitron? A suitable algorithm 

• needs to incorporate extensive amounts of real-world data into the adjustment 

process. Even though the neocognitron makes use of hand-crafted exemplars 

to determine S-cell weights, there is no reason not to use actual handwritten 

digits in the selectivity adjustment procedure. 
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• must utilize a meaningful performance measure, i.e. one that is directly related 

to the network's ability to generalize, not just its capacity to associate the 

correct output with each training pattern. 

• should not be based upon unnecessarily restrictive assumptions about the 

distribution of patterns or features in input space; both OCFT and SOFT 

have demonstrated the dangers of making assertions in this regard. 

• should try to exploit the most idiosyncratic features of patterns as a means to 

discriminate between different classes of input. 

• should not require large numbers of digit fragments as training data. Although 

there is no shortage of handwritten digit data, extracting "useful" portions of 

these digits for the purposes of training is a poorly defined and extremely time 

consuming process. 

• needs to have clearly defined stopping criteria, i.e. there should be no doubt 

a.s to when the training and selectivity adjustment processes are complete. 

• must not introduce new parameters that have to be carefully chosen in order 

to obtain satisfactory behaviour from the network. A method of determin- 

ing selectivity whose success depends upon another variable (such a^ qg or 

"^se ■ )■, for which no obvious choice exists^ does not solve the general problem 

of parameter selection in the neocognitron. 

In this section, a selectivity adjustment technique that fulfills most of these require- 

ments will be described. The concept behind this new algorithm is simply to take 

a number of identically structured neocognitrons, with different selectivity param- 

eters, train them using the same set of exemplars, then see which one is best at 

classifying a validation set of handwritten digits; the ideal selectivities are taken to 

be those of the network with the highest classification performance on the valida- 

tion set. Because this brute force approach is based upon hunting around for the 

selectivity values that optimize the performance of the network, we shall refer to it 

as SHOP — Selectivity Hunting to Optimize Performance. 



154 Cha.pter 5: Three New Algorithms For Determining Selectivity 

It is obvious that such a naive method for determining selectivities must be 

subject to certain constraints and assumptions for it to be feasible. If we liken the 

neocognitron to an old-fashioned radio, and represent the selectivity of each S-plane 

with a tuning knob, finding selectivities to optimize the network's performance would 

be comparable to twiddling about 100 knobs in an effort to tune into one station. 

Instead of attempting to individually adjust the selectivity of each S-plane, SHOP 

maximizes the classification performance of the network with the constraint that all 

S-planes within a given layer have the same selectivity value. Thus, SHOP would 

optimize the performance of a four layer neocognitron, such as the one described in 

[48], with respect to four parameters: ri, r2, r^ and r4. 

To establish how well a particular set of selectivities works in an implementation 

of the neocognitron, it is necessary first to train the network, then to measure its 

performance on the validation set. This measurement gives us an estimate of how 

the network will perform in general, but, since each performance measurement takes 

a certain amount of time, we must take into consideration 

1. the size of the validation set. The larger the validation set, the more accurately 

will the network's classification performance on the set reflect its generalization 

abilities. However, the time taken for SHOP to complete is proportional to 

the number of patterns in the validation set. 

2. the variety of selectivities used in measuring the network's performance. Be- 

cause S-cell selectivity is a continuous variable, there are an infinite number of 

selectivity values to apply to a particular network. Consequently, SHOP re- 

lies upon sampling the range of possible selectivities to obtain a finite number 

of performance estimates for a specific neocognitron. 

We shall touch upon these issues again in the next section. 

If we let R( be the set of all f ^ layer selectivities that are to be considered when 

testing the performance of the neocognitron, the SHOP algorithm can be expressed 

in the following manner. 
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Algorithm  5.3 (The Selectivity Hunting to Optimize Performance 
Algorithm) 

In the pseudo-code below, the procedure train-neocognitron() refers to Fuku- 

shima's original training algorithm (Algorithm 3.1). 

The purpose of the test-neocognitron() procedure is to evaluate the performance 

of the network using a validation set of real-world data. 

It is up to the experimenter to decide exactly how the network's performance is 

to be measured. Correct classification rate and reliability are examples of statistics 

that could both be used to measure the network's performance 

procedure SHOPQ { 
for all ri £ Ri { # Using every possible combination 

# of selectivities, 
for all r^ E RL { # in all layers of the neocognitron, 

trainmeocognitronO ; # train the network. .. 
test.neocognitronO ; # and then test  it. 

# If the current network has 
if performance > bestso-far { # the best performance  (so far), 

bestso-far = performance ; # update the best performamce value 
^best — {ri,r2, . . . JVL) ; # and store the L-tuple of  selectivities 

} # used by the present network. 
} 

} 
} 

When the algorithm terminates, Rhest contains the selectivities that elicited the 

highest performance from the network. These selectivities can then be used in prac- 

tical implementations of the system. 

5.3.1     Practical issues in applying SHOP 

Although SHOP has the potential to make good use of real-world data and em- 

ploys a more realistic measure of network performance than any of the algorithms 

discussed previously, the exhaustive search approach to finding a good set of selec- 

tivities hcLS a number of drawbacks. 
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1. Until now, execution time has not been discussed in relation to selectivity ad- 

justment methods, but we cannot ignore this issue our assessment of SHOP's 

feasibility. If we denote the time taken to train the neocognitron by txy the 

time taken to propagate activity through the network by tp and the number of 

examples in the validation set by Nvy then the time taken to execute SHOP 

can be written as 

tshop = \Ri\ x|^2| X ••• X \RL\ x(tT-\-Nvtp). 

Fukushima [58] cites values of tr = 780s, tp = 3.35 for a simulation of the 

neocognitron, written in FORTRAN and running on a SUN Sparcstation. If 

we specified 10 possible selectivity values for each layer of a four layer network 

and used a validation set with 400 patterns, SHOP would take about 8 months 

to come up with a good set of selectivities on Professor Fukushima's computer. 

Given that current handwritten character recognition systems operate at rates 

in excess of 30 characters per second [105], no one would seriously consider 

using a computer simulation of the neocognitron for industrial purposes. If 

the neocognitron were to be incorporated in a commercial recognition system, 

it would have to be implemented with dedicated hardware, such as that de- 

veloped by Chiang and Chuang [21]. With Chiang and Chuang's hardware, 

SHOP would take around 9 days to complete the selectivity adjustment task 

described before. 

The prospect of using SHOP in a slow implementation of the neocognitron is 

not especially appealing. Even with a hardware realization of the system, the 

question remains as to whether the results of SHOP would be worth waiting 

for anyway. 

2. The success of SHOP relies upon the stability of the neocognitron's perfor- 

mance with respect to changes in selectivity. If small changes in the selectivity 

of any layer cause the performance of the neocognitron to fluctuate wildly, then 

sampling the net's performance for a variety of selectivities will be of little use 



ChcLpter 5: Three New Algorithms For Determining Selectivity 157 

to us. Under such circumstances, it would be unlikely for any of the selectiv- 

ity combinations tested to produce (or at least give an indication of) the peak 

classification performance attainable. 

If, on the other hand, the behaviour of the neocognitron is stable in this regard, 

then we can expect that similar selectivity combinations will give rise to similar 

classification rates, so that we can obtain a general impression of the network's 

performance as a function of each layers selectivity. 

3. In relation to the points listed at the start of Section 5.3, SHOP makes no 

attempt to exploit the most idiosyncratic features of patterns in its adjustment 

of S-cell selectivities (since all S-cells within a given layer are constrained to 

have the same selectivity value). For this reason, we can be almost certain that 

the selectivities chosen by SHOP will not be optimal^ t.e. will not produce 

the maximum performance achievable with a particular network. In apply- 

ing SHOP, we would hope that the selectivity values chosen give rise to a 

performance level which is reasonably close to optimal. 

In the next section, we investigate the effect of the shortcomings that we have 

discussed here. 

5.3.2     Experimental application of SHOP 

Time was the prime concern in all of the experiments on SHOP described in this 

thesis. The experiments were based around a simulation of a four layer neocogni- 

tron, written in C+H- and executed on Sony NEWS workstations. When simulating 

the network detailed in [48], each forward propagation of activity took around 10 

seconds; considering the lengthy run times quoted in the previous subsection, it was 

clear that further constraints had to be imposed on the experiments to allow them 

to run to completion within a reasonable period. 

The duration of each SHOP experiment was reduced by two orders of magnitude 

by restricting the first and fourth layer selectivity values that were tested. Since the 
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relation between the input pattern and the outputs of the first layer S-planes was 

readily observable, a suitable ri value could be determined by trial and error. Hence, 

the set of first layer selectivities to be tested contained only one value: Ri = {\.7]. 

With respect to the final layer selectivity it is important to remember that, 

although r4 determines the value of the outputs of the network, it has no effect 

on which of the outputs is the largest. Since input patterns are classified on a 

winner-take-all basis, the specific value of r4 tends not to affect the classification 

performance of the network (providing r4 is not so high as to make US4 cells reject a 

large proportion of input patterns). Making the arbitrary restriction that R4 = {1.0} 

did not appear to cause any problems in the tests on SHOP. 

In spite of the time saving measures described here, each of the experiments 

in this section took around two weeks of computing time to complete. However, 

since the experiments dealt with a four layer neocognitron, the restriction of the 

first and fourth layer selectivity values had an unexpected benefit in allowing the 

classification performance of the network to be readily visualized as a function of 

two variables, r2 and r3. We shall refer to the three dimensional representation of a 

set of classification results as a performance surface. 

In formulating SHOP we did not deviate from Fukushima's description of the 

neocognitron and its training method. So, in contrast to the SOFT and SLOG 

algorithms, it has already been established that SHOP can adjust the neocognitron 

to correctly classify its training data. The first test of SHOP aimed to find out 

the peak clcissification performance of the neocognitron (under the constraints that 

have been mentioned). 

experiment 5.10 (The classification performance of the neocognitron after train- 

ing with SHOP) 

SHOP was applied to Fukushima's 1988 implementation of the neocognitron (see 

Table C.l), using the pattern data in Section B.l as the network's training set. The sets 
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of selectivity values used by the SHOP algorithm were 

Ri    =   {1.700} 

R2   =   {0.5990,0.7805,1.000,1.269,1.602,2.022,2.563,3.274,4.236,5.581, 

7.543,10.57} 

R3   =   {0.5990,0.7805,1.000,1.269,1.602,2.022,2.563,3.274,4.236,5.581, 

7.543,10.57} 

Ri   =   {1.000}. 

(See Table D.4 for further detail.) A total of 144 different selectivity combinations were 

tested. 

Two sets of digits were used to estimate the network's generalization abilities: the 

first set contained 400 unthinned CEDAR ZIP code digits, the second set was generated 

by thinning the first set of digits using SPTA [133]. Figures 5.19 and 5.20 show the two 

performance surfaces obtained with the two different validation sets. 

Since improved performance had been attained in Experiment 5.3 with my 1992 

implementation of the neocognitron (see Table C.4), SHOP was then applied to that 

network in an attempt to increase recognition rates. SHOP used the range of selectiv- 

ities shown above and the training data given in Section B.2. 

As with Fukushima's network, two validation sets of digits (400 unthinned and 400 

thinned CEDAR ZIP code digits) were used to estimate the network's generalization 

abilities. Figures 5.21 and 5.22 show the improved performance surfaces obtained with 

the new network and Table 5.9 shows the optimal selectivity estimates that resulted. 

To test whether SHOP's choice of selectivities was effective, the performance of 

my 1992 neocognitron was evaluated using a set of 400 thinned CEDAR digits that had 

not been used in either training or validation. The results of this test are contained in 

Tables 5.10 and 5.11. 

The results of Experiment 5.10 address two of the concerns raised in Subsec- 

tion 5.3.1.   First, this experiment shows that SHOP can be successfully applied 
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Figure 5.19: The performance surface obtained with Fukushima's 1988 network using a validation 
set of 400 unthinned CEDAR digits. A peak correct classification rate of 49.00% (54.60% reliability) 
occurred for r2 = 2.563, P3 = 0.7805. 
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Figure 5.20: The performance surface obtained with Fukushima's 1988 network using a validation set 
of 400 thinned CEDAR digits. A peak correct classification rate of 46.75% (49.34% reliability) occurred 
for rz = 2.022, rg = 1.602. 
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Figure 5.21; The performance surface obtained with my 1992 network using a validation set of 400 
unthinned CEDAR digits. A peak correct classification rate of 79.00% (79.40% reliability) occurred for 
r2 = 1.602, ra = 1.000. 
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Figure 5.22: The performance surface obtained with my 1992 network using a validation set of 400 
thinned CEDAR digits. A peak correct classification rate of 78.75% (79.15% reliability) occurred for 
ra = 2.022, rg = 0.5990. 
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Validation set SHOP'S estimate of best selectivities 
400 CEDAR digits 

400 thinned CEDAR digits 
/2be,t = {1-700,1.602,1.000,1.000} 

Rbest = {1.700,2.022,0.5990,1.000} 

Table 5.9: These results show the selectivity values that gave rise to the peak classification performance 
on each of the validation sets used in Experiment 5.10. 

Test set Selectivities % Correct % Misclassified % Rejected % Reliability 
400 thinned 

CEDAR digits 
{1.700,2.022, 
0.5990,1.000} 

75.75% 23.75% 0.50% 76.13% 

Table 5.10: These performance statistics were obtained by testing a neocognltron, after adjustment 
with SHOP, on a previously unseen test set of 400 thinned CEDAR digits. 

Input Output class > 
Class 0 1 2 3 4 5 6 7 8 9 Reject 

0 35 1 0 0 0 0 4 0 0 0 0 
1 0 39 1 0 0 0 0 0 0 0 0 
2 14 1 16 3 0 0 0 3 1 2 0 
3 1 1 1 36 0 0 0 1 0 0 0 
4 0 2 0 0 34 2 0 0 0 1 1 
5 1 0 0 2 0 29 4 4 0 0 0 
6 3 8 0 0 2 2 23 0 2 0 0 
7 0 5 2 0 2 0 0 29 0 1 1 
8 4 2 0 0 1 1 1 0 28 3 0 
9 0 1 0 0 0 0 0 4 1 34 0 

Table 5.11: The confusion matrix for the neocognitron whose selectivities are given in Table 5.10 after 
testing with 400 thinned digits (previously unseen). 
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to a moderately slow implementation of the neocognitron, provided that practical 

constraints are imposed on the ranges of selectivities to be tested. Second, the per- 

formance surfaces that were obtained reveal that the network's classification rate 

is reasonably stable with regard to changes in selectivity. This justifies SHOP's 

method of sampling the neocognitron's behaviour with various selectivities (at least 

for the problem of digit recognition). 

The shape of the performance surfaces in Figures 5.19 to 5.22 suggest the possi- 

bility of more efficient methods for optimizing performance than SHOP's exhaustive 

search approach; unimodal functions (e.g, the surfaces obtained in Experiment 5.10) 

are amenable to line search techniques that require substantially fewer performance 

evaluations to maximize the network's clcissification rate. The author has proposed 

another selectivity optimization scheme [116] baised upon modelling the true per- 

formance surface with a succession of quadratic approximations, again, in order to 

reduce the number of performance evaluations required. 

Irrespective of the time complexity of SHOP, a conriparison of the performance 

surfaces given by Fukushima's (page 160) and my own (page 161) implementation 

of the neocognitron shows what a profound improvement can be achieved with a 

skillful choice of network structure and training data. This phenomenon calls into 

question the validity of Fukushima's scheme of supervised learning. Can such a 

training method, so sensitive to the choice of intermediate layer training patterns, 

be considered robust enough for practical application? 

SHOP has certainly shown the neocognitron to be a good deal less sensitive to 

variations in input pattern style than previously expected. In both Fukushima's and 

my own implementation, the network's peak classification rate on the validation set 

of unthinned digits was slightly in excess of that achieved with the validation set of 

thinned digits. This result is contrary to the findings of Experiments 5.3, 5.9 and, 

more significantly, to comments made by Fukushima implying that the first layer of 

the neocognitron would have to be redesigned to cope with unthinned input patterns 

[58, Section V]. 
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The 75.75% correct classification of a previously unseen set of test digits has been 

the highest performance presented so far. By using a validation set of 400 real-world 

digits, we can say (with 95% confidence) that the classification performance statistics 

obtained in a SHOP experiment are within ±5% of the rates that would be achieved 

on all real-world digits (see Section B.3). The following experiment investigates this 

issue a little further by considering the performance surfaces obtained by using two 

different validation sets. 

Experiment 5.11 (A comparison of the performance surfaces obtained with two 

different validation sets) 

Using the same training set and range of selectivities as the previous experiment, 

SHOP was applied to my 1992 implementation of the neocognitron (see Table C.4). 

Two different validation sets were used (both consisting of 400 thinned CEDAR digits) 

and the difference between the two performance surfaces that were obtained is plotted 

in Figure 5.23. The maxima of both surfaces were achieved with the same (r2, r^) 

combination: r2 = 2.022, r^ = 0.5990. The correlation coefficient for the sets of results 

was p = 0.9961. 

The results of Experiment 5.11 are in accordance with the statistical prediction 

that a 400 digit validation set provides a reasonably accurate estimate of a network's 

true performance. But what if we were to use a measure of performance other than 

correct classification rate, e.g. reliability^ Since the reliability of a classifier is given 

by a quotient involving two correlated statistics, 

% Reliability   =    100% x—- ^ ^^T.'^^     .^,, (5.15) 
% Correct + % Misclassified' ^       ^ 

it is difficult to make predictions about its stability as a performance index. Fur- 

thermore, the reliability of a classifier that rejects all test patterns is undefined 

(although, for convenience, we shall assert that such a classifier has 0% reliability). 

The final experiment of this chapter looks at the feasibility of using reliability as 

a measure of performance in the SHOP algorithm. 
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Delta % Correct 
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Figure 5.23: The difference between the correct classification rates obtained with two different valida- 
tion sets. More than 97% of the performance estimates from the first validation set were within 5% of 
the corresponding performance estimates from the second validation set. The correlation between the 
two sets of results was p = 0.9961. 

Experiment 5.12 (An investigation into the use of reliability as a performance 

nnetric for SHOP) 

The classification statistics that were measured in Experiments 5.10 and 5.11 were 

used to construct plots of reliability vs. second and third layer selectivity values, for 

a variety of validation sets. Figures 5.24 and 5.25 show the reliability performance 

surfaces obtained with unthinned and thinned digits, respectively. Figure 5.26 is a plot 

of the difference between the reliability estimates given by two validation sets of thinned 

CEDAR digits. In this instance, the correlation between the two sets of results was p = 

0.9723. 

The reliability performance surfaces shown in Figures 5.24 and 5.25 are somewhat 

rugged in comparison to the gently undulating classification performance surfaces 

of Figures 5.19 to 5.22. Reliability is a particularly sensitive performance index 

at low correct classification rates. For example, if a classifier were to correctly 

identify one pattern and reject all others, it would be considered 100% reliable, 
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% Reliability 

lOOr 

Figure 5.24: The reliability performance surface obtained using a validation set of 400 unthinned 
CEDAR digits. A peak reliability of 79.59% (78.00% correct) occurred for rj = 1.602. r^ = 1.269 (c/. 
Figure 5.21). 
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Figure 5.25: The reliability performance surface obtained using a validation set of 400 thinned CEDAR 
digits. A peak reliability of 79.15% (78.75% correct) occurred for r2 = 2.022, r^ = 0.5990 (c/. 
Figure 5.22). 
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Figure 5.26: The difference between the reliability estimates obtained with two different validation sets 
of 400 thinned CEDAR digits. In comparison to Figure 5.23, it appears that reliability is slightly less 
consistent than correct classification rate as a performance measure. The degree of correlation between 
the reliability estimates was still high (p = 0.9723). 
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Algorithm Test set % Correct % Misclassified % Rejected % Reliability 
SHOP'^ (   400 thinned 75.75% 23.75% 0.50% 76.13% 
SOFT* i   CEDAR ZIP 58.75% 26.00% 15.25% 69.32% 
SLOG*= [    code digits 35.75% 64.25% 0.00% 35.75% 
OCFT** See Section B.3 3.25% 10.00% 86.75% 24.53% 

"See Experinnent 5.10 
*See Experiment 5.3 
'^See Experiment 5.9 
''See Experiment 4.1 

Table 5.12: The scores so far. A summary of the peak classiRcation performances obtained with 
the selectivity adjustment algorithms that have been discussed in this thesis. 

irrespective of the fact that an additional misclassified example would halve that 

statistic. Such an extreme situation did not arise in any of the simulations conducted 

but significant fluctuation in reliability was observed for high values of ra. Given the 

possibility of sudden, sharp peaks of reliability for values of selectivity that produce 

low classification rates, it would seem reasonable not to use reliability as the sole 

measure of the neocognitron's performance. 

This concludes our investigation into the SHOP algorithm for the moment. 

Before moving on to consider, among other things, how the performance of the 

neocognitron may be be improved further still, let us summarize the significant 

aspects of this chapter. 

5.4     SOFT, SLOG and SHOP in review 

Of the three new algorithms proposed in this chapter, it is plain that SHOP 

is both the simplest and most effective (but, alas, not the most elegant) way of 

determining selectivities in the neocognitron. Although SOFT and SLOG had 

firm theoretical foundations, experiments revealed weaknesses in the assumptions 

that these algorithms were built upon. In particular, the idea that selectivities can 

be adjusted using the information contained in a handful of "typical" features has 

been discredited by the mediocre results obtained with OCFT, SOFT and SLOG. 

Several ideas inspired by the shortcomings of these algorithms were summarized at 
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the start of Section 5.3 and provided direction for the development of SHOP. 

Fukushima has maintained that a "skillful choice" of training patterns is needed 

for the neocognitron to perform effectively [55,58], but he has not yet published any 

results to indicate the network's sensitivity to the supervisor's selection of training 

features. The paucity of concrete results on this, and other, aspects of the neocog- 

nitron's behaviour is probably due to the lack of systematic method for evaluating 

the network's performance. With the SHOP algorithm we have a useful tool for 

analysing the characteristics of the neocognitron. Preliminary investigations with 

SHOP have already shown that a more "skillful choice" of training exemplars can 

increase the classification rate by almost 30% and that the neocognitron is quite 

capable of classifying unthinned digits as accurately as thinned ones (see Experi- 

ment 5.10). 

The failure of Hildebrandt's OCFT algorithm provided much of the motivation 

behind the research described in this chapter. Table 5.12 shows that all of the new 

methods that have been presented have outperformed OCFT. But, as stated at 

the start of this chapter, the issue central to this thesis is the effectiveness of the 

neocognitron as a system for handwritten character recognition. The next chapter 

builds upon the work that has just been presented to pursue this issue further. 



Chapter 6 

Maximizing Performance 

Artificial neural networks have become notorious for the many parameters that 

influence their learning and operational behaviour; with selectivity (r^), S-cell mask 

(7/) and C-cell mask (<5/, S() parameters alongside the ubiquitous learning rate (qt), 

the neocognitron does nothing to dispel this notion. In addition to these variables, 

we must not forget that the structural parameters (i.e. architecture) of the network, 

and the data with which it is trained also have a profound effect on the neocognitron's 

operation. However, the issues of architecture and training data are beyond the 

scope of this dissertation to consider in depth; instead we shall concentrate upon 

the parameters governing cell function in the neocognitron. 

We have already dealt with two of the neocognitron's parameters: selectivity and 

learning rate. The proportion of this thesis devoted to techniques for adjusting the 

selectivities of the network indicates the difficulty of this task. Chapter 5 has shown 

the SHOP algorithm to be the most effective method of determining selectivities 

proposed to date. 

Unlike many other multilayer networks, choosing a suitable learning rate for the 

neocognitron is a trifling matter. As we saw in Section 3.5, providing qi is reasonably 

large (Fukushima [58] suggests 10^), the neocognitron will function as happily as the 

rest of its parameters will allow. 

169 
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That leaves the mask parameters: 7^, Se and Sf. Before we can establish how 

to maximize the network's classification abilities, we must explore the effect that 

these remaining variables have on the system. SHOP makes such an investigation 

possible by providing us with a systematic approach to evaluating the neocognitron's 

behaviour. 

6.1    The mask parameters and their effect on the 

neocognitron 

Recall that the V-cells in layer i are linked to immediately preceding C-planes by 

a set of weighted connections, denoted by Cf{i^) (see page 68). These weights are 

also involved in the S-cell weight update process during supervised training (Algo- 

rithm 3.1). Similar sets of connections (known as masks) exist between C-cells and 

preceding S-planes and these are weights are written as di{t/) (see page 68). Since 

Fukushima specified that the values of Cf{i/) and d£{i/) should be "large at the centre 

and gradually decreas[ing] in the periphery" [58, page 359.], it appears as though he 

intended the S and C-cell masks to make the cells more sensitive to activity in the 

middle of their input regions. In this respect, the receptive fields of Fukushima's 

cells are somewhat similar to the centre-surround cells found in the visual pathway 

[.fiorentinij, Section V]. 

From the time that the neocognitron was first proposed, there appears to have 

been some level of confusion among experimenters as to how to calculate the masks 

for the S and C-cells. Some authors have chosen to omit reference to these weights 

altogether [93,118,132,165,183,184] others invent masks of their own [124,168]; only 

one person has suggested their irrelevance [77]. In an attempt to clarify the matter, 

two methods for calculating ct{i/) and d({i/) will be reviewed. Fukushima's imple- 

mentation of the masks was given in Chapter 3 with the following equations: 

ce{^)   =   7^""' (3.6) 
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dt{u)   =   SfSt^^K (3.7) 

where 0 < 7/,^^ < 1 and 0 < Sf. With regard to these equations, Fukushima stated 

that ".,. the pitch of the array of the cells in the preceding layer, from which the 

connections lead , is taken as unit length for i/" [58, Appendix]. As an example (con- 

firmed by Fukushima himself [57]) of the weights that arise with these specifications, 

a 5 X 5 C-cell mask would be written explicitly £LS 

6^   8^   8^   8-^   8^ 

8'^     8^    8""    8^      8^      • (6.1) 
8^     ^v/2      ^1      ^v/2     ^x/5 

di{u)   =   8, 

Menon and Heinemann had to develop their own mcisk calculation techniques 

for their 1988 paper [124] without the benefit of details about Fukushima's method 

(which were eventually published in 1991). They defined the S-mcLsks according to 

ce{iy)   = 
1 

a r'(l/) (6.2) 
C(£)   '      ' 

where r'(i/) is the normalized distance between the location 1/ and the centre of 

the S-cell's input region i.e. 0 < r'{i/) < 1. The parameter at is analogous to 

Fukushima*s ji and 81 variables and the C{£) term is a normalizing constant to 

ensure that 

'^=1 i^eAt 
(6.3) 

Using Menon and Heinemann^s approach, a 5 x 5 C-cell mask would have the fol- 

lowing coefficients 

8'       <5\/^   8'^^   ^v^      8' 
sV^    8^n    ^iM    ^1/2    ^^/iTi 

^^5/8        ^1/2        ^l/V^        ^1/2        ^>/578 

ji     ^v^  ^1/v^  <5V^     ^1 

dtiy)   -   8i 
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A comparison of Equations (6.1) and (6.4) shows that, using that same mask param- 

eters, Fukushima's approach produces greater attenuation at the edge of the mask 

than Menon and Heinemann's method. 

During the process of verifying the author's implementation of the neocognitron 

with an independently coded version (see Section B.4), it became clear that the 

mask values could have a significant effect^ on the network's behaviour. This result 

was at odds with a personal communication from Fukushima in which he suggested 

"... that the value of 6e [which determines the mask values] does not have a serious 

effect on the performance of the neocognitron" [57]. Fukushima's feelings on the 

matter prompt the question "if the mask parameters don't really affect classification 

performance, what's the point of having them in the network?" Hildebrandt also 

wondered about this aspect of the neocognitron [77, Section IIIB]: 

"It is unclear that such filtering [the attenuation performed by the mask] 

is actually to the benefit of pattern recognition. It is just as likely that 

the decisive information will be contained at the edge of a pattern as at 

its center (take, for instance, the difference between the letters 'O' and 

'Q')." 

The following experiment aims to resolve the issue by comparing the peak perfor- 

mances of two networks (with different mask parameters) after each has had its 

selectivities adjusted by SHOP. 

bxperiment 6.1 (A comparison of the neocognitron's performance with two differ- 

ent sets of mask parameters) 

This experiment was based around two versions of my 1992 implementation of the 

neocognitron. The first network used the parameters described in Table C.4, the second 

differed by having ail S and C-cell mask parameters set to unity (7^ = 6( = St - 1.0). 

^It was discovered that two networks, identical in every respect bar the method used to generate 

the mask values, had classification rates differing by around 10% [157]. 
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Thus, the masks of the second network were "flat" and did not emphasize the central 

portion of each cell's input region. 

SHOP was applied to both networks using the selectivity values given in Exper- 

iment 5.10 and a validation set of 400 thinned CEDAR ZIP code digits. Figures 6.1 

and 6.2 show the performance surfaces obtained with the two different mask parameter 

settings. 

The performance surfaces of Figures 6.1 and 6.2 show that networks with different 

ma^k parameters are capable of achieving similar classification rates, given the right 

choice of selectivities. In other words, the mask parameters affect the shape of a 

network's performance surface but do not significantly alter the maximum achievable 

performance level^. So, as long as the degree of attenuation at the periphery of a 

cell's input region is not too severe, it seems as though the S and C-cell masks neither 

help nor hinder the process of recognition in the neocognitron. Consequently, in 

practical implementations of the network it would be logical to omit the masks and 

so decrease the amount of computation involved in running the system. 

In their reduced precision implementations of the neocognitron, Darbel [28] and 

Trotin [170] also observed that the network's performance was quite tolerant of 

different C({i/) and de(i/) values. They chose to use mask coefficients that were 

powers of two for efficient VLSI realization of cell function. However, their decision 

was not qualified by the sorts of results obtained in Experiment 6.1 and they simply 

found that their alterations were not detrimental to the classification rate. 

At this point, we have investigated all of the parameters that affect cell func- 

tion in the neocognitron. We know that by using a high learning rate {qt ^ 10^), 

appropriate mask parameter values {'je.^e ~ 0.7-1.0; Sg ^ 1.0-4.0) and selectivities 

that have been determined by SHOP, a correct classification rate of around 76%, 

with 76% reliability, is achievable.   We shall commence the next section by look- 

^Providing, of course, that the values of jt, 6i and 6/ are reasonable. If any of these mask 

parameters were to have values <C 1 then the size of a cell's input region would effectively be 

reduced to a single central cell, drastically impairing the recognition abilities of the network. 
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Figure 6.1: The performance surface obtained with my 1992 network using a validation set of 400 
unthinned CEDAR digits. The mask parameters used in this network are given in Table C.4. A peak 
correct classification rate of 79.00% (79.40% reliability) occurred for r2 = 1.602, ra = 1.000. 
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Figure 6.2: The performance surface obtained with my 1992 network, again ^sing a validation set of 
400 thinned CEDAR digits but this time with the mask parameters 7^ = ^^ = ^« = 1.0. A peak correct 
classification rate of 78.00% (78.20% reliability) occurred for TI = 1.000. ra = 1.269. 
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ing at those factors that prevent Fukushima's neocognitron from coming close to 

state-of-the-art levels of performance. 

6.2     Enhancing classification 

Many researchers have decomposed the problem of handwritten character recogni- 

tion (HWCR) into a sequence of two processes. Feature extraction is used to obtain 

some numerical (or logical) measure of the characteristics of the input image, then 

the image undergoes classification and is labeled (or rejected) on the basis of the 

features that were extracted. Even though the neocognitron fits this description 

(as shown in Figure 2.12), our attention has been focussed, for the most part, on 

its feature extracting abilities and we have tended to ignore the 1% of cells in the 

network (i.e. those in the final layer) that tell us what class has been assigned to an 

input pattern. 

At the beginning of Section 5.3, where SHOP was first proposed, there is a 

list of certain qualities desirable in a selectivity adjustment method. The SHOP 

algorithm successfully embodies most of these qualities but, for practical reasons 

outlined in Subsection 5.3.2, does not alter the selectivities of final layer S-cells. In 

other words, the SHOP algorithm disregards the pivotal role played by these cells 

in the classification of the input image; an examination of the UC4 cell outputs 

during operation gives some indication of the problems that occur as a result. 

Figure 6.3 depicts typical levels of output activity for fifty different input digits 

and, as discussed in the previous chapter (Subsection 5.2.3), it is clear that the 

neocognitron is not discriminating effectively between different classes of input. The 

outputs, like all other cells in the network, simply indicate the degree to which 

certain features are present in the input image^ and, should some of the features 

detected by one cell also be detected by others, a number of cells can show high 

levels of activity at the same time. Consequently, the neocognitron is apt to confuse 

^In the case of the final layer, the features actually compose complete digits. 
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Figure 6.3: Each of the rows in the two large columns represents the outputs of the 10 final layer 
C-cells in my 1992 implementation of the neocognitron, after training with SHOP using unthinned 
CEDAR digits (see Figure 5.21). The class of the input digit is indicated to the left of each column 
and the UC4 cell numbers are shown at the top. Each of the fifty digits that evoked these outputs 
was correctly classified {i.e. the C-cell with the largest output corresponded to the correct class). 
However, it is obvious that in many cases, the margin between the largest and second largest 
output is small, making the neocognitron's classification vulnerable to error. 

certain classes of digits (such as '2's and '3's) because of the number of features 

that they have in common. Furthermore, the results of Test 4 in Experiment 5.12 

do not suggest that this problem could be rectified by individually adjusting the 

selectivities in each US4 plane. 

What we need is for the cells in the final layer to exploit the idiosyncratic aspects 

of each kind of digit to obtain a more robust classification of input images. This 

idea was pursued in developing SLOG (Section 5.2), an algorithm which, for want 

of training data, fell short of expectations in practice. However, if we used some 

form of gradient descent training in the final layer of the network alone, instead of 

at each stage, many of the problems inherent in SLOG should not arise and the 

resulting network would become an effective marriage of Fukushima's neocognitron 

and the multilayer perceptron (MLP). 
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US4.0 

US4.1 

US4.22 

Figure 6,4: The end portion of the NCMLP architecture. The final layer C-cells of a neocognitron 
are replaced by a two layer, fully connected MLP. The MLP receives input from the US4 cell planes 
and propagates activity through a layer of hidden units to the ten output units that indicate the 
NCMLP's classification of the input image. 

6.2.1     The Neocognitron plus MLP 

In keeping with the author's fondness of acronyms and, more importantly, to dis- 

tinguish the ideas proposed here from a network called the Percognitron [165], the 

system to be described will be referred to as the NCMLP (NeoCognitron plus 

MLP). 

Put simply, the NCMLP takes a neocognitron that has been trained using 

SHOP and replaces the final layer C-cells with a two layer MLP (Figure 6.4). The 

MLP portion of the network is then trained to associate the outputs of the final 

layer S-cells with a single output that represents the class of the input image. This 

arrangement fulfills many of the requirements listed at the start of Section 5.2 and, 

with reference to that list, we note the following points: 

• Large amounts of real world data can easily be incorporated into the process of 

training the NCMLP. Obviously, the first phase of training the network with 

SHOP employs a validation set of real world digits to determine the most 

effective values of r2 and ra. When the UC4 cells are replaced by the MLP 

in the second phase of training, any number of patterns can be used to train 

the new portion of the network. In practice, the size of the MLP's training set 
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• 

is limited only by constraints on training time and availability of real world 

data. 

The NCMLP can utilize meaningful performance measures during both stages 

of training. A validation set, like the one used by SHOP, can be used to 

monitor the generalization abilities of the ML? classifier as training progresses. 

This technique assumes a high correlation between the net's performances on 

validation and testing sets but the validity of this assumption can easily be 

verified experimentally. 

• It is arguable whether the SHOP phase of training relies upon restrictive as- 

sumptions about the distribution of feature information in input space. It is 

implicit that the features extracted by each S-cell lie within a hyperconical 

acceptance region because that is the shape of the decision boundary imple- 

mented by these cells, regardless of the selectivity adjustment algorithm. Since 

SHOP imposes the same selectivity upon all S-cells in a given layer, there is 

an assumption that different kinds of features would tend to have basically the 

same shape of distribution in different regions of feature space. This assump- 

tion is certainly far less restrictive that the assumptions that form the basis 

of OCFT and SHOP. 

As a classifier, the MLP is characterized by its lack of assumptions about the 

distribution of input patterns. Given a sufficient number of hidden units, 

an MLP can implement arbitrary decision boundaries, i.e. the MLP is a 

non-parametric model (in contrast to, say, a single thresholding perceptron 

which can only model linear decision boundaries). However, non-parametric 

or model-free methods of estimation often require large training sets to ach- 

ieve acceptable performance. Geman et al [60] have demonstrated that 

suitable data representations can mitigate the training requirements of model- 

free systems in this regard. In the case of the NCMLP, the function of the 

neocognitron portion of the network is to provide the MLP with a suitable 

representation of the input image data. 
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• The main recison for appending an MLP to the neocognitron was to provide 

some mechanism for the network to use the most distinguishing features of 

patterns in discriminating between different claisses of input. The philosophy 

behind this idea is discussed in Section 5.2.3- 

• The MLP section of the proposed network is attached at the final layer of the 

neocognitron where the receptive fields of the S-cells cover the entire input 

array. Consequently, the patterns used to train the MLP are processed images 

of complete digits as opposed to the digit fragments used in training preceding 

layers. 

• Almost any system that uses gradient descent learning techniques introduces 

the problem of when to terminate training. The stopping criterion for the 

SHOP phase of learning in the NCMLP is well defined. As for training the 

MLP section of the network, the most effective indicator of when to stop train- 

ing is the system's generalization performance which can be easily estimated 

with a validation set of digits. With a learning algorithm like backpropaga- 

tion, the generalization performance of an MLP tends to increase to a distinct 

peak and, although the performance of the network on the training set may 

continue to improve after this point (as the system learns the idiosyncrasies 

of the data), the MLP becomes less effective at classifying novel data. This 

phenomenon is sometimes referred to as "overfitting" and, while its principle 

is easy to describe, the onset of overfitting is hard to detect in practice. More 

will be said about this issue in Subsection 6.2.2. 

• Unfortunately, using an MLP in a hybrid recognition system introduces a host 

of new parameters to grapple with. On top of the variables attendant to 

the neocognitron, the NCMLP requires the experimenter to specify learning 

rate (//), momentum (a), number of hidden units [83], initial random weight 

variance [94], output target values [6], batch vs. online updating,.. . One con- 

solation is that the sheer volume of research involving MLP systems provides 

some empirical guidelines for selecting these parameters. With respect to the 
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Figure 6.5: An input image is classified, if and only if the activity of a single unit exceeds both the 
threshold of validity and the threshold of confidence (as in the right graph). The left and middle 
graphs represent situations where the input image is rejected on the basis of the NCMLP's 
outputs. 

inevitable question of how many hidden units are needed for the task at hand, 

the only practical answer seems to be to evaluate a variety of network archi- 

tectures and choose the one that offers the best generalization performance 

(much in the same way that SHOP settles upon good selectivity values). 

The question we must next address concerning the NCMLP is whether the prospec- 

tive improvement in classification performance will outweigh the difficulties in de- 

termining the appropriate amount of training, the correct learning parameter values 

and the best network architecture. 

6.2.2    Experimental application of the NCMLP 

An important difference between the neocognitron and the NCMLP is that the 

value of the neocognitron's outputs can fall to zero whereas the NCMLP's outputs 

are always positive. This means that the neocognitron's winner-take-all method of 

labeling the input image needs some alteration before it can be successfully applied to 

the NCMLP"*. In the experiment described in this section, two thresholds, t^ai and 

^Suppose the same image is presented to both the neocognitron and the NCMLP. Let's also 

suppose that the image does not contain any features that either network can detect. The C-cell 

outputs of the neocognitron will all be equal to zero — a clear indication that the image is a 

"reject". Due to the sigmoidal transfer function and small differences in the weights of the ML? 

however, the activation of one of the NCMLP's outputs will be larger than the others (though 

still very close to zero). A simple winner-take-all strategy would label the image according to that 

most active unit even though that unit's activity may be exceedingly low. 
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icon/, were applied to the outputs of the NCMLP to ensure robust classification 

(see Figure 6.5). t^ai denotes the threshold of validity and /con/ the threshold of 

confusion. For a given test digit, if no output unit's activation wa^ above tyai OR 

more than one one unit's output was above tconf, the digit wa^ classed as a "reject". 

Otherwise, the digit was be classified according to the unit with the highest output. 

This scheme is similar to one employed by Le Gun et al.   [105]. 

Not only can thresholds be applied to ensure the rejection of illegible or am- 

biguous digits, the NCMLP can be trained to reject images of ill-formed digits. 

Bromley and Denker [17] advocate the training of MLP type classifiers with "rub- 

bish" subimages (i.e. ambiguous digits, multiple digits, partial digits and noise) to 

enhance rejection performance. Considering that automatic segmentation of multi- 

digit ZIP codes [121] tends to produce a significant number of rubbish images (as 

evidenced by Figures B,9 to B.18), it makes good sense to include such images in 

the set of patterns that is used to train the MLP. The "rubbish" that was applied 

to the network in the following experiment can be seen in Figure B.29. 
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Experiment 6.2 (To establish the peak performance of the NCMLP) 

This experiment involved two distinct phases of training: the first used SHOP to 

determine effective selectivities for the neocognitron portion of the network; the second 

used validation techniques in conjunction with backpropagation to determine a good 

structure and set of weights for the MLP section. 

Training Phase 1 

SHOP was applied to my 1992 implementation of the neocognitron (see Table C.4) 

using the selectivity values given in Experiment 5.10 and a validation set of 400 unthinned 

CEDAR digits. Peak correct classification of 79% (79.40% reliability) was obtained 

with r2 = 1.602 and r^ = 1.000 and these selectivity values were used throughout the 

remainder of this experiment. 

Training Phase 2 

Ten diflFerent MLP structures were evaluated in this section of the experiment. Each 

MLP had 207 inputs (19 US4 planes, each with 3x3 cells) and 10 outputs, and the 

number of hidden units varied between each network from 5, 10, 15,.... up to 50 units. 

Three different sets of unthinned CEDAR digits were used in this phase of training: 

• a training set of 4840 digits (440 examples of each digit, plus 440 "rubbish" 

images) taken from the TRAIN/BINDIGIS/BR section of the CEDAR CD-ROM — 

see Figures B.19 to B.29. 

• a validation set of 4400 digits (440 examples of each digit) taken from the 

TRAIN/BINDIGIS/BR section of the CEDAR CD-ROM. 

• an unbalanced test set of 2711 digits ( 434 'O's. 345 'I's. 296 '2's, 260 '3's, 234 '4's. 

193 '5's, 281 '6's, 241 7's. 216 '8's and 211 '9's) from the TEST/BINDIGIS/BS 

section of the CEDAR CD-ROM — see Figures B.9 to B.18. 
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Myata's PlaNet package [129] was used to simulate the MLP section of each net- 

work under backpropagation and the script used to run this experiment is given in 

Section D.3. 

All networks used a learning rate of r] = 1.0 with a momentum of a = 0.9. During 

each training epoch, examples were drawn randomly and without replacement from the 

training set. Weight updates took place at the end of each epoch and the normalized 

mean squared error (NMSE) was also recorded at that point (see Figure 6.6). After 

every 10 epochs of training, the performance of each network on the training, validation 

and test^ sets, was measured using the double threshold method described previously 

(the values of t^^^i and icon/ were chosen as 0.9 and 0.1, respectively). Learning was 

terminated after 300 epochs by which time the prospect of a significant increase in the 

performance of any of the networks seemed unlikely. 

Ideally, this phase of the experiment should have evaluated the training set perfor- 

mance of a particular architecture using a number of different initial weight values [94]. 

However, given the degree of consistency of the results (Figure 6.7) and the fact that 

training phase 2 took 5 days of CPU time to run, it seemed reasonable to collect the 

results of only one training pass. 

The performance of each network on the validation set of digits (shown in Figure 6.7) 

suggests that 35 or more hidden units are capable of implementing the desired mapping 

between the US4 S-planes and 10 output units. It is clear from Figure 6.7 that the 

ability of each network to generalize can fluctuate considerably throughout training, and 

this complicates the question of which network, and how much training, is best. If one 

assumes a high correlation between validation and test set performances however, the 

choice is clear: the network that attains the highest classification rate on the validation 

set during training should be the one with the best ability to generalize. In this ex- 

periment, the peak validation set performance of 89.295% correct (97.518% reliability) 

^It was expedient to record the test set performance of each network during training to allow 

straightforward calculation of the correlation between validation and test set performances. That degree 

of correlation could then be used to provide an a posteriori measure of the effectiveness of validation 

as a performance index. 
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was achieved by the NCMLP with 45 hidden units, after 280 epochs of training (Ta- 

ble 6.1). Having settled upon the selectivities of the neocognitron and the architecture 

of the MLP, the training of the NCMLP was complete. 

Hidden units Epoch % Correct % Misclassified % Rejected % Reliability 
5 400 86.818% 2.864% 10.318% 96.807% 

10 250 87.750% 2.614% 9.636% 97.108% 
15 300 88.318% 2.568% 9.114% 97.174% 
20 220 88.182% 2.409% 9.409% 97.341% 
25 270 88.591% 2.318% 9.091% 97.450% 
30 260 88.727% 2.455% 8.818% 97.308% 
35 290 89.091% 2.568% 8.341% 97.198% 
40 200 88.795% 2.295% 8.909% 97.480% 
45 280 89.295% 2.273% 8.432% 97.518% 
50 220 88.977% 2.386% 8.636% 97.388% 

Table 6.1:  Peak classification performances on the validation set for each of the MLP architectures 
being trained. 
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Figure 6.6: The normalized mean squared errors (i.e. the average amount of error per pattern, in a 
given epoch) obtained during the training of the 10 different NCMLP's. The legend refers to the 
number of hidden units used in the each of the networks. Although this graph clearly shows that the 
NCMLP with 5 hidden units did not have sufficient representational power to classify the training set 
with the accuracy of the other networks, it is not clear which of the other systems is best. 
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Figure 6.7: These graphs show how each of the 10 networks performed in comparison to the maximum, 
average and minimum correct classification rates of all networks. The classification performances shown 
above were measured (using the validation set) after every 10 epochs of learning. Each network's 
performance is shown by a solid line with filled circles at each decade of training. The upper, middle 
and lower broken lines indicate the maximum, average and minimum correct classification percentages 
across all 10 networks. 



Chapter 6: Maximizing Performance 187 

Testing 

As mentioned in the footnote on page 183, the performance of each network on the 

test set of digits was monitored throughout the training process to allow an a posteriori 

evaluation of the training regimen. The high correlation between validation and test set 

performance of each NCMLP (see Tabfe 6.2) indicates that validation set performance 

gives a good estimate of a network's capacity to generalize. In fact. Table 6.2 shows 

that the network selected in the training process (45 hidden units with 280 epochs of 

training^) also achieved the highest correct classification rate on the test set (84.73% 

correct with 96.43% reliability). The test digits that were rejected or misclassified by 

the 45/280-NCMLPare listed in Table D.5. 

The confusion matrix obtained with the 45/280-NCMLP (Table 6.3) can be used 

to create a graph of the pairs of digits that caused major and minor amounts of confusion 

(Figure 6.8). The confusion graphs shown in Figure 6.8 are similar enough to support the 

idea that the 45/280-NCMLP makes the same sorts of mistakes that a human expert 

would, but an inspection of the images that were misclassified (Figure 6.9) refutes this 

hypothesis. Although the digits in Figure 6,9 are not well-formed, a human expert would, 

in the author's opinion, have little difficulty in classifying most of them. Certainly, the 

way in which the 45/280-NCMLP has mislabeled the test digits shows that the network 

is not analyzing images in the same way a human would. 

It is important to note that the test data recognition rates achieved by each of 

the NCMLP's in this experiment were considerably different for each class of digit. 

Figure 6.10 shows that this phenomenon occurred throughout training and Table 6.4 

lists the performance of the 45/280-NCMLP on each of the ten digits. It is a moot 

point as to whether this behaviour is due to shortcomings of the NCMLP, the intrinsic 

quality of the test digits, or a combination of both. 

^For convenience, we shall refer to this system as the 45/280-NCMLP. 



188 Chapter 6: MaximiziDg Performance 

Peak validation set performance Peak test set performance 
Hidden units Epoch % Correct % Reliability Correlation Epoch % Correct % Reliability 

5 400 86.818% 96.807% 0.9923 400 81.96% 94.55% 
10 250 87.750% 97.108% 0.9829 300 83.11% 95.79% 
15 300 88.318% 97.174% 0.9907 270 84.14% 95.48% 
20 220 88.182% 97.341% 0.9900 220 83.25% 96.49% 
25 270 88.591% 97.450% 0.9918 230 84.32% 96.70% 
30 260 88.727% 97.308% 0.9897 190 83.47% 96.75% 
35 290 89.091% 97.198% 0.9873 290 84.58% 95.62% 
40 200 88.795% 97.480% 0.9859 280 84.40% 96.01% 
45 280 89.295% 97.518% 0.9807 280 84.73% 96.43% 
50 220 88.977% 97.388% 0.9893 260 83.92% 96.48% 

Table 6.2: A comparison of the peak performances obtained by each network on both validation and 
testing sets. The fifth column shows the degree of correlation between the correct classification rate 
obtained with the validation set and that obtained with the test set, for each of the ten NCMLP 
architectures. Note that, although the network with the peak validation set performance (45 hidden 
units) also achieved the maximum classification rate on the test set, the difference in test performance 
between the best network and other (simpler) systems (e.g. 25 hidden units) is not large. 

Input Output class 
Class 0 1 2 3 4 5 6 7 8 9 Reject 

0 372 3 5 0 0 0 1 1 1 1 50 
1 1 309 0 0 2 0 0 3 0 0 30 
2 3 0 231 1 0 0 1 2 1 1 56 
3 1 0 4 234 0 0 0 1 1 0 19 
4 0 4 0 0 196 0 0 0 1 2 31 
5 0 0 0 1 0 161 0 0 2 0 29 
6 2 3 0 0 1 2 233 0 4 0 36 
7 0 3 3 0 1 0 0 189 0 6 39 
8 1 1 0 0 1 1 0 0 186 3 23 
9 0 2 0 0 1 0 0 5 1 187 15 

Table 6.3: The confusion matrix obtained with the 45/280-NCMLP on the test set of unthinned 
digits. Table D.5 gives a complete list of test digits that were rejected or misclassified by this network. 
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Human experts 45/280-NCMLP 

©::::;/-' 

Figure 6.8: In their paper on applying hunnan expert knowledge to machine digit recognition [135], 
Nadal and Suen expressed the pairs of digits that confused hunrtan experts as the connected graph in 
the left of this figure. From a set of 360 "difficult" images of digits, each image that was not uniquely 
classified by a panel of human experts was considered to be confusing. In the graph on the left, the 
dashed lines indicate pairs of digits for which there were 2-8 confusing samples (minor confusing pairs) 
while the solid lines indicate pairs for which there were 9 or more confusing samples (major confusing 
pairs).  Nadal and Suen recorded a total of 10 major and 10 minor confusing pairs. 

The graph on the right depicts the 9 minor (2-3 confusing samples, dashed lines) and 9 major (4 
or more confusing samples, solid lines) digit pairs extracted from the confusion matrix of the 45/280- 
NCMLP (Table 6.3). Assuming that the CEDAR digits are similar in style to those used by Nadal 
and Suen (both sets were collected from U.S. Post Offices), a comparison between the left and right 
graphs shows that, despite significant correspondences, the NCMLP is classifying certain digits in a 
fundamentally different way to human experts {e.g. 0-1 and 1-4 confusion by the 45/280-NCMLP). 

I       I       I       I     J       1^1     J_l       I       I       I       I       I       I       I 

3    ^J 

5    ^fS 

Figure 6.9: The 85 test digits that were misclassified by the 45/280-NCMLP. In any given row, the 
leftmost (printed) digit indicates the label given to the images in the row by the network. 
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Figure 6.10: The classification performance of an NCMLP is markedly different for each class of 
digits. For the NCMLP with 45 hidden units, these graphs plot the rate of correct classification on 
the ten kinds of digits present in the test set The performance of the 45 hidden unit NCMLP at 
epoch 280 is shown in Table 6.4. 
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Digit class % Correct % Misclassified % Rejected % Reliability 
0 85.714% 2.765% 11.521% 96.875% 
1 89.565% 1.739% 8.696% 98.095% 
2 77.703% 3.041% 19.257% 96.234% 
3 90.000% 2.692% 7.308% 97.095% 
4 83.761% 2.991% 13.248% 96.552% 
5 83.420% 1.554% 15.026% 98.171% 
6 82.918% 4.270% 12.811% 95.102% 
7 78.423% 5.394% 16.183% 93.564% 
8 86.111% 3.241% 10.648% 96.373% 
9 88.626% 4.265% 7.109% 95.408% 

Table 6.4: On average, the 45/280-NCMLP achieved a recogriition rate of 84.73% on the 2711 
CEDAR test digits. 3.14% of digits were misclassified and 12.14% were rejected, giving an average 
reliability of 96.43%. This table shows the network's performance on each class of digits. 
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There can be no doubt that the addition of an MLP to the neocognitron enhances 

the classification performance of the system. The 84.73% recognition rate of the 

45/280-NCMLP is almost 9% greater than the highest performance obtained using 

SHOP alone (Experiment 5.10); more significantly, the maximum reliability has 

risen from 76.13% (Experiment 5.10) to 96.43%. Before considering these results in 

a wider context, we shall look at the aspects of this investigation which distinguish 

it from the work of Sung and Wilson. 

6.2.3    The distinction between the NCMLP and the Percog- 

nitron 

The reader may be aware of the similarity between the NCMLP and a system 

proposed by Sung and Wilson known as the Percognitron [165). The NCMLP 

was developed independently of Sung and Wilson's work; the purpose of this sec- 

tion is to highlight the differences between the NCMLP and the Percognitron and 

demonstrate the superiority of the author's approach. 

In their 1990 conference paper, Sung and Wilson briefly described two systems 

that incorporated perceptron networks into the neocognitron: 

Percognitron-I in which the UC4 cells of Fukushima's 1983 neocognitron [44] were 

replaced by a ten unit, single layer perceptron, with full connection to the US4 

cells for input. 

Percognitron-II in which the final layer of Fukushima's 1983 neocognitron was 

replaced by a two layer, fully connected MLP with an unspecified number of 

hidden units. The MLP received input from the UC3 cells. 

Precise details of the training process were not provided; presumably. Sung and 

Wilson trained the neocognitron portion of the network with Fukushima's training 

patterns and then used their own training set (80 artificially generated digits) as 

well as Fukushima's US4 patterns (19 digits) to train the perceptron portion. The 
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performance of each network was tested on the training set: Percognitron-I success- 

fully classified all but two training set patterns; Percognitron-II classified all but 

three and a modified version of Fukushima^s 1983 neocognitron^ recognized 79 out 

of 99 digits correctly. Sung and Wilson noted: 

"As can be seen from the above test results, our approaches have much 

better performance both in the position- and deformed invariance cat- 

egory than the Neocognitron does. In other words, the tolerance range 

of the position-shift and shape-deformity on training patterns have been 

increased in a great deal. The detailed analysis of our proposed models 

will not be discussed here due to the space limitations, but will be pre- 

sented in the forthcoming paper [Chen-Han Sung, and Daniel Wilson, 

"PERCOGNITRON-II: Neocognitron Coupled with Back-Propagation 

Type Adaptation", submitted, 1990]." 

Unfortunately, Sung and Wilson gave no details as to where their work was to come 

forth. 

The methodology adopted by Sung and Wilson was flawed in a number of re- 

spects, consequently, it was somewhat optimistic for them to have drawn the conclu- 

sions quoted above. The following criticisms can be levelled at Sung and Wilson's 

research: 

1. The Percognitron paradigm was not thoroughly tested. B^tsed on the experi- 

ments performed, no meaningful statement can be made about the ability of 

either Percognitron-I or Percognitron-II to generalize. It is a trivial matter 

to design a classifier that correctly identifies all test data when the test set is 

identical to the training set. Near perfect recognition of training patterns has 

little bearing on the Percognitron's tolerance to shifts and deformation. 

2. Since Percognitron-I used a single layer perceptron as a classifier, Sung and 

Wilson must have assumed that the outputs of the US4 cells were linearly 

^in which US4 and UC4 cells were fully interconnected. 
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separable into each digit class. Given that Fukushima's neocognitron works 

moderately well with a single layer of weights between US4 and UC4 cells, this 

is not an unreasonable assumption. However, Sung and Wilson do not explain 

why they then opted for a two layer perceptron in Percognitron-II. In the 

absence of additional information about the neocognitron's representation of 

images, it would seem more appropriate to implement non-linear classification 

of cell activity (i.e. also use a two layer perceptron) in the Percognitron-I 

model. 

3. To reduce the complexity of the mapping that has to be learned, it is desirable 

to attach the MLP to the neocognitron at a stage where any shifts in the input 

image have negligible effect on the patterns of activity in that stage. In higher 

layers of the neocognitron, the patterns of S and C-cell activity become less 

sensitive to the location of an image's features within the input array. For this 

reason, it is sensible to use the US4 cells as inputs to an MLP (as was done 

in the NCMLP) rather than the US3 cells (as done in the Percognitron-II 

model). 

4. Sung and Wilson made no mention of any of the parameters crucial to the 

performance of their modified neocognitron and Percognitron models. In par- 

ticular, the number of hidden nodes used by the Percognitron-II model was 

never discussed and the issue of effective selectivity values was ignored. 

5. Through their use of "artificial" digit data, Sung and Wilson render their 

results inapplicable to the problem of handwritten digit recognition. 

In short, Sung and Wilson's findings do not give any firm empirical support to the 

idea of incorporating an MLP classifier into the neocognitron. On the other hand, 

the thorough and systematic testing of the NCMLP, described in the previous 

section, means that the results of Experiment 6.2 give a realistic impression of 

what a neocognitron and MLP system is capable of. The question now is whether 
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the NCMLP is capable of the performance achieved by current digit recognition 

systems? 

6.3     Can a neocognitron-based digit classifier ach- 

ieve state-of-the-art performance? 

"It is important to realize that recognition systems cannot be compared 

simply by their reported performances since most systems are still tested 

on data bases with very different characteristics.' [164, p.1176]' 

And not only do the characteristics of different databases influence the results ob- 

tained by researchers, the method of labeling test data can significantly alter the 

recognition rates recorded. For example, Lee and Choi [108] developed and tested 

a system for recognizing five classes of numeral in the CEDAR database but chose 

to ignore "... some of [the] test patterns that humans can hardly recognize" in their 

investigation. In a comparative study of seven digit classifiers, Idan et al. [88] used 

test patterns that "got the same label by. ..two [human] operators," i.e. patterns 

that were probably not confusing or ambiguous. In both these cases, one would 

expect the recorded recognition rates to be somewhat higher than those achievable 

in practice. This sort of pre-selection promotes a certain wariness when the phrase 

"a subset of the test data was used ..." is encountered in the literature. 

The most recent and comprehensive survey of digit recognition systems is that 

of Suen et al. [164] and Table 6.5 shows how the 45/280-NCMLP fared in com- 

parison to nineteen other clcissifiers^. The 45/280-NCMLP has the lowest correct 

recognition rate and the fourth lowest reliability out of the systems mentioned in 

[164] but the variety of databases used in testing these systems makes this ranking 

*Note that the performance statistics of the 45/280-NCMLPhave been normalized to represent 

the results that would be obtained on a balanced test set, i.e. one with the same number of samples 

in each class. 



igQ Chapter 6: Maximizing Performance 

somewhat inconclusive. It should also be noted that seven of the results listed in Ta- 

ble 6.5 are for systems that used a combination of classifiers to enhance recognition 

and reliability. 

The results obtained by Cohen et al. [23] are of special interest to us since it 

is Ukely that the 2711 CEDAR digits used to test their recognition system were the 

same as the 2711 CEDAR digits used in testing the 45/280-NCMLP. The digit 

recognition system described in [23] used a special purpose decision tree to combine 

four recognition algorithms. No performance statistics were published for the first 

of these algorithms (a polynomial discriminant) but Cohen et al. did present the 

following results for the other three methods: 

Statistical and Structural Analysis: tested on 2418 digits, 

86.6% correct, 87.4% reliability. 

Rule-Based Stroke Analysis: tested on 2418 digits, 

79.7% correct, 95.2% reliability. 

Contour Analysis Method: tested on 540 digits, 

85.0% correct, 90.4% reliability. 

In comparison to these figures, the performance of the 45/280-NCMLP is quite 

respectable. 

Despite the difficulty in obtaining a concrete assessment of the NCMLP's per- 

formance against systems that have been tested with different data, the indication 

from Table 6.5 is that the NCMLP is probably not a front-runner in the digit 

recognition stakes. This leaves us with the task of scrutinizing the results obtained 

in Experiment 6.2 for clues as to how the NCMLP model might be improved. 

At first glance, the set of misclassified digits (Figure 6.9) gives no indication 

of the NCMLP's mode of failure. Furthermore, the distributed nature of the 

NCMLP's processing makes it much harder to establish why particular digits are 

rejected/misclassified than would be the case in a rule-based recognition system. 

Perhaps the NCMLP failed to correctly classify certain digits as a result of insuffi- 

cient training of the MLP section of the network? While this possibility may account 
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Table 6.5: Adapted from [164], this table shows the classification statistics of a number of high 
performance digit recognition systems. As well as performance information, each entry shows the 
number of training and test patterns used by a particular system, as well as the resolution (in pixels 
per inch — PPI) of that data. A star (*) indicates that a recognition system used a combination 
of recognition algorithms to obtain the performance quoted. Note that the reference numbers in 
this table refer to the references in this thesis, not in [164]. 
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Figure 6.11: The outputs of the final layer S-planes in the 45/280-NCMLP. The first three columns 
of S-planes in each group show the activity that occurred for test digits that were correctly classified. 
The last three columns show the activity evoked by images of a different class of test digits. In 
each group of six columns, the test digits corresponding to the last three columns were mistakenly 
classed as being the same as the test digits corresponding to the first three columns. 

Note that the activity in each column has been normalized so that the largest filled square 
represents the largest US4 cell output i.e. these diagrams convey information about the relative 
activity of US4 cells, not the absolute values. 
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for some of the NCMLP's miscrecognitions, a look at the sort of information that 

the MLP has to classify suggests that the neocognitron portion of the network is 

largely to blame. 

Figure 6.11 shows some patterns of US4 cell activity that are typical of what the 

MLP section of the NCMLP receives as input. Half of these patterns of activity 

correspond to correctly classified digits (Ts, '2's and '9^s), the other half correspond 

to digits that were misclassified ('O's classed as 'I's, '3's classed as '2's and '7's 

classed as '9's). The strong similarity between the patterns of activation for correctly 

classified and misclcissified digits shows that the neocognitron section is not detecting 

certain features that distinguish 'O's from 'I's^ '3's from '2's, etc. 

Further MLP training would not remedy this situation; the solution lies in al- 

tering the process of feature extraction performed by the neocognitron. There are 

two ways that this solution could be effected: 

1. We could retain the NCMLP paradigm and try to assess what sort of features 

need to be extracted to eliminate confusion between test digits. Assuming that 

this could be done, we would then construct a new (probably larger) NCMLP 

incorporating S-cells to detect the additional discriminating features. The 

system would then have to be retrained (using digit fragments containing 

the new features) and tested to see whether our choice of extra features was 

appropriate. 

2. We could reject the NCMLP paradigm and try to develop a system with a 

greater ability to learn to exploit the features that distinguish different classes 

of digits. 

The first alternative has some serious drawbacks, not least of which being the time 

that it would take to redesign and retest the NCMLP. As well as having to manu- 

ally identify and collect examples (i.e. digit fragments) of additional discriminatory 

features, there is no guarantee that our choice of new features would enhance the 

performance of the system. 
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The intuitive appeal of the second option would appear to be counterbalanced 

by the effort required to develop a system that can learn discriminating features 

without direct intervention from a supervisor. All of the algorithms presented in this 

thesis require a supervisor to provide a training set of digit fragments to establish the 

weights between intermediate layers of the neocognitron. The SLOG algorithm and 

the NCMLP have employed gradient descent techniques in an attempt to improve 

the system's ability to discriminate, and in the case of the NCMLP this attempt 

has been successful. The next logical step is to increase the number of layers that 

are trained by gradient descent in the network. In the extreme, this would mean 

altering the NCMLP so that the entire hierarchy of feature detectors could be 

trained by backpropagation of error. However, this step would take us down a path 

of investigation already well trodden by other researchers. 

The digit recognition system proposed by Le Gun et ai [103,105] used gradient 

descent techniques and second derivative pruning methods to train a hierarchical 

network very similar in structure to the neocognitron^. The high recognition per- 

formance achieved with this system is evidence in favor of incorporating gradient 

descent training throughout the NCMLP. However, since the principal difference 

between the two systems is that Le Cun et al. have used sigmoidal units in place of 

Fukushima's S and C-cells, implementing gradient descent learning throughout the 

neocognitron would, essentially, duplicate the work of Le Cun et al. 

At this point we have gone as far cis possible in our investigation of the neocog- 

nitron and networks that are recognizably derived from it (yet distinct from existing 

systems). Our experiments have pointed us away from Fukushima's method of su- 

pervised training with digit fragments towards more effective, performance-driven 

learning schemes {i.e. gradient descent style training). But, given the success of the 

NCMLP and the system described by Le Cun et a/., it seems likely that Fuku- 

shima's concept of a hierarchy of shared-weight feature extractors will be used in 

^Even though their system comprised alternate layers of feature extracting cell-planes (with 

shared, adaptive weights) and averaging/subsampling cells, Le Cun ei ai make only one reference 
to the work of Fukushima [105, page 400], 
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the cIcLSsification of images by artificial neural networks for some time to come. 

Taking a broader perspective, it remains to be seen whether hierarchical feature 

extraction can provide a foundation for the solution of more general 2-D pattern 

recognition problems. We have already observed the dangers of assuming too much 

about the sorts of features that humans use in discriminating between digits; if 

we settle upon hierarchical feature extraction as a way of getting human levels of 

recognition performance out of artificial systems, we run the risk of assuming too 

much about how humans actually classify images. Questions about the validity of 

hierarchical feature decomposition become more pertinent as we try to coax arti- 

ficial systems into recognizing larger domains of more complicated symbols (eg, 

alphanumeric characters, Hangul, Mandarin, Kanji, cursive words, etc.). 

The weaknesses of hierarchical feature extraction have tended to be overshad- 

owed by the high recognition rates that can be achieved with this technique. How- 

ever, if we are to design machines that attain levels of performance comparable to 

humans, we must consider the sorts of images which are recognizable to the human 

eye, yet fail to be correctly classified by a hierarchical feature extraction system. 

One such situation arises when the low level feature extractors within a system do 

not respond to some (or all) of the elements that compose a character. Humans have 

no difficulty in "joining the dots" within characters like those shown in Figure 6.12, 

but such images would, in effect, be rendered invisible to systems with low level 

feature extractors that have been trained to disregard salt and pepper noise. Even if 

a hierarchical feature extractor had been designed to cope with characters printed as 

a coarse matrix of dots, with a little imagination, the dots composing the characters 

could be replaced by other symbols that would confound the network (Figure 6.13). 

Proponents of multiresolution systems (see [31] for example) may argue that the 

solution to the problem of unusual component features lies in finding the appropriate 

resolution at which to tackle classification. Unfortunately, there are some circum- 

stances that require feature information to be present at a variety of resolutions for 

correct classification to take place (Figure 6.14). This significantly complicates the 
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Figure 6.12: The ability to recognize charac- 
ters composed of novel elennents distinguishes 
the human visual system from the hierarchical 
feature extraction networks developed by Fuku- 
shima and Le Cun et ai 

While a hierarchical feature extractor can 
tolerate a certain amount of shift and deforma- 
tion in the features that it has been trained to 
detect, an image composed of unusual elements 
(that elicit little response from the low level fea- 
ture detectors) will fail to be recognized. 

Figure 6.13: Even if a hierarchical feature ex- 
traction network responds to characters com- 
posed of certain features, one can imagine 
pathalogical examples that could confound the 
network yet remain recognizable to the human 
eye. 

Figure 6.14: Coping with unusual component features is not simply a matter of using a low 
resolution representation to obtain a general outline of a character's shape. This figure depicts 
a situation where both coarse and fine detail must be taken into account in deciding whether a 
character is a 'dotted 7', a 7' with a dotted line underneath or a '2'. The distinction between 
different kinds of component features must be retained to avoid confusion between the middle and 
right-hand characters. If 'dots' were completely ignored by a classifier, no such confusion would 
arise, however the left-hand 'dotted 7' would not be recognized. 
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Figure 6.15; In this image, certain symbols 
clearly represent digits, whilst others clearly 
represent letters. We can use these distinctive 
symbols (and our knowledge of written text) to 
infer the meaning of ambiguous characters like 
the 'S' and the '5'. 

Figure 6.16: Since the first symbol in this image 
is most definitely a *4*, this restricts the mean- 
ing that we attach to the third symbol (assum- 
ing that the writer's style is consistent). 

issue and highlights the tremendous power of the human vision system in dealing 

with such images, though it is not clear whether that power is innate to those parts 

of the primary visual cortex that have inspired the concept of hierarchical feature 

extraction. 

On a different note, the use of contextual information as an aid to clcissification 

is generally not ascribed to the primary visual cortex. But the facility with which 

a human reader can distinguish the 'S' from the '5' in Figure 6.15 raises the matter 

of how context modulates the meaning of features. This topic is of special concern 

if we are to apply hierarchical feature extraction to domains in which the meaning 

of similar symbols depends on the context in which they appear. 

We can further refine the notion of contextual disambiguation into two categories. 

Let us take implicit contextual disambiguation to mean the use of distinctive adja- 

cent symbols to imply the specific meaning of an ambiguous symbol (Figure 6.15). 

Implicit contextual disambiguation makes use of our a priori knowledge of written 

text. Exclusive contextual disambiguation refers to the use of adjacent symbols to 

exclude certain meanings from being attached to an ambiguous symbol (Figure 6.16). 

Exclusive contextual disambiguation makes use of our a priori knowledge about the 

consistency of a writer's style. 

The gist of the matter is that simple hierarchical feature extraction does not 

permit exclusive contextual disambiguation, ergo, systems based on this principle 
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will fall short of the levels of performance that humans can achieve. While implicit 

contextual information can be used to resolve some instances of confusion after a 

system hcis returned an uncertain verdict, exclusive contextual disambiguation is 

intimately associated with the features present in an image and must take place in 

conjunction with the recognition process. In essence, the system must somehow form 

a model of the writer's style and, if possible, use that stylistic information to restrict 

the meaning that can be associated with confusing symbols. The hierarchical feature 

extraction systems that have been discussed in this thesis can only form a comparison 

between the image to be classified and the images that the systems have been trained 

with. Consequently, these sorts of hierarchical feature extraction systems will be 

outperformed by classifiers that can employ exclusive contextual disambiguation in 

situations where there is enough information to develop an impression of a person's 

writing style. 

The points that we have touched upon should serve as a warning to those who 

develop character recognition systems: do not try to bite off more than a particular 

recognition paradigm can chew. It should now be clear that, while hierarchical 

feature extraction captures some aspects of the way that humans recognize written 

characters, there are a number of significant perceptual processes that it precludes. 

6.4    Summary 

We commenced this chapter by investigating how the S and C-cell mask parameters 

influenced the classification performance of the network. After reviewing two differ- 

ent methods of calculating Q(I/) and c?^(i/), the findings of Experiment 6.1 confirmed 

Hildebrandt's suggestion that these exponential masks were irrelevant. Obviously, 

extreme values of 7^ 6( or 6e could ruin the neocognitron's ability to classify im- 

ages but, for values of 7^, .5^ in the range 0.7-1.0 and 6e between 1.0—4.0, the peak 

recognition performance achievable with SHOP remained the same. The change in 

performance surface obtained with different mask parameters highlighted the need 
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for a systematic approach to selectivity adjustment (such as the SHOP algorithm). 

When it was clear that the peak performance attainable through selectivity and 

mask parameter adjustment was around 75% (with 75% reliability), the next aspect 

of the neocognitron to undergo scrutiny was the section of the network responsible 

for classifying the input image. The sort of output produced by the neocognitron 

(Figure 6.3) indicated that the final layer cells did not exploit the discriminating 

features of different kinds of digits. The proposed solution to this problem was to 

replace the final layer C-cells with a two layer, fully-connected MLP and use gradient 

descent training to teach the system to distinguish between different classes of real 

world digits. 

Using a training set of 4840 unthinned CEDAR digits (440 for each class of digit 

plus 440 "rubbish" images), an 84.62% recognition rate (with 96.36% reliability) 

WcLS achieved using my 1992 neocognitron in conjunction with a 45 hidden unit 

MLP (Experiment 6.2). Even though this was a dramatic improvement on the 

performance of Fukushima's original network, the new NCMLP architecture didn't 

rate highly against the digit recognition systems surveyed by Suen et al. [164]. 

The implication of the improvements that were attained was that gradient descent 

training should be applied throughout the system, not just in the final layer of the 

network. However, since this idea had already been explored by Le Cun et al. (with 

considerable success), our investigations drew to a close. 

Some important points arose as a result of careful consideration of the hier- 

archical feature extraction paradigm advocated by Fukushima and Le Cun tt al. 

and the discussion at the end of Section 6.3 demonstrates that this framework does 

not incorporate certain key processes used by humans in the recognition of images. 

Specifically, the hierarchical feature extraction systems that have been developed 

are not as tolerant to variations in component features as the human visual system 

is nor are they capable of using stylistic information to disambiguate confusing im- 

ages. Both these issues will have to be addressed if we are to attain human levels of 

recognition performance with artificial systems. 



Chapter 7 

Review, Conclusions and 

Criticisms 

As its title suggests, the purpose of this chapter is threefold. First, we shall review 

the important subjects and concepts that have been introduced in Chapters 1 to 6, 

emphasizing the logical development of the ideas that form the substance of this 

thesis. Section 7.2 attempts to distill the findings of the preceding chapters into a 

number of significant conclusions. Finally, the reader is presented with a number 

of critical comments regarding the neocognitron and hierarchical feature extraction 

networks in general. 

7.1    Review of Chapters 1 to 6 

This thesis began by introducing the model of vision that inspired the neocognitron. 

Since Hubel and Wiesel first proposed the serial hierarchy of the visual cortex, many 

experiments have been conducted to investigate the validity of their ideas. Research 

has shown that cells within the mammalian visual cortex can exhibit behaviour 

which is not accounted for in a purely serial hierarchy of vision processing but 

Fukushima cisserted that such findings did not render Hubel and Wiesel's model 

inapplicable to the general stream of visual information flow within the brain (see 

206 
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the quote on page 60). 

Chapter 2 described how Fukushima used Hubel and WiesePs ideas about the 

visual pathway a^ the foundation of the cognitron, and later, the neocognitron. Just 

as the simple cells within the visual cortex could detect simple patterns of light 

{e.g. bright/dark slits or edges) impinging on the retina, so too, with the aid of 

shared weights and overlapping receptive fields, could the first layer S-cells of the 

neocognitron respond to specific orientations of line segments within the network's 

input array. By using C-cells to "blur" S-cell activity, the neocognitron mimicked 

the tolerance to shifts in stimulus exhibited by Hubel and Wiesel's complex cells. 

The cascade of alternating S and C-cell layers not only gave the neocognitron the 

ability to identify certain complicated arrangements of features, the network could 

also recognize deformed and/or shifted versions of these patterns; a distinctly human 

trait but, perhaps not one solely attributable to the visual cortex. Hubel and Wiesel 

clearly delimited the scope of their model and stated that perception {e.g. image 

recognition) lay beyond the realms of the visual cortex; Fukushima used their serial 

model of vision as the basis of his neocognitron, an image recognition system. 

In 1983, four years after the first published description of the neocognitron, 

Fukushima abandoned unsupervised training of the neocognitron (which used an 

extension of Hebbian learning to effect self-organization) in favour of a supervised 

training scheme. Fukushima liberated the neocognitron from the shackles of a bio- 

logically plausible learning regime in an attempt to render the system more effective 

"from a standpoint of an engineering application ... [as a] pattern recognizer". To 

date, Fukushima has not published any performance statistics which might indicate 

whether this attempt has proved successful. To the best of the author's knowl- 

edge, this thesis is the first published work to contain a thorough evaluation of the 

neocognitron from an "engineering standpoint", but we shall come to that issue 

shortly. 

Chapter 3 focussed on the mechanics of the neocognitron. As well as containing a 

concise description of the organization, interconnection and function of cells within 
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the neocognitron, Chapter 3 introduced some new terminology to describe train- 

ing data so that a novel algorithmic description of Fukushima's supervised training 

scheme could be presented (Algorithm 3.1). The way that S-cells measure the simi- 

larity between their inputs and their training patterns was analysed in slightly more 

detail than was been done by Fukushima [49] and Hildebrandt [77]. For the sake of 

completeness, a history of the neocognitron's development was given in Section 3.7. 

After establishing the field of interest and stating the research that had been done 

prior to this thesis, Chapters 1, 2 and 3 concluded by giving an indication of some 

questions that had yet to be answered about the neocognitron: what are appropriate 

values for its many parameters, is Fukushima's style of supervised training effective 

and, most importantly, how well does the neocognitron perform as a classification 

system? 

One piece of research seemed to offer a solution as to how to choose S-cell selectiv- 

ity parameters in an optimal manner. Thomas Hildebrandt was the first researcher 

to seriously address the question of selectivity adjustment in his paper "Optimal 

Training of Thresholded Linear Correlation Classifiers" [77]. Chapter 4 thoroughly 

reviewed the ideas and assumptions behind optimal closed-form training (OCFT) 

and (as was done for Fukushima's supervised training algorithm in Chapter 3) pre- 

sented an algorithmic description of the training process in a more concise form than 

Hildebrandt's original statement of OCFT. 

Even though OCFT fulfilled Hildebrandt's criteria of optimality, as a practical 

training algorithm, it left a lot to be desired. The poor classification performance of 

the neocognitron after optimal closed-form training* was symptomatic of S-cells that 

had been made so selective that they often failed to recognize the exact patterns that 

they had been trained to detect. This phenomenon of training feature rejection arose 

as a result of Hildebrandt's assumptions that (1) an S-plane's set of training patterns 

was a representative sample of the sorts of features that the S-plane was supposed to 

detect, and (2) that the distribution of the training patterns (in weight space) was 

*OCFT resulted in 3.25% of test digits correctly recognized with 24.53% reliability. 
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symmetrical about the mean of the training patterns for a given S-plane. Since each 

S-plane had between 1 and 5 training patterns and a weight space with, typically, 

over 100 degrees of freedom (in Fukushima*s implementations of the neocognitron), 

the chances of these assumptions holding were slim, to say the least. 

The failure of OCFT led to the research described in Chapter 5 in which three 

new selectivity adjustment algorithms were proposed. The first of these (SOFT) 

attempted to circumvent the shortcomings of Hildebrandt's algorithm by adjusting 

selectivity so as to guarantee a certain level of output from an S-cell in response 

to its training vectors. While considerably more successful^ than OCFT, SOFT's 

recognition rate was contingent upon the supervisor's choice of training fragments 

and minimum S-cell response {use ■ )• The problems experienced by both OCFT 

and SOFT indicated the danger in relying upon geometric assumptions about the 

distribution of training features within weight space. The experiments performed in 

Section 5.1 also highlighted the need to use real world test data (Experiment 5.2) and 

the special role played by the cells in the final layer of the network (Experiment 5.3). 

Fukushima based the operating principles and architecture of the neocognitron 

on what is essentially a model of low level vision. While it seems likely that the pri- 

mary visual cortex is largely responsible for the deformation tolerant extraction of 

features from images, recognition of these images does not take place in that portion 

of the brain. Although perception of form is difficult to quantify, let alone assign to 

a specific part of the brain, it is possible to study how humans go about the task of 

recognizing images. The selectivity adjustment algorithm proposed in Section 5.2 

(SLOG) made use of Latimer's research into the mechanism that humans use to dis- 

criminate between patterns. Latimer's work linked the perceptual significance of the 

features within a pattern to the cumulative fixation tim,e (CFT) of a person's gaze. 

He then established a connection between the CFT distributions of humans, and 

the weights that evolved in simple artificial neural networks under gradient descent, 

for a basic character recognition task.  SLOG applied gradient descent learning to 

^SOFT resulted in 58.75% of test digits correctly recognized with 69.32% reliability. 
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S-cells in an effort to get the neocognitron to exploit the most idiosyncratic features 

of digit images to distinguish between different classes of digits. 

SLOG attempted to solve the problem of selectivity adjustment by discarding 

selectivity from the functional description of the S-cell altogether. Fukushima's S- 

cell was replaced by the sigmoidal unit common to multilayer perceptrons but the 

system failed to achieve even mediocre levels of performance on real world digits^. 

In comparison to the number of S-cell weights, the lack of training data (i.e. digit 

fragments) meant that the training set had to be artificially augmented just to allow 

the network to recognize its own training patterns. Despite the poor performance 

of SLOG, gradient descent learning was to find a much more successful application 

in Chapter 6. 

The shortcomings of OCFT, SOFT and SLOG provided some direction for the 

final selectivity adjustment algorithm presented in Chapter 5. The SHOP algorithm 

discarded assumptions about training features and, instead, used a validation set 

of real world data to estimate selectivity values that were likely to give effective 

recognition performance. Experimentally, the major drawback of this approach was 

the time taken to evaluate the network's behaviour with a variety of selectivities. 

Even with constraints on the range of selectivity values, running SHOP on a serial 

computer was a slow process. 

There were two consolations that did much to bolster the appeal of SHOP. 

Firstly, any practical implementation of the neocognitron would employ dedicated 

hardware (such as that proposed in [21]) to achieve high throughput, thus making 

SHOP a more feasible proposition. Secondly, the performance surfaces obtained 

in the experiments of Section 5.3 suggested that the neocognitron was amenable to 

much faster methods of selectivity optimization than the exhaustive search method 

used by SHOP. 

Regardless of its speed, SHOP was the most effective of the algorithms presented 

in Chapter 5 and proved useful as a technique to investigate the overall behaviour of 

^SLOG resulted in 35.75% of test digits correctly recognized with 35.75% reliability. 
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the neocognitron. SHOP revealed the profound effect that the supervisor's choice 

of training patterns had on network perfornnance, and also demonstrated that the 

network could cope equally well with thinned and unthinned digits'* (contrary to 

statements made by Fukushima). 

At the start of Chapter 6, SHOP was used to determine the consequences of 

using S and C-cell meisks in the neocognitron. Fukushima employed these sets 

of weights to emphasize activity at the centre of a cell's input region but gave 

no indication as to whether this improved the network's ability to classify images 

correctly. The results of Experiment 6.1 confirmed Hildebrandt's conjecture that 

the S and C-cell masks were superfluous. 

By Section 6.2, the effect of each S and C-cell parameter on the neocognitron's 

performance had been established. It was known that, with a high learning rate 

{qe ^ 10^), appropriate mask parameter values {■ytj^e ~ 0.7-1.0; 6i « 1.0-4.0) and a 

training set derived from real world data, SHOP could find selectivities that would 

allow about 76% of CEDAR test digits to be recognized (with 76% reliability) by 

the neocognitron. 

Even though this level of performance was the best yet, there was a considerable 

margin between the neocognitron's classification rate and those rates achieved by 

state-of-the-art recognition systems. It was not clear how, if it was at all possible, 

to adjust the parameters of Fukushima's network to obtain further improvement. 

It wa5 plain, however, that the use of alternating layers of S and C-planes was not 

appropriate at the final stage of the network, where the input image was clctssified 

on the basis of the features extracted by layers 1-3. The S and C-planes seemed 

adequate for feature extraction but could not learn to exploit discriminating features 

to effect reliable classification. This problem had been encountered previously and 

had led to the development of the SLOG algorithm in Chapter 5. While SLOG 

had failed due to lack of intermediate layer training data, this difficulty could be 

^an observation which, in the author's view, is more significant than the results of recent 

ittempts to "tweak" the performance of the neocognitron on grey-scaled characters [110,168]. 
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avoided by altering the final layer of the neocognitron so as to allow gradient descent 

learning at that stage only. 

The new architecture was known as the NCMLP and, essentially, employed a 

multilayer perceptron (MLP) to classify the activity present in the US4 cell-planes of 

the neocognitron. The training process described in Experiment 6.2 made extensive 

use of validation data to determine (1) a suitable number of hidden units and (2) an 

appropriate degree of training for the MLP section of the network (after SOFT had 

adjusted second and third layer selectivities). The peak test set performance of the 

NCMLP (84.62% correct with 96.36% reliability on balanced data) was attained 

with a 45 hidden unit MLP after 280 epochs of training; the improved classifica- 

tion/reliability rate suggested that the final layer of Fukushima's neocognitron really 

was the weakest link in the recognition chain. 

The top performance of the NCMLP still fell short of the classification rates 

reported for other digit recognition systems (although this result was tempered by 

the the fact that different digit data was used to test the systems under comparison). 

Logically, the next step in performance enhancement was to employ gradient descent 

learning throughout the neocognitron's structure, however, to have done so would 

have almost duplicated the work of Le Cun et al In effect, the NCMLP had bridged 

the gap between the neocognitron and the system developed by Le Cun et al. and 

our investigations drew to a close at that point. Chapter 6 concluded with a critical 

look at the philosophy behind Fukushima's and Le Gun's systems, the suggestion 

being that hierarchical feature extraction, alone, does not account for certain key 

perceptual processes brought to bear by humans in the recognition of handwritten 

data. 

This review should serve as a guide to the ideas that have been presented in this 

dissertation. The next section sifts out the most significant aspects of the material 

that has been summarized here. 
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7.2     Conclusions 

Chapters 2 and 3 have shown that Fukushima's description of the neocognitron 

leaves a number of questions unanswered. Prior to this thesis, there had been 

no critically assessed information available about how to choose selectivities and 

cell mask parameters to enhance the network's recognition rate. Also there has 

been no systematic investigation into the neocognitron's performance on real world 

handwritten digits, yet Fukushima's system was (and still is) acclaimed as a shift 

and deformation tolerant recognition system. To see whether this reputation is 

justified, let us consider the major findings of this thesis point by point. 

1. Hildebrandt also recognized that Fukushima had not broached the subject of 

how to choose effective selectivities for the neocognitron and proposed a solu- 

tion to this problem in the form of the OCFT algorithm. However, a practical 

evaluation of this approach (Experiment 4.1) showed that his definition of op- 

timality was not equivalent to attaining high levels of correct classification. 

OCFT was shown to have a tendency to produce S-cells so selective as to 

reject the patterns they were trained to recognize. This was attributed to 

two assumptions made by Hildebrandt (i.e. representative and symmetrical 

distribution of training features). 

2. The SOFT algorithm, proposed in Section 5.1, relaxed some of Hildebrandt's 

restrictions on S-cell acceptance regions to avoid the problem of training fea- 

ture rejection. By ensuring that training patterns elicited a guaranteed min- 

imum response from the appropriate S-cells, SOFT achieved a marked im- 

provement in recognition performance over OCFT. Nevertheless, the level of 

classification achieved with SOFT fell far short of state-of-the-art recognition 

rates. The indication of the experiments in Chapter 4 and Section 5.1 was 

that selectivities should not be adjusted on the basis of a handful of training 

patterns which are assumed to conform to a certain distribution. The experi- 

mental evidence also suggested that selectivity adjustment algorithms should 
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not be divorced from the very thing that they aim to enhance — the network's 

performance. 

3. Enhancing the neocognitron's performance was the prime concern of the SLOG 

algorithm proposed in Section 5.2. Based on the results of psychophysical stud- 

ies of form perception in humans, the SLOG algorithm attempted to exploit 

the most discriminating features of digits as a means to distinguish between 

different classes of digits. 

In the domain of two-dimensional pattern recognition, Latimer established 

parallels between the features that humans found significant and the features 

found to be distinctive by artificial systems under gradient descent learning. 

Consequently, gradient descent learning was used by SLOG to train S-cells 

to distinguish particular features within an image. SLOG failed as a result 

of insufficient training data for the intermediate levels of the neocognitron. 

SLOG'S failure highlights Fukushima's ingenuity in devising a system that 

can work moderately well after training with such a limited set of examples. 

The solution to this problem seemed simple: get more training patterns for 

the intermediate layers; but generating the sort of digit fragments used in the 

supervised training of the neocognitron was an ill-defined and time consuming 

process (as discovered in Experiment 5.2). In one sense, SLOG's failure high- 

lights Fukushima's ingenuity in devising a system that can work after training 

with such a limited set of examples. In another sense, it demonstrates a major 

practical difficulty posed by a learning algorithm that requires the network's 

internal representation to be specified by the supervisor. 

4. The SHOP algorithm rectified many of the problems encountered with Fuku- 

shima's supervised training algorithm, OCFT, SOFT and SLOG. By em- 

ploying a validation set of handwritten digits the SHOPalgorithm 

• made sure that selectivity adjustment was directly related to the neocog- 

nitron's performance on real world digits 
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• was not bcLsed on restrictive assumptions about the distribution of train- 

ing features 

• had clearly defined stopping criteria 

• did not introduce any new parameters into the network. 

The improved performance achieved with SHOP confirmed the significance 

of these four points. Items 5, 6 and 7 relate to experiments that used SHOP 

to investigate the behaviour of the neocognitron. 

5. Experiment 5.10 showed that, with the appropriate second and third layer 

selectivities, the neocognitron was able to recognize thinned and unthinned 

digits equally well. This result contrasts with Fukushima's suggestion that 

the first layer of the neocognitron would need to be redesigned to cope with 

unthinned digits [58, Section V]. Experiment 5.10 also demonstrated that elab- 

orate schemes to get the neocognitron to recognize "greyscale" characters [110, 

168] are not really necessary: with the right selectivities, the network can at- 

tain similar recognition rates for binary and analog images. 

6. The S and C-cell mask parameters certainly affect the neocognitron's perfor- 

mance, however, Experiment 6.1 showed no significant difference between the 

peak classification rates attainable by two networks with different mask pa- 

rameters. As Hildebrandt conjectured, the S and C-cell masks would appear 

to serve no useful purpose in the neocognitron. 

7. Perhaps the most important fact to be revealed by the SHOP algorithm was 

the profound influence that the supervisor's choice of training patterns has on 

the neocognitron's ability to generalize. A 20% jump in classification rate was 

achieved in Experiment 5.10 through the use of a set of training patterns that 

bore a closer resemblance (than Fukushima's exemplars did) to the features 

found within real world digits. To those familiar with even the rudiments of 

computational learning theory, this may not seem like much of a revelation, but 

it is an issue that proponents of the neocognitron have consistently ignored. 
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Much of the appeal of the supervised neocognitron seems to be founded upon 

the notion that an experimenter can find a "good" set of patterns to train the 

network with. Fukushima has written, at some length, about how one should 

select training exemplars for digits and alphanumeric character recognition 

(see [58, Section III B] for example) and the implication has been that, with a 

good set of "general purpose" training patterns, the deformation tolerant, shift 

invariant neocognitron should be able to recognize all but the most distorted 

of digits. Experiment 5.10 shows that assumption to be somewhat optimistic. 

The neocognitron's performance is strongly dependent on the features that 

it is trained with, yet these features are chosen in a way that is not directly 

related to the neocognitron's performance. Just because a supervisor may feel 

a certain feature is perceptually significant doesn't mean its inclusion in the 

training set will help the network classify more digits correctly. The unsuper- 

vised neocognitron fails in this regard too: the features that it learns to detect 

are learned as a result of correlations between the training digit and initial 

random weights, not because those features will be "useful" to the classifica- 

tion process. As long as the neocognitron makes use of handcrafted training 

fragments, chosen without direct relation to classification performance, it will 

fail to achieve the recognition rates of systems that are trained exclusively 

with real world data. 

8. In spite of the enhanced performance attained in the experiments of Sec- 

tions 5.3 and 6.1, it is safe to conclude that the neocognitron (as originally 

described by Fukushima) is not capable of state-of-the-art recognition rates. 

The research detailed in Section 6.2 suggests that one of the main reasons 

for this is the use of alternating S and C-cells throughout the network. While 

these layers of S and C-planes seem reasonably effective at extracting features 

from input images, they are far less effective at exploiting the idiosyncratic 

aspects of these images to give reliable classification. This gives rise to prob- 

lems, particularly when the features composing a certain class of digit are a 
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subset of those composing another class. The improved performance obtained 

with the NCMLP architecture (Experiment 6.2) is proof that Fukushima's 

S and C-plane combination does not work well as a classifier {i.e. at the final 

layer of the neocognitron). 

9. Even though the neocognitron has been outperformed by the NCMLP, which, 

itself, is outperformed by the system developed by Le Cun et al.^ all these sorts 

of hierarchical feature extraction networks will still be inferior to the human 

visual system. This final conclusion is drawn on the basis of the ideas pre- 

sented at the end of Section 6.2. Although the concept of hierarchical feature 

extraction (which is based on an imperfect model of low level vision) has a 

strong commonsense appeal, there are a number of perceptual phenomena that 

it doesn't account for. Unless machine vision systems are designed to deal with 

the features that compose images in a more sophisticated way and incorporate 

mechanisms that use featural information to disambiguate confusing charac- 

teristics, they will never perform on a par with human abilities, even in limited 

domains. 

7.3     Criticisms 

The research described in this thesis was triggered by optimistic curiosity. In late 

1990, many aspects of the neocognitron were a little mysterious (despite quite a few 

publications from Fukushima) yet the network was consistently lauded as a robust, 

shift invariant, distortion tolerant recognition system. On closer inspection, much of 

this acclamation appeared to reiterate Fukushima's original assertions rather than 

substantiate them. People who had not actually experimented with the neocognitron 

seemed ready to espouse its virtues; it looked like a good idea to find out how 

Fukushima's system had acquired such a reputation. 

This thesis has explored the strengths and weaknesses of the neocognitron, in 

part, to provide other researchers with a balanced assessment of its abilities.   By 
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conducting tests with real world digit data, the results of the experiments in this 

thesis should paint a realistic picture of what the neocognitron can achieve. 

Regardless of the knowledge that we now have about the neocognitron, it is 

difficult not to be critical of the way that it has been investigated in the past. The 

sole purpose of voicing these criticisms is to endeavour to ensure that the mistakes 

of the past are not repeated. With the amount of literature that has been devoted 

to the neocognitron, we have to ask why it has taken over a decade to obtain a 

rigorous assessment of this recognition system. 

Another major criticism that can be levelled at many investigations is a lack 

of experimental evidence to support claims of improved performance. Certain al- 

gorithms which have looked good on paper have performed miserably in practice 

(e.g. OCFT, SLOG) and this emphasizes the need for proposed alterations to 

the neocognitron to be accompanied by thorough and meaningful experimentation. 

Furthermore, since significant changes in performance do not necessarily correspond 

to a change in the peak classification rate attainable (as demonstrated in Experi- 

ments 5.10 and 6.1), a comparative study of two different networks would not be 

enough to reveal the true extent of changes to the neocognitron. For example, im- 

provements achieved by introducing new cells into the neocognitron [53,54] could 

possibly be obtained simply be using different selectivities in the original network 

— extensive testing is required to substantiate claims of improvements. 

As well as resolving some major issues, the results of this thesis should serve 

as a reminder to researchers working with supervised, unsupervised and selective 

versions of the neocognitron to accumulate evidence before passing any verdict on 

proposed changes to the network. 



Appendix A 

Alternate implementations of S 

and C-cell function 

In this appendix we show that it is possible to simplify the ways in which S and 

C-cells operate without degrading the recognition performance of the neocognitron. 

The modified versions of the S and C-cells were developed during a preliminary 

investigation of the neocognitron [117] and the modified C-cell was later incorporated 

in Experiment 5.3. So, for the sake of completeness, we present descriptions of these 

alternate cells and the results of their experimental comparison to Fukushima's 

original S and C-cell formulation. 

A,l     An alternate implementation of the S-cell 

The analysis presented in Section 3.5 shows how S-cell function (Equation (3.1)) re- 

lates to a fundamental measure of the similarity between two vectors: the cosine of 

the angle between them (Equation (3.11)). Instead of directly incorporating the co- 

sine function into the S-cell description, Fukushima modified this similarity measure 

to ensure that zero length input vectors would not cause problems (Equation (3.12)). 

Another way to tackle this issue is to define a sensible value of the cosine similarity 

219 
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measure for the case of zero length vectors: 

0 if |a^||uc<_i| = 0, 
s(at,uct~\)   =    ^ (A.l) 

,   otherwise. [  |a^||uc^_i| 
ai'^uct-i 

This similarity measure discards any information about the size of an S-cell's input 

vector (e.g. s(at,uci-i) = s{ai,xuci-i) for a non-zero input vector, «c<-i, and 

X > 0). Hence, small levels of random background activity in the input array could 

give rise to values of s(aiyUc(-i) near unity where the patterns of activation are 

proportional to the weight vectors of certain S-cells. To prevent this situation, we 

introduce a function that can be used to compare the magnitude of an S-cell's input, 

a^, to the average magnitude of that S-celFs training inputs, a^. <-»vg 

def sat(a^)    =    min I -. , 1 1 (A.2) 

Now we can incorporate Equation (A.l), a measure of similarity in direction, 

and Equation (A.2), a measure of similarity in magnitude, into our alternate S-cell 

implementation, 

sat(a^) • s(ae,uce-i) - T usi{n, k)    =    ip 
1 -r 

(A.3) 

This formulation is almost identical to Equation (3.13). It should be clear that 

the input vector, Uce-ij must be sufficiently similar to the S-celFs weight vector, 

at, in both direction and magnitude, for the S-cell to produce a non-zero output. 

In the author's opinion, Equation (A.3) is a more direct and much simpler way of 

implementing an S-cell than Fukushima originally proposed (cf. Equation (3.1)). 

However, experimental investigation is needed to determine the effect that this al- 

ternate implementation has on the neocognitron's performance. 

Unlike Fukushima's version of the S-cell there is no requirement for |a^| \uce-i \ > 

1 in this modified implementation (cf. Equation (3.13)). Consequently, the learning 

rate, qi, may be set to 1.0 during the training of a network that uses the S-cells 

described in this section. 
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A.2     An alternate implementation of the C-cell 

Fukushima's C-cell (Equation (3.3)) implements a nonlinear function of a weighted 

average of the activity within a cell's input region. C-cell output clearly depends 

on the activity of preceding S-cells but it is difficult to calculate what level of S- 

cell activity gives rise to a specific C-cell output. In Test 4 of Experiment 5.3 it 

WcLS necessary to obtain a measure of the average final layer S-cell response so that 

selectivity adjustments could be made to those S-cells. To simplify the measurement 

process, a C-cell's output was redefined in terms of the most active S-cell in that 

C-cell's input region: 

uci{n,k)    =         max     j{K,,k) ■ de(u) - usi{n-\-U,K) (A-4) 

«e{i Kst) 

Note that when a C-cell's mask parameters are set to unity (St = Si = 1.0), uce{ny k) 

is equal to the output of the most active S-cell within the C-cell's input region. 

A.3     Experimental performance of alternate cell 

implementations 

Throughout this thesis we have seen that the effect of alterations to the neocognitron 

can really only be assessed through experimentation. The following experiment aims 

to see whether the use of Equations (A.3) and (A.4) makes a significant difference 

to the network's performance. 

Experiment A.l  (To establish the effects of alternate S and C-cell implennenta- 

tions) 

This experiment used Fukushima's 1988 implementation of the neocognitron (see 

Table C.l) and a version of Fukushima's 1988 network which employed the alternate S 

and C-cell descriptions given in Equations (A.3) and (A.4) (see Table C.5). SHOP was 

applied to both networks using the 400 public domain digits described in Section B.3 as 
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a validation set. Figures A.l and A.2 show the performance surfaces obtained with the 

two different networks. 

As was the case in Experiment 6.1, the two performance surfaces obtained in 

the last experiment had different shapes but approximately the same levels of peak 

performance^. Experiment A.l shows that Fukushima's S and C-cell descriptions 

can be simplified without detriment to the recognition rate of the neocognitron. 

^Note that there is a tradeoff between the correct classification rate and reliability of each 

network. The classification performances that were obtained could have been made equal by 

slightly adjusting the fourth layer selectivities of either system. 



Appendix A: Alternate implementations of S and C-cell function 223 

% Correct 

0 
0.45  0.5 

r2/(r2 + 1) 
0.75 

0.7 
~yj^  0.65 
0.55 

0.5 r3/(r3 + 1) 

Figure A.l: The performance surface obtained with Fukushima's 1988 network using a public domain 
validation set of 400 digits (see Section B.3). A peak correct classification rate of 71.25% (72.90% 
reliability) occurred for r2 = 1.799, r^ = 1.426, 
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Figure A.2: The performance surface obtained with Fukushima's 1988 network using modified S and 
C-cell implementations and a public domain validation set of 400 digits (see Section B.3). A peak 
correct classification rate of 70.00% (74.10% reliability) occurred for T2 = 0.7660. T3 = 0.2419. 



Appendix B 

Training and Test Data 

B.l    Training data for Fukushima's 1988 imple- 

mentation of the neocognitron 

Figures B.l to B.4 show the patterns used by Fukushima in his 1988 implemen- 

tation of the neocognitron [48]. These bitmaps were kindly provided by Professor 

Fukushinia and were used in many of the implementations described in this thesis. 

US1.0 

US1.1 

US1.2 

US1.3 

US1.4 

US1.5 

lin US1.9 ^J 

Figure B.l: Training patterns for each of the 12 USl planes in the 1988 version of the neocognitron. 
A hooked hne at the side of two S-plane patterns (for example, the patterns for planes USl.l and 
USl.2) indicate that those S-planes converge to a single C-plane. For each training pattern, the 
seed cell is the cell in the centre of the appropriate S-plane. 

224 
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Figure B.2: 123 training patterns were used to train the 38 US2 planes in the 1988 version of the 
neocognitron. Note that most S-planes have more than one training pattern, for instance, S-plane 
US2.0 has four different training patterns that are applied to the network one at a time during the 
learning phEise. 
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Figure B.3; The third layer of the 1988 implementation of the neocognitron contained 35 S-planes 
and used 73 training patterns. The cross in each pattern indicates the location of the seed cell in 
relation to the 19 x 19 input plane. 
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Figure B.4: Training patterns for the final layer of Fukushima's 1988 implementation of the neo- 
cognitron. 
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B.2    Training data for LovelPs 1992 implementa- 

tion of the neocognitron 

The patterns shown in the following figures were generated by extracting (and alter- 

ing, in some instances) fragments of skeletonized digits from the CEDAR database, 

in an effort to obtain a realistic set of training patterns. Note that the training pat- 

terns for the first layer of S-planes in my 1992 implementation of the neocognitron 

are the same as those used by Fukushima in 1988 (see Figure B.l). 
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Figure B.5: Training patterns for the second layer of S-planes. 
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Figure B.6: Training patterns for the third layer of S-planes. For those patterns which do not 
contain a cross to indicate the location of the seed cell, it is implicit that the seed cell is in the 
centre of the appropriate S-plane. 
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Figure B.7: Training patterns for the fourth and final layer of S-planes. 
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B.3    The creation of public domain test data 

Necessity, it is said, is the mother of invention. So in 1991, when it became necessary 

to test the performance of the neocognitron, a set of 400 test digits was "invented" 

for this purpose. At that time, real world data could not be easily obtained (by 

the author, at least), so a set of 400 digits was created, using a mouse as a drawing 

device (see Figure B.8). Since this test data was not proprietary information, it was 

possible for the author to make these digits publicly available, via e-mail (see [115]). 

This allowed other researchers to evaluate the performance of their implementations 

in comparison to the author's version. 

On a statistical note, the more tests that we perform on a recognition system, 

the more accurate our estimate of the system^s recognition abilities become. We can 

think of a test set of n digits as a random sample of all possible handwritten digits. 

If y is the number of test digits correctly identified by the neocognitron then y/n 

gives us an unbiased estimate of the network's classification rate p. Since y follows 

a binomial distribution with mean np and variance np(l — p), it can be shown [80, 

Section 4.2-3] that the approximate 100(1 — a)% confidence interval for our estimate 

of the network's classification rate is 

-   ±   zf-^-l^^^^^^^'^^"^^ 
n 

(^) JilMLzlM, (B.,) 

where z is the standard normal percentile. The performance statistics obtained 

by testing the neocognitron with 400 patterns are within 5% of the network's true 

recognition rates (with 95% confidence). 
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1 I / 1 1 / \ \  II 1 /1 hw\n ):n^■^f:f Ml/ i\M \ \^ ^ 1 \ t\j ^ i 

333v55S33 33 3^3:^J 335 393 >3.^M^J'3333333-'3 33 333^:3 

Figure B.8: The 400 public domain test digits created by the author. The results of Experiment 5.2 
demonstrate the perils of using such "personalized" data to test a recognition system. 
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B*4    Verifying the implementation of the neocog- 

nitron 

One researcher who used the public domain data set to test an implementation of 

the neocognitron was David Simon who, at the time, was working with the Omron 

Corporation in Japan. During the first half of 1992, Simon was in contact with 

the author, comparing neocognitron performance results. Since the supervised ver- 

sion of the neocognitron is completely deterministic, different implementations of 

the system, using identical sets of parameters, training and test digits, should have 

identical clcissification performances. Initially, this was not the case and the discrep- 

ancy between Simon's and the author's implementations of the neocognitron caused 

some concern. 

Careful examination of the source code of each implementation revealed three 

differences between each system. The first of these was a minor misinterpretation 

(on Simon's part) of the interconnection scheme between layers of the network. 

Once this problem had been rectified, two seemingly insignificant differences be- 

tween implementations accounted for more than a 10% deviation in classification 

performance. 

The first of these differences was that the author was using the C-cell transfer 

function of Equation (3.3) (as used by Fukushima in [48,58]) whereas Simon used 

with a value of a = 4. The second difference was to do with the precise form of ci(i/) 

and di(t/) vectors. As stated in Section 3.7, it was not until 1991 that Fukushima 

published precise details of how these Gaussian masks were generated. Prior to 

that, the only documented definition of how these masks were calculated was given 

by Menon and Heinemann. Simon used Menon and Heinemann's mask generation 

method [124], the author used Fukushima's [58]. When these differences had been 

identified and eliminated, both networks gave identical classification results. Since 

no performance benchmark existed for the neocognitron, the concurrence of two 
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independently developed implementations wets the next best indication that both 

systems were correct. 

The comparison of Simon's implementation of the neocognitron with the au- 

thor*s revealed just how sensitive the neocognitron was to the value of parameters 

(like 7^, Se) and cell function {i.e. C-cell function). As a result of these findings, fur- 

ther investigation into the effect of mask parameters and cell function wa^ initiated 

Section 6.1. 

B.5    The CEDAR ZIP code digits 

Midway through 1992, real-world ZIP code digits became available to the author. 

A CD-ROM containing over 20,000 hand written numbers (18,468 in the training 

set and 4,924 in a test set), digitized at 300 pixels per inch, was purchased from 

the Center of Excellence in Document Analysis and Recognition (CEDAR). Sets of 

digits from this database were used to give estimates of the real world performance 

which could be expected from the neocognitron. (The reader is referred to [33] for 

more detailed information on the CEDAR database.) 

Since the resolution of the CEDAR data was much greater than the 19 x 19 pixel 

inputs to the neocognitron, it was necessary to scale the digit data before it could 

be used to test the neocognitron. This was accomplished via the following UNIX^ 

shell script^: 

#!/bin/csh -f 
# AUTHOR: David Lovell (dlovell@sl.elec.uq.oz.au) 
# Department of Electrical and Computer Engineering 
# University of Queensland 
# Queensland 4072, Australia 

^UNIX'^'*^ is a trademark of Bell Laboratories. 
^Note that the programs Ibsconple, gray2clr, f bnorm and f bext are part of the Fuzzy Bitmap 

package (Copyright (c) 1989 Michael L. Mauldin) and are used with permission.  The programs 

pbinma^e, hipstopgra, pgmtopbm, pbmpaste, piununraw, giftoppm and ppmtopgro are part of the 

Portable Bitmap package (Copyright 0 1989 Jef Poskanzer) and are used with permission. 
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» Check that the correct number of arguments is specified 
if   ( Sitargv != 1 ) then 

echo "Usage:  squish <filenaine>'* 
echo "Converts a CEDAR digit into a 19x19 matrix of grayscales." 10 
echo "Output is written to stdout," 
exit 1 

endif 

« Check that the file to be processed actually exists 
if (! -€ $1) then 

echo "Usage:  squish <lilename>" 
echo "$1 not found. Type squish for help" 
exit 1 

endif 20 

set rawfile = $1 
set tmpfile = $$ 

# Find out how many rows and columns are in the CEDAR digit 
set imp = 'deliau < Srawfile \  biiunpak \ hdinfo  \ grep Rows' 
set rows = $imp['i] 
set imp = 'deliau <  $rawfile \  biiunpak  \ hdinfo  \ grep  Cols' 
set cols = $imp[i] 

# Set Ssize to the largest dimension and calculate the necessary x and y 
# displacements to keep the image centred 
if {$rows > $cols) then 

set size = Srows 
0 xdisp = (Ssize - Scots) / 2 
0 ydisp = 0 

30 

else 

endif 

set size = Scots 
^ xdisp = 0 
0 ydisp = {Ssize - Srows) / 2 40 

# Make a square, blank bitmap to place the image into 
pbmmake  —white Ssize Ssize  > ftmp/Simpfite.bg.pbm. 

# Uncompress the image and store it as a portable bitmap (.pbm) file 
detiau < Srawfile \  biiunpak  \ hipsiopgm \ pgmtopbm > /imp/Simpfile.pbm, 

# Paste the uncompressed image into the blank bitmap. 
# Use fbsample to convert the bitmap to a greyscale image, normalize the 50 
# greyscales, using fbnorm, then resize the image to a 19x19 gif using fbext 
pbmpasie J imp f Simp file, pbm Sxdisp Sydisp /imp/Simpfile.bg. pbm |  pnmunraw  \\ 

fbsample —nl   —gl   \ fbnorm  ~b4   —W   I  gray2clr \\ 
fbext -wl9  -hi9  -G > /imp/Simpfile.gif 

# Convert the 19x19 gif into a format suitable for the neocognitron simulator 
giftoppm /imp/Simpfile.gif \ ppmiopgm \ pgmiomai 

# Tidy up any leftover files and unset any working variables 
/bin/rm /imp/Simpfile.bg.pbm /imp/Simpfile.pbm /imp/Simpfile.gif 60 
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unset  rawfile  imp  rows   cols  size  xdisp  ydisp 

Skeletonized versions of the CEDAR digits were obtained using the Safe Point 

Thinning Algorithm proposed by Naccache and Shinghal [133] 

B.5.1     CEDAR testing data 

It is useful to obtain an impression of the "quality" of data used in training and 

testing a recognition system. Subsections B.5.1 and B.5.2 show the scaled digit 

data that was used in many of the experiments in this thesis. Testing data was 

taken from the TEST/BINDIGIS/BS directory and training data was taken from the 

TRAIN/BINDIGIS/BR directory of the CEDAR CD-ROM. 

The "rubbish" data (Figure B.29) used in Experiment 6.2 was obtained by 

purposefully mis-segmenting the images of complete ZIP codes contained in the 

TRAIN/ZIPCODES/BB/BBOIOO of the database. 
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I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I10I1I I 12 I 13|14115 I 16 I 17 118 119 I 

'^ OaOOOOOd>0Oc:>6 d 0 00^^00 

100 dCfOO^bOOOO6OO€>OOOO0O. 
^QOO too t! 0OO6^MOC>0000 
2f2 6>0O0^cPOO0(h^i>0OOdOOOO 
-^d.<=>doooox:^x:> 0 0 0 ooooooob 
- OdOOOOCQiLV>C::^QJ^OOc/O^DLO 

^ Cx^OPO^ 0 d^^^ (200(1 (2 ODO^(^ 

^ ot>o£^ooooooaoc 6 0 0000 6 
?L° qqoboooooo6daooDOooo 
'^OdOQ)r:^O^aQ0O&t>OQ 00000 
jL° OOOQ^Of0^00^0000 

Figure B.9: CEDAR test digits — 434 'O's. 
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I 0 I  1   I 2 I 3 I 4  I 5 I 6 I 7 I  8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 

I°±i   I /////I ///}  [  I \ J I  \ / 
-      \.//// ////I  1 ///// / / J ^ \^JA iUJ. \ U'U// u n // - ;//\ \ [ u u \\ //Al // /A 

-/////I/////////f//// 
:^ } / I U /////// ( I /////[ 
- //VA ; 1/ ijyn 11 / WA \ \ 
-////////A/////////// 
-^/f /////////1 f //z.t/ \ I 

-////\ n I/\11/f \11 //\ 
- / / j i n I / / / / ^ / / / t / ] / / 
-/i±i//u j/////I/1/{/ 
340 ///-/ / 

Figure B.IO: CEDAR test digits — 345 *l's. 



240 Appendix B: Training and Test Data 

I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 ho I 11 |12 I 13 |14 I 15 I 16 |17 118 |19 I 

^ ?: '^Z'zzzz.;i'L^c:2c2a. ^a^^^^ 

Figure B.ll: CEDAR test digits — 296 *2's. 



Appendix B: Training and Test Data 241 

I 0 I   1   I  2 I 3 I 4  I 5 I 6 I 7 I  8 I 9  I 10| 11 I 12|13| 14|15|16| 17|18|19[ 

- 333533^ ^^Z3Z>Z5J^3 313 
j^3335s'S33a>3f^ 53533235 
- 2>5J3^3^^'3^3J333333^33 
-0 33^S333^3-:^3333^^^^3^^ 
-0 3 i^ jr J 3 33-3 ^ ^ i ^ J;? i ^J-^JJ 

Figure B.12: CEDAR test digits — 260 '3's. 

I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14|15I 16|17I 18 |19 I 

To q f ^ H y VvV^y ^ WM." / 4 s- H My 

To vy</>4y^4y^^^l-V^/ 
Figure B.13: CEDAR test digits — 234 '4's. 
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I 0 I  1  I 2 I 3 I 4 I 5 1 6 I 7 I 8 I 9 |10I 11 I 12 I 13 I 14115I 16 I 17 I 18|19 I 

Figure B.14: CEDAR test digits — 193 '5's. 

I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 hO|l1 I 12|13|14| 15|16| 17h8|l9| 

^ ^ h^i 4"^d Cr ^CPO 6> 6>^Cs>6?G>{s(^ 80 

100 

i£2 t ^ 6 / 666^&IpS6^ f (^^ 6 6> (^ (o 

280  Q) 

Figure B.15: CEDAR test digits — 281 '6's. 
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20 
40 
60 
80 
100 
120 
140 
160 
180 
200 
220 
240 

I 0 I   1   I  2 I 3 I 4 I 5 I 6 I  7 I  8 I  9  |10|11 I 12|13|14|15|16|17|18|19| 

7 7-77 7 lliyil^'1977nini 77 7 7 ^ 777771771177 777 77 7 77177^777 77177777 177^77^7^177777777 71 7117 f7'7n7^1711^'?71^7 7 7 7710-7^71 ^7 7717117 7 117 7777 7-77 ni777"l~\7'17 ll^'771177y7'1111iniPl 7 771^ 7 7^-^77777711777^ 7111^^'7'^777M7'7'^P-71177 7n7 7 7-^7^7717111 7 7 777'Y 17'7 7:^^177 77n'^7'y'\'^777 
Figure B.16: CEDAR test digits — 241 '7's. 

I 0  I  1   I  2  I  3 I 4  I  5  I  6 I  7 i  8 I  9  I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 

~o/.f z'^ ^ ^ ^ <^ ^ ^/'5'^ ^^*?S'<r<f ^ 

Figure B.17: CEDAR test digits — 216 '8's. 

20 

40 
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80 

100 

I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 ho I 11 Il2|l3h4 115 I 16 117 he I 19 I 

Figure B.18: CEDAR test digits — 211 *9's. 
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B.5,2     CEDAR training data 

I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 t 8 I 9 |10| 11 I 12 I 13 I 14 I 15|16 I 17| 18 I 19 I 
lo 00<DOC?OaOc?(poOCOCd>0 0C^> 
To ^(9<:^^^c>Oc?j2^^^^;r^ 0 ^ paOLO 
i^OOQOO(:^<!^Cf€>(} OOOOO^O0e>O 
J2 01^00000000000000^^00 
222(^OOOOOOO^Ci^OO00 0 OaOOO 
120 b(^0Cy^000DO<00QOa06C:>0c:> 
2fs oa<::^06d6 00c>oacpoooo<ooo 
^^04:>i>ObC:ib<^bOd^d(^OOdOOO 
^ <^oooo 0 moooacoooo^oo 
!Lo oo<:^oooc>^ooc:>ooooa<:'00^ 
210 a<::^oc:>Q>o>o^^t>ooc?ooc;^o^o 
?!2 aoo d 6>^Oooc>OOOQddO^^<:> 
^ ooo^OO^Od 0^ooo^e>C:^ood 
320 c3^O<^^c>D<i:?<:>c:?<9C?OC0^4::?<30^) 
^oc)^OOOOc>OD000^^6>^O^D^ 
^0 Ob 0 600<^^dO^^>OC>^Od60(f 
3_Lo d0OOOL>O^i:fOc>€:^d>^OOa^A0 
122 0^OOOOOOOOOd<^d>0OS>Oi^O 
1L° e?OOC> i)Q><=>C,OC/>OD<:^0^0000 

Figure B.19: CEDAR training digits — 440 'O's. 
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I 0 |1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 |10 In I 12 I 13 I 14 I 15 116 |17 I 18 I 19 I 

~////// f n //1 ///-///1 f 
-o//y/ / / //r///// \/11 \\ -T/ f I /////\ \ \/Lf ////I / 
■^ w//1 /////1 \ 1/  /  /J/ 
^\\I n n i /( t//////»// ^i/f f//}\/11 \ \ I n///1 
^//} i \I)//(////\ i/i// -////1 \ \///// ///1 \//^ -//I///////\////////i ^/////////Ii//\/\i±// 
- I////////\/f \ ii (jj \ I 
-X// / \ f U ML// I f / \ / )/ 
- / \ / / / UILMJ I / //////I 
-///ill y///i \i I /Win 
3j.° ? ////1 v/////i /nun 
^/I}}/\I/////i/\///// 
3- ////w / I / / i//U /1/// 3-//'i I//// /// / /////// -f I I\//////1//\{\{\ / / 
t^ 1111 / \ \\\ (/y\ i//\ /1 / 

Figure B.20: CEDAR training digits — 440 'I's. 
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I 0 I  1   I 2 I 3 I 4  I 5 I 6 I 7 I  8 I 9 |10|11 |12|13|14|15|16|17|18|19| 

400 j>-^jL^^;?2.3La^2Z22.'2A:i^^e''v 

Figure B.21: CEDAR training digits — 440 '2's. 
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20 

40 

60 

80 

100 

120 

I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 |10|11 I 12 I 13|14|15116 I 17 I 18 119 I 

333:^^33^3^333333333$ 
^JZ33}5JJJ'33J3 333333 33Z33^J1>^3333333J^33 333>3'bBS533S3Z%53433^^ S^^S3sa^^3 3353^33333^ ^3=^333333^3^333^^3333 ^33J3 53S:S^3e>3'^~b^lZ3S9 

?io 33^353^ J 3 S3Z 333aa>^3 ^ 
^j^333dB>3SJ3'^^l>S-}>^3Z5'^S ^ 3333a a Z3S 5 33:53333333 ^jl^33335 33S33'3:33S32>y^3 ^3^^33S33^3^3'b33'533'^'J'd ^ 333^J^:3333>33^^ 3 >3>3^J =J^333333313SZ'^Z3J33^S'^ 
^^4^333333 3-53^5 5 ^31^5 33 1^ 333^1^ 3^3333^^3333^3J^ 

Figure B.22: CEDAR training digits — 440 '3's. 
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I 0 I  1   I 2 I 3 I 4 I 5 I 6 I  7 I 8 I 9 I10I1I |12|13|14|15|16|17|18|19| 

JO M^$^/U/4^f-f4^y^^V^£^^y*7* 

280 L/^^^^4.i4y ^ v|^^c/_cic/Y^P'^V 

320 yy;^y 74^/^i?^^^f'^^M^Y Y^^ 

Figure B.23: CEDAR training digits — 440 '4's. 
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I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 |10 111 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 

- r^6SSs-£6 Sy-rS SB S'SSBS 

Figure B.24: CEDAR training digits — 440 '5's. 
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I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 |10|11 |12|13|14|15|16|17|18|19| 

2£2 (a it? ^ (^ is U h (fi (j> b (^ b h (o &06>^S ^ 

200 ^4^^ C C iaij^iffloCdCi^64900UU 

360 d^^ iff^^Jj7Lo^^^^S GO^S<£>C:i C L 

Figure B.25: CEDAR training digits — 440 '6's. 
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I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 ho 111 h2 113 I 14 |15 he I 17 I 18 I 19 I 

"77;1171177771719^^^7 -o77i^?7117711J77777/17 
~^ /l^Jlll-^^l?P''7?'^7777 7 n '^ni7nr\177777 77T:\7 77 71 ^n7777n.l711M777 )7777 ^1171111777 77177^7117 
- / 171-^771711-777771171 ^1117771711177 7111717 ^7717711^7777 7 917 7 711 ^17717717^1^77117 7 7 77 20011^^77777777^7717717 ^177777?9717117171111 
24071777^79111 0 1^177111 
^j^ 77^77711111171077777 ^J27111711777 7777171177 
^7 777711177777711117? ^77771177717'^')'^l771777 ^7 777 77777717 77^71177 ^7177777111177777A777 m 1111117 7 117777 1 7':?"711 ^ 7'77'77-777777-77777-7777 
1^77771171777171177777 

Figure B.26: CEDAR training digits — 440 '7's. 
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  I 0 I  1   I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 ho I 11 I 12 I 13 I 14 I 15 |16|17 I 18 I 19 I 

Figure B.27: CEDAR training digits — 440 '8's. 



254 Appendix B: Training and Test Data 

I 0 I 1  I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 ho 111 |12 I 13 |14 I 15 116 |17 I 18 119 I 

ISO f ? ^f ^ <7 7 9 ^ ^ ^ 9 9 ^ ^ 7 <? f f 9 q 

-0 f f <\ 9 4^^ ^ q'1^^9Bf 97f f ^^ 

2^<f9<r99'^9 9?7'i9 9<?'f9^991 
^^?<\9^q/9 9<^9'\999f'^^9^ 
'jl'^99 f .^9 9 <M<K^^ ^ ^1 M 9^"^ 

^999'^'^'1f9?799^f^f99'^9 

Figure B.28: CEDAR training digits — 440 *9's. 
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I 0  I  1   I  2 I 3  I 4 I 5  I 6 I  7 I  8 I  9 llOhl |12|13|14|15|16|17|18|19| 

120 — gs->5^5D?J-^'i^-n!»'^:7<5^ ^^'^S-<7yi^^^f^f<^:r, 

Figure B.29: CEDAR training digits — 440 "rubbish" images. 
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Network Specifications 

The purpose of this appendix is to provide concise information about the networks 

that were used in the Experiments described in this thesis. Some explanation of 

the entries in the following tables is required. An S-cell's transfer function may be 

either 

1. Threshold-linear — as originally described by Fukushima (see Equations (3.1) 

and (3.2)) 

2. Sigmoidal (see Equations (5.9) and (5.10)) 

3. Simplified (see Equation (A.2)). 

A C-cell's transfer function can either be 

1. Weighted mean — as originally described by Fukushima (see Equations (3.3) 

and (3.4)) 

2. Weighted max (see Equation (A.4)). 

Finally, cell masks can be generated according to 

1. Fukushima's method (see Section 6.1) 

2. Menon and Heinemann's method (see Section 6.1). 

256 
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Network structure: Fukushima 1988 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

Number of S-planes 12 38 35 11 

S-plane size 19 X 19 21 x21 13 X 13 3x3 

S-mask size 3x3 5x5 5x5 5x5 

S transfer function Threshold-linear Threshold-linear Threshold-linear Threshold-linear 

ri 1.7 4.0 1.5 1.0 

<H 10^ 10^ 10^ 10^ 

It 0.9 0.9 0.9 0.8 

Number of C-planes 8 19 23 10 

C-plane size 21 X 21 13 X 13 7x7 1 X 1 

C-mask size 3x3 7x7 5x5 3x3 

C transfer function Weighted mean Weighted mean Weighted mean Weighted mean 

h 0.9 0.8 0.7 1.0 

6i 4.0 4.0 2.5 1.0 

Mask function Fukushima Fukushima Fukushima Fukushima 

a — — — — 

Table C.l: Fukushima's 1988 implementation of the neocognitron. See Table C.6 for a description 
of the S and C-plane interconnection scheme. 
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Network structure: Fukushima 1988 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

Number of S-planes 12 38 35 11 

S-plane size 19 X 19 21x21 13 X 13 3x3 

S-mask size 3x3 5x5 5x5 5x5 

S transfer function Threshold-linear Threshold-linear Threshold-linear Threshold-linear 

rt 1.7 2.02 1.43 1.0 

<H 10^ 10^ 10^ 10^ 

It 0.9 0.9 0.9 0.8 

Number of C-planes 8 19 23 10 

C-plane size 21 x21 13 X 13 7x7 1 X 1 

C-mask size 3x3 7x7 5x5 3x3 

C transfer function Weighted mean Weighted mean Weighted mean Weighted max 

h 0.9 0.8 0.7 1.0 

h 4.0 4.0 2.5 1.0 

Mask function Menon Menon Menon Menon 

a 4 4 4 4 

Table C.2: David Simon's 1992 implementation of the neocognitron. This network has the same S 
and C-plane interconnection scheme as Fukushima's 1988 implementation (see Table C.6). 
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Network structure: Fukushima 1988 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

Number of S-pIanes 12 38 35 11 

S-plane size 19 X 19 21 x21 13 X 13 3x3 

S-mask size 3x3 5x5 5x5 5x5 

S transfer function Sigmoid Sigmoid Sigmoid Sigmoid 

0.5 0.02 0.02 0.5 

Number of C-planes 8 19 23 10 

C-plane size 21 X 21 13 X 13 7x7 1 X 1 

C-mask size 3x3 7x7 5x5 3x3 

C transfer function Weighted max Weighted max Weighted msLX Weighted max 

Si 0.7 0.7 0.7 0.7 

h 1.0 1.0 1.0 1.0 

Mask function Fukushima Fukushima Fukushima Fukushima 

a — — — — 

Table C.3: This network was used in the experiments described in Section 5.2 and, with the 
exception of S-cell function, is similar to the network shown in Table C.l. The S and C-plane 
interconnection scheme is given in Table C.6. 
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Network structure: Lovell 1992 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

Number of S-planes 12 46 45 23 

S-plane size 19 X 19 21x21 13 X 13 3x3 

S-mask size 3x3 5x5 5x5 5x5 

S transfer function Threshold-linear Threshold-linear Threshold-linear Threshold-linear 

ri 1.7 variable variable 1.0 

qt 10^ 10^ 10^ 10^ 

It 0.9 0.9 0.9 0.8 

Number of C-planes 8 25 26 10 

C-plane size 21 x21 13 X 13 7x7 1 X 1 

C-mask size 3x3 7x7 5x5 3x3 

C transfer function Weighted mean Weighted mean Weighted mean Weighted mean 

h 0.9 0.8 0.7 1.0 

6i 4.0 4.0 2.5 1.0 

Mask function Menon Menon Menon Menon 

a 4 4 4 4 

Table C.4: My 1992 implementation of the neocognitron. This neocognitron is the same as the one 
described in Table C.2 except for additional S and C-pIanes in layers 2, 3 and 4 of the network. 
The S and C-plane interconnection scheme is given in Table C.7. 
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Network structure: Fukushima 1988 

Parameter Layer 1 Layer 2 Layer 3 Layer 4 

Number of S-planes 12 38 35 11 

S-pIane size 19 X 19 21 x21 13 X 13 3x3 

S-mask size 3x3 5x5 5x5 5x5 

S transfer function Simplified Simplified Simplified Simplified 

n 0.5 Variable Variable 0.5 

Number of C-planes 8 19 23 10 

C-plane size 21 x21 13 X 13 7x7 1 X 1 

C-mask size 3x3 7x7 5x5 3x3 

C transfer function Weighted mean Weighted mean Weighted mean Weighted mean 

6t 0.7 0.7 0.7 1.0 

Si 1.0 1.0 1.0 1.0 

Mask function Fukushima Fukushima Fukushima Fukushima 

or — — — — 

Table C.5: This implementation of the neocognitron uses the simplified S and C-cells described in 
Appendix A. See Table C.6 for a description of the S and C-plane interconnection scheme. 
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USl UCl 
0 0 
1 
2 

1 
1 

3 2 
4 
5 

3 
3 

6 4 
7 
8 

5 
5 

9 6 
10 
11 

7 
7 

US2 UC2 
0 0 
1 1 
2 2 
3 3 
4 4 
5 4 
6 4 
7 4 
8 5 
9 5 
10 5 
11 6 
12 6 
13 6 
14 7 
15 7 
16 8 
17 9 
18 10 
19 10 
20 11 
21 12 
22 12 
23 12 
24 12 
25 12 
26 13 
27 13 
28 13 
29 13 
30 14 
31 15 
32 15 
33 16 
34 16 
35 17 
36 17 
37 18 

US3 UC3 
0 0 
1 0 
2 1 
3 1 
4 1 
5 2 
6 3 
7 4 
8 5 
9 6 
10 6 
11 7 
12 7 
13 8 
14 9 
15 9 
16 9 
17 10 
18 11 
19 11 
20 11 
21 12 
22 13 
23 13 
24 14 
25 15 
26 16 
27 17 
28 18 
29 18 
30 19 
31 20 
32 21 
33 21 
34 22 

US4 UC4 
0 0 
1 1 
2 2 
3 3 
4 
5 

4 
4 

6 5 
7 6 
8 7 
9 8 
10 9 

Table C.6: The connections between S and C-planes in each layer of both Fukushima's 1988 and 
Simon's 1992 implementation of the neocognitron. In the above tables, the serial number of each 
S-plane is listed in the left hand column and the C-plane that each S-pIane connects to is given in 
the right hand column. 
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USl UCl 
0 0 
1 1 
2 1 
3 2 
4 3 
5 3 
6 4 
7 5 
8 5 
9 6 
10 7 
11 7 

US2 UC2 
0 0 
1 1 
2 2 
3 3 
4 4 
5 4 
6 5 
7 5 
8 6 
9 6 
10 7 
11 7 
12 8 
13 8 
14 8 
15 8 
16 9 
17 9 
18 9 
19 9 
20 10 
21 10 
22 10 
23 10 
24 11 
25 11 
26 11 
27 11 
28 12 
29 13 
30 14 
31 15 
32 16 
33 17 
34 18 
35 18 
36 19 
37 19 
38 20 
39 20 
40 21 
41 22 
42 23 
43 23 
44 24 
45 24 

US3 UC3 
0 0 
1 0 
2 1 
3 1 
4 2 
5 2 
6 3 
7 3 
8 4 
9 4 
10 5 
11 5 
12 6 
13 7 
14 8 
15 8 
16 8 
17 9 
18 9 
19 10 
20 11 
21 12 
22 12 
23 13 
24 13 
25 14 
26 14 
27 15 
28 16 
29 17 
30 17 
31 18 
32 19 
33 19 
34 19 
35 20 
36 20 
37 20 
38 21 
39 22 
40 23 
41 23 
42 23 
43 23 
44 24 

US4 UC4 
0 0 
1 0 
2 1 
3 1 
4 2 
5 2 
6 2 
7 3 
8 3 
9 4 
10 4 
11 4 
12 5 
13 5 
14 6 
15 6 
16 7 
17 7 
18 7 
19 8 
20 8 
21 9 
22 9 

Table C.7: The connections between S and C-planes in each layer of my 1992 implementation of 
the neocognitron. 
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k Tfcl 

0 11.407 
1 12.233 
2 12.233 
3 10.754 
4 12.233 
5 12.233 
6 11.407 
7 12.233 
8 12.233 
9 10.754 
10 12.233 
11 12.233 

k rk2 k rk2 k rjfe3 k rjfc3 

0 4.670 19 12.246 0 4.714 18 2.414 
1 4.867 20 6.295 1 c» 19 2.414 
2 5.302 21 6.545 2 2.414 20 2.414 
3 4.574 22 8.254 3 2.414 21 2.414 
4 10.336 23 4.519 4 2.414 22 2.414 
5 10.336 24 5.097 5 2.414 23 2.414 
6 7.573 25 14.253 6 2.414 24 14.384 
7 10.336 26 8.671 7 2.414 25 10.960 
8 3.697 27 4.638 8 2.414 26 2.414 
9 7.121 28 5.505 9 2.414 27 10.960 
10 2.912 29 10.462 10 2.414 28 2.414 
11 11.158 30 6.866 11 11.950 29 2.414 
12 6.295 31 9.835 12 11.950 30 oo 
13 10.078 32 7.573 13 2.414 31 2.414 
14 5.050 33 10.078 14 3.241 32 2.414 
15 9.835 34 7.121 15 2.414 33 2.414 
16 6.298 35 4.519 16 2.414 34 2.414 
17 
18 

6.298 
6.866 

36 
37 

5.097 
4.638 

17 14.384 

k '•Jfc4 

0 0.564 
1 44.323 
2 0.564 
3 13.855 
4 0.564 
5 44.323 
6 21209.134 
7 0.564 
8 21209.134 
9 0.564 
10 13.855 

Table D.l: Selectivities chosen by OCFT in Experiment 4.1, 
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D.2    Experimental data from Chapter 5 

k rjki 

0 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

ib rfc2 it rk2 k ^3 ib rk3 

0 1.086 19 1.148 0 1.236 18 6.091 
1 1.086 20 1.844 1 2.776 19 1.430 
2 1.086 21 2.038 2 0.713 20 4.146 
3 1.086 22 2.263 3 0,751 21 1.430 
4 2.043 23 2.374 4 1.430 22 0.200 
5 2.043 24 2.374 5 2.697 23 1.507 
6 7.444 25 1.395 6 2.875 24 0.739 
7 1.083 26 2.038 7 2.226 25 0.595 
8 1.753 27 2.374 8 2.598 26 6.176 
9 7.444 28 1.352 9 3.118 27 1.430 
10 0.595 29 1.693 10 4.734 28 0.660 
11 2.043 30 1.949 11 4.676 29 2.936 
12 2.086 31 4.081 12 5.176 30 1.260 
13 2.043 32 2.204 13 2.179 31 0.200 
14 2.043 33 4.081 14 2.383 32 1.430 
15 1.363 34 1.760 15 1.430 33 6.947 
16 2.020 35 2.020 16 1.430 34 0.409 
17 
18 

3.507 
2.198 

36 
37 

1.019 
2.612 

17 0.309 

ib rjt4 

0 1.0 
1 1.0 
2 1.0 
3 1.0 
4 1.0 
5 1.0 
6 1.0 
7 1.0 
8 1.0 
9 1.0 

Table D.2: Setectivities chosen by SOFT in Experiments 5.1 and 5.2. 
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k rti 

0 1.7 

1 1.7 

2 1.7 

3 1.7 

4 1.7 

5 1.7 

6 1.7 

7 1.7 

8 1.7 

9 1.7 

10 1.7 

11 1.7 

k rt2 k n2 

0 1.921 23 2.012 

1 1.921 24 3.260 

2 1.921 25 2.012 

3 1.921 26 3.260 

4 1.914 27 2.012 

5 1.858 28 3.009 

6 1.914 29 3.009 

7 1.858 30 2.991 

8 1.914 31 2.991 

9 1.858 32 3.082 

10 1.914 33 2.268 

11 1.858 34 2.293 

12 3.260 35 2.293 

13 2.012 36 2.782 

14 3.260 37 1.709 

15 2.012 38 2.782 

16 3.260 39 1.709 

17 2.012 40 2.509 

18 3.260 41 3.032 

19 2.012 42 3.366 

20 3.260 43 2.318 

21 2.012 44 3.137 

22 3.260 45 2.145 

k rta k r*3 

0 2.562 23 1.296 

1 2.855 24 1.137 

2 2.929 25 1.465 

3 1.635 26 2.616 

4 3.610 27 3.089 

5 4.194 28 1.805 

6 2.449 29 1.857 

7 2.908 30 2.858 

8 1.205 31 2.825 

9 1.856 32 1.468 

10 2.301 33 2.526 

11 2.336 34 1.892 

12 1.365 35 2.050 

13 1.320 36 1.416 

14 1.557 37 1.573 

15 1.296 38 1.977 

16 1.154 39 3.645 

17 2.214 40 1.303 

18 1.087 41 1.264 

19 2.976 42 3.101 

20 1.276 43 1.541 

21 1.886 44 2.258 

22 2.667 

k rk4 

0 1.135 

1 2.635 

2 12.934 

3 0.196 

4 0.385 

5 1.469 

6 0.267 

7 1.229 

8 0.141 

9 3.163 

10 1.825 

11 2.077 

12 2.455 

13 1.597 

14 0.400 

15 1.391 

16 0.488 

17 1.003 

18 0.428 

19 1.643 

20 1.076 

21 0.888 

22 1.541 

k rkA 

0 1.258 

1 1.258 

2 1.666 

3 1.666 

4 0.745 

5 0.745 

6 0.745 

7 0.609 

8 0.609 

9 1.034 

10 1.034 

11 1.034 

12 0.769 

13 0.769 

14 0.498 

15 0.498 

16 1.019 

17 1.019 

18 1.019 

19 0.559 

20 0.559 

21 1.297 

22 1.297 

Table D.3: Selectivities chosen by SOFT in Experiment 5.3. 
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Or COS^T r2 ra 

68 0.3746 0.5990 0.5990 

64 0.4384 0.7805 0.7805 

60 0.5000 1.000 1.000 

56 0.5593 1.269 1.269 

52 0.6157 1.602 1.602 

48 0.6691 2.022 2.022 

44 0.7193 2.563 2.563 

40 0.7660 3.274 3.274 

36 0.8090 4.236 4.236 

32 0.8480 5.581 5.581 

28 0.8829 7.543 7.543 

24 0.9135 10.57 10.57 

Table D.4: The r2, ra values used in SHOP experiments (see Section 5.3). The relation between 
each of the columns is fully explained in Section 3.5 on page 78. Briefly, the relation between 
threshold angle, Or, and selectivity can be expressed as cos^^ = r/(r+ 1). 
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D.3     Experimental data from Chapter 6 

Experiment 6.2 made use of Miyata's backpropagation simulator, PlaNet [129], for 

the training and testing of the MLP portion of each network. PlaNet's shell interface 

made it relatively straightforward to evaluate the performance of several different 

networks and the script that was used to automate the process is included below. 

«!/bin/csh -f 
# AUTHOR: David Lovell (dlovell@sl.elec.uq.oz.au) 
# Department of Electrical Engineering 
# University of Queensland 
« Queensland 4072 
# Australia 

### Start Miyata's PlaNet package ### 
source /u4 /staff/dlovell/planet/RunNei  »L  ezpi6.log 

10 
set  NET = ../n.3£ayer 
set  TRAIN = / scratch/staff/dlovell/CEDAR/train/pat/ASAO-digO.pat 
set   VALID = /scratch/staff/dlovell/CEDAR/val/pat/AAOO-digl.pat 
set  TESTDIR - / scratch/staff/dlovdl/CEDAR/test/pat 
set  THISPROCESS - $$ 

### For each of ten different architectures ### 
foreach Nhid (5  10 15 20 25 30 35 40 45 50) 

### Skip the experiment if there is a sentinel file ### 20 
if (—e  stopexpt) break 
if (—c  SNkid/info) continue 

if (!   -d SNhid) mkdir $Nhid 
/bin/echo Process STHISPROCESS,  running  on 'hostname', since  'date'  » \ 

$ Nhid/info 
/bin/echo NETPORT =  SNETPORT »  SNhid/info 

30 
set  DUMPFILE = /trap/$Nhid.log 

### Instantiate the network ### 
network Nin=207 Nout = lQ Nhid=$Nhtd  $NET »  SDUMPFILE 

### Set up a graph of mean squared error #»# 
graph  new  xf?-400(350 y(?-0.100.02 
graph  label   ' '   Nhid=$Nhid, 'hostname',  'date' 
nset floatpattem  on 
nset  saveappend   off 
nset  save 25 
nset   eta 0.1 "^^ 

set MSEFILE  = $Nhtd/mse 
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set  TRAINSTATS = $Nhid/train.siais 
set  VALWSTATS = $Nhid/valid.stats 
set SAVEFILE = $Nhid/net 
savefile SSAVEFILE 

#«# Execute 300 cycles of learning, testing at every 10 epochs ### 
set counter=:0 
while (Scounier < 30) 50 

if(—c stopexpi) break 
if(—e $Nhid/stopexpi) break 

### Train the system for some epochs 
pattern STRAIN » SDUMPFILE 
nsei  randomize  on 
glist + all 
cycle  10 learn    \\ 

gawk  '/epoch/ {gsub("epoch=",  "'OA 
gsubCerrors".  »••);  print}'\ GO 
» SMSEFILE 

nset randomize  off 
glist —  all 

### Store the current epoch so we can restore it later ### 
set current = 'whaiis epoch' 
set  current = $carreni[6] 

### Measure the performance on the training set ### 
cycle 1 runAest -B stariJest -E siop-test » SDUMPFILE 70 
pHnt Scurrent pi   c-l » STRAINSTATS 
print perceni.correct c-l »  STRAINSTATS 
print perceni.wrong c-l      » BTRAINSTATS 
print perceni.reject  c-l    » BTRAINSTATS 
print percent.reliable        »  BTRAINSTATS 

### Measure the performance on the validation set ### 
pattern $ VALID » SDUMPFILE 
cycle  1 run.iest -B  stari.iest -E stop.iest » SDUMPFILE 
print Scurrent pi   c-l » BVALIDSTATS 80 
print percent-correct c-l » BVALIDSTATS 
print percent-wrong c-l      »  SVALIDSTATS 
print percent-reject  c-l    »  $ VALWSTATS 
print percent-reliable        » SVALIDSTATS 

ttt Measure the performance on the test sets ### 
foreach DIGIT (0 12345678 9) 

set  TESTMAX=$Nhid/$DIGIT.max 
set  TESTSTATS=$Nhid/$DIGITstats 

90 
pattern $TESTDIR/$DIGIT.pat » SDUMPFILE 
printheader SDIGIT Scurrent » STESTMAX 
present  all printJesi  \ gawk   '(MR 7. 2)'   »  STESTMAX 
priniirailer SDIGIT Scurrent » STESTMAX 
cycle  I  run-test -B start-test -E siop-test »  SDUMPFILE 
print  Scurrent pi   c-l » STESTSTATS 
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print percent-correct  c~l  »  $TESTSTATS 
print percent-wrong  c-l       »  STESTSTATS 
print perceni-reject c-l     >>  STESTSTATS 
print percent-reliable        »  STESTSTATS loo 

end 

### Restore the correct epoch number and increment the loop counter ### 
nsei  epoch  $curreni 
Q counter-\-+ 

end 

### Close the savefile and save some space ### 
save 
savefile   close no 
compress -v  SSAVEFILE $Nhid/*.max  »ii  SDUMPFILE 

end 

««# Quit out of PlaNet ### 
quit 

Ittit Tidy up the shell variables ### 
unset MSEFILE NET SAVEFILE  TESTDJR  TESTMAX  TESTSTATS 
unset  TRAIN   TRAINSTATS  VALID   VALIDSTATS counter current 120 
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Test images rejected/misclassified by 45/280-NCMLP 
*0' '1' '2' '3' '4' '5' '6' '7' *8' '9* 
4 0 1 23 0 1 12 21 12 2(7) 
8 12 3 25 9 9 41(1) 24 14 23 
9 23 10 27 14 19 42(1) 29 35 24 

15 35 11 30 32 30 43 33(1) 45 27 
16(1) 51(0) 14 31(0) 33 31 60 34(1) 55 33(1) 
18 61(7) 22 51(2) 45 32(8) 63 62(9) 56 36 
21 67 23(3) 64 53 33 65 67(2) 64(9) 46(7) 
71(2) 70(4) 25 65(2) 59 34 66(8) 68 67 49 
77(1) 73 32 71 60(9) 48 69 81 71 57(7) 
81(6) 74 34 72 64 56 84 82 72 58(4) 
90 79 41 77 70 57 95 86 73 65 
92 81 42 87 73 58 103 89 86 72 
99 85 44 90 80 67 104 94 95(4) 79(7) 
105 87 45(6) 127 88 69 105 96 97 104 
122 100 50 133(2) 99 75 109 98 102 116(1) 
123 119 52 147(7) 115 81 HI 99 127(9) 120 
124(8) 148 56(8) 165 121 86 115(5) 100 128(9) 131 
131(2) 162 61 182 129 90 117 101 130(1) 133 
134(2) 163 69 193 130 92 119 102 134 135 
137(7) 176 72(7) 196 135(1) 98 123(4) 107 146 137 
146(9) 187(7) 74(0) 211 141 101 125 110 153 159(8) 
151 188 83(0) 217(8) 145 109 126 112 159 164(7) 
158(1) 201 85(9) 218(2) 148(1) 111(8) 133 113 160(5) 194 
169 228 88 237 157 118 148 118 178(0) 195 
170 229 93 238 163(1) 125 150(1) 119 180 
173(2) 232 94 255 178 136 155 135 186 
175 241 95 187 137 161 140 200 
184 243 100 199(8) 153 171 146 201 
190 248 103 202 166 183 160(9) 206 
200(2) 249 106 212(1) 167 199(0) 161(9) 212 
201 250(4) 107 214 171 200(8) 163 
209 253 108(7) 216 183(3) 201 164(9) 
210 301 113 217 206(0) 165 229 334 132 218 209 179(9) 232 338 133 225 213 183(2) 241 342(7) 134 226 225 184 242 136 228(9) 226 185 250 143 230 227(8) 186 252 148 238 187 

Table D.5: This table (continued overleaf) lists the test results obtained in Experiment 6.2. Each 
column refers to a particular set of test digits {e.g. the '0' column refers to the digits in Figure B.9) 
and the numbers within each column denote specific patterns within each set. A single pattern 
number indicates a test pattern that was rejectedhy the 45/280-NCMLP. A pattern number with 
an accompanying number in brackets signifies a test pattern that was misclassified as the bracketed 
number. 
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1                                          Test images rejected/misclassified by 45/280-NCMLP 
'0' T *2' '3' '4' '5' '6' *7' *8' *9' 

257 149 239 189(2) 
263 155 240 190(4) 
266 158 250 193 
267 166 263(5) 204 
270 179 264 209 
272 180 265 214 
286 190(0) 266 219 
287 193 267 221 
291 196 274(8) 222(1) 
298 201 224 
301 210 225 
305 212 232(9) 
306 218 236 
313 221 
334 229 
341 234 
349 237 
355 247 
362 253 
379 254 
404 257 
425 258 
426 280 

281 
286 
294 

Table D.5 (continued). 



Appendix E 

The Statistics of Errors in 

Networks with Perturbed 

Weights and Inputs 

The motivation behind the ideas presented in this appendix came from Elmasry 

and White's digital implementation of the neocognitron [177]. The original aim was 

to determine the effects of reduced precision on the neocognitron's performance, 

however, the approach taken eventually proved unsuitable for the non-linear transfer 

functions of Fukushima's S and C-cells. All was not lost though. The theory that 

was developed had a direct bearing on a more widely used network: the multilayer 

perceptron. Since this work was done during the author's candidature, it is included 

in this dissertation (in slightly more detail than previously published [113,114]). 

Note that the material presented within this appendix arose through collaboration 

with Dr. Peter Bartlett*. 

^Currently with the Department of Systems Engineering at the Australian National University. 

274 
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E.l     Why should we be interested in the effect of 

weight and input perturbations? 

Part of the strong practical appeal of artificial neural networks is that they can be 

implemented using parallel hardware. Not only can we train neural systems to solve 

certain complicated problems, we can design these systems to operate very quickly, 

much faster than conventional serial computers. Furthermore, in many situations 

there would be no need for a hardware realization of a neural network to have any 

learning ability. Weights (that had been determined elsewhere) could simply be 

downloaded into the network so that all that the system would be required to do 

would be to propagate activity from input through to output. 

In this appendix, we shall explore the consequences of reducing the precision 

that weights are stored with: a situation that arises whenever a set of weights is 

downloaded into hardware that uses a limited precision or noise-prone representation 

of numbers. Our goal is to find a mathematical mecisure of the randomness that 

occurs in the outputs of a multilayer perceptron as a result of introducing small 

random perturbations (i.e. errors) into the weights of the system. Since errors in 

the outputs of one layer become errors at the inputs of units in the following layer, 

the theory that we develop must accommodate perturbations in the inputs as well 

as the weights of sigmoidal neurons. 

This topic of weight inaccuracies in feedforward neural networks has already been 

pursued, in quite different ways, by a number of researchers [22,145,182]. Before we 

introduce a new approach to calculating error statistics in MLPs, let us consider the 

findings of these investigators. 

E.2     Previous research 

The effects of weight errors in artificial neural networks have been explored since 

the early 1960s, when layered feed-forward networks of linear threshold units were 
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originally proposed. HofF's treatment [79] of weight errors in Adalines [178] was 

probably the first published investigation of the subject but, according to Stevenson 

[161], the results he produced were too complex to be of practical use and relied 

upon an unproven assumption of the distribution of points on an iV-dimensional hy- 

persphere (The Hoff Hypersphere Area Approximation). Glanz [65] modified HofF's 

approximation to show that an Adaline whose weight vector had been perturbed by 

an angle of $ had a O/TT probability of classifying a binary input pattern differently 

to before the perturbation. 

After a period of more than twenty years, Hoff and Glanz's results were picked up 

by Winter [181] and Stevenson [160,161] who developed expressions to approximate 

the probability of output error in Adalines and Madalines {i.e. multiple layers of 

Adalines) as a result of input and weight perturbations. Stevenson and Winter's re- 

sults revealed the Madaline's high sensitivity to input and weight errors and showed 

how the probability of output error escalated with increasing network depth. The 

impact of these findings on the neural network research community may have been 

lessened by the mild popularity of such networks of thresholding units^. 

It was in 1992 that Choi and Choi published the first comprehensive treatment 

of weight errors for the extremely popular multilayer perceptron [22]. Their sensitiv- 

ity analysis was for networks of units with differentiable activation functions (e.g. 

sigmoid functions) and used a first order Taylor series expansion to approximate the 

change in output caused by small perturbations in the weights of a network. Be- 

cause of the way that they approached the problem, Choi and Choi's central result 

^While training algorithms exist for these networks [11,181] they are not as straightforward as 

the gradient descent techniques favoured by many researchers. Consequently, networks of threshold 

units are not as prevalent as systems with sigmoidal neurons. 
^In this instance, sensitivity refers to the mathematical quantity 

g, ajf j.^ Vvar(AX,(£)) 
IT—»0 <7 ^ ' 

SP(W*) is the sensitivity of a network for pattern p and set of unperturbed weights W*. The 

variance of the error at the output of the L layer network is var(AXp(L)) and <r represents the 

standard deviation of the errors in the weights. 
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was only applicable to perturbations in a specific set of weights, for a particular 

input pattern, in an MLP with a single output unit. Extensions to this result were 

presented to allow the sensitivity of a multiple output network to be estimated for 

a range of input patterns. 

The theory developed by Choi and Choi could only be used after a network (or 

set of networks) had been trained; this is not intended as a criticism of their work, 

it is just to point out that there are many different ways of dealing with the matter 

of weight perturbations. [22] provides researchers with a technique for selecting the 

most error tolerant set of weights from a variety of weight sets that implement a 

specific input-output mapping, an important step in hardware realization of neural 

systems. But what if we wish to design a configurable system, a "neural network 

chip" perhaps, that could be "programmed" (i.e. store weights) to solve different 

problems. Because of the tradeoff between the accuracy (of number representation) 

and the cost of any VLSI system, it would be useful to be able to estimate the 

minimum storage precision required to achieve acceptable levels of performance. 

In their 1991 paper, Xie and Jabri [182] tackled the issue of network performance 

vs. weight precision. Unfortunately, their analysis relied upon many assumptions 

about the statistical distribution of variables throughout the network (e.g. the dif- 

ferent levels of activation for each unit were assumed to be uniformly distributed 

over the range of possible activations). Things were further complicated by the in- 

troduction of an "effective nonlinearity coefficient", a measure of the probability of 

a unit's activation falling within the linear region of the sigmoidal transfer function. 

Xie and Jabri's final results were somewhat confusing and appeared difficult 

to apply in practice. The expression that they obtained for the ratio of signal to 

quantization noise seemed to indicate that, as the nonlinear transfer function became 

steeper (i.e. approached a step function), the accuracy of the network improved — 

a suggestion that ran counter to Stevenson's experimental and theoretical findings 

[161, Section 8.2.1]. The shortcomings of Xie and Jabri's approach provided some 

motivations for the theory presented in Section E.3 but, before we look at that 
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material, we shall review a major advance in the area that came after the author's 

publications on the subject. 

"Selection of weight accuracies for neural networks" was the title of Piche's doc- 

toral dissertation [145] in which he developed techniques to approximate the error 

statistics of ensembles of networks. The use of ensembles allowed Piche to make 

extensive use of the Central Limit Theorem to simplify summations of random vari- 

ables and thereby obtain expressions (for the variance of errors at the outputs of 

neurons) that had a ready interpretation and an intuitive appeal. Methods were 

presented for calculating the noise-to-signal ratio of layers of units with sigmoidal, 

linear, threshold, sinusoid and saturating transfer functions. 

As with previous researchers, Piche had to rely upon certain cissumptions to 

obtain tidy theoretical results. The broad scope of Piche's thesis means that these 

assumptions warrant special attention; for his results to be valid in calculating the 

noise-to-signal ratio of an MLP, the following points must hold: 

• Each layer must have a large number of inputs (e.g. > 25) so that the Central 

Limit Theorem can be applied to the weighted sum of inputs calculated by 

each unit. 

• To obtain simplified expressions for the effects of errors, the weight perturba- 

tions and the input errors that they cause are assumed to be small. 

• The weights are required to be statistically independent of each other and the 

mean value of each weight (over the ensemble) must be zero. 

• Similarly, the inputs of all neurons must also be statistically independent with 

zero mean over the ensemble. 

• The neurons within each layer are assumed to be statistically identical. 

With these assumptions in place, Piche estimates the output noise-to-signal ratio 
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(NSR) at layer / of a sigmoidal Madeline with a recursive equation: 

NSR,   Is'   % (E.2) 

=   S-• (NSR,_, + <Ti„,/0 , (E.3) 

where 

j—i 

4exp(-5^/2) 
ds 

(E.4) 

The symbols in the preceding equations represent the following quantities: 

TV/      number of units in layer / 

<T^^ variance of the inputs in layer / 

^wi variance of the weights in layer / 

(7y^ variance of the outputs of layer / 

^Ay, variance of the output errors of layer / 

(7^ variance of the weight errors in layer / 

The purpose of presenting Equation (E.4) is to show the information required 

to calculate the output NSR, i.e. one must know (or be able to make an educated 

guess about) the variance of the network's weights and inputs — a reasonable de- 

mand, considering that weights and inputs tend to have a fixed range in hardware 

implementations of neural networks. 

It is important to understand that Piche's main results apply to ensembles of 

networks, rather than a specific instance of a system (as was the case with Choi and 

Choi's work). In an appendix to his thesis, Piche develops an alternate stochastic 

model that can be used for estimating the error statistics of a particular network. 

Experiments with this new technique showed that it could approximate the output 

error variance of a specific trained network, though doing so actually required more 

CPU time than the corresponding Monte Carlo simulations. 

The ideas presented in the following section adopt a different approach to both 
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Choi and Choi's, and Piche's work. Instead of constructing expressions that ap- 

proximate the error statistics of multilayer perceptrons, we shall use bounds on the 

statistics of weight and input errors to derive further bounds on the expectation and 

variance of output errors. 

E,3    Error and variance bounds on sigmoidal neu- 

rons with weight and input errors 

This section consists of material that was submitted to Electronics Letters on Febru- 

ary 18, 1992. Certain minor changes have been made in incorporating the work 

presented in [113] into this thesis, however, these alterations have no bearing on the 

central results that were obtained. 

E.3.1    Abstract 

In this investigation, we derive bounds on the expectation and variance of errors 

at the output of a multi-layer feedforward neural network with perturbed weights 

and inputs. It is assumed that errors in weights and inputs to the network are 

statistically independent and small. The bounds obtained are applicable to both 

digital and analog network implementations and are shown to be of practical value. 

E.3.2    Introduction 

Our aim is to establish the effect of errors in the weights and inputs of a neural 

network which arise in analog and limited precision digital realizations. Other re- 

searchers have investigated this problem [22,160,182] but their approaches have been 

aimed at approximating (rather than bounding) output error statistics. 

The method we describe needs no information about the distribution of the 

weight and input errors other than bounds on their expectation and variance. This 
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is a more general approach than that of Xie and Jabri [182] who assumed the weights 

to be uniformly distributed over the quantization width. Xie and Jabri also made 

assumptions about the distribution of the output of each neuron (a restriction which 

we do not impose) and used a piecewise linear transfer function in their derivation 

(whereas we employ the more commonly used sigmoid function). 

The approximate effect of weight and input perturbations on the output variance 

has been expressed in system sensitivity terms by Choi and Choi [22j, but these 

authors did not consider the effect of perturbations on the expected value of the 

output. The results we obtain indicate that the error in the expected value of the 

output can be significant and should not be disregarded. We also present results 

that show the bounds we obtain to be of practical value. 

E.3.3     Preamble 

Consider a layer of neurons, each of which is fully connected to n,n inputs. The 

value of the i^^ weight is given by Wi = u^i + e^, where Wi is the nominal value of the 

weight and the error term has zero mean and a fixed (known) variance: Efe^,.] = 0, 

var(e^.) = v^. 

The i*"^ input is denoted by Xi and its value is given by Xi — Xi -\- e^i, where 

the expectation and variance of the error term e^, are bounded'*: |E[ef.]| < e^, 

var(ei,) < Vx. 

The following discussion is based around neurons described by 

a   =    ^WiXi (E.5) 

y    =    tanh (a/n,„). (E.6) 

Normalizing the activation a of the neuron by its fan-in ensures that, in a fixed 

precision implementation, the activation of every neuron hcis the same range and 

■*The expected error value is not assumed to be zero for inputs because of the way in which 

errors propagate through a network. This is justified by the analysis which follows. 
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precision, regardless of the number of inputs to it. It will be seen later that nor- 

malization of activation results in tighter statistical bound on the neurones output 

y- 

E.3.4    Bounding the Expectation and the Variance of the 

Activation Error 

We wish to determine how the estimated activation deviates from the activation 

given by Equation (E.5) in a neuron with errors in its inputs and weights. We start 

by considering the expectation of the activation error 

E[ea]   =   E -Y^WiXi, (E.7) 
1=1 .1=1 

Since E[euyJ = 0, this reduces to 

|ENI   =   E^Mei,] 
1=1 

<     "inVKmaxex = €„ (E.8) 

where Wmax is the magnitude of the largest weight connecting the neuron to its 

input (this results in a general bound that can be improved upon for a specific set 

of weights). 

Now we bound the variance of the activation error 
"in 

var(ea)   =   5Z^^^(^«^») (E-^) 
1=1 

where 

var(uj,x.)   =   u;Jvar(e£,) + var(eu,.)a;- + var(e^.ei.) 

<     ^max^x + Vu, + ft.(l^x 4- e^). (E.IO) 

(We have simplified var(e^.e£,) using the fact that that E[e^.] = 0 and var(Xy) = 

(var(A:) + E[X]2)var(y) for X, F independent and E[F] = 0). Equation (E.IO) gives 

the I*** term in the summation of Equation (E.9) and lets us bound the variance of 

ea by 

var(ed)  <  n,„(W^^^i;^ + t;^(l + v^ + e^))  =  1;^. (E.U) 
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E.3.5     Bounding the Expectation of the Output Error 

Now that the expected value and variance of the activation error have been bounded 

it is possible to bound the expected value of the output. In the following derivation, 

we refer to the transfer function tanh(-) as /(•). 

The expected value of the output is given by E[y] = E[/(o H- ea)). By Taylor's 

expansion, this may be written as 

EK]   =   E[f{a) + f{a)e, + ^e,' + --- + ^^e," + ..-]       (E.12) 

<    /(«) +/^ax^a + %ei^ + • • • + :^ei" + ■ ■ • (E.13) 

where fi^Ix ^^ ^^^ maximum value of the n*^ derivative of /(•). 

The estimate of the activation is the sum of n,„ random variables, and (by 

the Central Limit Theorem) will become approximately normally distributed as w,„ 

becomes sufficiently large^. The higher order terms of Equations (E.12) and (E.13) 

will, therefore, approach zero so it is recisonable to use only the first and second terms 

of Equation (E.13) to bound the estimate of the activation. From Equation (E.6) 

we know that 

\f'(a)\   <   ^ = fL. (E.14) 

\r(a)\    <   0.7698-^ =/;:;.„ (E.15) 

hence, 

|E[^]-/(«)|    <    —|E[ei]| + 0.38494-var(e5) (E.16) 
'^ in '^ in 

=   —+0.3849-^ (E.17) 
riin n^ in 

^Papoulis [139, p. 214] suggests that n,„ > 30 is adequate. 
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E.3.6    Bounding the Variance of the Output 

An obvious property of the sigmoidal transfer function (Equation (E.6)) is that 

P(a) < a^ln]^. Hence, the variance of the output error can be bounded: 

var(ey)   =   var(y) 

=   E[/^(a)] - E^[/(a)]  <  ^. (E.18) 
"in 

E.3.7    Application of Bounds to a Specific Network Struc- 

ture 

The following results apply to a network that receives noiseless inputs but uses 

weights throughout with variance V^ (this is typical of a fixed precision digital 

implementation). The network has i layers and the number of inputs to the i^^ layer 

is denoted n,. Let the bounds on the expected value and the variance of the output 

error at the i'^ layer be written e», i;,- respectively. Equations (E.8), (E.IO), (E.17) 

and (E.18) can be used to derive the recursion relations 

e.   =   V^n.axei-1 + 0.3849t;. (E.19) 

^i   =   ;|-(W^Lx^.-i + K.(l+z;._i + e?_i)). (E.20) 

The nature of the inputs to the network lets us calculate the first terms of these 

relations: 

ei   =   0.3849— (E.21) 
Til 

V,   =   —. (E.22) 
ni 

Equations (E.19) to (E.22) can be used to obtain bounds on the expectation and vari- 

ance of output values for arbitrary feedforward networks (so long £LS the activation 

and transfer function of Equations (E.5) and (E.6) apply). With certain assump- 

tions, an interesting closed form expression can be derived. The major assumption 

is that the number of nodes in any hidden layer n, is related to the maximum weight 
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by Ui > bW^^^, where 6 is a constant greater than unity (note that this applies to 

a large class of feedforward networks). With this supposition, one can show, after 

some algebra, that: 

e,   <   0.3849^(1 + ^,_,^^^__,^) (E.23) 

^    V^   be 

where c = 1 + u/ + ej. 

Note that the bound on et is exponentially dependent upon the number of layers 

in the network. This indicates that results such as those in [22], which treat variance 

as the sole indicator of network performance, should be regarded with caution. We 

remark that the proportionality between V( and the variance of the network weights 

in Equation (E.24) is in agreement with Choi and Choi's approximation [22]. 

Table E.l shows bounds on the expectation and variance of the output error 

(calculated using Equations (E.19) to (E.22)) at each layer of a five layer, fully 

interconnected network with 49 nodes in each layer (as in [22,160]). The weights are 

quantized into A'^-bit representations over the range [—VVmax, W^max] = [—4,4]; thus, 

the error in the weights is uniformly distributed over the quantization width (i.e. 

the size of the least significant bit) and E[e^.] = 0 and u^ = (4 • 2~<^"^^)^/12. We 

assume that the inputs to the network have no errors. 

Table E.l shows that even a 4 bit implementation of this network will give 

acceptable performance, despite the exponential increase in the output error bound 

with the number of layers. We point out that the values shown in Table E.l are 

bounded by Equations (E.23) and (E.24). 

E.3.8     Conclusions 

In this section, we have described bounds on the expectation and variance of the 

output error in a neural network with perturbed weights and inputs. The bounds we 

have obtained are in general agreement with approximate results obtained elsewhere. 
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8 Bits Cy Vy 

Layer 1 0.0000006391 0.000001661 
Layer 2 0.000003405 0.000002203 
Layer 3 0.00001454 0.000002380 
Layer 4 0.00005910 0.000002438 
Layer 5 0.0002373 0.000002457 

4 Bits 
Layer 1 
Layer 2 
Layer 3 
Layer 4 
Layer 5 

0.0001636 
0.0008717 
0.003722 
0.01513 
0.06075 

Vt 

0.0004252 
0.0005642 
0.0006096 
0.0006245 
0.0006295 

Table E.l: Output error and variance bounds for networks with quantized weights. These results 
apply to a five layer, fully connected MLP with 49 neurons in each layer. 

The exponential dependence of the output error bound on the number of layers 

suggests that performance estimates of neural networks with perturbed weights and 

inputs should not disregard the effect of this quantity. 
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