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ABSTRACT 

 

 

 

Arabic handwriting recognition is a dynamic and stimulating field of study within 

pattern recognition. This system plays quite a significant part in today's global 

environment. It is a widespread and computationally costly function due to cursive 

writing, a massive number of words, and writing style. Based on the literature, the 

existing features lack data supportive techniques and building geometric features. 

Most ensemble learning approaches are based on the assumption of linear 

combination, which is not valid due to differences in data types. Also, the existing 

approaches of classifier generation do not support decision-making for selecting the 

most suitable classifier, and it requires enabling multi-objective optimisation to handle 

these differences in data types. In this thesis, new type of feature for handwriting using 

Segments Interpolation (SI) to find the best fitting line in each of the windows with a 

model for finding the best operating point window size for SI features. Multi-Objective 

Ensemble Oriented (MOEO) formulated to control the classifier topology and provide 

feedback support for changing the classifiers' topology and weights based on the 

extension of Non-dominated Sorting Genetic Algorithm (NSGA-II). It is designated 

as the Random Subset based Parents Selection (RSPS-NSGA-II) to handle neurons 

and accuracy. Evaluation metrics from two perspectives classification and Multi-

objective optimization. The experimental design based on two subsets of the 

IFN/ENIT database. The first one consists of 10 classes (C10) and 22 classes (C22). 

The features were tested with Support Vector Machine (SVM) and Extreme Learning 

Machine (ELM). This work improved due to the SI feature. SI shows a significant 

result with SVM with 88.53% for C22. RSPS for C10 at k=2 achieved 91% accuracy 

with fewer neurons than NSGA-II, and for C22 at k=10, accuracy has been increased 

81% compared to NSGA-II 78%. Future work may consider introducing more features 

to the system, applying them to other languages, and integrating it with sequence 

learning for more accuracy. 
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ABSTRAK 

 

 

 

Pengenalan tulisan Arab merupakan bidang yang dinamik dalam teknologi 

pengecaman corak yang amat signifikan pada zaman globalisasi ini. Fungsi ini 

semakin berleluasa tetapi berkos tinggi disebabkan faktor-faktor seperti penulisan 

kursif, kosa kata yang luas, serta gaya penulisan. Ciri-ciri dalam kebanyakan literatur 

kekurangan teknik sokongan data dan pembinaan ciri geometri. Kebanyakannya 

berasaskan andaian gabungan linear adalah tidak sah kerana perbezaan antara jenis 

data serta kesukaran pemilihan pengelas yang paling sesuai. Pembolehan 

pengoptimuman multi-objektif diperlukan untuk mengawal perbezaan jenis data ini. 

Tesis ini memperkenalkan jenis ciri yang baru dengan Interpolasi Segment (SI) bagi 

menentukan garis yang paling tepat dalam setiap window dengan model pencarian saiz 

window yang paling tepat sebagai titik operasi untuk ciri SI. Ensembel Berorientasi 

Multi-Objektif (MOEO) dirumuskan untuk mengawal topologi pengelasan dan 

menyediakan sokongan maklumbalas untuk mengubah topologi dan pemberat 

berdasarkan sambungan pengoptimuman Penyusunan Genetik yang Tidak Didominasi 

(NSGA-II). Ia ditetapkan sebagai Pemilihan Ibu Bapa berdasarkan Subset Rawak 

(RSPS-NSGA-II) bagi menangani bilangan neuron dan ketepatan. Matriks penilaian 

daripada perspektif klasifikasi dan pengoptimuman multi-objektif. Eksperimen ini 

direka berdasarkan pangkalan data IFN/ENIT, 10 kelas (C10) dan 22 kelas(C22) yang 

diuji dengan Mesin Sokongan Vektor (SVM) dan Mesin Pembelajaran Ekstrem 

(ELM). Peningkatan prestasi ini disebabkan ciri SI yang menunjukkan keputusan 

signifikan dengan SVM, iaitu 88.53% untuk C22. RSPS untuk C10 pada k=2 mencapai 

ketepatan 91% dengan lebih kurang bilangan neuron berbanding NSGA-II, manakala 

C22 pada k=10, ketetapan meningkat ke 81% berbandingkan NSGA-II, 78%. 

Penyelidikan selanjutnya harus mempertimbangkan pengenalan lebih ciri dalam 

sistem, dan mengaplikasikan ciri tersebut untuk bahasa lain serta berintegrasi dengan 

pembelajaran berurutan bagi meningkatkan ketepatan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

Handwriting recognition is a dynamic and stimulating field of study within pattern 

recognition and plays quite a significant part in today's global environment. It is a 

prevalent and computationally costly function (Yadav, 2015). It is not easy to 

understand the true meaning of handwritten texts in today's world. There are several 

aspects where have to identify the letters, words, and digits, such as bank cheques Al-

Nuzaili et al. (2018), postal addresses Gopikrishna & Samatha (2018), and handwritten 

form processing Barrus et al. (2018) where handwriting recognition is necessary.  

 A graphical representation of handwritten recognition is available. It refers to 

converting the spatial and temporal aspects of writing into a symbol that can be 

recognised both offline Chen et al. (2017), and online (Alipour et al., 2016). Optical 

Character Recognition (OCR) is an associated term, and it means converting text from 

scanned images, written text, or handwritten text into machine-readable text. 

Handwriting recognition is limited to the recognition of handwritten text. Figures 1.1 

(a) and 1.1 (b) illustrate handwritten words and their corresponding recognised 

version. 
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(a)                                                                   (b) 

Figure 1.1: (a) Original image (b) recognised text 

 In the past few decades Bhunia et al. (2018), much research has been conducted 

about handwriting recognition, particularly for the Latin script (Singh, P., 2018). 

Notably, there are quite good results for machine printed text recognition with over 

99% accuracy for the renowned IAM handwritten text dataset for the Latin script 

(Marti & Bunke, 2003). However, only minor studies have been conducted in Arabic 

handwritten recognition as against Latin (Lawgali, 2015). Due to the intricacy of 

Arabic text and poor databases (Alkhateeb, 2015). Recognition of Arabic text is in the 

initial phases compared to the recognition of Chinese, Latin, and Japanese 

manuscripts. 

 Furthermore, there is a big challenge in Arabic writing recognition practices 

that arise from the data's cursive form. Recognising Arabic handwritten content is 

quite challenging. This challenge arises from several aspects, like the Arabic writing 

setup that is cursive, the pen, the writing style, and other elements. 

 There are few types of research works for unconstrained Arabic handwritten 

text recognition that has been published (Rabi et al., 2017a). The majority of the 

studies on Arabic handwriting recognition have tackled isolated character, word or 

digit, (Jayech et al., 2016a; Younis 2017; Alani, 2017). Hence, there is much research 

needs to be accomplished in Arabic handwritten text recognition. Academics have 

found many kinds of challenges in recognising Arabic handwriting (Aloud, 2018). The 

following section, discuss several of the challenges related to Arabic handwriting 

recognition. 
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Figure 1.2: Illustration of some irregularities present in Arabic handwriting (Parvez, 

2010) 

 

• The Arabic language is written in cursively forms Rabi et al. (2018a), with 

overlapping characters. Due to these overlapping characters, separation of 

words in Arabic handwriting is difficult and needs to utilise the contextual 

information in many cases. Moreover, the overlapping of characters makes the 

assignment of dots or diacritics a challenging task. As shown in Figure 1.2(a), 

it is not easy to decide which characters the dots belong to without contextual 

information. 

• Arabic handwriting contains a lot of ligatures (like لا). Some of these ligatures 

are optional (like لح/لحـ ). Ligatures are difficult to segment into component 

characters and may be treated as different characters.  

• Writing styles have a bad effect in some cases. For example, SEEN (ـسـ) is 

sometimes written as a long KASHEDA Figure 1.2(b), making it very difficult 
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to recognise it without a contextual/dictionary. Other examples include the 

different writing dots, confusion between double-dots, and madda (~).  

• Many Arabic characters have ascenders and descenders characters which 

means the words, not on the same baseline. Sometimes, ascenders and 

descenders of words from different lines touch each other Figure 1.2(c). In 

addition, gaps between the lines on a page may not be uniform and written 

straight as in the text, which is a general handwriting recognition problem. In 

many cases, dots/diacritics are written in between two lines. Assigning these 

dots/diacritics to the correct words requires contextual information 

Figure 1.2(d). Other cases of irregularities in Arabic handwriting include 

touching and broken characters within a word Figure 1.2(e), disconnected 

characters within a word Figure 1.2(f), misplaced dots Figure 1.2(g) and 

touching diacritics Figure 1.2(h).  

• There are also some other issues that the researchers in Arabic handwriting 

recognition have to deal with, for example, difficulties due to the writing 

process and scanning. Since the scanning process may introduce noise from 

the scanner bed-page border, these issues and difficulties make Arabic word 

decomposition into letters a very delicate process and not always ensured 

(Aloud, 2018). Many approaches and techniques developed for other 

languages cannot be applied directly to the Arabic script. Therefore, techniques 

for Arabic handwriting recognition are expected to consider these challenges 

of Arabic script. 

  

 Arabic offline handwriting recognition is a highly important research topic due 

to different challenges such as the cursive nature of writing, the connectivity between 

the Arabic letters, the huge number of Arabic words over 12 million, the different 

styles of writing, and the variation of various factors which makes the problem of 

recognition of Arabic words hard and challenging (Jemni et al., 2018b). Researchers 

have tackled this problem in different ways. Some of them have aimed to improve the 

pre-processing of the manuscripts (Metwally, Khalil & Abbas, 2017). Others have 

developed approaches for segmenting the letters (Ghaleb, Nagabhushan & Pal, 2017). 

Others have focused on handcrafted feature extraction Amrouch, Rabi & Es-Saady 

(2018), and others have worked on the classification layer by optimising classifiers or 
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developing approaches for combining them (Tamen, Drias & Boughaci, 2017).  

 In this thesis, two phases are considered: feature extraction based segmentation 

and ensemble learning that have an enormous impact on recognition rate. In the first 

phase, several studies have used different techniques for geometrical feature extraction 

and showed a good performance in recognizing Arabic words (Chherawala & Cheriet, 

2014). Aouadi et al. (2016) applied segmentation on touching characters, and Li 

(2013) used to divide words horizontally. Other techniques have been used in 

recognising handwriting, such as zoning method based features Rani & Vasudev 

(2016) and sliding windows in different directions (Al-wajih & Ghazali, 2020). The 

sliding window technique has been used for extracting local structural or statistical 

features, (Alkhateeb et al., 2009; Khémiri, Kacem & Belaïd, 2014). The structural 

features describe the topological and geometrical characteristics of the word. They 

include ascendants, descendants, loops, diacritics and their position relative to the 

baseline. All these previous studies were based on drawing the characteristics of the 

letters and lacking supportive data techniques such as regression or interpolation. 

 In the second phase, ensemble learning is that a combination of several models 

leads to a potentially reduced error level compared to a single classifier, thereby 

enhancing the model's predictive performance (Sagi & Rokach, 2018). Many of the 

ensemble methods that researchers adopt follow certain non-valid assumptions. For 

example, the weighted average rule of Tsai et al. (2018) assumes that the overall 

performance of combining sets of classifiers based on their training accuracy is 

optimal, which is not valid due to the non-linear, non-stationarity nature of the data-

class distribution. Most studies have focused on accuracy only, which is the lack of 

control in the classifier's topology and its lack of feedback support for changing the 

classifiers' topology and weighting on the other side. Hence, a multi-objective needs 

to be consider to optimise the prediction of more than one perceptive, such as time, 

computational and other factors that are related to classifiers. This method will handle 

performance from the perspective of accuracy and efficiency to have a lightweight 

recognition model.  

 Overall, accuracy plays the most important measure value to analyse the 

performance at different phases. Each of these phases has its challenges and 

difficulties. For example, the segmentation of the text into lines is a challenging task 

itself, such as the curvy text lines, non–uniform gaps between the lines, dots, or 
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