96 research outputs found

    Closed loop interactions between spiking neural network and robotic simulators based on MUSIC and ROS

    Get PDF
    In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning

    Gridbot: An autonomous robot controlled by a Spiking Neural Network mimicking the brain's navigational system

    Full text link
    It is true that the "best" neural network is not necessarily the one with the most "brain-like" behavior. Understanding biological intelligence, however, is a fundamental goal for several distinct disciplines. Translating our understanding of intelligence to machines is a fundamental problem in robotics. Propelled by new advancements in Neuroscience, we developed a spiking neural network (SNN) that draws from mounting experimental evidence that a number of individual neurons is associated with spatial navigation. By following the brain's structure, our model assumes no initial all-to-all connectivity, which could inhibit its translation to a neuromorphic hardware, and learns an uncharted territory by mapping its identified components into a limited number of neural representations, through spike-timing dependent plasticity (STDP). In our ongoing effort to employ a bioinspired SNN-controlled robot to real-world spatial mapping applications, we demonstrate here how an SNN may robustly control an autonomous robot in mapping and exploring an unknown environment, while compensating for its own intrinsic hardware imperfections, such as partial or total loss of visual input.Comment: 8 pages, 3 Figures, International Conference on Neuromorphic Systems (ICONS 2018

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn übertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und Anpassungsfähigkeit. Diese Aspekte sind auch für neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befähigen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchführt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. Tatsächlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die über Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stützen. Zusätzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich über Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchführen. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma für die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer Plastizität. Synaptische Plastizitätsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, während sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden üblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten Einschränkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen Vorwärts- und Rückwärtsphasen. Darüber hinaus verhindern Gedächtnisbeschränkungen, dass die Geschichte der neuronalen Aktivität im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen für diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprünglich zur Steuerung des Körpers. Die Robotik stellt also den künstlichen Körper für das künstliche Gehirn zur Verfügung. Auf der einen Seite trägt diese Arbeit zu den gegenwärtigen Bemühungen um das Verständnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, ähnlich dem, was dem biologischen Gehirn widerfährt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgeführt. Zunächst werden vielversprechende synaptische Plastizitätsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller Repräsentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der Lichtintensität entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und für neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen räumlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen Plastizität, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln übertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische Plastizitätsregel namens "Deep Continuous Local Learning" eingeführt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde während eines Aufenthalts an der Universität von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen Repräsentationen auf motorische Befehle abgebildet werden. Drei Ansätze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese Ansätze, welche als synaptische Plastizitätsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den Plastizitätsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Evolutionary Bits'n'Spikes

    Get PDF
    We describe a model and implementation of evolutionary spiking neurons for embedded microcontrollers with few bytes of memory and very low power consumption. The approach is tested with an autonomous microrobot of less than 1 in^3 that evolves the ability to move in a small maze without human intervention and external computers. Considering the very large diffusion, small size, and low cost of embedded microcontrollers, the approach described here could find its way in several intelligent devices with sensors and/or actuators, as well as in smart credit cards

    Inspired by nature: timescale-free and grid-free event-based computing with\ua0spiking neural networks

    Get PDF
    Computer vision is enjoying huge success in visual processing applications such as facial recognition, object identification, and navigation. Most of these studies work with traditional cameras which produce frames at predetermined fixed time intervals. Real life visual stimuli are, however, generated when changes occur in the environment and are irregular in timing. Biological visual neural systems operate on these changes and are hence free from any fixed timescales that are related to the timing of events in visual input.Inspired by biological systems, neuromorphic devices provide a new way to record visual\ua0data. These devices typically have parallel arrays of sensors which operate asynchronously. They have particular potential for robotics due to their low latency, efficient use of bandwidth and low power requirements. There are a variety of neuromorphic devices for detecting different sensory information; this thesis focuses on using the Dynamic Vision Sensor (DVS) for visual data collection.Event-based sensory inputs are generated on demand as changes happen in the environment. There are no systematic timescales in these activities and the asynchronous nature of the sensors adds to the irregularity of time intervals between events, making event-based data timescale-free. Although the array of sensors are arranged as a grid in vision sensors generally, events in the real world exist in continuous space. Biological systems are not restricted to grid-based sampling, and it is an open question whether event-based data could similarly take advantage of grid-free processing algorithms. To study visual data in a way which is timescale-free and grid-free, which is\ua0 fundamentally different from traditional video data sampled at fixed time intervals which are dense and rigid in space, requires conceptual viewpoints and methods of computation which are not typically employed in existing studies.Bio-inspired computing involves computational components that mimic or at least take inspiration from how nature works. This fusion of engineering and biology often provides insights into complex computational problems. Artificial neural networks, a computing paradigm that is inspired by how our brains work, have been studied widely with visual data. This thesis uses a type of artificial neural network—event-based spiking neural networks—as the basic framework to process event-based visual data.Building upon spiking neural networks, this thesis introduces two methods that process event-based data with the principles of being timescale-free and grid-free. The first method preprocesses events as distributions of Gaussian shaped spatiotemporal volumes, and then introduces a new neuron model with time-delayed dendrites and dendritic and axonal computation as the main building blocks of the spiking neural network to perform long-term predictions. Gaussians are used for simplicity purposes. This Gaussian-based method is shown in this thesis to outperform a commonly used iterative prediction paradigm on DVS data.The second method involves a new concept for processing event-based data based on the “light cone” idea in physics. Starting from a given point in real space at a given time, a light cone is the set of points in spacetime reachable without exceeding the speed of light, and these points trace out spacetime trajectories called world lines. The light cone concept is applied to DVS data. As an object moves with respect to the DVS, the events generated are related by their speeds relative to the DVS. An observer can calculate possible world lines for each point but has no access to the correct one. The idea of a “motion cone” is introduced to refer to the distribution of possible world lines for an event. Motion cones provide a novel theory for the early stages of visual processing. Instead of spatial clustering, world lines produce a new representation determined by a speed-based clustering of events. A novel spiking neural network model with dendritic connections based on motion cones is proposed, with the ability predict future motion pattern in a long-term prediction.Freedom from timescales and fixed grid sizes are fundamental characteristics of neuromorphic event-based data but few algorithms to date exploit their potential. Focusing on the inter-event relationship in the continuous spatiotemporal volume can preserve these features during processing. This thesis presents two examples of incorporating the features of being timescale-free and grid-free into algorithm development and examines their performance on real world DVS data. These new concepts and models contribute to the neuromorphic computation field by providing new ways of thinking about event-based representations and their associated algorithms. They also have the potential to stimulate rethinking of representations in the early stages of an event-based vision system. To aid algorithm development, a benchmarking data set containing data ranging from simple environment changes collected from a stationary camera to complex environmentally rich navigation performed by mobile robots has been collated. Studies conducted in this thesis use examples from this benchmarking data set which is also made available to the public

    Plasticity and Adaptation in Neuromorphic Biohybrid Systems

    Get PDF
    Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel \u201cbiohybrid\u201d experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering. \ua9 2020 The Author(s

    Embodied Models and Neurorobotics

    Get PDF
    Neuroscience has become a very broad field indeed: each year around 30,000 researchers and students from around the ... We trace a path from neuron to cognition via computational neuroscience, but what is computational neuroscience
    • …
    corecore